
Can You Tell Me the Time?
Security Implications of the Server-Timing Header

Vik Vanderlinden
imec-DistriNet, KU Leuven

vik.vanderlinden@kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven
wouter.joosen@kuleuven.be

Mathy Vanhoef
imec-DistriNet, KU Leuven
mathy.vanhoef@kuleuven.be

Abstract—Performing a remote timing attack typically entails
the collection of many timing measurements in order to overcome
noise due to network jitter. If an attacker can reduce the amount
of jitter in their measurements, they can exploit timing leaks using
fewer measurements. To reduce the amount of jitter, an attacker
may use timing information that is made available by a server.
In this paper, we exploit the use of the server-timing header,
which was created for performance monitoring and in some
cases exposes millisecond accurate information about server-side
execution times. We show that the header is increasingly often
used, with an uptick in adoption rates in recent months. The
websites that use the header often host dynamic content of which
the generation time can potentially leak sensitive information.
Our new attack techniques, one of which collects the header
timing values from an intermediate proxy, improve performance
over standard attacks using roundtrip times. Experiments show
that, overall, our new attacks (significantly) decrease the number
of samples required to exploit timing leaks. The attack is
especially effective against geographically distant servers.

I. INTRODUCTION

If a program’s execution time depends on a secret, this
secret can be leaked by measuring the runtime of the program.
This vulnerability is known as a timing side-channel leak. Two
and a half decades ago, timing attacks which exploit such
timing leaks were documented by Kocher and were focused
on the exploitation of cryptographic algorithms with the goal
to extract cryptographic keys from the running program [12].
While initially considered impossible, it was later shown that
it is in fact possible to execute these attacks remotely, i.e.,
using a client that is separated from the victim server by
a network such as the Internet [6], [5]. The initial remote
timing attacks were still focused on cryptographic operations,
now happening on the remote server. Meanwhile, several
authors found ways to expose sensitive data about users of
web applications by utilizing timing attacks [4], [10], [17].
Timing attacks are considered a serious vulnerability and as
such, defenses against them are constantly being introduced
[13], [1], [3], [2]. As a response to these defenses, that were
in some cases considered complete defenses, attack methods
were subsequently also improved by researchers, disproving
the full effectiveness of the defenses, thereby showing that
defending against timing side-channels is far from trivial [15].

These difficulties are worsened by the fact that there are
often many ways of exploiting timing leaks. As an example,
there have been multiple methods identified that succeed in
accurately measuring roundtrip times (the time from sending
a request to receiving the subsequent response) in browsers
[18], [20], [15]. More recently, a method of excluding noise
from used measurements has been presented, which succeeds
in significantly improving attack performance under specific
preconditions [19].

In this paper we present two attack techniques that, under
the right circumstances, can be used to improve the per-
formance of timing attacks. By utilizing timing information
that is returned from the server in the server-timing header,
the measurements used in an attack are more accurate than
roundtrip times collected by the client over a possibly noisy
network connection. In order to understand the reach of these
type of attacks, we first evaluate the use of the header.

Specifically, the following contributions are made:

• We use the HTTPArchive.org datasets to query the
current and historic prevalence of the header. We find
that while prevalence is still rather low, it has been
steadily increasing over time. Additionally, we show
that a simple keyword-search in response-headers un-
veils a large number of sites which expose timing
information through a header.

• We present two attack techniques which can be used
to improve the performance of a remote timing attack
by utilizing the values in the server-timing header.
We experimentally validate the attack techniques in
various settings, which we outline in section IV.

• We propose an update to the W3C Working Draft [22],
which specifies the server-timing header, to reflect
better privacy and security concerns. Currently the
working draft has a recommendation that is too lax
according to our results.

Coordinated Disclosure: We have disclosed our findings to
the authors of the W3C Working Draft and have also contacted
Shopify to warn them about the possible security risks of using
the server-timing header.

II. BACKGROUND

When timing attacks were introduced two and a half
decades ago by Kocher in 1996, most of these attacks were
aimed at exploiting cryptographic implementations to extract

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2023
3 March 2023, San Diego, CA, USA
ISBN 1-891562-87-8
https://dx.doi.org/10.14722/madweb.2023.23087
www.ndss-symposium.org

exponents or keys of specific operations [12]. By measuring the
execution time of the cryptographic operations it was shown
that these attacks were feasible. Not much later, in 2000, the
first timing attack in a web browser was shown by Felten
et al., who found a method to determine which pages were
visited by a user, thus leaking their browsing history [10].
The attacks that are executed in these works always measure
local runtimes in a browser or of smartcard-like devices and it
was believed that timing attacks against general purpose web
servers were infeasible due to the large amount of network
noise that packets encounter when traveling over the network
to the server [6].

A. Remote Timing Attacks

To show that attacks over a network are in fact practical,
Brumley and Boneh exploited cryptographic operations in
OpenSSL running on a web server in a local network [6]. Two
years later Bortz et al. defined the differences between direct
timing attacks and cross-site timing attacks, and at the same
time also showed that they could expose private information
from a web application over a network [4]. These publications
led to a multitude of attack vectors, such as the cross-site
search attacks by Gelernter et al., which allow an attacker to
test for the existence of search results on another site [11].
More recently, it was shown that arbitrary memory could
be read over the network using a timing attack in a remote
Spectre attack [16]. Besides practical attacks, Crosby et al.
tested multiple statistical methods to compare distributions of
measurements and defined the box test to distinguish between
roundtrip time distributions, which is now commonly used in
timing attacks [9].

Remote timing attacks suffer from an important problem:
The packets that are indirectly used to measure the runtime
of a program on the backend server have to travel over the
network. When packets travel over a network, two important
metrics can be defined: the latency, or the time it takes a
packet to reach the other end of the network, and the jitter,
also known as the variation on the latency. The network jitter
is variable while the network latency is a fixed duration. In
theory, the latency can thus be filtered out (i.e., subtracted from
the timing measurement), were it not for the fact that each
measurement is the sum of the latency and a sample from the
jitter distribution, which results in the fact that the exact latency
is unknown. Jitter occurs due to the changing load on the target
server and due to the middleboxes a packet encounters on its
path over the network. These middleboxes can be switches,
routers, firewalls, load balancers, or any other networking
infrastructure. Each of those middleboxes may handle of high
amount of traffic and thus have a queue of incoming packets to
handle. When the queue grows in size due to a large amount of
ingress traffic, all packets may be delayed for some time while
waiting for the middlebox to be able to process all packets in
the queue. This waiting process in all the middleboxes adds
noise to the time it takes a packet to traverse the network,
and it is called jitter [14]. In order to overcome this noise and
exploit a remote timing leak, an attacker sends many repeated
requests in order to build a distribution of their measurements,
which can be evaluated through the use of statistical tests such
as the box test [9] to determine whether there is a difference
in execution time between two requests.

It is clear that reducing the amount of network jitter in
the measurements is an obvious objective for an attacker. The
lower the amount of jitter in the measurements, the lower
number of measurements the attacker needs to gather in order
to successfully exploit a timing leak. Van Goethem et al.
succeeded in removing all jitter in their measurements by
coalescing multiple requests into one packet, making the server
process both packets concurrently, and then looking at the
order at which the packets finished processing [19]. Another
attack technique is shown by Vanderlinden et al. in which they
use the date header to synchronize the clocks of the client and
the server, after which the amount of responses sent before
and after the server clock tick can be used to infer which
request has a longer runtime [21]. Using this technique, the
downstream jitter is not included in the measurements.

B. The server-timing header

The server-timing header is defined in a W3C Working
Draft in the Recommendation track [22]. The header is pri-
marily intended for debugging purposes in order to be able
to more quickly and easily find performance issues within
an application. By adding timing information of specific parts
of the execution on the server, performance issues with those
specific parts of the application can be easily detected during
development. Besides timing information, the header also
specifies a means to add textual information, which can be
used to indicate cache hits and misses or caching/datacenter
locations etc.

The format of the header is defined in such a way that mul-
tiple metrics may be communicated through multiple server-
timing headers. Metrics are separated by commas and each
metric has at least a name and optionally a value and/or
description. Each metric can consist of multiple parameters,
such as the dur parameter to communicate durations, or the
desc parameter to communicate descriptions of the metric. An
example use of the header in which three metrics (attack, loc
and cache) are included looks like:

server-timing: attack, loc;desc=eu-west
server-timing: cache;desc=write;dur=64

Any timing information added to a duration parameter in a
server-timing header should have an accuracy of milliseconds,
as defined by the ‘DOMHighResTimeStamp’ type in the work-
ing draft [23], [22]. The header is protected by the same-origin
policy by default due to the potential sensitive information it
includes, however, this can be overwritten by the server if it
uses a timing-allow-origin or CORS Access-Control-Expose-
Headers header in its responses, which can be misconfigured
[24], [25], [7]. When the server includes certain domains in this
header, these domains will be able to access timing information
in cross-origin responses.

III. WEB PREVALENCE SCAN

In this section, we evaluate the prevalence of the server-
timing header, the trend of its use over time, and identify some
large-scale applications that are using the header. Besides the
prevalence of the header, we dive deeper and gain insight into
the existence of potentially vulnerable websites that are using
the header by checking whether these websites host dynamic

2

TABLE I. THE ADOPTION OF THE SERVER-TIMING HEADER,
CATEGORIZED BY CRUX RANKINGS [8].

rank # scanned # headers (%) # with dur (%)

1 000 695 6.04% 5.47%
10 000 7 304 5.28% 4.08%

100 000 78 750 4.26% 3.34%
1 000 000 838 042 4.61% 4.09%

10 000 000 6 613 812 5.11% 4.12%
100 000 000 10 194 945 5.44% 3.50%

Fig. 1. The percentage of sites using the server-timing header in every month
between January 2017 and January 2023. The subset of headers including the
dur parameter is also shown.

content. We also search for sites that expose timing information
using other (non-standard) headers that contain timing-related
keywords.

A. Adoption

The HTTPArchive.org dataset of September 2022 was
queried to check the prevalence of the server-timing header.
At that moment, 5.44% of sites include the server-timing
header and 3.50% also have the dur parameter set. In absolute
numbers, this header is returned from over 550 000 (total) and
355 000 (with dur parameter) sites, out of a total of almost
10 200 000 scanned sites.

To gain more insight into the usage of the header on top
domains, we used the top-sites ranking of the Chrome UX
Report project [8]. In Table I, the adoption categorized by rank
is shown. Popular sites use the header slightly more often, but
the difference is quite small. The difference in usage of the
duration parameter is larger, with top sites have much higher
usage of this parameter. A possible reason could be that top
sites roll out this header with the duration parameter to evaluate
the performance of their products, while less popular sites are
using caching mechanisms that add the server-timing header to
communicate caching-related metrics metrics without duration.
Figure 1 shows the header adoption over time. Between 2017
and 2019, the adoption was very low, as can be expected due
to the fact that the standard was very new at that moment.
Since 2019, there has been a steady increase, with an uptick
in the middle of 2022, which occurred due to Shopify, a large
e-commerce platform that started using the header and is now

TABLE II. THE MOST USED VALUES OF “SERVER” HEADERS FOR
SITES USING THE SERVER-TIMING HEADER.

server # headers (%) # with dur (%)

cloudflare 3.02% 3.01%
pepyaka 1.81% 0.00%

nginx 0.27% 0.25%
empty server header 0.14% 0.10%

apache 0.07% 0.05%
cloudfront 0.02% 0.02%

microsoft-iis 0.02% 0.01%
snow_adc 0.01% 0.01%

all 5.44% 3.50%

responsible for more than half of the sites using server-timing
header. The sudden drop in adoption in November of 2019 can
be explained due to the lower number of scanned sites in the
database for that month.

The rather low adoption at this moment may have several
reasons. First, the working draft, as a part of their privacy and
security considerations, recommends that the header only be
used on authenticated endpoints [22]. The HTTPArchive.org
dataset is only queried for homepages and as such the results
do not include data on any authenticated endpoints. All of
the identified sites that return the header thus go directly
against the advise of the specification and add the header on
their unauthenticated homepage anyway. Second, the header
is primarily used to communicate performance information of
the backend server to the front-end. It is possible that many
users of the header will therefore only use the header during
development or testing.

B. Attribution

Table II shows the most used values for the server header
(stripped of their specific flavor) for sites using the server-
timing header. The table shows only server values that occur
along with a server-timing header in more than 0.01% of the
scanned sites. The cloudflare server header occurs most
often, which is the case mostly due to Shopify, which uses the
header by default while also using some Cloudflare-service(s)
that set(s) the server header.

Because some popular headers shown in table II are
headers set by CDNs (cloudflare, cloudfront), we additionally
attempt to find out whether these sites host dynamic or
merely completely static content. If a site is completely static,
attempting to execute a timing attack does not make sense. Out
of the almost 355 000 sites that set the server-timing header
with the duration parameter, 100 000 were crawled and were
checked for the inclusion of forms with a same-origin action.
Out of the crawled sites, 1 445 failed to load and 8 598 either
do not include a form, or include a form redirecting a user
away from the site. Of the remaining sites, 73 717 include at
least one form with a POST method. This means that at least
73.12% of these sites have some dynamic behavior. There is
of course no guarantee that the dynamic endpoint (the action
URL of the form) also exposes the server-timing header or
that it processes sensitive data.

C. Other headers

We also investigated whether other headers might contain
timing information. Querying for this data is non-trivial, be-

3

TABLE III. OTHER HEADERS POSSIBLY INCLUDING TIMING
INFORMATION, OUT OF A TOTAL OF 10 194 945 WEBSITES.

regex pattern total number of sites %

(run)?-?_?time?(ing)? 894 314 8.8%
(run)?-?_?time 341 048 3.3%
run-?_?time 195 091 1.9%

cause there is always a trade-off between inclusiveness and
false-positive matches. We evaluated three regular expressions
against the dataset, each less inclusive than the previous ones.
Table III shows the regex patterns used and the corresponding
amount of sites including headers that match these regexes.
The first regex includes ‘runtime’, ‘time’ and ‘timing’ variants
(such as server-timing), the last one only ‘runtime’ variants.
Note that there are almost 200 000 sites exposing a runtime
header, which sometimes contains data accurate down to
microseconds, as we were able to manually verify upon inspec-
tion of a few of the resulting headers. However, because the
interpretation of the identified headers is not always explicitly
defined, we will focus on the server-timing header in the
remainder of the paper, and consider a closer investigating of
custom timing headers interesting future work.

IV. ATTACK TECHNIQUES AND METHODOLOGY

In this section, we introduce the threat models that have
been explored, our novel timing attacks that exploit the server-
timing header values, and we explain the experimental setups
that were used to evaluate our novel timing attacks.

A. Threat model

When presenting timing attacks, assumptions about the
origin of the attack are often made. A widely accepted as-
sumption is that the attacker is able to rent a virtual machine
that is geographically located near the victim machine. This
assumption can often not be fulfilled due to the fact that some
services still host their web applications on-premises or in
private data centers. When exploiting timing leaks against these
types of victims, it may be difficult to get accurate results
due to the increased network noise in comparison with nearby
attackers.

In some cases the attacker might not even have the ability
to choose the attacking device, for instance when the attack
has to be executed by a piece of malware on some company’s
employee’s computer which executes a timing attack against
some victim in the company’s private network, to which the
attacker usually has no access. In order to execute a cross-
site attack (which is executed in a victim’s browser) by using
additional information included in a response header, the web
application under attack has to have a wrong configuration (for
instance a wildcard value in an inappropriate location) of their
timing-allow-origin or CORS Access-Control-Expose-Headers
headers [24], [25], [7]. This case is not included in our threat
model.

Because of this, an attacker may attempt to utilize all
additional information available to them in an attempt to
exclude as much noise from their samples as possible. The
server-timing header is one example of additional information
that can be used in such a way.

B. Attack techniques

We present our two attack techniques. First, we extend the
paradigm of a direct timing attack in such a way that it uses
the header information instead of self-collected measurements.
Second, by using a proxy that exposes a server-timing header,
the accuracy of the roundtrip times is increased. In general
during a timing attack, an attacker samples two pages: a
baseline and a target. The baseline is then used as a reference
to compare the target measurements against. The timing attack
succeeds if an attacker is able to reliably distinguish the
baseline and target measurements.

Improved direct timing attacks: When a server exposes
timing information relating to the local runtime, these measure-
ments do not include network jitter. Due to the (significantly)
reduced noise in the measurements it will, in theory, be possi-
ble to improve a direct timing attack and reduce the required
amount of samples to confidently leak private information.

Time-exposing proxy: If a proxy between a client and a
server communicates the server-timing header in its response,
an attacker may use this additional information to their ad-
vantage. A logical assumption that can be made is that the
connection between a proxy in a production environment and
the backend server in said environment is very stable. When
compared to the connection between a client on a possibly
very noisy network and the proxy, the amount of noise on
measurements taken solely by the client versus directly by
the proxy may be significant. This effect may be even more
significant when the client is located in a different continent
than the proxy. In such a case, the client’s measurement
includes the noisy intercontinental travel as opposed to the
proxy whose measurement only includes the local path towards
the backend server.

These techniques may show significant improvements over
a standard timing attack using roundtrip timings in specific
cases. Even more so when attacker-controlled machine is in a
geographically distant location.

C. Experimental setup

To evaluate the proposed attacks, we performed tests in
controlled settings. Both attack techniques were evaluated
from our university’s internal cloud environment as well as
from a residential network with poor to moderate internet
connectivity. By doing this, we are able to compare and see if
the improvements of the attacks are greater for networks that
initially have bad or noisy characteristics. The data gathered
consists of the roundtrip time and the server-timing header
values. To mimic target endpoints, the page is instructed to
wait for a specified amount of time (called the delta between
baseline and target endpoints) using PHP’s builtin sleep func-
tion, before returning the response. For 10 of these timing
deltas, a number of samples (usually 50 000) were gathered.
In real-world attacks, it can be expected that the server will be
under high load or subjected to a high amount of traffic which,
depending on the environment, might complicate the attack.

Improved direct timing attack: For the attack where the
client accesses the server without a proxy in-between, we set
up a server in a cloud-environment in the west of Europe and
the east of the USA that exposes the server-timing header. The

4

Fig. 2. The difference between a distribution of server-timing header values
(top) and roundtrip times (RTTs, bottom).

clients in the university or the residential network collect data
when sending repeated requests to these servers. For these test-
servers, we configured nginx such that it would add the server-
timing header using nginx’s builtin global $request_time
variable.

Time-exposing proxy: This experiment has more parame-
ters. Again two servers were set up, but now also three proxies
were set up. From the clients in Europe, requests were sent
to the two EU-based proxies (one proxying to the EU, one
to the US) and to the US-based proxy (proxying to the US).
When the response from the server returns to the proxies, they
are configured to add timing information in their subsequent
response. By setting up the experiment like this, we are able
to test multiple scenarios using proxies that are close to the
server, and that are far away. Even for the proxy on another
continent, the hypothesis is that the attack will improve due
to the high-bandwidth low-jitter inter-continental connections
between cloud provider datacenters. We used nginx servers for
both servers and proxies. The proxies are configured to forward
requests to the target servers and add a response header with
the timing information that is provided as the global variable
$request_time in nginx.

D. Evaluation

To evaluate the standard roundtrip attacks, the box test was
used, since previous work shows that it is the most successful
test [9]. For the new attacks using the server-timing header,
the box test cannot be used. This is because the values of
the header have an accuracy of milliseconds, resulting in a
distribution that is not granular enough to properly sample
percentiles, as shown in the top of Figure 2. To overcome this
problem, the samples are compared by means of a statistical
test.

The data collected during these attacks is limited to a low
number of discrete samples. There are usually no more than
a couple of distinct values in the set. A statistical test that
can be used as a good metric is one that outputs a value
representing the similarity between two datasets. We measure

two baseline values and one target value. By doing this, we
can validate the timing attack by attempting to distinguish the
baseline and target values, but also validate our data by making
sure that the two baselines are indistinguishable according to
our metric. For all attacks, a threshold can then be searched
that correctly distinguishes the baseline vs. target data while
still not distinguishing the two baselines. If such a threshold
succeeds in correctly classifying more than 95% of the attacks,
it is considered valid and the attack is successful.

Pinpointing the exact number of samples required for an
attack is a heavy-duty task. To assure our calculations complete
within practical time, we do not identify the exact number,
but we test a set of 11 sample sizes (5, 10, 20, 50, 100,
200, 500, 1 000, 2 000, 5 000 and 10 000) and test whether the
attack would be successful with this number of samples. The
results in the next section reflect this decision and should be
interpreted as upper bounds on the required number samples.

We evaluated five different statistical tests in the at-
tack, that are all included in the scipy python package:
X 2, mathcalX2-contingency, Kolmogorov-Smirnov, Mann-
Whitney U and Wilcoxon signed-rank. These tests output a
p-value that can be interpreted as the similarity between the
two inputs. Our tests clearly indicate that the Kolmogorov-
Smirnov, Mann-Whitney U and Wilcoxon signed-rank tests
perform poorly on our datasets as they are often not able
to output a p-value that can be used to separate the baseline
vs. baseline from the baseline vs. target data. Between the
two types of X 2-tests (that both have better performance),
the contingency variant has the best performance. The X 2-
contingency test is implemented as the chi2_contingency
function in the scipy package. Therefore, this test was used
in all analyses and is the test used for the results in the section.

V. RESULTS AND DISCUSSION

This section presents our experimental results and discusses
the implications. First, the results for both attack scenarios
are presented and compared to the results of the standard
timing attack. After this, the results and their implications are
discussed.

A. Results

Table IV shows the results of the improved direct timing
attack. Overall, the attack works better than the standard round-
trip timing attack, and works both from our university and
residential network. The attack performance is quite similar
for all attack scenarios and improved the detectable timing
difference as can be seen by the fact that all of the attack
scenarios are able to distinguish 50µs in 95% of cases, while
this would not be possible using the standard timing attack.

Table V shows the results of the timing attack that uses a
proxy. We observe once again a general improvement in attack
performance compared to the standard timing attack, where the
new attack requires a (significantly) lower number of requests.
This is the case both from the university network and from
the residential network. These results reflect that, as expected,
the attack performance is quite similar across attack scenarios.
Note that the results for the proxies in the EU proxying to
the US have slightly worse performance, which can obviously
be expected. The delta that can be exploited in an attack can

5

TABLE IV. MINIMUM NUMBER OF SAMPLES REQUIRED TO EXECUTE AN IMPROVED DIRECT TIMING ATTACK WITH AN ACCURACY OF AT LEAST
95%. THE UPPER LIMIT IS AT 10 000 SAMPLES. A DASH (-) IS SHOWN IF THE ATTACK WAS UNSUCCESSFUL.

Attack + Test Network Server 5µs 10µs 20µs 50µs 100µs 200µs 500µs 1ms 2ms 5ms

university EU - - - - - - 500 500 50 50
standard RTT US - - - - - 5 000 2000 - 1 000 100

box test residential EU - - - - - 10 000 - 500 100 20
US - - - - - - 2 000 500 200 20

university EU - - - 10 000 2 000 200 20 10 5 5
server-timing US - - 10 000 5 000 1 000 200 20 10 5 5

X 2-contingency residential EU - 10 000 - 5 000 1 000 500 50 10 5 5
US 10 000 - - 5 000 - 5 000 1 000 - 5 5

TABLE V. MINIMUM NUMBER OF SAMPLES REQUIRED TO EXECUTE A TIMING ATTACK THROUGH A PROXY WITH AN ACCURACY OF AT LEAST 95%.
THE UPPER LIMIT IS AT 10 000 SAMPLES. A DASH (-) IS SHOWN IF THE ATTACK WAS UNSUCCESSFUL.

Attack + Test Network Proxy 5µs 10µs 20µs 50µs 100µs 200µs 500µs 1ms 2ms 5ms

university EU → EU - - - - 10 000 10 000 500 500 20 20
EU → US - - - - 10 000 10 000 2 000 200 10 10

standard RTT US → US - - - - - 10 000 2 000 500 5 000 50
box test residential EU → EU - - - - - - 5 000 5 000 200 20

EU → US - - - - - - - 500 200 20
US → US - - - - - - 2 000 5 000 1 000 20

university EU → EU - - 10 000 10 000 1 000 200 50 10 5 5
EU → US - - - 10 000 5 000 500 100 20 10 5

server-timing US → US - - - 5 000 5 000 500 50 10 5 5
X 2-contingency residential EU → EU - - - - 1 000 - 50 10 5 5

EU → US - - - - 5 000 500 100 50 10 5
US → US - - - - - 10 000 50 10 5 5

be smaller in these new attacks than when using the standard
attack, in some cases more than others.

These results have been obtained by using the execution
time of the complete request. In some cases more detailed in-
formation about requests such as the time to query the database
or the time to retrieve records from the cache is exposed in
the server-timing header. In these cases, the performance of
the attack is expected to improve even more.

B. Discussion

In both university network and residential network cases,
the server-timing header attack improves the attack when
compared to the standard attack. One clear factor is that the
number of samples required to perform the attack is nearly
always lower in our new attack, sometimes drastically. This
is very valuable information for an attacker, specifically in
combination with the fact that this header is currently often
used on sites that also utilize services like Cloudflare, who
have strict anti-DDoS protections in place and may block an
attacker after a low number of samples have been taken.

The working draft of the server-timing header mentions
privacy and security considerations where it proposes that
responses with potentially sensitive information should only
contain timing information if the receiver is authenticated.
We argue that this proposal is not strict enough because
an attacker can usually authenticate themselves without any
problem. This means that if an endpoint exists that can leak
sensitive information about other users of the application, an
attacker can authenticate and use the information included in
the server-timing header to improve their attack. A second
important aspect to note is that the working draft does not
mention in any way whatsoever whether this header is meant
to only be used during development or also in live production
environments.

To mitigate our attacks, the best solution is to not expose
the server-timing header in production systems, but only enable
them during development and/or testing. When the header is
still used regardless, the developer should be aware of timing
side-channels and protect against them. One pseudo-defense
is to decrease the resolution of the timing information. The
developer can for example expose values rounded to the nearest
multiple of 5 milliseconds. Adding a random delay is another
pseudo-defense that can be used in this case. Although no
solution is perfect to protect against timing side-channels, these
mechanisms can make exploiting the vulnerabilities much
more difficult or even impossible.

VI. CONCLUSION

Timing side-channels can be exploited to leak private in-
formation about server-state or user profiles. A website may be
vulnerable to a remote timing attack when the execution time
of backend code is dependent on some private information.
An attacker has to collect many samples of the execution
time in order to build confidence in their results. By exposing
accurate timing information, the attacker can improve their
attack and the number of samples that are necessary increases.
We investigated the plausibility of using the server-timing
header to improve an attack.

We have shown that timing information is quite abundant
on the web by querying public datasets for the use of the
server-timing header and other (run)time-related headers. The
adoption of the server-timing header is steadily increasing
and shows a jump in the last year, most probably due to the
adoption by Shopify, a large e-commerce platform.

By using the timing values exposed by the server-timing
header, an attacker can exploit a timing side-channel leak more
accurately than before. We presented two attack techniques;
One in which the attacker executes a direct attack and is

6

able to improve the default roundtrip-timing attack due to the
addition timing information and a second in which the attacker
exploits the fact that a proxy located in a high-bandwidth,
low-jitter network adds timing information to responses. These
attacks can have benefits when an attacker only has access to
a machine in a residential network, when a site is protected
against DDoS attacks and blocks large amounts of traffic or
when a site is hosted on geographically distant servers.

We suggested that the current W3C Working Draft about
the server-timing header has security considerations that are
not sufficiently strict, we advise to update the document
with more detailed recommendations and have contacted the
authors of the standard. The ideal defense is to not use the
server-timing header in production environments. Two pseudo-
defenses are rounding the values of the header to for example
the nearest multiple of 5 milliseconds or adding a random
delay to the values. Both reduce the accuracy of the exposed
timing information and thus complicate the attack.

ACKNOWLEDGMENT

This research is partially funded by the Research Fund KU
Leuven, and by the Flemish Research Programme Cybersecu-
rity. The authors would also like to thank Tom Van Goethem
for his valuable feedback and discussions.

REFERENCES

[1] Alex Christensen, “Reduce resolution of performance.now,”
https://bugs.webkit.org/show bug.cgi?id=146531, 2015.

[2] Boris Zbarsky, “Chromium: window.performance.now
does not support sub-millisecond precision on windows,”
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110,
2015.

[3] ——, “Clamp the resolution of performance.now() calls to 5us
because otherwise we allow various timing attacks that depend
on high accuracy timers,” https://hg.mozilla.org/integration/mozilla-
inbound/rev/48ae8b5e62ab, 2015.

[4] A. Bortz, D. Boneh, and P. Nandy, “Exposing private information
by timing web applications,” in 16th International World Wide Web
Conference, WWW2007, 2007, pp. 621–628.

[5] B. B. Brumley and N. Tuveri, “Remote Timing Attacks
Are Still Practical,” in Lecture Notes in Computer Science,
2011, vol. 3523, no. II, pp. 355–371. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-23822-2 20

[6] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Com-
puter Networks, vol. 48, no. 5, pp. 701–716, aug 2005. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125

[7] J. Chen, J. Jiang, H. Duan, T. Wan, S. Chen, V. Paxson, and M. Yang,
“We still don’t have secure cross-domain requests: An empirical study
of cors,” in Proceedings of the 27th USENIX Conference on Security
Symposium, ser. SEC’18. USA: USENIX Association, 2018, p.
1079–1093.

[8] Chrome Developers, “Chrome ux report,”
https://developer.chrome.com/docs/crux/, 2022.

[9] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and
Limits of Remote Timing Attacks,” ACM Transactions on Information
and System Security, vol. 12, no. 3, pp. 1–29, jan 2009. [Online].
Available: https://dl.acm.org/doi/10.1145/1455526.1455530

[10] E. W. Felten and M. A. Schneider, “Timing attacks on Web
privacy,” in Proceedings of the 7th ACM conference on Computer
and communications security - CCS ’00. New York, New
York, USA: ACM Press, 2000, pp. 25–32. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=352600.352606

[11] N. Gelernter and A. Herzberg, “Cross-Site Search Attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, vol. 2015-Octob. New York,
NY, USA: ACM, oct 2015, pp. 1394–1405. [Online]. Available:
https://dl.acm.org/doi/10.1145/2810103.2813688

[12] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO - Annual International
Cryptology Conference, 1996, pp. 104–113. [Online]. Available:
http://link.springer.com/10.1007/3-540-68697-5 9

[13] A. Mehta, M. Alzayat, R. de Viti, B. B. Brandenburg, P. Druschel,
and D. Garg, “Pacer: Network Side-Channel Mitigation in the Cloud,”
2019. [Online]. Available: http://arxiv.org/abs/1908.11568

[14] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, “Understanding
network delay changes caused by routing events,” ACM SIGMETRICS
Performance Evaluation Review, vol. 35, no. 1, pp. 73–84, jun 2007.
[Online]. Available: https://dl.acm.org/doi/10.1145/1269899.1254891

[15] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2017, vol. 10322 LNCS, pp. 247–267. [Online].
Available: http://link.springer.com/10.1007/978-3-319-70972-7 13

[16] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “NetSpectre:
Read Arbitrary Memory over Network,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 11735 LNCS, no. July, pp.
279–299, jul 2018. [Online]. Available: http://arxiv.org/abs/1807.10535

[17] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and D. Stefan,
“Browser history re:visited,” 12th USENIX Workshop on Offensive
Technologies, WOOT 2018, co-located with USENIX Security 2018,
no. 1, 2018.

[18] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the ACM
Conference on Computer and Communications Security, vol. 2015-
Octob, 2015, pp. 1382–1393.

[19] T. van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef, “Timeless
timing attacks: Exploiting concurrency to leak secrets over remote
connections,” Proceedings of the 29th USENIX Security Symposium,
pp. 1985–2002, 2020.

[20] T. van Goethem, M. Vanhoef, F. Piessens, and W. Joosen, “Request and
conquer: Exposing cross-origin resource size,” Proceedings of the 25th
USENIX Security Symposium, pp. 447–462, 2016.

[21] V. Vanderlinden, T. Van Goethem, W. Joosen, and M. Vanhoef, “Poster:
Exploiting timing side-channel leaks in web applications that tell on
themselves,” Genoa, Italy, Jun 2022.

[22] C. Vazac and I. Grigorik, “Server timing: W3c working draft,”
https://www.w3.org/TR/server-timing/, 2022.

[23] Y. Weiss, I. Grigorik, J. Simonsen, and J. Mann, “High resolution
time: The domhighrestimestamp typedef,” https://www.w3.org/TR/hr-
time-3/#dom-domhighrestimestamp, 2022.

[24] Y. Weiss and N. Rosenthal, “Resource timing: Timing-allow-origin
response header,” https://www.w3.org/TR/resource-timing/#sec-timing-
allow-origin, 2022.

[25] whatwg/fetch contributors, “Fetch standard: Cors protocol,”
https://fetch.spec.whatwg.org/#http-cors-protocol, 2023.

7

