
Towards More Effective Responsible Disclosure for
Vulnerability Research

Weiheng Bai
University of Minnesota

bai00093@umn.edu

Qiushi Wu
University of Minnesota

wu000273@umn.edu

Abstract—Vulnerability research is vital to mitigating cyber-
attacks, which tries to devise new approaches to discover new
vulnerabilities. As an ethical research guideline, researchers are
expected to report the found vulnerabilities to the corresponding
vendors before disclosing them (e.g., publishing a paper), which
is known as the responsible-disclosure process. Undoubtedly, the
intention of responsible disclosure is to help improve the security
of software. We observe that the current responsible disclosure
may not be as effective as expected. In particular, reports can be
significantly delayed or completely ignored. Reports for security-
critical vulnerabilities are often publicly disclosed, which can
potentially be abused by attackers.

In this work, we plan to study the effectiveness of the existing
responsible disclosure. Two major questions we aim to answer
are: (1) Are security-critical bug reports commonly disclosed
publicly in the first place? (2) What factors of a bug report
contribute to delaying or ignoring? By answering the questions,
we aim to provide insights into how to improve the quality of
bug reports and the effectiveness of responsible disclosure. In this
paper, we present our preliminary results of this work. We take
the Linux reports and patch history as an example. We found
that at least in Linux, most security bugs are publicly disclosed
before they are fixed, and that factors such as length of reports,
author experience, and author affiliations have an impact on the
delay of patching. In the end, we also present our plans for future
work.

I. INTRODUCTION

Vulnerabilities, or security bugs, have been a major threat to
cyber-security. We witnessed critical security breaches resulted
from vulnerabilities. As vulnerabilities essentially stem from
logic bugs or design flaws, they are hard to prevent. Therefore,
finding and fixing vulnerabilities have become a practical and
common security strategy that is widely adopted by software
vendors. For example, almost all major software vendors, such
as Google and Microsoft, have been running vulnerability-
disclosure programs or bounty programs.

Whenever a researcher finds a vulnerability or just a bug, the
researcher is expected to report it to the related parties. This
is called responsible disclosure, a common ethical research
guideline. All major security conferences have explicitly
enforced this policy. While the responsible-disclosure process
is intended to help maintainers proactively identify and fix

vulnerabilities, and thus to improve the security, we observe
that it may not be as effective as expected. In particular, we
have observed two common issues with responsible disclosure.
First, many security-critical bugs are publicly disclosed in the
first place before they are fixed. While this can be a result of
that the security impacts of a bug are unknown when reporting,
we also found many cases in which the reporters identified the
security impacts and still publicly reported them. Such reports
may be abused by attackers for exploitation, which undermines
the intention of responsible disclosure. Second, many reports
are of low quality; as a result, reports are often completely
ignored by maintainers, or their acceptance is significantly
delayed, which increases the length of the unpatched period.

In this work, we aim to study the effectiveness of existing
responsible disclosure. We are concerned with two major
questions. (1) Is it common that security-critical bug reports are
disclosed publicly in the first place? (2) What factors of a bug
report contribute to delaying or ignoring? By answering the
questions, we aim to provide insights into how to improve the
quality of bug reports and the effectiveness of the responsible
disclosure.

In this paper, we present our preliminary results of the
work. We select Linux bug reports (including the ones ignored,
discussed, and accepted) and its patch history as an example.
We perform a quantitative analysis on the reports to derive
statistical results. Contrary to the finding in [4], which claims
that most vulnerabilities are fixed before they are publicly
disclosed, we however found that most vulnerabilities in Linux
are publicly disclosed before they are fixed. Such disclosure
approaches may raise ethical concerns, which violate the
responsible-disclosure process, and moreover, adversaries may
exploit such vulnerabilities against the affected programs.
We also found that factors such as length of reports, author
experience, and author affiliations have an impact on the delay
of patching.

As a future work, we plan to collect bug reports for other
projects through platforms such as GitHub.com and Bugzilla.
We also plan to analyze the reports from more aspects such as
factors leading to regression bugs and to develop automated
solutions to assist both reporters and maintainers for identifying
security impacts of bugs. Through this work, we hope to provide
guidelines and tools for a more effective responsible-disclosure
process.

Workshop on Ethics in Computer Security (EthiCS) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-85-1
https://dx.doi.org/10.14722/ethics.2023.235691
www.ndss-symposium.org



II. APPROACH OVERVIEW

We aim to answer the two research questions through a
quantitative study based on existing bug reports. Therefore, our
method is to first collect necessary data from multiple sources
including the bug reports (emails on public mailinglists), Git
history, and the CVE database. We then check the timestamps,
propose a hypothesis of potential factors contributing to delays
and ignores, and finally perform a correlation analysis between
the factors and delays. We show the workflow of our method
in Figure 1.

1

2

3

4

5

6
Generate

the 
Conversation

Map 
Commit 

with Email

Commit 
From git 

log

Filter the 
Commit

Get Email 
From LKML

Analysis

Author 
Experience

Number of
Lines in
Email

Affiliation

Fig. 1: The workflow of our study method.

III. COLLECTING THE DATA

First, we collect the Git commits (i.e., accepted bugs
reports) from Linux Git log and filter the bug-fixing commits.
Meanwhile, we collect the bug-reporting emails sent to Linux
through the public mailinglist, LKML. These are original bug
reports that can be ignored or accepted into Linux. After that,
we need to cluster emails into threads if the emails are for
discussing and revising the same bug. We collect the Linux
commits with Git head 52d543b5497cf. Also, we collect the
emails from LKML from 01/01/2017 to 03/21/2022.

After the first two steps, we have bug-fixing commits from
the Git log and email threads for bugs. We then map the the
commits with their corresponding email threads.
Collecting Git commits. We first collect all the commits
from the Git log, and then we need to filter out the irrelevant
commits since we want to have the bug-fixing commits. So,
we set up some irrelevant words as the keywords we want to
filter out, such as, ’typo’, ’grammar’, ’spelling’, etc. Such
commits are not for bugs but coding styles. We present a
summary of the commits in Table I.

Year Total Commits Fix-related Commits
2017 80,850 9,563
2018 80,161 9,406
2019 82,915 10,342
2020 90,329 11,164
2021 85,156 11,133
2022 13,518 1,716
Total 1,085,249 53,326

TABLE I: The Distribution of collected commits

We aim to collect as much information as possible. For
each commit, we collect commit hash, submit date, author,

author email, commit date, committer, committer email, commit
summary, commit size and commit message.
Crawling bug-reporting emails. This part is shown on the
Figure 1 1⃝. In this part, we collect the emails from https://lkml.
org/lkml/. The date range is from 01/01/2017 to 03/21/2022.
We then apply the same strategy to filter the bug-fixing emails.
We present a summary of the crawled emails in Table II.

Year Emails Fix-related Emails Conversations
2017 274,798 30,169 16,636
2018 312,810 35,847 22,135
2019 357,936 51,136 32,062
2020 423,133 57,574 35,671
2021 407,657 56,436 34,930
2022 91,023 10,316 6,122
Total 1,867,357 241,478 147,556

TABLE II: The distribution of bug-fixing emails

Mapping commits and emails. The next step is to match
the commits with the emails. First, we need to check whether
a commit ID exists inside the an email conversation. Through
this check, we could match most of the commits with email
conversations. For remaining cases, we need to check the
authors of the commits, authored time of the commits, which
will let us have a set of email conversations matched with the
commits. Then, we compare the patches inside the commits
with the patches inside the conversations. Based on the rules,
we are able to prepare a dataset with matched commits and
email conversations.

With the collected data, we can then conduct a quantitative
study to answer the two research questions, which is presented
in the next section.

IV. PRELIMINARY RESULTS

In this section, we present preliminary results of our
quantitative study.

A. Unethical Public Vulnerability Reports

As a part of the responsible disclosure process, security-
critical bugs should be reported through private channels.
Therefore, we first study if publicly disclosing security-critical
bugs is a common problem. To this end, we check if CVE-
assigned vulnerabilities were disclosed before they are fixed.
In particular, we select 100 latest Linux-related vulnerabilities
with CVE numbers assigned. We then manually check the
content of each case and identify the corresponding commit ID
in the Git history of Linux. The commit ID allows us to identify
the corresponding fix and original bug report. This way, we
can tell when the vulnerabilities were disclosed (reported)
and fixed. The results are surprising to us, as they show
that for all these 100 vulnerabilities, they were all publicly
reported before they were fixed. If attackers have incentive
to abuse the bug reports, they can simply monitor the public
bug reports and take advantage of them. Such a responsible
disclosure can thus turn in to a harmful process. In fact, Linux
provides a private channel (security@linuxfoundation.org).
Unfortunately, Linux reporters mostly did not use the private
channel for the responsible disclosure.

2

https://lkml.org/lkml/
https://lkml.org/lkml/


B. Factors Contributing to Delays

In this section, we first perform an analysis to understand
the delays and their distribution, and then conduct a study to
understand the correlation between the factors and the delays.
Distribution of delays. We define delay as the time gap
between the time of the original bug report (the email) and
the time of patch merging (commit). Since memory-corruption
bugs such as buffer overflow and user-after-free are generally
security-critical, we take it as the target type of bugs. By
checking the keywords, we finally collect 1,818 such bugs and
measure the distribution of their delays. The result is shown
in Figure 2. We could see that only 22.05% of the cases have
a delay of less than one day, but 87.95% of the cases have
more than 1 day to be expose to the public. 7.73% of the cases
even have a delay of longer than one month, which may give
attackers time to abuse the reports.

0

100

200

300

400

500

600

700

800

900

<1 1-10 11-20 21-30 31-40 41-50 51-60 >61

N
u

m
b

er
 o

f 
C

o
m

m
it

s

Delay 

Fig. 2: Distribution of delays in days

We next take the delays as the metrics to measure factors
contributing to the delays. As a preliminary study, we hypoth-
esize that there are at least three factors that have a correlation
with the delays: length of the report, author experience, and
author affiliation. Note that in the following study, to have a
more robust statistical analysis, we use a larger dataset that
contains 37,971 commits.
Author experience. We define author experience based on
how many commits (i.e., accepted bug reports or patches) has
the author contributed to. Such information can be obtained
from the Git log. we hypothesize that an author with more
experience tends to write higher-quality bug reports that will
have a shorter delay to be accepted. The reason why we choose
the geo-mean to represent the delay time is that fluctuation in
sampling will not affect the geo-mean result. On the opposite,
if we try to calculate the arithmetic mean, when there is a
delay time extremely larger than other delay time, it will cause
the arithmetic mean increasing significantly. In addition, to
save the computing power and computing time, we use log()
to narrow down the intermediate value during the process of
geo-mean calculation. To confirm it, we perform an analysis
against the correlation between experience and delays. Figure 3
shows the results.

The results are surprising to us—they are opposite to our
hypothesis. From Figure 3 we see that the authors with the
number of submission under 65 (i.e., less experienced authors

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 50 54 61 69 74 97 108120191299

lo
g(

G
eo

-M
ea

n
)

Author Experience

Fig. 3: Correlation: Author experience & Delays

based on our definition) have relatively smaller delays in
general. On the other hand, more experienced authors with more
than 65 confirmed commits instead have relatively longer delays.
Such an unexpected finding deserves further investigation. We
will explore potential reasons as our future work.

Motivated by this finding, we further performed a statistical
analysis on acceptance rate of bug reports from experienced
and less experienced authors. The results are however very
different—experienced authors have a much higher acceptance
rate, which is expected.
Author affiliations. We hypothesize that author affiliation may
also have an impact on the delays. To confirm this, we first
classify affiliations in to six categories: personal, education,
Linux department of companies, companies, Linux-related
organizations, and other organizations. We use the mapping
data to extract the information based on email address and then
categorize the data into the categories. We present the results
in Table III, which shows that, bug reports from educational
organization (e.g., universities) tend to have a much longer
delay (almost twice as the average). This is a bit surprising to
us, so we looked into it. We found that since authors from the
education affiliation are often students; they may not have much
experience on submitting a patch report. Such reports tend to
have some basic mistakes. For example, every email sent to
Linux maintainer should cc linux-kernel@vger.kernel.org.
But some of them forgot to cc this email, so the maintainer
have to ask the reporter do that, which increase the delay time.
On the other hand, bug reports from Linux department and
companies have the smaller delay, which is consistent to our
hypothesis.

Days (Geo-Mean) E LRO O P LDC C
3.65 3.25 2.76 2.73 2.72 2.72

TABLE III: Correlation: Affiliation & Delays. E: Education; LRO:
Linux-related organizations; O: Other organizations; LDC: Linux
department of companies; P: personal; C: other companies.

Length of reports. We define length of a report as the number
of lines of textual description. We present the results in Figure 4.
We can see that the correlation between the length and delays
is also clear. Generally, bug reports with a lengthy description
tend to have a longer delay. There are several reasons. First, a
lengthy report often covers the fixes for multiple bugs. Second,
the bug can be complicated and requires more review efforts.

3



Such a result implies that, to avoid delays, reporters should
write concise description for bugs separately.

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8 10 12 14 16 18 20 22 24 27 29 31 33 35 37 49 64

lo
g(

G
eo

-M
en

a)

Number of Lines

Fig. 4: Correlation: Number of lines & Delays

V. DISCUSSION

Ethical concerns and Insights. Not properly using the private
reporting channel may violate the ethical requirement of the
responsible-disclosure process, e.g., Linux vulnerabilities are
often publicly reported. Our results also indicate that there is
typically a large time gap between the bug public disclosure
to the actual patched date. Attackers can abuse both issues to
cause harms. In these scenarios responsible disclosure can even
turn into a harmful process. As an immediate remediation, we
need to encourage reporters to use private channel for reporting
vulnerabilities. Furthermore, due to the security impact of bugs
being unclear, both reporter and the maintainer may not be
aware of the security impact of the bug. Thus, it is essential
to have an automatic tool for inferencing the security of bugs
based on their patches.

In the relationship between author affiliation and delay time,
companies enjoy a shorter delay. Educational organizations
suffer from a longer delay. We believe a training for students
on how to improve the report quality would help. Last, a
concise and per-case report is preferred and can avoid longer
delays.
Future work. Improving the effectiveness of responsible
disclosure is an important topic that deserves further studies.
We envision multiple directions for the future work. First,
we plan to identify more factors and study their impacts on
delays. In addition to delays, we plan to also use ignore
rate (percentage of bug reports being ignored) as a metric
to measure the factors. Second, beyond Linux, we plan to
study more popular open-source projects through other bug-
tracking platforms such as GitHub and Bugzilla. We hope to
cover different categories of open-source projects, including
OS, browsers, web servers, script engine, mobile/IoT apps, and
libraries. Third, as a longer-term work, we plan to develop
automated tools that help reporters write higher-quality reports
and help maintainers proactively identify potential security
impacts of a reported bug.

VI. RELATED WORK
Some previous works also performed the empirical studies

for the vulnerabilities and their patches. Li et al. [3] did a large-
scale patches analysis, which analyzed more than 4,000 bug

fixes. It shows that for open-source projects, attackers typically
have weeks to months to attack the not patched system before
the patch distribution. DiffCVSS [6] shows that vulnerabilities
can cause different security impacts in different contexts, which
indicates that early disclosure of a trivial vulnerability may still
cause severe security impacts in other dependencies. Piantadosi
at al. [4] did an empirical study on the vulnerabilities of Apache
server and Apache tomcat. Specifically, they claim that most
vulnerabilities are fixed before they are publicly disclosed.
This is the opposite to our findings. Such a conclusion does
not hold at least for Linux bugs. Ding et al. [2] showed an
empirical study for bugs identified by OSS-Fuzz. They claim
that people rarely file CVEs for security bugs identified by
OSS-Fuzz due to lacking a security background. This can also
confirm that security bugs are publicly disclosed in the first
place. Arora et al. [1] did an empirical study on the impacts of
vulnerability disclosure. They show that vulnerability disclosure
would increase the frequency of attacks. However, such attacks
will decrease over time. Ramsauer et al. [5] show that even
the code that arises from secret channels can also be obtained
through reverse engineering methods by attackers and further
exploit the systems.

VII. CONCLUSION

While responsible disclosure has been widely enforced as
an ethical research requirement, it may not be as effective
as expected. Security-critical bugs are commonly reported
publicly, which can be abused by attackers. On the other hand,
we observe significant delays and ignores in accepting the bug
reports. In this preliminary study, we identified some potential
factors (e.g., author experience, author affiliation, and report
length) related to the delays and performed a quantitative study
against their correlation. In the future, we plan to continue the
study by looking into more open-source projects and developing
automated tools for both reporters and maintainers to realize
an more effective responsible-disclosure process.

REFERENCES
[1] A. Arora, R. Krishnan, A. Nandkumar, R. Telang, and Y. Yang. Impact

of vulnerability disclosure and patch availability-an empirical analysis. In
Third Workshop on the Economics of Information Security, volume 24,
pages 1268–1287, 2004.

[2] Z. Y. Ding and C. Le Goues. An empirical study of oss-fuzz bugs.
In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pages 131–142. IEEE, 2021.

[3] F. Li and V. Paxson. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2201–2215, 2017.

[4] V. Piantadosi, S. Scalabrino, and R. Oliveto. Fixing of security
vulnerabilities in open source projects: A case study of apache http server
and apache tomcat. In 2019 12th IEEE Conference on software testing,
validation and verification (ICST), pages 68–78. IEEE, 2019.

[5] R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer. The sound of
silence: Mining security vulnerabilities from secret integration channels in
open-source projects. In Proceedings of the 2020 ACM SIGSAC Conference
on Cloud Computing Security Workshop, pages 147–157, 2020.

[6] Q. Wu, Y. Xiao, X. Liao, and K. Lu. OS-Aware vulnerability prioritization
via differential severity analysis. In 31st USENIX Security Symposium
(USENIX Security 22), pages 395–412, Boston, MA, Aug. 2022. USENIX
Association. ISBN 978-1-939133-31-1. URL https://www.usenix.org/
conference/usenixsecurity22/presentation/wu-qiushi.

4

https://www.usenix.org/conference/usenixsecurity22/presentation/wu-qiushi
https://www.usenix.org/conference/usenixsecurity22/presentation/wu-qiushi

	Introduction
	Approach Overview
	Collecting the Data
	Preliminary Results
	Unethical Public Vulnerability Reports
	Factors Contributing to Delays

	Discussion
	Related work
	Conclusion



