
Are some prices more equal than others?
Evaluating store-based price differentiation

Hugo Jonker
Open University Netherlands,

Radboud University
hugo.jonker@ou.nl

Stefan Karsch
TH Köln,

stefan.karsch@th-koeln.de

Benjamin Krumnow
TH Köln,

Open University Netherlands
benjamin.krumnow@th-koeln.de

Godfried Meesters
Open University Netherlands

Abstract—Online vendors typically offer different stores to sell
their items, such as desktop site, mobile site, country-specific sites,
etc. Online rumours and news media reports persist that item
prices between such views differ. While several academic works
have investigated price differentiation, to date, no systematic
method for analysing this question was put forth. We devise
an approach to investigate such store-based price differentiation,
based on three pillars: a framework that can perform cross-store
data acquisition synchronously, a method to perform cross-store
item matching, and constraints to limit client-side noise factors.
We test our method in an initial case study to investigate store
effects on flight pricing. We gather pricing data of 824 flights
from 15 stores (incl. desktop sites, mobile apps, and mobile
sites) over a 38-day period. Our experiment shows that price
differences occur frequently. Moreover, even in a limited run
we find strong indications of store-specific pricing for certain
vendors. We conclude that (i) a larger study into store-based
price differentiation is needed to better gauge this effect; (ii)
future research in this general domain should take store-based
differences into account in their study design.

I. INTRODUCTION

Shopping is a basic fact of life that contains an interesting
adversarial relation: the shopper wants to pay as little as pos-
sible, while the vendor wants to sell for as much as possible.
In brick-and-mortar stores, either side has limited access to
information to improve their side of this bargaining process.
This changes radically for online shopping: customers can triv-
ially look up prices of competitors, while vendors can leverage
assorted technical measures to glean more information about
their customers. This allows vendors to tailor their prices on
the fly. With respect to this, we distinguish, as is common,
between price differentiation and price discrimination. Price
differentiation occurs when the same item is priced differently
in another situation. Price discrimination occurs when this
difference can be attributed to differences in user attributes
between those two situations. Thus, all price discrimination is
a form of price differentiation, but not vice versa.

Price discrimination has been the subject of various aca-
demic studies. In 2012, Mikians et al. [22] found indications

of price discrimination using automated scraping. Since then,
studies investigated the effect of user attributes (amongst
others, device fingerprinting [13], user profiling [12]), explored
different methods to collect data (such as Amazon Turk [12],
crowd-sourcing [23], [14]), and investigated occurrence of
price discrimination in different markets (e.g., airline tick-
ets [27], rental cars [13]).

Less attention from the academic community has been
devoted to group-targeted pricing. Several cases have occurred
in real life, such as ZIP-code-driven pricing of homework
tutoring in the US [1], or price differences between mobile and
desktop sites as reported by German travel magazine Clever
Reisen [17]. Clever Reisen manually checked trip prices once
using up to four different stores (mobile and desktop). They
found that prices can vary up to 8% between a company’s
mobile app and their website.

This informal investigation of price differences between
two stores of the same vendor poses an especially interesting
case: it is highly relevant to online shopping and could be
systematically investigated from a user point-of-view, without
access to the vendor’s internal processes. Moreover, it is
quite common for vendors to provide multiple online stores
for their items, such as per-country shops (e.g., amazon.de,
amazon.fr) or provide multiple versions of the same shop (e.g.,
desktop/mobile site/app). While such stores cater to specific
niches, the vendor could also choose to vary pricing between
them. To the best of our knowledge, there has not yet been a
systematic investigation into whether price differences occur
between different stores of the same underlying vendor. In
this paper, we propose a method to systematically investigate
store-based price differentiation, provide a proof-of-concept
implementation and execute a limited validation test of the
proof-of-concept against vendors of flights. For all vendors,
we compare app vs. German desktop site, and French site
vs. German site. In addition, for one vendor, we compare app
vs. German desktop website vs. German mobile site. Even
in this limited validation test, we find strong indications of
store-specific pricing.

Contributions. We develop a device-independent approach to
simultaneous data extraction. The approach relies on using
dedicated machines to perform the data extraction, either by
accessing the webstore themselves using Puppeteer, or by

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2023
3 March 2023, San Diego, CA, USA
ISBN 1-891562-87-8
https://dx.doi.org/10.14722/madweb.2023.23011
www.ndss-symposium.org

interacting with a device (e.g., an app on a mobile phone)
to do so using a dedicated extractor (for mobile phones,
UI Automater and Appium). Data from app/mobile site was
collected using smartphones. We test our proof-of-concept
implementation by collecting data on a handful of flights from
15 stores of 5 vendors over a period of 38 days. Our analysis
of the collected data strongly suggests that store-based pricing
occurs for more than half of the investigated vendors.

Ethics. Our case study required to visit multiple stores syn-
chronously by one company. This can have a negative impact.
First, booking systems for flights and accommodation tend
to make a tentative reservation of items during the booking
process to ensure availability of the item offered to the
client. This blocks that item’s availability for other customers.
To avoid this, we only collected data from search pages
and never entered further into the booking process. To the
best of our knowledge, bare item searching does not affect
item availability. Second, our queries could potentially impact
prices shown to other subsequent visitors. The low number of
queries per day produced by our bots should have negligible
influence given the popularity and therefore large user base
of these services. Third, we seek to minimise the impact
on the services. Each comparison involves simultaneous data
acquisition across all involved stores. To avoid hammering the
various stores, we only collect data for one comparison at
a time. That is, data collection for the various comparisons
is triggered sequentially. In addition, we do not issue repeat
requests in case of failure to receive response.

Availability. Our Proof-of-Concept implementation as well as
our data set are available from GitHub1 for follow-up research.

II. RELATED WORK

A. Online pricing algorithms

Previous studies have empirically investigated online pricing
algorithms. Chen et al. [5] studied swelling prices on Uber,
which provided insights on the endurance and frequency of
such swells, and insights to the used algorithms. To acquire
the data for their study, they mimicked HTTP interaction by
a mobile app to communicate with the backend, bypassing
the need to scrape the app. In another study, Chen et al. [6]
attempt to reconstruct pricing algorithms by third-party sellers
on Amazon. They fall back to using web scraping for the
data acquisition, as the API provided by Amazon enforces
restrictive rate limiting. Their findings show the usage of
pricing algorithms in some cases and high price volatility. In
contrast, Gibbs et al. [10] used data from analytics companies
to study pricing algorithms on Airbnb. Their findings show
that dynamic pricing is not widely used in this market.

B. Mobile web 6= regular web?

A most pertinent question is whether or not actual devices
are needed for data acquisition. Several studies investigated

1https://github.com/godfriedmeesters/diffscraper

differences between mobile and desktop sites, typically based
on faking/emulation. Das et al. [7] investigated access to
sensors on mobile devices via JavaScript. They modified
OpenWPM [9], a web measurement tool based on the Firefox
desktop browser, to resemble a mobile browser. Their findings
show that a majority of third-party scripts in the context of
advertising or bot detection make use of mobile sensors. A
similar approach was taken by Goethem et al. [25], who
determined differences in deployment of security measures
between desktop sites and their mobile variants. To gain
access to mobile sites, Goethem et al. modified a headless
Chrome browser to fake the characteristics of a mobile device.
Their study showed that there is little difference between both
variants in the deployed security measures. They do not report
whether they validated the accuracy of their modified Chrome
browser compared to sites delivered to real devices.

In contrast to these two studies, Yang and Yue [28] used
genuine mobile browsers. They leveraged a modified Open-
WPM version to run mobile Firefox on smartphones via the
Android debug bridge. Yang and Yue found that measures
to disguise a desktop browser as mobile browser can be
ineffective in triggering the delivery of a mobile website. Their
results show a significant difference in the number of trackers
between mobile and desktop sites.

C. Data acquisition

Price studies typically require a dedicated scraper per
vendor, limiting their coverage. Several works looked into
alternatives. First, to achieve vendor-site agnosticism, Mikians
et al. developed a browser extension called $heriff [23]. $herrif
facilitates crowd-sourcing price information. Later, Iordanou
et al. [14] expanded this initial work to enable price com-
parisons in a peer-to-peer fashion. Their method identified
that 76 out of 1994 services conduct location-based price
discrimination. Last, Hannak et al. [12] get real users involved
via Amazon’s Mechanical Turk. In addition, they investigated
mobile browser stores by deploying headless browsers with a
manipulated user-agent string. In their experiments, they found
two vendors with signs of price discrimination and search
steering targeting mobile browser users.

D. Price differentiation

User-related characteristics may affect price differentiation.
Mikians et al. [22] found that the user’s geo-location, trained
personas and the user’s origin had an influence on the shown
prices in some e-commerce markets. Other factors like the
OS or the browser did not lead to any difference in their
study. Hupperich et al. [13] investigated what features of
a device’s fingerprint are most influential for prices. They
use a desktop browser and modify the userAgent value to
emulate mobile browsers. They found the navigator.userAgent
and navigator.vendor browser properties to affect prices the
most. Closest to our study is the work by Vissers et al. [27].
They also conducted automated measurements to investigate
whether price differences exist on airline websites. However,

2

https://github.com/godfriedmeesters/diffscraper

their study focused on various user profiles and physical loca-
tions, whereas our study concentrates on stores, .i.e., vendor-
side differences instead on customer-side differences. Vissers
et al. found several price differences, some of which they could
attribute to identifiable causes such as tax differences and
extreme price volatility for specific items. They also found that
search queries more than a minute apart can cause different
search results for volatile items. We take this advice into
account for our synchronisation approach.

III. DESIGN OF A PRICE COMPARISON FRAMEWORK

A price comparison framework is based on two parts: a
data collection part, which retrieves item data from the studied
vendors, and an item equivalence determination procedure,
which determines whether two collected pieces of data concern
the same item. An important goal of the data collection part
is to eliminate or mitigate any price influences that are not
subject of study. The goal of item equivalence is to ensure
that only equivalent items are compared, that is, to prevent
the proverbial comparing of apples to oranges.

First, which items should be considered equivalent depends
on the underlying study. For example, a study comparing
prices of round fruits per weight would indeed compare prices
of apples to prices of oranges. A study comparing prices of
cultivars of apples would distinguish between golden delicious
apples, braeburn apples, granny smith apples, etc., whilst con-
sidering small and large apples of the same cultivar equivalent.
Note that due to EU law,2 items must be purchasable for
the price on display. Thus, additional fees can only concern
extras; hiding necessary fees is not allowed. This implies that,
for vendors selling to EU citizens, items can be compared
once the vendor store displays a price. As item equivalence
depends on the specific study under consideration, we detail
our interpretation of item equivalence in the discussion of the
validation experiment (Sec. IV).

Secondly, the data collector needs to reduce the effect of
confounding factors. Here, the fact that this framework studies
pricing on different stores comes into play. Various aspects
may affect item price beyond the store used to view the item.
Care must be taken to mitigate their impact, preferably by
eliminating that completely. Alternatively, by ensuring their
impact is constant or can be filtered out in another fashion.

A. Data acquisition methodology

To acquire data, the data must be collected from each
vendor. This can be done by automated tooling or manually.
Both automated tooling and manual data acquisition require
upkeep. Manual data acquisition is labour-intense, but this can
be overcome by using crowd-sourcing. Previous studies have
shown that crowd-sourcing using a browser plugin overcomes
limitations of maintaining scrapers and allows to target a broad
number of stores [23], [12], [14]. However, this advantage
is negated when considering multiple device models (with

2https://europa.eu/youreurope/citizens/consumers/shopping/pricing-payme
nts/index en.htm

different screens and resolutions) and classes (mobiles, desk-
tops, tablets). This leads to a wide variety of vendor app/site
layouts, which the crowd-sourcing should all encompass. Even
more damning is that crowd-sourcing relies on individual’s
user devices. The vendor could employ price discrimination,
which is a confounding factor for studying store-based price
differentiation.

Nevertheless, automated scrapers are not perfect, either.
As recent studies have shown [15], [16], [18], [4], desktop
scrapers tend to be recognisable and recognised scrapers
receive different results than regular user browsers. Therefore,
measures must be taken to mitigate bot detection. The same
applies to mobile scraping using emulated devices [28]. Previ-
ous price discrimination studies on mobile devices approached
data acquisition by using modified desktop browsers with
fitted userAgent strings. However, state-of-the-art bot detection
companies use browser fingerprinting techniques [3], [26] and
input from client hardware, such as mobile sensors [7], to
distinguish bots from real human users. Therefore, to ensure
that these aspects do not foul up mobile data acquisition, native
devices should be used for the data collection.

Another approach to acquiring data pertaining to mobile
phones is to gather pricing data directly from a vendor’s
backend for mobile users [6]. This can be done in two ways, by
scripting user interface (UI) interaction on the client devices,
or by faking client interaction on the network level. Scripting
human interaction can be done via automation frameworks,
such as Selenium, puppeteer or Appium. Much like scrapers
for websites, each scraper for a store requires its individual
script. In addition, updates to the store’s user interface may
break scripts and, therefore, the data collection process – again,
similar to website scraping. Faking client interaction on the
network level has the advantage of skipping user interface
aspects. However, network traffic is usually encrypted. While
this is not a show-stopper, the process of bypassing encryption
becomes cumbersome when the app uses key pinning. We
found that even after circumventing encryption, mobile apps
typically connect to tens of different API endpoints. Since it is
unclear what calls are sufficient to mimic an app, this makes
faithful data acquisition via mimicking apps particularly hard.
Thus, while mimicking apps can be less error-prone, initial
development is far less straightforward than using scrapers,
especially when targeting multiple vendors (i.e., unrelated
stores/APIs). Moreover, by using UI interaction on client
devices, maintenance of data extractors on mobiles remains
in the same category as for desktop extractors: monitoring UI
changes. Therefore, we make the design choice to script UI
interaction for mobile data extraction.

B. Handling confounding factors

As stated, the goal of a framework is to eliminate or mitigate
confounding factors. Previous reported aspects can be broadly
categorised into four main areas: client-side aspects, timing
aspects, contextual constraints, and pricing errors.

Client-side aspects: client-side aspects include effects of
browser fingerprinting, client profiling, location, and so on (see

3

https://europa.eu/youreurope/citizens/consumers/shopping/pricing-payments/index_en.htm
https://europa.eu/youreurope/citizens/consumers/shopping/pricing-payments/index_en.htm

Fig. 1. Framework design

Sec. II). These are necessarily present (even an empty profile
is a profile), thus their effects cannot be eliminated. To limit
this effect, a price measurement framework should keep client-
side aspects constant insofar possible. That is: ensure the same
browser fingerprint, start from the same user profile, use the
same IP address, etc.

Timing: progression of time affects prices, e.g., expiring
items, or tickets for events on specific dates. Vissers et al. [27]
established that prices can already differ within a one-minute
window. Moreover, increased interest may affect price – one
store’s data collection may impact prices on another store.
Due to network effects, it is impossible to ensure that queries
for different stores arrive simultaneously. We point out that the
goal of a framework is not to measure the digital world, but to
measure the human world. We therefore take the position that
best-effort synchronisation is sufficient – if pricing is then still
affected, a regular user would also encounter prices affected
by random network delays.

Contextual constraints: contextual constraints such as in-
creasing energy prices, tax differences, natural disasters,
etc. may affect prices. These should affect stores in the same
context equally. For stores in different contexts (e.g., country-
specific sites), the difference should be constant across all
items. However, context can change over time (e.g., changes
in taxes). To account for contextual effects on pricing, a price
measurement framework should collect data of multiple items
over time.

Pricing errors: pricing errors such as delays in propagating
price updates or decimal point errors can cause different
prices between stores. Vendors work to catch price errors, thus
by gathering item prices over a longer time period, we can
eliminate such effects.

C. Framework design and Proof-of-Concept implementation

Based on the problem analysis in above, our system must
be able to synchronise heterogeneous scrapers, distributed over
multiple devices. It further needs to support data collection on
mobile devices and aggregate collected data into a single data
repository. This leads to the design depicted in Fig. 1.

The central component is the scheduler that enforces the
needed synchronisation. It schedules jobs to orchestrate other
components in the system, supplies the information (search
query input) to run scrapers (extraction tools), and manages a

central data repository to persistently store results collected
by devices. When a device retrieves tasks to query items
from stores, it initiates a scraper. A scraper is an automated
store-specific data-extracting client. It interacts with one store
to request items. In the case of a mobile store, the design
supports using an emulator as well as interfacing with an actual
mobile device. In the latter setup, the mobile device acts as an
interface for the scraper. Session initiation and communication
with the store thus happen on the mobile device. Depending
on the implementation of the system and target of the study,
an external VPN server and/or proxy can be used to control
outgoing IP addresses.

To validate the design from the section above, we created a
Proof-of-Concept implementation (see [21] for a full, exhaus-
tive description). An overview of our implementation is shown
in Fig. 2. The scheduler, consumers/producers and scrapers
are written in JavaScript and run in a Node.js environment.
To facilitate communication between the scheduler and other
devices, we use the BullMQ framework3, a message queue
system based on Redis.We use one queue for desktop scrapers
and a separate queue for mobile device scrapers. Finally,
we use one queue for collecting data from all scrapers. The
scheduler stores incoming results in a PostgreSQL database.
To control the scheduler and to push new tasks into a queue,
we added a command line interface. This interface is used by
cron jobs, which automatically push tasks to the workers.

The connection between consumers/producers and their
scrapers is facilitated via interfaces in TypeScript. Every
scraper is expected to implement this interface, specifically,
the methods start, stop, fill search, submit search, store results,
and take screenshots. Website scrapers use puppeteer4 with
the stealth plugin5 for puppeteer. For mobile scrapers, we
connected the Android device via the USB port. To control
the mobile device’s interface from the scraper device, we set
up an Appium6 server on the scraper device and UI Automator
on the mobile device. Appium then uses the UI Automator to
extract and submit data and to perform UI tasks.

3https://github.com/OptimalBits/bull/tree/develop/docs
4https://github.com/puppeteer/puppeteer
5https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
6https://appium.io/

4

https://github.com/OptimalBits/bull/tree/develop/docs
https://github.com/puppeteer/puppeteer
https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://appium.io/

Fig. 2. Proof-of-Concept implementation

D. Client synchronisation

A data collection process involves multiple (at least two)
scrapers that execute the following steps:

1) initialise session,
2) fill in searchform,
3) submit search form,
4) retrieve & parse items from result page, and
5) send parsed data to scheduler.

Execution time of each step would vary on a single device
between executions already. Our design allows for heteroge-
neous device classes, which exacerbates this problem. Our PoC
implementation addresses this (see Sec. III-B) by adding two
synchronisation barriers, before step 2 and before step 3.

As soon as a device is ready for data acquisition, it retrieves
a new task from the scheduler and initiates the corresponding
scraper (step 1). The synchronisation barrier ensures that the
filling in of the search forms is started simultaneously across
all scrapers. We synchronise scrapers a second time at the
beginning of the data acquisition phase (step 3). That is,
we synchronise submission of the search query. Note that
due to the centralised design, we approximate simultaneous
requests by triggering all scrapers to submit the query si-
multaneously. Nevertheless, implementation details and run
time environments of the individual consumers, scrapers, and
target’s backend will introduce small timing variations.

IV. EXPERIMENT: INVESTIGATING FLIGHT PRICING

In order to validate the design, we execute a modest exper-
iment to investigate store-based price differentiation in flight
tickets. We choose to focus on airline tickets, as these often
are available via multiple stores (app, desktop site, mobile site,
reseller). Moreover, while Vissers et al. [27] have not found
any evidence of price discrimination in this domain, Clever

Reisen [17] claims to have witnessed price differentiation here.
Besides validating viability of the design, the main goal of our
experiment is to determine whether a large-scale investigation
is warranted. To that end, we run our experiment for five
different popular7 travel companies that offer flights tickets
over a period of 38 days.

A. Data acquisition

To collect data, we select two airlines and three travel
agencies. We use all of these companies to search for airline
tickets. As input data, we consider cities in Europe and pick
random dates between July and August 2021. Further, we
use corresponding options within search masks to query for
one-way flights only. We left other options in their default
setting. Before running our experiment, we manually checked
that tickets are offered under equal conditions. For example,
whether one store contains additional services in contrast to
another store. We verified this by installing the app or visiting
the website to review the default setup. Our check did not
reveal any differences between stores (see Appx. A).

For each company, we create scrapers to automatically
query items via the mobile app, the mobile store, the Ger-
man desktop website (*.de) and the French desktop website
(*.fr). As we compare items retrieved from mobile websites
exclusively for one company, our experiment covers 15 stores
in total. With these store scrapers we construct comparisons
by running at least two different scrapers synchronously.
For comparisons that include mobile apps, we use German
localisation. To do so, we visit the company’s .de domain with
our website scrapers. For the mobile scraper, we set the system
language to German and download the corresponding localised
mobile application and set the phones GPS location to a place
in Germany, co-located with the town of the IP-address origin.

For each two-way comparison, we collect data thrice daily
between 25 May and 2 July 2021, for a maximum of 114
data points for comparison. Note that to be used in a com-
parison requires all involved scrapers to be successful, which
underlines the fragility of the data acquisition process. Scraper
failure, a regular occurrence, happens due to frequent layout
changes, changes in flights on offer, as well as network
hiccups. This necessitated frequent scraper updates. We also
run one three-way comparison (app/web/mobile). Since this
comparison requires 3 simultaneous successfully scrapes for
one comparison point, we foresee a dearth of comparison
points. To mitigate this, we run these scrapers longer, until
we collect over 70 comparison points. They ran from 25 May
till 5 July (maximum of 123 comparison points). We collect
items shown on the result page without following the booking
process to avoid blocking items for other users of the store.

Finally, during each run, we took screenshots of all result
pages, as well as all recording HTTP responses that contain
JSON-formatted data. A random selection of these were then
manually compared with the collected data. This verification
step found no errors in the automatically collected data.

7With the exception of airfrance.de (top 240K) and kayak.de (top 140K),
all domains are listed in the Tranco top 100K [20] (ID K2Z6W).

5

TABLE I
OVERVIEW OF FLIGHT DATA SET

company scrapers date orig–dest #comps. #trips

Air France app/web July 01 FRA–CDG 73 2 (2)
August 01 FRA–CDG 72 2 (2)
August 09 VIE–AMS 72 3 (3)

.fr/.de July 01 FRA–CDG 68 2 (2)

Eurowings app/web July 11 AMS–HAM 8 1 (1)
August 12 CGN–LON 7 3 (0)

.fr/.de July 11 AMS–HAM 11 1 (1)

Expedia app/web July 01 BRU–AMS 29 24 (3)
August 10 AMS–ARN 95 7 (6)
August 18 OPO–BRU 101 20 (6)

.fr/.de July 01 BRU–AMS 74 5 (4)
August 01 BRU–AMS 83 4 (4)

KAYAK app/web/mob. August 18 OPO–BRU 71 154 (4)
app/web August 07 MAD–FCO 109 247 (13)

August 13 BER–BCN 101 273 (6)

Opodo app/web July 01 FRA–CDG 99 9 (9)
August 01 FRA–CDG 90 18 (7)
August 23 CGN–PRG 103 16 (1)
August 18 OPO–BRU 101 17 (4)

.fr/.de July 01 FRA–CDG 101 9 (9)

B. Determining item equivalence

To compare items, we must identify equivalents items from
two (or more) stores. We conduct multiple steps to determine
whether items are equivalent: attribute normalisation, relevant
attributes, and robustness against minor attribute changes. We
point out that the choices made here significantly affect what
items are considered equivalent, and thereby, the nature of
the study. In our case, we aim to determine the price of
a trip between two airports. If departure and arrival airport
are equivalent, and departure and arrival time are equivalent,
we consider the items equivalent. This assumes that no two
flights would leave simultaneously from one airport and arrive
simultaneously at the same destination airport. Obviously, this
is not true for code share flights, but these we consider the
same flight.

To determine item equivalence for our setting, we first
normalise attribute values (‘Heathrow’, ‘London – Heathrow’,
and ‘LHR’→ LHR). More specifically, we check all values of
the collected attribute and manually map these to normalised
values. For numeric attributes, we establish a standard format
and map all values to the standard format. Secondly, we
decide on the set of attributes to include for determining item
equivalence. We chose the set {date, time, departure airport,
arrival airport}. Omitting attributes such as flight number
and airline helps to unify code share flights. Lastly, shifts in
departure/landing time occur. These constitute different items,
which we easily identified and manually matched with their
originals throughout the data set. This makes the data set
robust against minor changes in these attributes.

C. Resulting data set

Tbl. I shows which vendors/stores were visited, describes
the used input search queries, and describes the data points
collected. The #trips column shows the total number of unique

trips (modulo schedule updates) found. Each trip is one
journey from departure to arrival airport, including any inter-
mediate stops. In parenthesis, this column shows the number
of equivalent trips found across multiple stores simultaneously.
We only compare prices if we extracted data from multiple
stores simultaneously at least once. In some cases, there are
vast discrepancies between these numbers. We found three
major effects for this: first, for vendors who return many trips,
much less trips are visible on mobiles (both app and mobile
site) than on the desktop without interacting. Second, some
vendors offer multi-stage alternatives for direct flights, such
as a bus transfer to an alternate departure airport, or a train
trip. These two effects explain most of the discrepancy. Lastly,
there are some trips that only occur once or a few times. We
typically see these only on one store (possibly also due to the
first effect). We include the number of trips found on more
than one store as only these can be used to analyse store-
related price differences. Finally, the #comps column counts
runs where all involved scrapers successfully retrieved their
result page (column results). These are the data points that can
be used for data analysis – the number of data points for each
trip for which we collected data simultaneously from multiple
stores. Note that these may not be uniformly distributed over
the trips found on multiple stores.

V. ANALYSIS

The goal for our analysis is to evaluate whether our ap-
proach can find any cases of store-based price differences.
In addition, we want to attribute any found differences to
likely causes. Our analysis proceeds in three stages. First,
we consider, for each vendor, the distributions of relative
differences between stores (via boxplots). Second, we consider
patterns in pricing via a heatmap. Third, we consider price
differences for specific trips, plotting their price developments
on both monitored stores.

A. Occurrence of store-based price differentiation (Fig. 3)

We collected sufficient data for analysis for AirFrance,
Expedia, Kayak, and Opodo. Fig. 3 shows the distribution of
relative price differences found between their (.de) desktop
site and their other stores. We found some price differences
for each store, though for AirFrance and Expedia these appear
minor / incidental. In contrast, the distributions of Opodo and
Kayak show clear favouritism.

a) Opodo: French site almost always more expensive:
Even our data set provides a limited window, for Opodo, we
find that prices on the French website are typically substan-
tially higher than on the German website (median: +14.2%,
InterQuartile Range: +10.1%–+22.4%). Indeed, virtually al-
ways a lower price was offered on the German website. In
Opodo’s app, this effect is also present, but smaller (median:
+2.25%, IQR: +0.01%–+6.15%). Moreover, while outliers
occur in either direction, those favouring the German site over
the app are quantitatively larger and occur more often. This
is confirmed when looking at a single item, e.g., Fig. 4: users
of the French site pay, in this case, tens of euros more for the

6

Fig. 3. Relative difference vs .de desktop site

same ticket. On 22nd of June, this was even over e55. While
lower prices do occasionally occur on the French site, on the
whole, our data set suggests Opodo customers are better off
using the German desktop site for booking.

Fig. 4. Opodo, .de vs. .fr, FRA – CDG

b) Kayak: wild variations between stores: For Kayak,
we find on average, mobiles get better prices. Prices on all
stores vary; in-app prices are mostly slightly better than on the
desktop site (median: −4.3%, IQR: −8.0%–0.0%). However,
wild outliers occur in either direction. Lucky bookers will
be 68% cheaper; unlucky bookers will see prices that more
than double (over 150% higher) than on the desktop site.
Kayak’s mobile site also offers better prices (median: −1.6%,
IQR: −4.4%–0.0%). Outliers for the mobile site are less wild,
ranging from −20% to +15.7%. On the whole, the best bet
for low prices from Kayak is (by a small margin) their app. Its
users might even get lucky with a very low price, but should
be wary of expensive outliers.

B. Pattern and outlier analysis (Fig. 5)

To evaluate whether there are patterns in the found price
differences, we construct a heat map of these (Fig. 5). We omit
flights with less than 10% success in data acquisition. Each
box shows the relative difference of an item’s prices between
two stores, with time of data acquisition on the x-axis. Lack
of a box means insufficient data was acquired; a lightgray box

means that both stores showed the same price. All other boxes
denote price differences. For visual clarity, all boxes with data
are marked with an edge. Extremes use the 50% colour, so as
not to let outliers dominate the colour space.

Using relative percentage differences instead of total prices
provides a compact view on the data set. At the same time,
differences for trips with higher prices do not overshadow
differences of low fare trips. On the downside, relative dif-
ferences result into higher percentages for increases than for
decreases.8 Hence, this view can provide points of interests,
but conclusions require further analysis. Below we discuss
high-level observations from this heatmap and indicate which
need further inspection.

a) Cross-vendor observations: Any cross-vendor effect
manifests as vertical effect in the heatmap. This includes
gaps in data acquisition. First, our data acquisition failed to
get data from any app from the 5th of June till the 8th of
June. This shows up in the heatmap as a vertical gap for all
app comparisons. Secondly, other effects besides gaps in data
acquisition also occur vertically. An interesting find is that
from Fig. 5, we can rule out taxes as a cause for the observed
price differences between .de and .fr sites. If taxes caused
price differences, this effect would show up in all affected data
points, translating to a vertical effect in the heatmap; no such
effect is present. This is further strengthened by observing that
most Expedia .fr comparisons show no price difference; the
exception being when booking date is close to departure date.

b) Vendor-specific observations: With respect to specific
vendors, we observe several effects in Fig. 5. First of all, we
see that the AirFrance .fr site seems to have an almost-constant
price increase over their .de site. This could relate to some type
of fee. Secondly, for the Opodo app, we see a wave pattern
indicating frequent switches between higher and lower prices.
We will consider both cases in more depth in the next section.

c) Perspective on outliers: The heat map also provides
more details about recorded outliers. We note that outliers for
Expedia (cf., Ex .fr in Fig. 3) are grouped (i.e., on consecutive

8For example, a change from e10 to e15 is an increase of 50%, while
from e15 to e10 is a decrease of 33%.

7

Fig. 5. Overview of relative price differences (colours of extremes truncated to +/−50%)

Fig. 6. Opodo website vs. app, differences per item

dates). To find the cause for this pattern, a deeper investigation
is necessary (see below). For AirFrance .fr, AirFrance app, and
Opodo app, the fraction of outliers is tiny. We ignore such
single point outliers, as these could be due to expected errors
given the nature of our experiment (see Sec. III-B). Instead,
we focus on more consistent data.

C. Analysis of specific cases

a) Opodo’s price differences flip frequently (Fig. 6):
The perceived wave pattern in Opodo’s part of the heat
map spans over all four search queries, with the exception
of one item. We checked that these price differences are
significant (p-value≤0.0001, Wilcoxon signed-rank test).9 This
raises the question whether differences in item prices follow a
predictable pattern. Fig. 6 shows, for each item of each search
query (SQ-A through SQ-D), the relative difference between
website and app price. Breaks in the plot occur where data is
lacking. For each query with multiple items, we can find some
items whose plots are similar, such as SQ-A: LH1 and LH2,
SQ-B: all plots, SQ-D: TP1 and TP2. On the other hand, each
of these also has plots which are dissimilar.

Note that none of these patterns re-occur for items from
different search queries. We only have four queries, none of
which show the same pattern. Data on more queries would
be needed to put any specific inference on firm footing.
Nevertheless, a common thread already evident is that most
items show a high frequency of price swings – hence the wave.

9We use Wilcoxon signed-rank test, as our data set is not normally
distributed.

8

Fig. 7. Expedia, .de vs. .fr, BRU – AMS. Data points under overlap denotes
equal prices on both stores

Fig. 8. AirFrance, .de vs. .fr, FRA – CDG, AF1 top; AF2 bottom

This suggests that, in general, checking prices on Opodo’s
other store can save around 10% of the item price.

b) Expedia: bookinglast minute? Try switching stores
(Fig. 7): In the heat map, we see that some items on expedia.fr
have lower prices than their .de counterpart in the last third
of our observation window. Interestingly, the other four rows
within this comparison category show no differences. One
example with differences is depicted in more detail in Fig. 7.
Here, flight prices start to differ by a constant rate 15 days
before departure (except for two outliers). Customers on
expedia.fr pay e13 (initially: −6.1%) less than on expedia.de
for these ‘last-minute’ tickets. The four search queries that
show no differences in the heat map all have later departure
dates (August 1); for these, we lack similar ‘last-minute’ data.
As previously remarked, tax differences between countries
would show up in many more points than observed, so these
cannot explain the observed differences.

c) e1 or e5 higher prices on airfrance.fr (Fig. 8):
For two AirFrance flights, we have sufficient data to compare

prices between .de and .fr sites. Both flights showed exactly
two levels of price differences: e1 and e5. Interestingly, there
is no consistent temporal component to this (see Fig. 8). For
both flights, only prices over e65 are e5 more expensive on
the .fr sites. Unfortunately, our data set only contains sufficient
data to analyse two flights; the data we have is tantalising and
merits followup study.

VI. LIMITATIONS

The experiment conducted in this paper has several lim-
itations. First, our validation experiment only aims to show
the viability of the framework to support price differentiation
studies. As such, we only extracted pricing data from a small
number of stores of five European vendors of flights. The
conclusions of the experiment should not be extrapolated to
other vendors, and, given its scale, one should be careful
extrapolating our results to other (non-investigated) flights of
the same vendors. Nevertheless, the experiment’s results show
that even a limited experiment with a proof-of-concept tool can
already provide indications of (trends in) price differentiation.

Second, our experiment used blank profiles (reset for every
scraping job). Note that this is a limitation only of the ex-
periment; the framework does already support using different
profiles (or even browsers), simply by instrumenting a scraper
with the desired characteristics as one of the desktop devices.
With respect to how blank profiles affect data: although no
link between browsing history and flight pricing has yet been
found, browsing history is known to affect search results [22].

Third, our experimental setup does not fully eliminate
all possible confounding factors. For example, store-specific
measures such as user tracking (e.g. [8], [19]), bot detection
via fingerprinting [15], [26], or behavioural metrics [11]
could still impact results. We argue that the impact of any
confounding measures not specifically due to detecting the
client as a bot would similarly affect genuine clients starting
from the same position as our experiment. Bot detection poses
another potential source of confounding factors. Stores could
employ bot detection to prevent or thwart unwanted resellers.
Specifically, they could block bots, show bots different prices,
or show bots fake or joke items. The last two measures can
thwart bots, and may even allow the store to (significantly)
profit from automated resellers [24].

VII. CONCLUSION

In this work, we set out to explore the feasibility of detecting
store-based price differentiation. In contrast to previous price-
differentiation studies, we focus on vendor-side differences in
pricing (that is, store-based pricing) and conducted a fully
automated study. Our experiment is based on a significantly
larger amount of data than previous works in this area.
Studying store-based price differentiation requires eliminating
or mitigating confounding factors as well as gathering the
same item from multiple stores. To this end, we designed a
framework to enable cross-device automated data collection
from different stores. We implemented a proof-of-concept that
uses puppeteer for automating desktop browsers and Appium

9

plus UI automator for automating interaction with mobile
devices.

We test our approach in a study of 5 vendors of flights,
across 15 stores, gathering data for 38 days. We find evidence
of price differentiation between stores for about half of the data
set. For some vendors, this seems incidental. For others, the
collected data is suggestive of deliberate price differentiation
– sufficiently strong to warrant a more detailed in-depth study.
Lastly, for some vendors, price differences are fairly blatant.
We found recurring price differences of about e50 between .de
and .fr stores of Opodo. This is in stark contrast to data from
all other investigated .de and .fr sites, ruling out contextual
factors such as tax differences. We also compare between
website, mobile app, and mobile site. We find that Opodo’s
app slightly disadvantages users compared to their desktop
site. Kayak’s stores can differ substantially in price; we found
that on average, their mobile stores (app/mobile site) offer
lower prices.

Future work. Our experiments show that a larger-scale study
into store-based flight pricing is warranted. This can be done
in various dimensions. One such way is to perform a deep-
dive into one vendor, gathering data on a significant fraction of
their flights. This could e.g. be done for Opodo. Another large-
scale investigation is to collect data from many more vendors,
to determine if there is an industry-wide trend with respect to
store-based pricing. Do note that these studies have different
challenges: a vendor-specific investigation must take extra
measures to reduce the impact of its queries on pricing, while
a multi-vendor study faces the challenge of maintaining a
plethora of vendor-specific data extractors. Another interesting
direction related to cross-vendor studies is to consider seller-
incentives. For example, in some cases, resellers stimulate
offering lower prices to mobile devices than those offered to
desktop clients [2]. A future study could investigate to what
extent such features are used across different vendors.

In our experiment, we studied flight prices. Store-based
price differentiation can of course also occur for other types
of items. Travel-industry related rental items such as hotel
bookings or car rentals make interesting candidates. They also
allow for fairly easy item comparison. Moreover, these items
also have limited availability and are time-sensitive, which is
likely to induce vendors to update their pricing. From there,
it is only a small step for vendors to consider tweaking prices
for specific stores. Hannak et al. [12] reported finding lower
prices for hotel bookings on Apple devices than on Android
devices for one out of four vendors. Our framework facilitates
performing such studies at a larger scale, for more vendors
and across more stores.

In all of such price differentiation studies, data extraction
remains a contentious point due to server-side changes. On
a conceptual level, a followup study is to investigate how
to make data extraction significantly more robust. Lastly,
taking a step back, there have been various studies into
price differentiation focusing on different aspects. Not all
studies insulated their data collection from aspects found to

be influencing pricing in other studies. What is sorely needed
is a taxonomy of various potential influencing factors and a
strategy for isolating them.

REFERENCES

[1] Julia Angwin, Surya Mattu, and Jeff Larson. The tiger mom tax:
Asians are nearly twice as likely to get a higher price from princeton
review. https://www.propublica.org/article/asians-nearly-twice-as-likel
y-to-get-higher-price-from-princeton-review, September 2015. Last
access: February 6, 2023.

[2] Booking.com. Mobile rate. https://partner.booking.com/en-gb/solutions/
mobile-rate, 2023. Last access: February 6, 2023.

[3] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas.
Picasso: Lightweight device class fingerprinting for web clients. In
SPSM@CCS, pages 93–102. ACM, 2016.

[4] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew
Zhang, Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert.
Omnicrawl: Comprehensive measurement of web tracking with real
desktop and mobile browsers. Proc. 22nd Privacy Enhancing Tech-
nologies Symposium (PETS’22), 2022(1):227–252, 2022.

[5] Le Chen, Alan Mislove, and Christo Wilson. Peeking beneath the
hood of uber. In Proceedings of the 2015 ACM Internet Measurement
Conference, (IMC’15), pages 495–508. ACM, 2015.

[6] Le Chen, Alan Mislove, and Christo Wilson. An empirical analysis
of algorithmic pricing on amazon marketplace. In Proceedings of the
25th International Conference on World Wide Web, WWW ’16, page
1339–1349. ACM, 2016.

[7] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The
web’s sixth sense: A study of scripts accessing smartphone sensors. In
CCS, pages 1515–1532. ACM, 2018.

[8] Peter Eckersley. How unique is your web browser? In Proc. 10th Privacy
Enhancing Technologies Symposium (PETS’10), volume 6205 of LNCS,
pages 1–18. Springer, 2010.

[9] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1388–1401, 2016.

[10] Chris Gibbs, Daniel Guttentag, Ulrike Gretzel, Lan Yao, and Jym
Morton. Use of dynamic pricing strategies by airbnb hosts. International
Journal of Contemporary Hospitality Management, 2018.

[11] Daniel Goßen, Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and
David Roefs. HLISA: towards a more reliable measurement tool. In
Proc. 21st ACM Internet Measurement Conference (IMC’21), pages
380–389. ACM, 2021.

[12] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo
Wilson. Measuring price discrimination and steering on e-commerce
web sites. In Proceedings of the 2014 Internet Measurement Conference
(IMC’14), Vancouver, BC, Canada, November 5-7, 2014, pages 305–318.
ACM, 2014.

[13] Thomas Hupperich, Dennis Tatang, Nicolai Wilkop, and Thorsten Holz.
An empirical study on online price differentiation. In Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
CODASPY, Tempe, AZ, USA, pages 76–83. ACM, 2018.

[14] Costas Iordanou, Claudio Soriente, Michael Sirivianos, and Nikolaos
Laoutaris. Who is fiddling with prices?: Building and deploying a
watchdog service for e-commerce. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM
2017, Los Angeles, CA, USA, August 21-25, 2017, pages 376–389, 2017.

[15] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-
based detection of web bot detectors. In Proceedings of 24th European
Symposium on Research in Computer Security (ESORICS’19), LNCS,
pages 586–605. Springer, 2019.

[16] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Pana-
giotis Papadopoulos, Matteo Varvello, Ben Livshits, and Alexandros
Kapravelos. Towards realistic and reproducible web crawl measure-
ments. In Proc. The Web Conference 2021 (WWW’21). ACM, 2021.

[17] Lutz Kaulfuß. Flugbuchung per smartphone achtung! neue abzocke!
Clever Reisen! (1/17), January 2017.

[18] Benjamin Krumnow, Hugo Jonker, and Stefan Karsch. How gullible
are web measurement tools? A case study analysing and strengthening
OpenWPM’s reliability. In Proc. 18th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’22),
page 16, New York, NY, USA, 2022. ACM.

10

https://www.propublica.org/article/asians-nearly-twice-as-likely-to-get-higher-price-from- princeton-review
https://www.propublica.org/article/asians-nearly-twice-as-likely-to-get-higher-price-from- princeton-review
https://partner.booking.com/en-gb/solutions/mobile-rate
https://partner.booking.com/en-gb/solutions/mobile-rate

[19] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
Browser fingerprinting: A survey. ACM Transactions on the Web
(TWEB), 14(2):1–33, 2020.

[20] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. In Proc. 26th Network
and Distributed System Security Symposium (NDSS’19), pages 1–15.
The Internet Society, 2019.

[21] Godfried Meesters. Synchronising distributed scraping. Master’s thesis,
Open University of the Netherlands, August 2021. http://www.open.ou.
nl/hjo/supervision/2021-godfried-meesters-msc-thesis.pdf.

[22] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos
Laoutaris. Detecting price and search discrimination on the internet. In
In Proc. 11th ACM Workshop on Hot Topics in Networks (HotNets’12),
pages 79–84. ACM, 2012.

[23] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos
Laoutaris. Crowd-assisted search for price discrimination in e-
commerce: first results. In Conference on emerging Networking Ex-
periments and Technologies, CoNEXT ’13, Santa Barbara, CA, USA,
December 9-12, 2013, pages 1–6. ACM, 2013.

[24] Stefan Schwinghammer. Bonkers vs bots: How to get rid of re-
sellers. https://www.soloskatemag.com/bonkers-vs-bots, 2019. Last
access: February 6, 2023.

[25] Tom van Goethem, Victor Le Pochat, and Wouter Joosen. Mobile
friendly or attacker friendly?: A large-scale security evaluation of
mobile-first websites. In AsiaCCS, pages 206–213. ACM, 2019.

[26] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc.
FP-Crawlers: Studying the Resilience of Browser Fingerprinting to
Block Crawlers. In Proc. 2nd NDSS Workshop on Measurements,
Attacks, and Defenses for the Web (MADWEB’20), pages 2–14, 2020.

[27] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen.
Crying Wolf? On the Price Discrimination of Online Airline Tickets.
In 7th Workshop on Hot Topics in Privacy Enhancing Technologies
(HotPETs’14), 2014.

[28] Zhiju Yang and Chuan Yue. A comparative measurement study of web
tracking on mobile and desktop environments. Proc. Priv. Enhancing
Technol., 2020(2):24–44, 2020.

APPENDIX

A. Settings in search masks
We compared the default settings in each store’s search

mask. The results are summarised in Tbl. II. There are

additional services that can be used within the search mask
when using AirFrance. This option is disabled by default on
desktops, and it is unavailable in the app. Eurowings is the only
vendor that does not offer fare selection via its search mask.
Instead, we ensured to use prices shown on the result pages,
which always used the lowest fare in our cases. For Opodo,
we found that users can select between different restrictions
on stops on their trips. However, no restriction is the default
option for all checked store.

TABLE II
OVERVIEW ON DEFAULT SETTINGS IN EVALUATED SEARCH MASKS

Airline Store Route Travellers Fare Custom options

AirFrance .de round-trip 1 adult economy bluebiz off
.fr round-trip 1 adult economy bluebiz off

app round-trip 1 adult economy n/a

Eurowings .de one-way 1 adult n/a n/a
.fr one-way 1 adult n/a n/a

app one-way 1 adult n/a n/a

Expedia .de round-trip 1 adult economy n/a
.fr round-trip 1 adult economy n/a

app round-trip 1 adult economy n/a

Kayak .de round-trip 1 adult economy 0 bags
mob. round-trip 1 adult economy 0 bags

app round-trip 1 adult economy 0 bags

Opodo .de round-trip 1 adult economy No stop restrictions
.fr round-trip 1 adult economy No stop restrictions

app round-trip 1 adult economy No stop restrictions

11

http://www.open.ou.nl/hjo/supervision/2021-godfried-meesters-msc-thesis.pdf
http://www.open.ou.nl/hjo/supervision/2021-godfried-meesters-msc-thesis.pdf
https://www.soloskatemag.com/bonkers-vs-bots

	Introduction
	Related work
	Online pricing algorithms
	Mobile web != regular web?
	Data acquisition
	Price differentiation

	Design of a price comparison framework
	Data acquisition methodology
	Handling confounding factors
	Framework design and Proof-of-Concept implementation
	Client synchronisation

	Experiment: investigating flight pricing
	Data acquisition
	Determining item equivalence
	Resulting data set

	Analysis
	Occurrence of store-based price differentiation (Fig. 3)
	Pattern and outlier analysis (Fig. 5)
	Analysis of specific cases

	Limitations
	Conclusion
	References
	Appendix
	Settings in search masks

