
Poster: TheHuzz: Instruction Fuzzing of Processors
Using Golden-Reference Models for Finding

Software-Exploitable Vulnerabilities
Rahul Kande†, Addison Crump†, Garrett Persyn†, Patrick Jauernig∗, Ahmad-Reza Sadeghi∗,

Aakash Tyagi†, and Jeyavijayan Rajendran†
†Texas A&M University, USA, ∗Technische Universität Darmstadt, Germany

†{rahulkande, addisoncrump, gpersyn, tyagi, jv.rajendran}@tamu.edu,
∗{patrick.jauernig, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

The increasing complexity of modern processors poses many challenges to existing hardware verification tools and
methodologies for detecting security-critical bugs. Recent attacks on processors have shown the fatal consequences of uncovering
and exploiting hardware vulnerabilities.

Fuzzing has emerged as a promising technique for detecting software vulnerabilities. Recently, a few hardware fuzzing
techniques have been proposed. However, they suffer from several limitations, including non-applicability to commonly-used
hardware description languages (HDLs) like Verilog and VHDL, the need for significant human intervention, and inability to
capture many intrinsic hardware behaviors, such as signal transitions and floating wires.

In this paper, we present the design and implementation of a novel hardware fuzzer, TheHuzz, that overcomes the
aforementioned limitations and significantly improves the state of the art. We analyze the intrinsic behaviors of hardware designs in
HDLs and then measure the coverage metrics that model such behaviors. TheHuzz generates assembly-level instructions to increase
the desired coverage values, thereby finding many hardware bugs exploitable from software. We evaluate TheHuzz on four popular
open-source processors and achieve 1.98× and 3.33× the speed compared to the industry-standard random regression approach and
the state-of-the-art hardware fuzzer, DifuzzRTL, respectively. Using TheHuzz, we detected 11 bugs in these processors, including
8 new bugs, and we demonstrate exploits using the detected bugs. We also show that TheHuzz overcomes the limitations of formal
verification tools from the semiconductor industry by comparing its findings to those discovered by the Cadence JasperGold tool.

I. MAIN CONTENT

This research [1] is recently published in USENIX Security 2022. The original abstract and author list are shown above.
We post the paper link with the conference version1.

REFERENCES

[1] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi, and J. Rajendran, “TheHuzz: Instruction Fuzzing of Processors Using Golden-
Reference Models for Finding Software-Exploitable Vulnerabilities,” USENIX Security Symposium, pp. 3219–3236, 2022.

1https://www.usenix.org/conference/usenixsecurity22/presentation/kande

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// combinational logic for vld register
vld := debug_en |(flush |en) // Bug b2

// select signal for mux
val sel1 = Wire(Bool())
sel1 :=((pass===ipass)|debug_en) // Bug b1

// flush logic
val state_f = Wire(UInt(3.W))
when (flush & en){

state_f := FLUSH
} otherwise {

state_f := state
}

state :=(!sel1 &state_f) |(sel1 & D_READ)

Size and complexity

Efficiency of
verification tools

Poster: TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference Models for
Finding Software-Exploitable Vulnerabilities

Rahul Kande†, Addison Crump†, Garrett Persyn†, Patrick Jauernig , Ahmad-Reza Sadeghi , Aakash Tyagi†, Jeyavijayan Rajendran†
†Texas A&M University, College Station, USA, Technische Universität Darmstadt, Germany.

{rahulkande, addisoncrump, gpersyn, tyagi, jv.rajendran}@tamu.edu, {patrick.jauernig, ahmad.Sadeghi}@trust.tu-darmstadt.de

RAHUL KANDE
Ph.D. in Computer Engineering

Texas A&M University
rahulkande@tamu.edu

https://www.rahulkande.com/
Ph: +1 979-739-8914

SETH research lab: https://seth.engr.tamu.edu/

Contact Information

[1] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi, and J. Rajendran, TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference Models for Finding
Software-

Exploitable Vulnerabilities, USENIX Security Symposium’22
[2] https://github.com/chipsalliance/rocket-chip [4] https://github.com/openrisc/mor1kx
[3] https://github.com/openhwgroup/cva6 [5] https://github.com/openrisc/or1200

References

Motivation

Limitations of Existing Tools

Case Study: Hardware Coverage
Fuzzed 4 different real-world open-source
processors from RISC-V and OpenRISC ISAs

Faster coverage than the state-of-the-art

Detected 11 bugs including 8 new bugs
Filed CVE’s for 5 bugs

Developed two exploits
Privilege escalation using MOR1KX bugs
Arbitrary code execution using Ariane bugs

Results

TheHuzz[1]: Overview

Our research work was partially funded by the US Office of Naval Research, by Intel’s
Scalable Assurance Program, by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation), and by the German Federal Ministry of Education and Research and
the Hessian State Ministry for Higher Education, Research and the Arts within ATHENE.

We thank Kevin Laeufer (UC Berkeley), Jaewon Hur (Seoul National University), and TAMU
HRPC for their support. Any opinions, findings, conclusions, or recommendations expressed
herein are those of the authors, and do not necessarily reflect those of the US Government.

Acknowledgements

While TheHuzz is faster than traditional verification
techniques and capable of detecting new
vulnerabilities, there is still scope for improvement
in terms of the fuzzing speed, achieving close to
100% coverage, and fuzzing different types of
hardware designs.

Thus our future focus in on the following:
FPGA fuzzing: Emulate hardware on FPGA to
improve the speed of fuzzing.
Formal fuzzing: Leverage capabilities of
formal tools to improve the coverage
achieved by TheHuzz.
Fuzzing non-processor designs: Extend
TheHuzz to fuzz non-processor designs such
as cryptographic accelerators.

Future Work

Apple’s new chip: 33.7bn transistors

Technique Fast Coverage Scalable Automated

Manual inspection

Formal verification

Regression

Our Solution:
HARDWARE FUZZING

Shift left in bug detection

Logic aware

Specification
i
i

2 5

4 C4
Specification comparison

Hardware Coverage Types
Branch coverage

- Select signal values of MUX
Condition coverage

- Input signal values of condition
Expression coverage

- Input signal values of the logic ,
FSM coverage

- State transitions of the 3-bit reg
Toggle coverage

- Bit-toggle of the flip-flops ,
Statement coverage

- Each line in the HDL source code

Chisel code of the case study design

Finite state machine (FSM) of the case study design Hardware design for the case study

Rocket core[2] & Ariane[3]

p

MOR1KX[4] & OR1200[5]

OR1200 bug: Incorrect
implementation of overflow bit

MOR1KX bugs: Incorrect access
permissions for control status

registers EPCR and EEAR

“EPCR”

“EEAR”

Arith
.

inst.
O bit

“fenci”
“fneci

”

“fencc”

“fencii”

“ffnci”

Ariane bug: Cannot recognize
all types of fence instruction

int main(void)
{
asm volatile (
asm volatile (
asm volatile (
asm volatile (-
asm volatile (
• • •

0
}

Seed input: C program

• • •

• • •

Binary executable

0 1 1 0 1 0 1 0 0 1
Bit flip

0 1 1 0 1 0 0 0 1 1
Bit swap

Mutation techniques to create new inputs

• • •
Hardware simulation trace output

addi

• • •

Golden model emulation trace output

• • •

Coverage output

mismtaches

• • •

Bug detection output

Fast Coverage Scalable Automated

