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Abstract—Releasing location data without protection raises
privacy and liability (e.g., due to unauthorized distribution of
such datasets) concerns. To address this, we propose a framework
that prevents unauthorized redistribution and protects privacy
of users’ location data under differential privacy at the same
time. Our proposed fingerprinting scheme is robust against
random flipping attacks, correlation-based flipping attacks and
collusions among multiple parties, which makes it hard for the
attackers to infer the fingerprinting codes and avoid accusation.
Besides, the proposed fingerprinting scheme increases data utility
for differentially-private datasets, which is beneficial for data
analyzers in data mining.

I. INTRODUCTION

Location-based services have become one of the most
popular services in our daily lives thanks to rapid evolution
in mobile technologies and internet of things. Such service
providers (e.g., Google) can share such location datasets with a
limited number of parties, called data analyzers. Nevertheless,
malicious data analyzers, e.g., motivated by profit, may leak
their copies to unauthorized parties, which brings significant
privacy concerns. In order to prevent unauthorized redistribu-
tion, service providers should embed a unique fingerprint into
datasets for each data analyzer to enable traceability of the
potential leakage.

There are several existing fingerprinting mechanisms, e.g.,
Boneh-Shaw codes [1]] and Tardos codes [5]. However, those
traditional digital fingerprinting schemes cannot be directly
applied to the location datasets because of correlations in
location datasets and their particular utility requirements. In a
location trajectory, i.e., an ordered sequence of location points
in a location dataset, location points are highly correlated
with each other, especially the adjacent location points. Thus,
using publicly available correlation models (constructed from
public location datasets), a malicious analyzer can identify the
fingerprinted data points and avoid accusation.

On the other hand, in recent years, privacy concerns of
sensitive datasets have attracted massive attention. However,
existing privacy preserving approaches for location data and
datasets (i) do not provide liability guarantees against dataset
leakage (unauthorized redistribution); and (ii) bring excessive
noise to datasets and thus sacrifice data utility.

In this work, we introduce a framework that simultaneously
provides robust fingerprinting, privacy preservation, and high
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utility when sharing location datasets. We propose a robust
correlation-based fingerprinting scheme that is robust against
multiple attacks, e.g., including correlation attacks, majority
collusion attacks, and probabilistic collusion attacks. To mit-
igate data utility degradation due to the privacy-preserving
methods, we propose a smoothing scheme as a post-processing
step that aims to restore most correlations between adjacent
points along a trajectory and further integrate it into our
fingerprinting scheme.

II. SYSTEM AND THREAT MODEL

There are two parties in our setting: a service provider
and several data analyzers. The service provider stores the
location dataset in their data server and is willing to share them
with other parties. Meanwhile, researchers and businesses,
categorized as data analyzers, want to access such location
datasets. To ensure users’ privacy and mitigate unauthorized
redistribution, the service provider applies a privacy-preserving
mechanism and a fingerprinting scheme to the location dataset
before sharing.

The service provider is the only entity that accesses raw
data from the users. Thus, we assume the service provider
is trusted (i.e., it does not distribute unauthorized copies of
users’ data to other unauthorized parties). The analyzers can be
malicious. The malicious analyzer, denoted as the attacker, un-
derstands that the received location dataset has been perturbed
under differential privacy to protect dataset participants, but it
is curious about the original (non-perturbed) data values in the
shared dataset. For this, it can utilize auxiliary information
from public sources, e.g., correlations in the map area of
interest. To avoid detection during redistribution, the attacker
tries to distort the fingerprint signature. They can exploit the
public correlations, collude with other analyzers, or even use
both to hide their identities. They can perform four types of
attacks, i.e.,

e Random flipping attacks. The attacker distorts the
location position of a subset of the points that are
randomly selected along the trajectory.

e  Correlation-based flipping attacks. The attacker uti-
lizes correlation data extracted from public source,
analyzes pairwise correlations in the trajectory and
flips the points that violate the correlation model.

e  Majority collusion attacks. Multiple attackers collude
by majority voting at each location point and share
the copy.



e  Probabilistic collusion attacks. Instead of using major-
ity voting, the attackers take correlation into account
while deciding each location point before sharing.
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Fig. 1: Detecting the source of the unauthorized redistribution

III. METHODOLOGY

The fingerprint detection workflow (for the source of an
unauthorized redistribution) is shown in Figure [I] Once a
location dataset are found publicly or from other authorized
sources, the service provider performs an aggregate detection
scheme to identify the source of the leakage. More specifically,
for each trajectory in the leaked dataset, the service provider
calculates the similarity between it and its fingerprinted version
stored on the server. The service provider aggregates the de-
tection results (a set of accused analyzers) and finally accuses
the analyzer of leaking the dataset by majority voting.
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Fig. 2: The system model

The general workflow of the framework is shown in Fig-
ure@ First, we protect the location datasets using PIM [6], i.e.,
a perturbation-based scheme for location data sharing under
differential privacy. There are three advantages for choosing
PIM. First, it publishes trajectories with timestamps, while
other approaches (e.g., [3]) do not. Second, PIM considers
a public correlation model, which is the same one that we use
in our approach. Third, a user can choose its ideal privacy-
utility tradeoff easily for such perturbation-based methods by
selecting an optimal privacy budget.

Similar to other perturbation-based approaches that ensure
event-level differential privacy, PIM generates high amount of
noise for each location point, leading to significant utility loss
in the the shared location dataset. To solve this problem, we
propose a utility-focused post-processing scheme to improve
the shared dataset’s utility. In particular, for each point along
the trajectory, we check the correlation model and if it violates
the model, we select an alternative point that is highly probable
(i.e., the transition probability from the previous point is larger

than a threshold 7) and is the closest to the next point.
By performing the post-processing scheme, spatio-temporal
correlations are restored and data utility of the dataset is
improved.

We propose a novel fingerprinting scheme, i.e., direction-
sensitive fingerprinting scheme, for location trajectories and
use the post-processing scheme while sampling the finger-
printed point. At each position along the trajectory, we check
the 2-gram transition and selected the points that are highly
probable as the candidates. Then, given a fingerprinting ratio
p, we perform probabilistic sampling by assigning probability
1 — p to the original point and p proportionally assigned
to the rest points. If the correlation does not hold, e.g., in
a differentially private trajectory, we select the point that is
highly probable and is the closet to the next point along
the trajectory (i.e., following the post-processing scheme),
consider it as the actual point, and then perform the above-
mentioned sampling.

IV. EVALUATION

We implement our proposed scheme using two real-life
datasets, i.e., the GeoLife dataset [7] and the Taxi dataset [4],
and two synthetic datasets generated from Brinkhoff gener-
ator [2]. We compare our scheme with state-of-the-art fin-
gerprinting approaches, i.e., Boneh-Shaw codes and Tardos
codes. Our scheme achieves higher resistance against all the
attacked mentioned in Section [} and evaluate the fingerprint
robustness against random flipping attacks, correlation-based
flipping attacks, majority collusion attacks, and probabilistic
collusion attacks.

V. CONCLUSION

We design a system that achieves both privacy preservation
and robust fingerprinting for location datasets. In future work,
we plan to improve our correlation model to a higher-order
model (e.g., using road structures) and analyze the performance
of the scheme. In addition, a non-uniform grid in discretization
can be used and different types of collusion attacks can be
defined and studied. Moreover, our approach provides differ-
ential privacy and fingerprint robustness in two separate steps.
Combining those two stepsis another potential future work.
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