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Abstract—Automatic reverse engineering of unknown binary
message formats is a challenging problem. We propose an
automatic technique to identify keyword fields used to indicate
the serialization format of individual binary messages. Our
approach leverages an ensemble of six methods, each tailored
to a different property of binary message, coupled with a Monte
Carlo technique.

1. MortivaTioN

Reverse engineering message formats from static network
traces is a difficult and time consuming security task [8]],
[1O], [12], critical for a variety of purposes: bug-finding via
fuzz testing, automatic exploit generation, understanding the
communications of hostile systems, and recovering specifica-
tions that are proprietary or have been lost. In prior work,
researchers have used message reverse engineering techniques
to gain insight into the behavior of malware [1]], [6l], [7] and
manipulate botnets during mitigation efforts [4]].

Protocol reverse engineering is characterized by a pipeline
with multiple steps. These steps include collecting data, clus-
tering messages by format, inferring a state machine describing
how messages are exchanged, and finally inferring semantics
for each format. The ambiguous nature of binary data makes
such reverse engineering difficult.

Today, we rely on human experts to manually reverse
engineer the protocol used to communicate. While automatic
methods have been proposed for different aspects of protocol
reverse engineering [9]], [3], [15], [13], [2]], the gold standard
remains a human expert. Access to source-code, compiled
programs, and physical hardware can help experts, but aren’t
always available, especially in the case of adversary systems.
Experts commonly reverse engineer binary protocols by ex-
amining source code, tracing the execution of a compiled
program, or fuzzing a program instance with test input to
observe how it reacts. When these methods don’t work, or
aren’t feasible, experts examine messages manually to try to
understand the format.

Our previous work demonstrates one approach to automat-
ically identifying message formats in protocols and samples
where there is only one format, or some portion of the format
is consistent across messages [5]. Building on this work, we
now focus on automatic reverse engineering of protocols with
multiple message formats.

II. RESEARCH PROBLEM

In this proposal we focus on clustering binary messages
by format. Binary message formats commonly use a reserved
message-type field or keyword to indicate the format of the
data transmitted when multiple formats are mixed, such as with
union types. Keyword fields enable messages to be deserialized
quickly and unambiguously. Examples of protocols utilizing
keyword fields include ARP, BGP, SMB, and TFTP. Our
research focus is the automatic identification of these keyword
fields from network traces. Identifying these fields allows
messages to be grouped by format, greatly simplifying both
further manual and automatic reverse engineering efforts. Our
contributions are the following:

e We propose a Monte Carlo ensemble approach to
automatically identifying keyword fields from samples
of unknown binary network protocol;

e  We describe our proposed ensemble of six techniques,
each tuned for identifying differences between binary
message groups.

III. Our APPROACH

Our approach identifies keyword fields using an ensemble
of methods combined with a Monte Carlo technique [I1]].
Our approach is driven by two key insights. First, when
messages are correctly grouped by type, the resulting groups
have higher internal consistency than between groups. Second,
when messages are correctly grouped by type, the internal
consistency is significantly higher than that of groups formed
entirely at random.

Our method for automatically identifying keyword fields
uses an ensemble of six methods, each tailored to a different
aspect of message formats. One method uses a minimum
description length principle to measure gains in compression
from a candidate set of message groups. Another method
leverages the tendency of messages within a group to have
similar if not identical message lengths. We employ three
information theoretic methods based on measuring between
group differences in Shannon Entropy [14]] at byte-offsets. Put
another way, we look for groups which have different amounts
of information at the same locations as an indication that
they are performing different functioning within the underlying
protocol. Finally, we leverage our earlier work on a semantic
approach to inferring message formats [5]] to infer semantic de-
scriptions for each group and measure the difference between
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Fig. 1: Illustration of Monte Carlo approach to identifying
keyword fields for a single ensemble method. Candidate groups
are formed in (A) and measurements calculated for each byte-
offset. Random groups are formed and their measurements
calculated in (B). Keyword fields are identified in (C) by
looking for candidate measurements which are significantly
greater than those of the random groups.

them. The intuition here is that if the candidate groups are
in fact different, the semantic descriptions we infer should be
quite different. In contrast, when the message across candidate
groups are similar, we should expect the semantic descriptions
inferred to be similar.

To determine whether a candidate byte-offset contains
a keyword field, we assign messages to groups based on
their individual byte-values at that byte-offset as illustrated
in Figure I} We then calculate candidate values for each of
our ensemble methods. We next use a Monte Carlo method to
move messages randomly between groups, and again calculate
values using our ensemble. Each method votes whether a can-
didate byte-offset is in fact a keyword field by comparing the
value calculated from the original grouping to those formed by
the Monte Carlo method. If the original values are significantly
different than the Monte Carlo values, the method votes that
the byte-offset is in fact akeyword field. We consider the byte-
offset with the highest number of votes to be the best candidate
and infer that as a keyword field.
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Problem Overview: Protocol Reverse Engineering

Why Reverse Engineer
Binary Protocols?
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Binary Protocols of Security Interest

¢ Computer Networking Protocols & Applications

* Industrial Control Systems & Critical Infrastructure

¢ Internet of Things (loT) and Smart Home Devices

¢ Vehicle Telemetry and Onboard Control Systems

¢ Malware Command and Control (C2) / Botnets

* Legacy & Proprietary Systems with Missing Specifications

How are Protocols Currently Reverse Engineered?
By a human expert taking days, weeks, or longer.

Program Source Code
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experts, but these aren’t always
available, especially in the case of
adversary  systems. Because
binary data is ambiguous, binary
protocols are more difficult to
reverse engineer than text-based
protocols.
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Common Ways to Reverse Engineer Protocols

A. Static Analysis of Source Code

B. Dynamic Analysis of Executable Program
C. Interactive Fuzzing

D. Manual Inspection of Traffic

Protocol Reverse Engineering Pipeline Steps

Collection of Messages

Clustering by Message Format

Field Segmentation & Identification

State Machine Inference & Semantic Identification
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This is Tedious!

A Monte Carlo Ensemble Approach to Automatically
Identifying Keywords in Binary Message Formats
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Our Approach to Automatically Identifying Keywords

Our work focuses on Step 2 of the
protocol reverse engineering pipeline:
clustering messages by format.
Keywords are used when protocols
transmit messages with different
formats. For example: a client query
format and a server response format.
Identifying these keywords
automatically lets the messages be
exactly clustered by format. Further
reverse engineering is improved by
having the correct message clustering.
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How Our Monte Carlo Approach to Identifying Keyword Fields Works:

A. Form candidate groups and calculate distance measurements for each byte-offset.
We use an ensemble of distance metrics each specialized to a different property.

B. Random groups are formed, and their measurements similarly calculated.

C. Keyword fields are identified by distance measurements which are significantly
greater than those of the random groups.
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Advantages of Monte Carlo Ensemble Approach

v’ Uses Passive Network Traces

v Does Not Need Access to the Program
v' Completely Automatic Method
v Does Not Require Training Data
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