
Poster: An Early Detection of Android Malware 

Using System Calls based Machine Learning Model 

Xinrun Zhang1, Akshay Mathur2, Lei Zhao1, Safia Rahmat2, Quamar Niyaz1, Ahmad Javaid2, Xiaoli Yang3 
1ECE Department, Purdue University Northwest, Hammond, IN 46323, USA 

2EECS Department, University of Toledo, Toledo, OH 46306, USA 
3Computer Science Department, Fairfield University, Fairfield, CT 06824, USA 

Abstract 
Several host intrusion detection systems (HIDSs) based on system call analysis have been proposed in the past to detect intrusions 

and malware using relevant datasets. Machine learning (ML) techniques have been applied on those datasets to improve the 

performances of HIDSs. However, the emphasis given on their real-world deployment is limited. To address this issue, we propose 

a framework for system call processing for benign and malware Android apps with an ability of early detection of malware. We 

extracted and analyzed system call traces for benign and malware apps, and processed their system call traces with N-gram and 

TF-IDF models. Six ML algorithms – Decision Trees, Random Forest, K-Nearest Neighbors, Naive Bayes, Support Vector 

Machines, and Multi-layer Perceptron – were trained for the malware detection system. The experimental results demonstrate that 

our Android malware detection system (AMDS), using traces of 3000 system calls, is capable of early detection with an average 

accuracy of 99.3%. We also implemented an Android app based on a client-server architecture for the proposed AMDS to 

demonstrate its deployment for malware detection in real-time. 

Acknowledgements 

This work has been published in 2022 International Conference on Availability, Reliability and Security (ARES’ 22) 

workshop [1]. 

 
References 
1. Xinrun Zhang, Akshay Mathur, Lei Zhao, Safia Rahmat, Quamar Niyaz, Ahmad Javaid, and Xiaoli Yang. 2022. 

An Early Detection of Android Malware Using System Calls based Machine Learning Model. In Proceedings of 

the 17th International Conference on Availability, Reliability and Security (ARES’ 22). 

https://doi.org/10.1145/3538969.3544413 



 Android apps selection
 Malware apps: 125 apps from Android Malware Dataset (AMD) repository. 
 Benign apps: 300 apps with high rating downloaded from Google Play Store. 

 Tools used
 Genymotion for running apps in a virtual device. 
 Monkeyrunner for automating apps execution using Python scripts.
 Strace for monitoring system calls invoked the execution of apps.
 Scikit-Learn library for ML model development.

 Data collection and pre-processing
 Installed and executed apps in Genymotion using Python script. 
 Simulated user events in each app for a minute using Monkey.
 Collected 2001 malware and 4580 benign system call traces during app 

execution.
 Created 2,3,4 N-gram sequences of system calls, applied Term Frequency–

Inverse Document Frequency (TF-IDF), and merged N-gram sequences.

 ML Model Development
 ML algorithms used: Decision Tree (DT), K-Nearest Neighbors (KNN), Multi 

Layer Perceptron (MLP), Naïve Bayes (NB), Random Forest (RF), and Support 
Vector Machines (SVM).

 Performance metrics: Receiver operating characteristics (ROC) curve, 
Accuracy, and Weighted F1-score. 

Poster: An Early Detection of Android Malware Using System Calls based Machine Learning Model
Xinrun Zhang1, Akshay Mathur2, Lei Zhao1, Safia Rahmat2, Quamar Niyaz1, Ahmad Javaid2, Xiaoli Yang3

1ECE Department, Purdue University Northwest, Hammond, IN 46323, USA
2EECS Department, The University of Toledo, Toledo, OH 46306, USA

3Computer Science Department, Fairfield University, Fairfield, CT 06824, USA

Problem: Growing complexity of apps creates constraints for these MDSs to process 
a large number of system call traces in real-time. 

Solution: Create an MDS with early detection ability to determine if an app is benign 
or malicious by analyzing a few system calls during the initial app execution.

1. Introduction

2. Contribution

3. Methodology

 A large user base has made Android devices target for various malware attacks. 
 Malware detection systems (MDSs) based on system call analysis have been 

found effective to detect malware.

 Proposed a system call based MDS using an early detection technique. 
 Built a machine learning (ML) based malware detection model through detailed 

analysis of system call traces from several Android malware and benign apps and 
feature extraction techniques.

 Collected and analyzed system call traces of 125 malware and 300 benign apps.
 Developed an Android app based on client-server architecture for deploying the 

MDS in real-time.

Fig.1 : MDS Development Workflow 

Key observations in system call analysis
 Analyzed top-10 frequent N-gram sequences and top-10 common N-gram 

sequences for 2, 3, and 4-gram sequences.
 Top-10 frequent N-gram sequence patterns for benign and malware traces were 

different. Both types of traces had some unique frequent sequences.
 Top-10 2, 3, and 4-gram common sequences had different distribution in benign 

and malware traces shown in the Fig. 2.

Selection window = 500 Selection window = 1000 Selection window = 2000

Selection window = 3000 Selection window = 4000 Selection window = 5000

Fig.3: ROC curves for six ML classifiers models with different system call selection window

5. Results for ML models

 Combined 2-gram, 3-gram and 4-gram sequences for different number of initial 
system calls, referred to as selection window, from apps system call traces.

 Trained ML models for six classification algorithms: DT, KNN, MLP, NB, RF, SVM.
 Used ROC curves to illustrate the performance of each classifier. MLP based models 

have highest area under ROC curves for all selection windows shown in Fig. 3. Table 1 
shows performance of MLP model. 

4. System call analysis

Fig.2: Top-10 common 2, 3, and 4-gram sequences in benign and malware traces

Table 1: Performance of the MLP model on test data for each selection window

6. ML Model Deployment
 Developed a client-server architecture-based Android app for deploying the MDS.
 Client runs an app and transfers the pre-processed 3000 system calls to server.
 Server runs MLP based ML model to classify the app and sends results to client.

Fig.4: Android app interface for client-server based MDS

7. Conclusion

 We implemented an early Android malware detection technique using initial 
system call analysis of a running apps.

 MLP classifier performed best (accuracy 99.3%, weighted f1-score 0.9944) for a 
selection window of 3000 system calls.

 We are integrating this work with other static and dynamic analysis techniques to 
develop a robust Android malware detection engine.

Malware Check 
Activity

Selecting the Process for 
Classification

Classification Result


	NDSS_23_Poster_front.pdf
	NDSS2023_final_submission_v2.pdf

