
Poster: Client-Side Byzantine Attacks
on Raft Algorithm in Blockchain

Donghee Kim
Korea University

dhkim@isslab.korea.ac.kr

Junbeom Hur
Korea University

jbhur@korea.ac.kr

Abstract—Raft is a widely used consensus algorithm in
blockchain system ensuring each node in the system to agree
upon the data in blocks and maintain their integrity. Raft has
advantages of toleration for crash faults and high performance in
terms of consensus time. In this study, we propose novel client-side
Byzantine attacks on the raft algorithm. We then demonstrate the
efficacy of our attacks, and discuss its root cause and mitigation
strategies.

I. INTRODUCTION

The blockchain system consists of two core technologies:
consensus algorithm and distributed ledger technology. Raft [1]
is one of the consensus algorithms for maintaining identical
chain among participants and supporting verifiability of the
block data in the blockchain system. Since the raft algorithm
is operated by a single leader, it has the advantage of high
speed in transaction processing [2] and toleration for crash
faults as long as at least a half of the nodes are benign
in the system. However, the raft algorithm is vulnerable to
Byzantine attack by malicious nodes, especially manipulating
data to violate data integrity [3], [4], [5]. In this paper, we
describe novel Byzantine attacks focusing on the consensus
protocol of a client transmitting transactions to the leader node,
leading to consensus failure and performance degradation of
the blockchain application. we will show effectiveness of our
attacks through performance and security analysis.

II. RAFT CONSENSUS ALGORITHM

Raft is the leader-based consensus algorithm. In the al-
gorithm, each node participaring in the consensus procedure
is assigned one the following roles: leader, follower, and
candidate [1]. The leader can receive transactions from the
client, record the set of received transactions in the block, and
broadcast the block to all participant nodes in the blockchain
system. The follower is only able to receive blocks from
the leader, and verify the liveness of the leader by checking
heartbeat messages from the leader continuously. If one of the
followers cannot confirm the liveness of the current leader, the
follower changes it role into the candidate. It then increase
its ‘term’ number which is the time sequence indicator, and
triggers a new leader election procedure, assuming crash fault
might happen on the current leader. To inform the leader
election, the candidate broadcasts RequestVote message
to the network. When multiple candidates trigger the election
procedure at the same time, a candidate with the highest term
number is selected by the followers; and the candidate is
elected as leader via a majority voting method, and advertises
the result. All of the nodes in the system then synchronize the

log. To reach consensus and maintain data consistency, only
the leader having the highest term can commit the transactions.
Thus, if clients need to commit transactions, they need to know
the leader first.

III. BYZANTINE ATTACKS ON RAFT

In the raft-based blockchain system, when a node receives
transaction request messages from a client, it responds with
different data to the client depending on its role. If it is a
follower, it sends a reject message with information of the
leader of the current term to the client on the request; if
a candidate, it transmits just a reject message to the client,
because there is no leader at the moment. However, if the client
interacts with a faulty or malicious node, the current term’s
information that the client receives may be false, making it
difficult to find the correct leader. Specifically, when Byzantine
attackers send fake messages about current leader to the client,
it will cause denial-of-service due to the delay of finding a
leader as well as manipulation of transaction data.

A. Attack Scenario 1

Fig. 1: Attack Scenario 1

This attack scenario considers the case that a malicious
follower receives the transaction request message from a client,
and deliberately informs the client of a fake node as the leader.
As shown in Fig. 1, when node 1 who is the malicious follower
receives the request from a client, it responds to the client that
node 2 is a leader. Since node 2 is a follower in current term,
it just notifies that node 3 is the leader, when it receives the
request message from the client later. Even worse, if a new

leader is being elected while the client communicate with node
2, it may incur additional redirection on the client to find the
current leader and request the transaction, causing latency to
commit transactions. If the new leader election process begins,
or the leader is changed (starting next term) before client
figures it out, the client can hardly find the current leader
quickly, resulting in lower throughput of the whole blockchain
system.

B. Attack Scenario 2

Fig. 2: Attack Scenario 2

This attack scenario considers the case that the attacker
deceives the client that it is the current leader in order to
be elected as a leader. As shown in Fig. 2, when the client
requests a transaction to the Byzantine follower (node 1),
node 1 responds to the client as it is the leader. If the
client receives the response from node 1, the client sends
set of transactions to node 1 until it detects any fault during
processing the transactions. However, since the follower do
not have permission to replicate and broadcast logs, such
transactions cannot be appended to log and operated correctly.
Therefore, the client has to request transactions to the actual
leader again, causing additional latency to operate transactions
of the client.

IV. ANALYSIS

A. Performance

We first evaluate the performance of blockchain systems
under the proposed Byzantine attacks in terms of transaction
latency. As described in the attack scenario 1, if the leader
changes while the follower delivers the manipulated response
to the client, both the transaction latency and throughput would
be deteriorated, because the client takes longer to find the real
leader.

Transaction latency is defined as the time from the transac-
tion is requested by the client to the transaction is committed
from the actual leader. Formally, it is defines as the equation
tl = tc − tr, where tl is transaction latency, tc is transaction
commit time, and tr is transaction request time. Specifically,
given the notations in Table I, tc is computed as a follow on
average:

tc = tr +RTT (1 + q)(1 + p),

where tl = RTT (1 + q)(1 + p). Therefore, the transaction la-
tency would be increased in linear to the number of Byzantine
attackers and attack success rate in the blockchain system.

TABLE I: Notations

Notations Description
m Number of all nodes
n Number of Byzantine nodes
p Percentage of Byzantine nodes (= n/m)
q Attack success rate
RTT Round trip time for transaction request/response message

B. Security

When a client receives a response about the leader from the
node it communicates with, the client begins the transaction
operations with the claimed leader by sending transaction data
to the leader. If the leader is the malicious follower (e.g., attack
scenario 2), the attacker is able to obtain transaction data from
the client before the leader obtains it, which can be further
abused to mount the other attacks such as blockchain folk.

V. CONCLUSION AND DISCUSSION

In this study, we represented client-side attacks exploiting
diverse faults in raft-based blockchain systems, and evaluated
their efficacy. The root cause for the vulnerability is the lack
of authentication mechanism on the client side. One of the
mitigation strategies is to adopt the authentication mechanism
on the client, enabling it to verify whether the notified leader
information is correct. How to authenticate the raft message
on the client side in an efficient manner is an important future
work for the secure raft-based blockchain system.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the MSIT (Ministry of Science and ICT), Ko-
rea (No.2022-0-00411, IITP-2023-2020-0-01819, IITP-2022-
2021-0-01810).

REFERENCES

[1] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), 2014, pp. 305–319.

[2] L.-e. Wang, Y. Bai, Q. Jiang, V. C. Leung, W. Cai, and X. Li, “Beh-raft-
chain: A behavior-based fast blockchain protocol for complex networks,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1154–1166, 2020.

[3] G. Zhang and H.-A. Jacobsen, “Prosecutor: An efficient bft consensus
algorithm with behavior-aware penalization against byzantine attacks,”
in Proceedings of the 22nd International Middleware Conference, 2021,
pp. 52–63.

[4] H. M. Buttar, W. Aman, M. Rahman, and Q. H. Abbasi, “Countering
active attacks on raft-based iot blockchain networks,” arXiv preprint
arXiv:2204.00838, 2022.

[5] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang, “Engraft: Enclave-
guarded raft on byzantine faulty nodes,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp. 2841–2855.

2

• If the leader is changed, both the transaction latency and throughput

would be deteriorated

• Transaction latency : 𝑡𝑙 = 𝑡𝑐 − 𝑡𝑟 = 𝑅𝑇𝑇(1 + 𝑞)(1 + 𝑝)

• 𝑡𝑐 is computed as a follow on average: 𝑡𝑐 = 𝑡𝑟 + 𝑅𝑇𝑇 1 + 𝑞 1 + 𝑝

Poster: Client-Side Byzantine Attacks

on Raft Algorithm in Blockchain

Donghee Kim
Korea University

dhkim@isslab.korea.ac.kr

Junbeom Hur
Korea University

jbhur@korea.ac.kr

[1] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in 2014 USENIX Annual Technical

Conference (Usenix ATC 14), 2014, pp. 305–319.

[2] L.-e. Wang, Y. Bai, Q. Jiang, V. C. Leung, W. Cai, and X. Li, “Beh-raftchain: A behavior-based fast blockchain protocol for

complex networks,”

IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1154–1166, 2020.

[3] G. Zhang and H.-A. Jacobsen, “Prosecutor: An efficient bft consensus algorithm with behavior-aware penalization against

byzantine attacks,” in Proceedings of the 22nd International Middleware Conference, 2021, pp. 52–63.

[4] H. M. Buttar, W. Aman, M. Rahman, and Q. H. Abbasi, “Countering active attacks on raft-based iot blockchain networks,”

arXiv preprint

arXiv:2204.00838, 2022.

[5] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang, “Engraft: Enclaveguarded raft on byzantine faulty nodes,” in

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 2841–2855.

▪ Performance Analysis (Attack Scenario 1)

• Raft is a consensus algorithms for (1) maintaining identical chain among participants, and (2) supporting verifiability of the block data in the blockchain

system [1],[2]

• Raft is vulnerable to Byzantine attack by malicious nodes, manipulating data to violate data integrity [3], [4], [5]

• We describe novel client-side Byzantine attacks focusing on the consensus protocol of a client transmitting transactions to the leader node

• Three roles in raft: leader, candidate, follower

▪ Attack Scenario 1

• We represented client-side attacks exploiting diverse faults in raft-based

blockchain systems

• The root cause for the vulnerability is the lack of authentication mechanism

on the client side

• How to authenticate the raft message on the client side in an efficient manner

is an important future work

• Receive transactions from the client

• Record the set of received transactions in the block

• Broadcast the block to all participant nodes in the blockchain system

• Attacker message: a fake node as the current leader

• Even worse, if leader change is triggered, latency to commit transactions

is caused

• Attacker message: it is the current leader

• The client has to request transactions to the actual leader again, causing

additional latency to operate transactions of the client

fake

▪ Security Analysis (Attack Scenario 2)

• If the leader is a malicious follower, transaction data can be further

abused to mount the other attacks such as blockchain folk

▪ Attack Scenario 2

If clients need to commit transactions, they need to know the leader first.

fake

(𝑡𝑙 = transaction latency, 𝑡𝑐 = transaction commit time, 𝑡𝑟 = transaction request time)

	슬라이드 1

