Poster: TheHuzz: Instruction Fuzzing of Processors
Using Golden-Reference Models for Finding
Software-Exploitable Vulnerabilities

Rahul Kande', Addison Crump', Garrett Persyn’, Patrick Jauernig*, Ahmad-Reza Sadeghi*,
Aakash Tyagif, and Jeyavijayan Rajendran®
TTexas A&M University, USA, *Technische Universitdt Darmstadt, Germany
T{rahulkande, addisoncrump, gpersyn, tyagi, jv.rajendran}@tamu.edu,
*{patrick.jauernig, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

The increasing complexity of modern processors poses many challenges to existing hardware verification tools and
methodologies for detecting security-critical bugs. Recent attacks on processors have shown the fatal consequences of uncovering
and exploiting hardware vulnerabilities.

Fuzzing has emerged as a promising technique for detecting software vulnerabilities. Recently, a few hardware fuzzing
techniques have been proposed. However, they suffer from several limitations, including non-applicability to commonly-used
hardware description languages (HDLs) like Verilog and VHDL, the need for significant human intervention, and inability to
capture many intrinsic hardware behaviors, such as signal transitions and floating wires.

In this paper, we present the design and implementation of a novel hardware fuzzer, TheHuzz, that overcomes the
aforementioned limitations and significantly improves the state of the art. We analyze the intrinsic behaviors of hardware designs in
HDLs and then measure the coverage metrics that model such behaviors. TheHuzz generates assembly-level instructions to increase
the desired coverage values, thereby finding many hardware bugs exploitable from software. We evaluate TheHuzz on four popular
open-source processors and achieve 1.98x and 3.33x the speed compared to the industry-standard random regression approach and
the state-of-the-art hardware fuzzer, DifuzzRTL, respectively. Using TheHuzz, we detected 11 bugs in these processors, including
8 new bugs, and we demonstrate exploits using the detected bugs. We also show that TheHuzz overcomes the limitations of formal
verification tools from the semiconductor industry by comparing its findings to those discovered by the Cadence JasperGold tool.

I. MAIN CONTENT

This research [1] is recently published in USENIX Security 2022. The original abstract and author list are shown above.
We post the paper link with the conference version'.

REFERENCES

[1] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi, and J. Rajendran, “TheHuzz: Instruction Fuzzing of Processors Using Golden-
Reference Models for Finding Software-Exploitable Vulnerabilities,” USENIX Security Symposium, pp. 3219-3236, 2022.

Uhttps://www.usenix.org/conference/usenixsecurity22/presentation/kande

TEXAS AsM Poster: TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference Models fo
Finding Software-Exploitable Vulnerabilities

UNIVERSITY

Rahul Kandet, Addison CrumpT, Garrett Persynt, Patrick Jauernig*, Ahmad-Reza Sadeghi*, Aakash Tyagit, Jeyavijayan Rajendrant
TTexas A&M University, College Station, USA, *Technische Universitat Darmstadt, Germany.
{rahulkande, addisoncrump, gpersyn, tyagi, jv.rajendran}@tamu.edu, {patrick.jauernig, ahmad.Sadeghi}@trust.tu-darmstadt.de

Case Study: Hardware Coverage

Moo, T e T e e o » Fuzzed 4 different real-world open-source
Gulftown Core 6 21| vid 7 debug_er uen ten ——
1 T ;i T processors from RISC-V and OpenRISC ISAs
o |
. ol woxioe /L. 0 D READ | - Hardware Coverage Types B7 RISC-\/* Rocket corel & Arianel
£ I . 4
g 43 .FLUSH » Branch coverage
o a1 ;
2 a5 FLUSH 17 | H - Select signal values of MUX @ MOR1KX & OR12001!
3 jf | state > d. .
5 o fush_i E fush Condition coverage
2 o : | - Input signal values of condition @
H 5
E 2 | seate io(roert ss .) | |[Sre==as)
o1 | state :=(fsell dstate f) |(sell & D_READ) pass_i D ot > Expression coverage » Faster coverage than the state-of-the-art
Sli pass) :
%70 w80 1990 2000 2010 2020 Chisel code of the case study deSIgn | - Input signal values of the logic (3),(&) :
Year of introduction ol ipass._i ol N — Random regression
Size and complexity . selt DEWSMNDW |/pass > FSM coverage g 420k { = DifuzzRTL r,/’-/‘.
EER O ES SR Re ' ‘ en i E - State transitions of the 3-bit reg @ K R
= 03]
B i b Cfien Y| % Toggle coverage & 410k e
7. SAMSUNG 3 = Bi le of the flip-flops (3), (7) @ B
AMDZ1 ﬁyg 7 ¥ T debug_en_i - Bit-toggle of the flip-flops (5), g
& arm Efficiency of ANDiselt | > Statement coverage 3 400k /
verification tools hece:£8/f = (pese == ses\ debpcen - Each line in the HDL source code *
intel Finite state machine (FSM) of the case study design Hardware design for the case study Z”"ET' —h . i i . —
> " Applei0S14.7.1: Urgent 0 4 8%00 600 mo() 800 900 1000
Update Aims To Fix Critical . # instructions (xK
; “ , | ihoneproblem TheHuzz!Yl: Overview
LB e " i ¥ ¥ ¥ ¥ ¥ ' betected 11 bugs including 8 new bugs N
E : / | > i i
e Undaton Fios and More : Seeds | Golden Detected 11 bugs including 8 new bugs
! | > Filed CVE’s for 5 bugs \/4
1 | Po1TIo] [01110] | AV
1| fooorcf ees pri01of [| T'ldgtgbase g reference
oA S H .
Limitations of Existing Tools o [Roood] Bouor | model e 4[0 ‘ =X o
! 'y '
[} Ariane 2 OR1200
1
m Scalable | T R P B D Ariane bug: Cannot recognize Mok1kx:§:;.'<|f|:arrectaccess OR1200 bug: Incorrect
T —— : | all types of fence instruction permissions for control status implementation of overflow bit
] registers EPCR and EEAR
o ') i Mutati Feedback
Formal verification X J X X | In tr tl n ' utation
. ! structio] . engine » Developed two exploits
Regression X X v v | | eng‘ne ivi i i
! generator \ » Privilege escalation using MOR1KX bugs
1 : ¢ » Arbitrary code execution using Ariane bugs
. add rl,r2,r5 1 pot110| [01I110
Our Solution: | mul r3, ré6, r3 : 10001 0pm84101010]
fllesscs ol ¢ (e leny) [ERENN. L FutureWork |
HARDWARE FUZZING !
|
|
H 5
Scalability comparison i Seed generator \ Stimulus generator > While TheHuzz is faster than traditional verification
e S [fomoivent / it techniques and capable of detecting new
o e 1 |- P . . .
g fuzzing / T T vulnerabilities, there is still scope for improvement
g ile,incr_cov,cov, Line, ,cond, £sm, . h L
V- 2 TS PRI DGR PO), (LD (O R in terms of the fuzzing speed, achieving close to
: ‘ 2.21353,207421,7180, 9555, 5695, 44, 184747 100% coverage, and fuzzing different types of
Devgn B ot Deploy e E asm "0152%2 E 3,22044,229465,7245,9848, 6130, 47,206195 hard desi
asm volatile
Shift left in bug detection Deson complesty aom volatile (Mutation techniques to create new inputs 5242346515, 7263, 10006 6551, 5,522560. araware designs.
o= V°ia:li: E B 6,3952,250265,7283,10144, 6394, 59, 226385
asm volati. ODT x2,x2 ; R
o co: D B =l e DI » Thus our future focus in on the following:
‘ return 0;] b = b SEDHCRRCER Coverage output N T
@) cor 1380 [1] pest Wz 1001 » FPGA fuzzing: Emulate hardware on FPGA to
l ' - || Seed input: C program 1;;;:(027 o0o!] R[x] inst=[027a81b3] No errors found in 0_comp_out.log improve the speed of fuzzing.
a
Fast Coverage 000 mismtaches ignored: ['2_2'] » Formal fuzzing: Leverage capabilities of
200000000 00000093 00000113 00000193 00000213 B . No errors found in 1_c out. lo
Hardware simulation trace output — ‘-’ f i
@00000001 00000293 00000313 00000393 00000413 ormal tools to improve the coverage
Specification e [2_comp_out.log] [87] [ERROR: **BCs . p 6
0<3A <1; A @0000025b 00000013 00000013 00000013 00000013 core 0: 0x0000000000001000 (0x00000297) auipc t0, 0x0 Mismatch*+] achieved by TheHuzz.
- ’ 20000025c 00000013 00000013 00led8lb 027a81b3 3 1000) x5 1000 ... N . .
0 < 3B £1; 8 @0000025: 0117dab3 84198003 419:de1b sﬂ;aws core 0: 0x0000000000001004 (0x02028593) addi al, t0, 32 » Fuzzing non-processor designs: Extend
. 0oo 3 1004 11 1020 - - R
'f’v,'fs' 400000287 ££E£eaTe EEEEELCE 00000000 00000000 | |coze 0: 0x0000000000001008 (0x£1402573) cszz a0, mhartid e A Creymia e B TheHuzz to fuzz non-processor designs such
—a,v—c, ¢ . bl e I | i 68} - as cryptographic accelerators.
Specification comparison Logic aware Binary executable Golden model emulation trace output Bug detection output

Contact Information
RAHUL KANDE

Published at USENIX Security Symposium, 2022 Acknowledgements

. ") Our research work was partially funded by the US Office of Naval Research, by Intel’s

Ph.D. in Computer Engineering Scalable Assurance Program, by the Deutsche Forschungsgemeinschaft (DFG, German
Texas A&M University Research Foundation), and by the German Federal Ministry of Education and Research and
rahulkande@tamu.edu ELF'.- References the Hessian State Ministry for Higher Education, Research and the Arts within ATHENE.

https://www.rahulkande.com/
Ph: +1 979-739-8914 We thank Kevin Laeufer (UC Berkeley), Jaewon Hur (Seoul National Unlverslty), and TAMU

Software-
SCA N M E Exploitable Vulnerabilities, USENIX Security Symposium’22 HRPC for their support. Any opinions, findings, or
SETH research lab: https://seth.engr.tamu.edu/ [2] hitps://github.com)/chipsalliance/rocket-chip [4] https://github.com/openrisc/mortix i

herein are those of the authors, and do not necessarily reflect those of the US Government.
3] https://github.com/openhweroup/cvaé (5] https://github.com/openrisc/or1200

[1]R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi, and J. Rajendran, TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference Models for Finding

