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Abstract—While the use of graph-structured data in various
fields is becoming increasingly popular, it also raises concerns
about the potential unauthorized exploitation of personal data for
training commercial graph neural network (GNN) models, which
can compromise privacy. To address this issue, we propose a novel
method for generating unlearnable graph examples. By injecting
delusive but imperceptible noise into graphs using our Error-
Minimizing Structural Poisoning (EMinS) module, we are able
to make the graphs unexploitable. Notably, by modifying only
5% at most of the potential edges in the graph data, our method
successfully decreases the accuracy from 77.33% to 42.47% on
the COLLAB dataset.

I. INTRODUCTION

The abundance of data has led to the successful implementa-
tion of deep learning, which allows the integration of artificial
intelligence (AI) into various domains. However, With the
increasing availability of publicly accessible data, concerns
have risen about the unauthorized exploitation of data. Many
commercial AI models are trained using personal data that
is unknowingly collected from the internet, raising questions
about the potential misuse of this data for commercial or even
illegal gain and also posing a significant threat to individuals’
privacy, security, and copyright.

The threat of unauthorized data exploitation has made it im-
perative to develop defensive approaches. Recent studies have
been focusing on developing Unlearnable Example [1, 2, 3].
These methods aim to make the original data unlearnable
by adding imperceivable but delusive perturbations to data
samples, resulting in deep learning models trained on the
perturbed dataset having extremely low prediction accuracy.

Previous studies on unlearnable examples have primarily
focused on the vision domain. However, as the use of graph
data structures becomes more prevalent, particularly in regard
to privacy and security, it is important to explore the potential
vulnerability of unauthorized graph exploitation. As far as we
know, unlearnable graphs, i.e., unlearnable examples on graph
data, have not been explored yet. In this paper, we aim to
answer the question of how to make structured graph data
unlearnable by a wide range of GNN models.

To tackle these issues, we propose the Adaptive
GradArgMin method to craft error-minimizing structural per-
turbation based on the gradient information. The Adaptive
GradArgMin selects a set of edges that cause the maximum
gradient change and conducts the flipping operation in the

Fig. 1: An illustration of motivation of Unlearnable Graph. Existing
vision-based solutions fail to inject delusive patterns into more
challenging data structure-graph due to their discrete property. In
this paper, we propose an Error-Minimizing Structural Poisoning to
achieve efficient and effective data protection for graphs.

adjacent matrix. To achieve a good balance between invisi-
bility and effectiveness under limited manipulation budgets,
we design an adaptive constraint strategy by considering both
vertex-based and edge-based information. The perturbed graph
maintains invisible compared to the original graph under visual
inspections, which ensures the utility of the data for other
purposes while making the modified data unexploitable by ML
models.

II. ASSUMPTIONS AND PROBLEM FORMULATION

Assumptions on Defender’s Capability. We assume that the
data owner has full access to a portion of graph data used to
train a model by unauthorized data exploiters. However, the
defender could not interfere with the model selection and the
training procedure of the unauthorized users.
Objective. Given a clean graph training dataset Gc =
{Gi, yi}Ni=1, our goal is to craft an unlearnable version of
the training dataset Gu = {Ĝi, yi}Ni=1 such that the models
trained on the Gu have poor performance on the clean testing
set Gt. The task can be formulated into a bi-level optimization
as follows:

max
δi⪯c

E
(Gi,yi)∼Gt

[L (fθ∗(Gi), y)] ,

s.t.θ∗ = argmin
θ

∑
(Gi,yi)∈Gu

[L (fθ (Gi ⊕ δi) , yi)].
(1)



where ⊕ denotes the application of perturbations of node
features or topology structure on the original graph Gi, and
⪯ represents the budget constraints relationship.

III. PROPOSED METHODOLOGY

With the problem formulation above, we design the follow-
ing technique to generate Error-Minimizing Structural noise,
which is effective and imperceptible against unauthorized
exploitation.
The Min-min Optimization. To tackle the intractable bi-
level problem in Eq. 1, an approximated min-min optimization
process is proposed [3] to first learn a noise generator and
leverage it to conduct noise generation. The major motivation
is to iteratively craft noise that can trick the models trained on
the poisoned data. The problem is also a bi-level optimization
problem, with two levels of minimization. The inner level is
a constrained optimization problem that finds the noise that
is bounded by certain constraints and minimizes the model’s
classification loss. The outer level is another minimization
problem that finds the parameters that also minimize the
model’s classification loss.
Crafting Delusive Edges with Adaptive GradArgMin. The
core of our method is to take gradients with respect to the
adjacent matrix A to obtain the gradient for any edge in the
potential edge space (V × V) regardless of its existence. For
one selected edge (u, v), we conduct the discrete version of
the gradient descend by deleting existing edges with a positive
gradient or adding non-exist edges with a negative gradient.
Given the modification constraint of edges c and the element
αut,vt

∈ A, we obtain a set of edges via a greedy selection:

{ut, vt}ct=1 = argmax
{ut,vt}c

t=1

c∑
t=1

| ∂L
∂αut,vt

|. (2)

After that, modifications are performed by sequentially mod-
ifying these edges in the way that is most likely to reduce
the loss function. Note that we stop the modification process
until we find all the gradients for existing edges are negative,
or the ones for non-exist edges are positive, in which case no
perturbation for decreasing the objective is possible.
Adaptive Constrains. To ensure that we modify sufficient
and essential edges in each graph for creating delusive and
invisible patterns, we devise a mixed type of constraint based
on vertex-based and edge-based information. We consider two
types of perturbation ratios, rV and rE , which refer to the
entire edge space (V ×V ) or existing edges (E), respectively.
The number of edges to be modified is constrained by both
coefficients. Our constraints are effective and flexible, as they
allocate more budget to larger graphs, ensuring the overall
imperceptibility and effectiveness of our method.

IV. EXPERIMENTS

In order to evaluate the effectiveness of our pro-
posed method, we conducted experiments on six bench-
mark graph classification datasets(MUTAG, ENZYMES, PRO-
TEINS, IMDB-B, IMDB-M, and COLLAB) across four com-
mon GNN architectures(GCN, GAT, GIN, and GraphSage),

and make comparisons between random and error-maximizing
noise. The results on the PROTEINS and IMDB-M datasets
are reported in Figure 2.

Fig. 2: A comparison among different methods on PROTEINS and
IMDB-MULTI datasets.

Despite the good performance of EMinS noise in degrading
the models’ test accuracy, we visualize the graphs before and
after perturbation in Table I to demonstrate the imperceptibility
of our noise. From the visualizations, we can observe that
for the majority of graphs, there are few visual discrepancies
between the original and modified ones.
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TABLE I: Graph visualizations on IMDB-MULTI and ENZYMES
datasets (the first row are clean graphs, and the second row are the
graphs we generated with EMinS).

V. CONCLUSION

In this paper, we are the first group that proposes a novel
method for minimizing errors in structural poisoning for
generating unlearnable graphs. Our method explores invisible
noise to prevent GNN models from exploiting graph data
freely. We verify our method by conducting experiments on
six benchmark graph datasets, and the extensive experimental
results show that our method can be applied effectively to
various GNN architectures. This study represents an important
first step in safeguarding personal graph data from being
exploited by GNN models.
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INTRODUCTION

Research Motivation:
• The increasingly popular use 

of graph-structured data in 
various fields.
• Raising privacy and security 

concerns about the potential 
unauthorized exploitation of 
personal data.
• Recent studies of unlearnable 

examples in the vision 
domain.

Our Work:
• Injecting delusive but 

imperceptible Error 
Minimizing Structural noises 
(EMinS)  into the graph to 
prevent the personal graph 
data from unauthorized 
training.

• The first step in safeguarding 
personal graph data from 
being exploited by GNN 
models.

DEFEND CAPACITY

The Min-Min Optimization
• We suppress the gradient information on graphs by crafting 

low-error examples through a bi-level min-min optimization.
The GradArgMin Method
• We take gradients with respect to the adjacent matrix to obtain 

the gradient of any edges in the potential edge space, whether 
it exists or not.

• We rely on the gradient information and apply a greedy 
approach to flip the edges, which will most likely reduce the 
loss.

The Adaptive Budget 
• We apply an adaptive budget that scales according to the size 

of the graph.

METHODOLOGY

Datasets:
• 3 Bio-information Datasets:

MUTAG, ENZYMES, 
PROTEINS

• 3 Social Network Datasets:
IMDB-B, IMDB-M, 
COLLAB

Source Models:
• 4 Commonly Used GNNs: 

GCN, GAT, GIN, 
GraphSage

Compared Methods:
• Clean, Random, EMaxS

(Error Maximizing noise),
EMinS(Ours), 

EVALUATION SETUP

FUTURE DIRECTIONS

• The current setting assumes 
that we have full knowledge 
of the architectures. But as 
our transferability study 
gives a satisfactory result, 
generating black-box 
unlearnable graphs may be 
flexible.

• The visualizations show that 
our method suffers from 
perceptibility problems on 
sparse graphs(e.g. MUTAG 
dataset). One future 
direction may be further 
improving the 
imperceptibility of sparse 
graphs.

• Further studies are needed to 
determine whether our 
method is sensitive to 
dataset size.

• The defender has full access 
to a portion of the training 
data.
• The defender could not 

interfere with the 
unauthorized users’ model 
selection and training
procedure.
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Table1. The visualization of clean (first row) and 
perturbed (second row) graphs from IMDB-M dataset.

RESULTS

• Effective in degrading various 
models’ performance
• Imperceptible on the majority 

of the datasets
• Good transferability across 

models on different datasets

Fig 2. The experiment results across different models on various datasets.

Fig3. The transferability study on the PROTEINS/IMDB-M dataset. The 
test accuracy and loss on clean data are reported. 

OBJECTIVE

• To degrade the model’s 
performance with a bounded 
modification on the training 
graph data.

Fig 1. An illustration of the motivation for Unlearnable Graph. 


	Introduction
	Assumptions and Problem Formulation
	Proposed Methodology
	Experiments
	Conclusion

