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Abstract

The increasing complexity of modern processors poses many challenges to existing hardware verification tools and
methodologies for detecting security-critical bugs. Recent attacks on processors have shown the fatal consequences of uncovering
and exploiting hardware vulnerabilities.

Fuzzing has emerged as a promising technique for detecting software vulnerabilities. Recently, a few hardware fuzzing
techniques have been proposed. However, they suffer from several limitations, including non-applicability to commonly-used
hardware description languages (HDLs) like Verilog and VHDL, the need for significant human intervention, and inability to
capture many intrinsic hardware behaviors, such as signal transitions and floating wires.

In this paper, we present the design and implementation of a novel hardware fuzzer, TheHuzz, that overcomes the
aforementioned limitations and significantly improves the state of the art. We analyze the intrinsic behaviors of hardware designs in
HDLs and then measure the coverage metrics that model such behaviors. TheHuzz generates assembly-level instructions to increase
the desired coverage values, thereby finding many hardware bugs exploitable from software. We evaluate TheHuzz on four popular
open-source processors and achieve 1.98× and 3.33× the speed compared to the industry-standard random regression approach and
the state-of-the-art hardware fuzzer, DifuzzRTL, respectively. Using TheHuzz, we detected 11 bugs in these processors, including
8 new bugs, and we demonstrate exploits using the detected bugs. We also show that TheHuzz overcomes the limitations of formal
verification tools from the semiconductor industry by comparing its findings to those discovered by the Cadence JasperGold tool.

I. MAIN CONTENT

This research [1] is recently published in USENIX Security 2022. The original abstract and author list are shown above.
We post the paper link with the conference version1.
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// combinational logic for vld register 
vld := debug_en |(flush |en) // Bug b2 

// select signal for mux 
val sel1 = Wire(Bool()) 
sel1 :=((pass===ipass)|debug_en) // Bug b1 

// flush logic 
val state_f = Wire(UInt(3.W)) 
when (flush & en){ 

state_f := FLUSH 
} otherwise {

state_f := state 
} 

state :=(!sel1 &state_f) |(sel1 & D_READ)

Size and complexity

Efficiency of 
verification tools
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Motivation

Limitations of Existing Tools

Case Study: Hardware Coverage
Fuzzed 4 different real-world open-source 
processors from RISC-V and OpenRISC ISAs

Faster coverage than the state-of-the-art

Detected 11 bugs including 8 new bugs
Filed CVE’s for 5 bugs

Developed two exploits
Privilege escalation using MOR1KX bugs
Arbitrary code execution using Ariane bugs

Results

TheHuzz[1]: Overview
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While TheHuzz is faster than traditional verification
techniques and capable of detecting new
vulnerabilities, there is still scope for improvement
in terms of the fuzzing speed, achieving close to
100% coverage, and fuzzing different types of
hardware designs.

Thus our future focus in on the following:
FPGA fuzzing: Emulate hardware on FPGA to
improve the speed of fuzzing.
Formal fuzzing: Leverage capabilities of
formal tools to improve the coverage
achieved by TheHuzz.
Fuzzing non-processor designs: Extend
TheHuzz to fuzz non-processor designs such
as cryptographic accelerators.

Future Work

Apple’s new chip: 33.7bn transistors

Technique Fast Coverage Scalable Automated

Manual inspection

Formal verification

Regression

Our Solution:
HARDWARE FUZZING

Shift left in bug detection
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Hardware Coverage Types
Branch coverage

- Select signal values of MUX 
Condition coverage

- Input signal values of condition 
Expression coverage

- Input signal values of the logic ,
FSM coverage

- State transitions of the 3-bit reg 
Toggle coverage

- Bit-toggle of the flip-flops , 
Statement coverage

- Each line in the HDL source code

Chisel code of the case study design 

Finite state machine (FSM) of the case study design Hardware design for the case study

Rocket core[2] & Ariane[3]
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MOR1KX[4] & OR1200[5]

OR1200 bug: Incorrect 
implementation of overflow bit

MOR1KX bugs: Incorrect access 
permissions for control status 
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Ariane bug: Cannot recognize 
all types of fence instruction
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