
Poster: Improving Legacy IoT Device Security
through Open-Source Intervention

Conner Bradley, David Barrera
Carleton University

connerbradley@scs.carleton.ca

Abstract—When a vendor can no longer support an Internet
of Things (IoT) device, what is next? With the rapid growth of
IoT, vendors are constantly motivated to develop new products
to keep up with market demands. Over time, older products
become “legacy” or “unsupported” by vendors and no longer
receive software updates and security patches. Due to the long-
term deployment nature of many IoT devices, they may remain
active for years with several unpatched vulnerabilities. We first
examine the security threat that unsupported and unpatched
devices pose to IoT ecosystems, and then propose a model that
enables legacy IoT devices to transition to an open-source support
model while respecting the original vendor’s intellectual property.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) industry has
flooded the market with a variety of novel devices intended for
deployment in long-term settings. Such devices include smart
thermostats, light switches, and door locks. The deployment
of these devices poses a unique problem for the industry: can
these devices last as long as their analog counterparts? It is
certainly possible to engineer embedded hardware that lasts
decades; however, can software be engineered to endure the
test of time?

Most IoT devices have a critical dependency with their
vendor – if the vendor ceases to support the device [11], or the
vendor ceases to exist [5], then there is no supported method
for the device to stay up to date. When these IoT devices
become unsupported they may retain some of their original
functionality; however, these devices will no longer receive
software updates to fix vulnerabilities, thus forcing consumers
to choose between keeping their unsupported and insecure
device or throwing it away. If a device becomes unsupported
and it cannot function due to requiring external vendor services
then it is effectively useless to consumers and will also get
thrown away.

Unsupported IoT devices pose a security problem: as these
devices age and their dependencies become increasingly out-
of-date, the attack surface of these devices will grow. Bad
actors have historically exploited fleets of functional but inse-
cure IoT devices, which is damaging to IoT ecosystems as a
whole [2].

As a result, the Internet of Things will create a surplus of
unsupported and vulnerable devices. Many IoT devices are
not easily recycled due to the use of custom-built hardware
and unrecyclable materials [4], [6]. Our current rate of e-
waste generation is unsustainable: in 2019 Northern America

created 7.7 metric tonnes of e-waste, with only 15% properly
recycled [3]. Concrete action is needed for the Internet of
Things to grow sustainably and securely.

Within this context, there is a reliance upon a single entity
to maintain IoT devices, which is problematic. In an ideal
world, a vendor would hand off all sources, binaries, and
compiler tooling to an external entity willing to take on
supporting legacy devices. This external entity could take
over if the original vendor goes out of business or deprecates
the device. In practice, this is unlikely to happen as sources
and binaries may contain intellectual property that the vendor
cannot make open source, compiler tooling may be proprietary
and require licensing, and the entity taking on these tasks will
have the burden of managing several different toolchains, build
processes, and languages.

Prior work in designing IoT software update schemes put
the edge case of product discontinuation or maintenance
delegation to be out-of-scope of the software update model [7],
or rely on an explicit delegation by pushing new firmware
that contains the needed changes to pull updates from a new
source [12]. We believe that addressing this edge case is
beneficial to IoT security: allowing the delegation of legacy
device software maintenance to new maintainers ensures that
these devices can run longer and more securely.

We propose a multifaceted model that allows IoT vendors
to safely transition the burden of legacy device maintenance
onto a third party. Our model takes into consideration a variety
of angles of various stakeholders such as intellectual property
(IP) concerns, development tooling, customized hardware, and
device longevity.

II. OPEN-SOURCE TRANSITION MODEL

One major challenge with allowing IoT devices to fetch
firmware from alternate sources is prior knowledge of how
the device is constructed. Existing firmware update models
require the delegated firmware developer to have some prior
knowledge of the device, typically in the form of source
code. Without prior knowledge, a new maintainer will need to
reverse-engineer the device, which is possible but infeasible
at a large scale [9]. To enable an open-source development
model while respecting stakeholders’ IP concerns, we need
to provide a clear separation of responsibility between the
original device manufacturer and future possible delegate
stakeholders. Instead of building monolithic device firmware,
we propose adding lightweight abstractions that allow for a



Heterogeneous Hardware

GPIO I2C Flash

HAL

...

Proprietary Firmware

App 1 App 2 App N
...

nth party

1st party

Microkernel Primitives

Peripheral Abstraction Layer

Peripheral Access Control Update Monitor

Platform-independent Runtime

Fig. 1. Our IoT system development model separates responsibility between
the first-party maintainers and future delegate maintainers. Red indicates
physical hardware, blue indicates native-executable firmware, and green
indicates platform-independent programs.

clear separation of responsibility for maintenance concerns on
IoT. As shown in Figure 1, the device vendor is responsible
for the physical hardware and peripheral selection, along with
developing a minimal Hardware Abstraction Layer (HAL) that
provides access to the underlying hardware – any proprietary
firmware required for peripherals to function is included in
this layer, isolating it from higher layers of the system.

Under our model, the core applications that run the IoT
device are developed using a lightweight platform-independent
runtime that exposes standardized interfaces to the under-
lying hardware, such as the WebAssembly Micro Runtime
(WAMR) [1], [8]. This way the core applications and abstrac-
tions for the IoT device can be developed using interfaces
and tooling that is independent of the device’s underlying
hardware. Both a first-party IoT vendor, and third-party open-
source developers can develop generic and re-usable software
for heterogeneous IoT devices, without any proprietary tool-
ing, sources, or firmware blobs [8].

We plan on leveraging the new IETF SUIT standard for
resource-constrained firmware updates [7] to implement our
update distribution model. We plan on integrating and ex-
tending the TUF design for survivable key compromise [10]
into IETF SUIT to allow a key-delegation system allowing
private vendors and third-party maintainers to openly author
and distribute device firmware.

To transition software updates from first-party vendors to
third-party development, the IoT device vendor needs to
choose a transition heuristic that defines when an IoT device
will switch to third-party sources. Potential heuristics include
checking if a vendor API endpoint is unusable for a certain
amount of time (dynamic), checking if an amount of time has
elapsed (temporal), or pushing an update to the IoT device
to enable the transition (manual). During the pre-transition
period, the IoT vendor can publish firmware and applications
for their IoT device through their channels.

Threat Model: anything grouped under the first-party re-
sponsibility is assumed to be trusted. Over the supported
lifetime of the device, the vendor will have the ability to fix any
bugs in the hardware abstraction layer or proprietary firmware,
which will be minimal if not any as these components are

designed to require a minimal implementation. The platform-
independent runtime is assumed to be trusted. Higher-level
components that rely on platform-independent programs are
assumed to be untrusted.

III. CONCLUSION AND DISCUSSION

We presented our preliminary work that extends the lifetime
of IoT devices by allowing for third-parties to develop IoT
systems software using open standards. Future work includes
evaluating various platform-independent runtimes such as
WAMR [1], along with developing a standard set of interfaces
that can be implemented on popular IoT operating systems.

REFERENCES

[1] T. B. Alliance, “Webassembly micro runtime (wamr).”
[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Aug. 2017.

[3] V. Forti, C. P. Baldé, R. Kuehr, and G. Bel, “The global e-waste monitor
2020,” Quantities, flows, and the circular economy potential, 2020.

[4] S. Higginbotham, “The IoTs E-Waste Problem Isnt Inevitable,” Jul 2021.
[5] G. Hoffman, “Anki, jibo, and kuri: What we can learn from social robots

that didn’t make it,” Jul 2021.
[6] S. Lechelt, K. Gorkovenko, L. L. Soares, C. Speed, J. K. Thorp, and

M. Stead, “Designing for the End of Life of IoT Objects,” in Companion
Publication of the 2020 ACM Designing Interactive Systems Conference.
ACM, Jul. 2020.

[7] B. Moran, H. Tschofenig, D. Brown, and M. Meriac, “A Firmware
Update Architecture for Internet of Things,” RFC 9019, Apr. 2021.

[8] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris,
R. Mikkola, and O. Beletski, “WebAssembly Modules as Lightweight
Containers for Liquid IoT Applications,” in Web Engineering, M. Bram-
billa, R. Chbeir, F. Frasincar, and I. Manolescu, Eds. Springer
International Publishing, 2021.

[9] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer IoT devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference. ACM.

[10] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in Proceedings of the 17th
ACM conference on Computer and communications security - CCS ’10.
ACM Press, 2010.

[11] N. Statt, “Nest is permanently disabling the revolv smart home hub,”
Apr 2016.

[12] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
“Secure Firmware Updates for Constrained IoT Devices Using Open
Standards: A Reality Check,” IEEE Access, vol. 7, 2019.

2



Improving Legacy IoT Device Security
through Open-Source Intervention

Conner Bradley David Barrera
Carleton University

Problem: Legacy IoT Devices

What happens when an IoT device is no

longer supported by the original

manufacturer?

Unsupported devices can remain in

service, running aging embedded

software

The hardware will likely be usable, but

the software will not be updated or

patched in any way.

Legacy, unsupported firmware

deployed at a large scale poses a

significant security threat [1]

Our current rate of e-waste generation

is unsustainable [2], [3]. What can we

do to securely and sustainably keep

legacy IoT devices functioning?

Existing Update Efforts

There are several existing designs for

software updates in the IoT space, and

more generally in the embedded systems

space [4]–[6].

Unfortunately, these approaches are

(mostly) dependent on a single vendor to

provide support, and aspects revolving

around device longevity are ignored.

Open Source Intervention

We propose an architectural shift in the

IoT space. Instead of building mono-

lithic firmware, we propose developing

an open set of interfaces that allow IoT

vendors and Open-Source developers to

target heterogeneous IoT platforms.

Additionally, our efforts focus on how

we can develop software supply chains

for liquid IoT applications [7] that allow

for a secure transition from vendor to

open-source maintainer.

FutureWork

Integrating and extending existing

update frameworks to allow for a safe

transition to third-party maintainers,

such as open source communities

Building memory safe solutions for our

platform independent runtime including

integrating with microkernel inspired IoT

operating systems such as Tock [8]

Finish developing the standardized

platform-independent interafaces for

IoT device peripherals.

End of Hardware Life
The end of an IoT device can start as early as when
the device becomes unsupported; however, If the
hardware powering the device is still functional, we
can extend the lifetime of the IoT device by
leveraging our open-source IoT development model.


At this point the device can be recycled normally,
and made into a new generation of IoT devices.

Device hardware no
longer functioning,

recycle

Unsupported, Vulnerable

Over time devices become unsupported, and
vendors go out of business. Unpatched bugs
present a security risk to IoT ecosystems. 

In other contexts we have seen open-source
communities step in to provide solutions for
unsupported platforms. Why can't we do this with
IoT?


Heterogeneous hardware
Proprietary tooling, methods, and firmware
If every IoT vendor open sourced their IoT
platform code, it would be a maintenance
nightmare!

Time elapses

IoT Circle of Life(Span)

All IoT devices start here: developed through R&D efforts
by vendors to fill some kind of market need. 


The end-of-life of an IoT device needs to be considered
during early stages of product development. We propose
developing metrics that allow an IoT device to identify if it
has gone outside of the vendor's SLA, or if deteting if their
vendor has gone out of business.

A Model for Open

Source Intervention

We propose a software develop-

ment model that breaks apart 

monolithic firmware designs on

IoT devices, ultimately to reduce

dependence on device vendors.


Our design allows unsupported IoT

devices to be transitioned to third-

party software development, without requiring

any source code or intellectual property to be given
between parties.


Vendor Develops
Device

Device deployed
to consumers

Vendor distributes
firmware updates

Device updates
using vendors

distribution

Device checks for
supported

dependencies

Open-Source IoT

Firmware Project

Device receives
updates from 3rd

party source

Device software
unsupported

Device in-service

Traditional IoT Development

Our proposed model

Vendor Update

Infrastructure

Heterogeneous Hardware

GPIO I2C Flash

HAL

...

Proprietary Firmware

App 1 App 2 App N
...

nth party

1st party 

Microkernel Primitives

Peripheral Abstraction Layer

Peripheral Access Control Update Monitor

Platform-independent Runtime

Our proposed design, native firmware (blue) is developed only by the original vendor in a

microkernel design. Everything else is abstracted to run on a Platform Independent

runtime, which exposes standardized APIs across heterogeneous IoT platforms.

References

[1] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai botnet,” in 26th USENIX Security Symposium (USENIX Security 17), USENIX

Association, Aug. 2017.

[2] V. Forti, C. P. Baldé, R. Kuehr, and G. Bel, “The global e-waste monitor 2020,” Quantities, flows, and the circular economy potential, 2020.

[3] S. Higginbotham, The IoT’s E-Waste Problem Isn’t Inevitable, Jul. 2021.

[4] B. Moran, H. Tschofenig, D. Brown, and M. Meriac, A Firmware Update Architecture for Internet of Things, RFC 9019, Apr. 2021.

[5] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable key compromise in software update systems,” en, in Proceedings of the 17th ACM

conference on Computer and communications security - CCS ’10, ACM Press, 2010.

[6] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure Firmware Updates for Constrained IoT Devices Using Open Standards:

A Reality Check,” IEEE Access, vol. 7, 2019.

[7] N. Mäkitalo, T. Mikkonen, C. Pautasso, et al., “WebAssembly Modules as Lightweight Containers for Liquid IoT Applications,” in Web Engineering,

M. Brambilla, R. Chbeir, F. Frasincar, and I. Manolescu, Eds., Springer International Publishing, 2021.

[8] A. Levy, M. P. Andersen, B. Campbell, et al., “Ownership is theft: Experiences building an embedded os in rust,” in Proceedings of the 8th Workshop

on Programming Languages and Operating Systems, ser. PLOS ’15, Monterey, California: Association for Computing Machinery, 2015.

security.scs.carleton.ca/~cbradley Network and Distributed System Security (NDSS) Symposium 2023 connerbradley@scs.carleton.ca


