
OBSAN: An Out-Of-Bound Sanitizer to Harden
DNN Executables

Yanzuo Chen, Yuanyuan Yuan∗, Shuai Wang∗
The Hong Kong University of Science and Technology
{ychenjo,yyuanaq,shuaiw}@cse.ust.hk

Abstract—The rapid adoption of deep neural network (DNN)
models on a variety of hardware platforms has boosted the
development of deep learning (DL) compilers. DL compilers take
as input the high-level DNN model specifications and generate
optimized DNN executables for diverse hardware architectures
like CPUs and GPUs. Despite the emerging adoption of DL
compilers in real-world scenarios, no solutions exist to protect
DNN executables. To fill this critical gap, this paper introduces
OBSAN, a fast sanitizer designed to check for out-of-bound
(OOB) behavior in DNN executables. Holistically, DNN incor-
porates bidirectional computation: forward propagation which
predicts an output based on an input, and backward propagation
which characterizes how the forward prediction is made. Both
the neuron activations in forward propagation and gradients
in backward propagation should fall within valid ranges, and
deviations from these ranges would be considered as OOB.

OOB is primarily related to unsafe behavior of DNNs,
which root from anomalous inputs and may cause mispredictions
or even exploitation via adversarial examples (AEs). We thus
design OBSAN, which includes two variants, FOBSAN and
BOBSAN, to detect OOB in forward and backward propagations,
respectively. Each OBSAN variant is designed as extra passes
of DL compilers to integrate with large-scale DNN models, and
we design various optimization schemes to reduce the overhead
of OBSAN. Evaluations over various anomalous inputs show
that OBSAN manifests promising OOB detectability with low
overhead. We further present two downstream applications to
show how OBSAN prevents online AE generation and facilitates
feedback-driven fuzz testing toward DNN executables.

I. INTRODUCTION

With the emerging demand to use deep learning (DL) tech-
niques in real-world scenarios, recent years have witnessed a
tremendous trend in deploying DL models on a wide spectrum
of computing platforms ranging from cloud servers to mobile
phones and embedded devices. To handle complex deployment
environments and explore the full potential of computing plat-
forms for optimization, one promising opportunity is to employ
DL compilers [19, 47, 68]. DL compilers take a high-level
DNN model specification as input and generate corresponding
low-level optimized binary code for a diverse set of hardware
backends. To date, many suppliers of edge devices and low-
power processors are incorporating DL compilers into their

∗Corresponding authors.

design and application to reap the benefits of compiled DNN
models [31, 56, 57, 65, 93]. Cloud service providers such as
Amazon and Google are also including DL compilers in their
DL services to boost performance [9, 90].

Despite the prosperous use of DL compilers, techniques to
harden DNN executables do not exist. While recent works have
proposed techniques to validate the execution legitimacy of
DNN models, detect exploitations and AEs, or launch security
fuzz testing [21–23, 58, 80, 86, 102, 102], those approaches are
essentially for DNN models running on DL frameworks like
TensorFlow and PyTorch [7, 60]. Recent works test DL frame-
works or DL compilers [30, 42, 62, 63, 71, 83, 89, 91, 104].
Nevertheless, to the best of our knowledge, no analysis or
security hardening techniques have been deployed to protect
DNN executables compiled by DL compilers.

Software sanitizers [73] are designed to harden executables
and detect bugs. They instrument programs during compilation
and insert checks that raise alarms when unsafe operations are
performed at runtime. Various sanitizers [8, 50, 53, 70, 75] have
helped uncover vulnerabilities in C/C++ software. Inspired by
the success of sanitizers in securing executables compiled from
C/C++ programs, this research proposes OBSAN, a sanitizer to
detect DNN executable’s abnormal behaviors, known as out-
of-bound (OOB) behaviors, which frequently result in mis-
predictions and exploitation opportunities.

DNNs often process high-dimensional media data like
images and make predictions. Holistically, they feature bidi-
rectional computations, namely, forward and backward prop-
agation. Forward propagation predicts an input using distinct
neuron activations.1 Backward propagation analyzes how pre-
dictions are made by propagating gradients from the output to
the input through layers. Importantly, both neuron activations
and gradients should fall within their normal ranges [28, 46]
for inputs considered benign. Thus, OOB neuron activations
or OOB gradients observed indicate DNN mis-behavior under
adversarial examples (AEs) or other anomalous inputs.

We design two variants of OBSAN, FOBSAN and BOB-
SAN, to check for OOB forward neuron activations and back-
ward gradients in DNN executables. While FOBSAN discovers
abnormal inputs by comparing neuron activations with their
known safe ranges, BOBSAN uses rich information encoded
in gradients to achieve this goal. A common challenge for
sanitizers including OBSAN, however, is the incurred high
runtime overhead [73], which often inhibits their production
adoption. We propose several optimization schemes to reduce

1Following the convention [61], neuron outputs are referred to as “neuron
activations” in this research.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24103
www.ndss-symposium.org

OBSAN overhead; in particular, quantization [20] helps replace
floating point number computation with integer computation,
effectively lowering computational and storage requirements
while preserving inference and detection accuracy. Moreover,
we extend popular DNN layer pruning techniques [25] to
debloat inserted OBSAN checks. We identify “unimportant”
layers in DNN, and remove their accompanied OBSAN checks.
Furthermore, we explore optimizations that are specific for
FOBSAN or BOBSAN. These optimizations can be combined
for synergistic effects to effectively lower OBSAN overhead
without undermining OOB detectability.

Both of OBSAN’s variants, FOBSAN and BOBSAN, are
designed as an extra compilation pass at the IR level of
the industry-leading DL compiler, TVM [19]; implementing
OBSAN using TVM’s Relay IR allows us to bypass design
discrepancies between different DL frameworks. Relay IR is
generally analysis friendly, offering type system, analysis, and
optimization utilities for use. We evaluate three large-scale
DNN models with diverse structures, high volumes of param-
eters (up to 23.5 million), and large numbers of layers (over
100). We show that the vanilla FOBSAN and BOBSAN pro-
vide high OOB detection capabilities of AEs (less than 0.5%
false negatives) and rarely treat normal inputs as OOB inputs
(less than 1.2% false positives). With quantization/debloat-
ing, we successfully reduce the overhead of FOBSAN from
121.3% to 47.6% and that of BOBSAN to -34.3% (comparing
with the baseline executables containing no OBSAN) while
maintaining decent usability, therefore promoting the practical
adoption of OBSAN in production. In terms of real-world
usage, we show how FOBSAN facilitates detecting inputs of
broken content given media data are presumed to semantically
meaningful, and how BOBSAN enables the identification of
undefined inputs under the background that DNN is trained
for predicting a set of predefined labels — predictions for
inputs outside its knowledge are worthless. We further present
that FOBSAN and BOBSAN enable the prevention of online
query-based AE generation and extend FOBSAN for feedback-
driven fuzz testing of DNN executables. We also present
conceptual and empirical comparison between OBSAN and
existing approaches, and discuss migrating OBSAN to other
DL compilers and architectures. Our main contributions are:

• This paper, for the first time, advocates for hardening DNN
executables, an important yet under-researched area. We
design OBSAN to check OOB, a common indicator of
DNN mis-behaviors that can induce mis-predictions and
exploitations by AE and other anomalous inputs.
• We instantiate two variants of OBSAN to capture forward-

and backward-based OOB behaviors. We propose several
optimization schemes to largely reduce OBSAN overhead
without undermining its effectiveness.
• Our evaluation on the large-scale DNN models shows that

OBSAN can deliver low-cost sanitization, and it enables
critical and representative downstream applications with high
effectiveness.

We publish the supplemental materials for this paper and
source code of OBSAN at [2] to benefit future research.

II. PRELIMINARY

A. Deep Neural Networks

From a holistic view, a DNN, dubbed as Fθ, denotes
a parameterized non-linear function enabling bidirectional
computations: 1) a forward propagation that produces the
prediction Fθ(x) for input x, and 2) a backward propagation
that analyzes how the prediction is made. We now introduce
each form of computation in the following.

comb

beak

(b) DNN backward propagation after
making a prediction. Gradients adjust
the decision logic () to comb
rather than beak to diff hen vs. rooster.

layeri+1
a gradient vector

beak

comb

white

red

… … … … loss

(a) DNN forward propagation when
processing a rooster image. Multiple
neurons are activated and the neuron
w.r.t. beak has the highest activation.

layeri layeri+1

hen

rooster
abnormal

normal
range

Fig. 1: Forward and backward computations of DNNs.

Forward Propagation. During the forward propagation phase,
an input x is fed into the DNN such that neurons in each
layer accept their input data (passed from the previous layer),
process it according to the activation function, and pass it to
the next layer. In general, neurons comprise the minimal unit
of computation in forward propagation. Existing works have
empirically demonstrated that a neuron typically signifies cer-
tain features in the input [14]. For instance, when processing an
image for a rooster (as in Fig. 1(a)), certain neurons recognize
its color, whereas some other neurons (often in deeper layers)
signify its beak/comb features. When recognizing certain fea-
tures in an image (e.g., the color “white” in Fig. 1(a)), the
corresponding neurons would manifest a high activation level.
Therefore, DNN behaviors can be characterized via neuron
activations. In general, it is well acknowledged that each
neuron has a normal activation range, such that unsafe DNN
behaviors can be detected by observing neuron activations that
fall beyond the normal range [46, 61].

Backward Propagation. Gradients characterize the decision
logics of a DNN. For instance, the gradient of layeri+1 (i.e.,
a 2-dimensional vector) marked as the yellow dot in Fig. 1(b)
indicates that the DNN primarily relies on beak to recognize a
rooster. During the training stage, the DNN adjusts its decision
logics according to gradients. As shown in Fig. 1(b), the DNN
prediction over the input, currently “hen” (incorrect) since it
relies on beak, is compared with the ground truth label. The
resulting “distance” (i.e., the loss) is back propagated into
the DNN through gradients. Then, DNN decision logics are
gradually tuned by modifying θ (e.g., Fθ → Fθ′) until reaching
saturation, i.e., the purple dot in Fig. 1(b) which focuses on
comb, thereby correcting the prediction for “rooster.” In short,
gradients provide rich information on how a DNN makes
decisions, and the magnitudes of gradients are associated with
their “importance” in the decision process. Similar to neuron
activations, the magnitudes of gradients also have normal
ranges. Unsafe DNN behaviors, such as the red dot in Fig. 1(b)
whose decision logic considers neither beak nor comb, are
likely caused by AE inputs and can be identified by checking
for gradients falling out of their normal ranges [28].

2

Two Variants of OBSAN. To capture OOB, we propose two
sanitizers, namely, FOBSAN and BOBSAN, which monitor
DNN executable’s forward and backward computations, re-
spectively. By observing OOB defined over neuron activa-
tions (for forward propagations) and gradient volumes (for
background propagations), the two implementations can detect
abnormal DNN behaviors in various scenarios. Note that
BOBSAN is inserted in a pre-trained DNN executable and
it only calculates the gradients without updating θ. We clarify
that DNN executables compiled by TVM are immature for
computing gradients, and we implement several new TVM
operators to compute gradients; see details in Appx. B.

B. DL Compilers

DL compilers typically accept a high-level description of a
well-trained DNN model, exported from DL frameworks like
TensorFlow as their inputs. Such DNN descriptions are often
encoded as computation graphs, specifying the connectivity
of different operators in a DNN model without defining how
exactly each DNN operator are implemented on the hardware.

Compiler Frontend: Graph Optimizations. Typically, DL
compiler frontends convert the DNN computation graphs into
graph intermediate representations (IRs) that are hardware
independent. Graph IR facilitates platform-independent graph-
level optimizations like operator fusion and layout transforma-
tion [19, 68]. For instance, “operator fusions” merge certain
neighboring DNN operators to reduce overhead. Since DNN
neurons are retained in the graph IRs, we implement OBSAN
as several instrumentation passes toward the graph IR (namely
Relay IR [5]) of TVM.

Compiler Backend: Low-Level Optimizations. Graph IRs
specify how inputs of each operator are mapped to the outputs,
without restricting how each operator should be implemented
using machine code. Typically, a low-level IR is derived
from optimized graph IRs for hardware-specific optimizations.
Some DL compilers implement their own low-level IR to
exploit hardware characteristics for optimizations [68]. Typical
optimizations can include memory allocation, latency hiding,
and loop-related optimizations [12, 19, 66, 99]. We also find
that some DL compilers may convert their customized IR into
standard tool-chains like LLVM IR [38] or CUDA IR [55] to
harvest low-level optimization opportunities.

Code Generation. Low-level IRs are further compiled, using
either just-in-time (JIT) or ahead-of-time (AOT) paradigms,
to generate executable code for different hardware targets like
CPUs and GPUs. To date, most DL compilers can generate
standalone DNN executables as well as shared objects (the
latter one can be used by linking with user application code)
for shipping. This paper, for the first time, discuss security
hardening techniques for the compiled DNN executables and
shared objects. Our designed sanitizer checks, OBSAN, are
inserted into TVM compiled executables/shared objects to
provide low-cost security hardening. Nonetheless, OBSAN is
not limited to TVM; see the extensibility in Sec. X-B.

C. Software Sanitizers

Sanitizers insert checks and specialized metadata structures
to harden software; the inserted checks monitor program exe-
cution during in-house testing or online execution. When secu-
rity properties are violated, sanitizer checks abort the execution

and notify users. We introduce two sanitizers, address sanitizer
(ASan) and undefined behavior sanitizer (UBSan), both of
which have been critical in detecting many vulnerabilities [73].

ASan. ASan detects memory corruption errors and enforce
memory safety [70]. ASan encodes the accessibility of each
memory byte in its corresponding shadow memory. When
compiling an input program, ASan instruments every memory
access to check whether the memory address addr is valid by
mapping addr to its corresponding shadow memory address:

addr shadow = (addr � 3) + offset

where shadow byte B at addr shadow is loaded to check
whether the access via addr is safe. Values in B encode
different memory accessibilities, where B = 0 means that all
8 bytes starting from addr are accessible. B = k (1 ≤ k ≤ 7)
means that the first k bytes are addressable, and any negative
value indicates that accessing addr is invalid. Shadow memory
itself at addr shadow is mapped to an inaccessible “bad” region.

UBSan. C/C++ programs may have undefined behaviors,
which can induce serious vulnerabilities [87]. UBSan [50]
identifies many undefined behaviors in C/C++ code, including
out-of-bounds access, integer overflow, and division by zero.
We briefly introduce how UBSan detects divide by zero.
Consider the following code:
int quotient = dividend/divisor;

where an undefined behavior will be triggered when divisor
is zero. UBSan detects this by duplicating divisor into two
copies and checking whether the first copy equals zero before
executing the division operation with the second copy.

III. MOTIVATION, ASSUMPTION, AND USAGES

Motivation. DL compilers provide systematic optimizations
to boost the adoption of DNN models. To gain benefits
from DNN models, suppliers of edge devices and low-power
processors have been incorporating DL compilers into their
systems [31, 56, 57, 65, 93]; cloud service providers such as
Amazon and Google are also including DL compilers in
their DL services to boost performance [9, 90]. In particular,
Amazon has been seen to spend major efforts to compile
DNN models on Intel x86 CPUs through use of DL compil-
ers [32, 44]. Facebook is also seen to deploy compiled DNN
models onto Intel CPUs [52]. Overall, it should be accurate to
assume that DL compilers are increasingly vital to boost DL
on heterogeneous hardware backends.

DL compilers have not yet provided security solutions to
fortify DNN executables: prior works on AE detection are
difficult to apply to DNN executables for various reasons,
as will be noted in Section X-A. Recent community efforts
have focused mostly on testing DL compilers [42, 71, 91],
as opposed to securing DNN executables or analyzing their
attack surface. This work designs OBSAN, the first security
hardening solution integrated in the production DL compiler as
extra compilation passes. OBSAN introduces sanitizer checks
in DNN executables, enabling low-cost detection of OOB, a
common suspicious behavior of DNNs. We illustrate the high
OOB detectability and low cost of OBSAN in production DNN
executables, and also use OBSAN in promoting downstream
attack mitigation (Sec. IX-A) and feedback-driven fuzz testing

3

of DNN executables (Sec. IX-B). It should be noted that, how-
ever, although C/C++ sanitizers (e.g., ASan and UBSan) have
few to none false positives, sanitizers for DNN executables
can introduce an observable amount of them. OOB inputs for
DNNs have no obvious “patterns” like out-of-bound C pointers
and are inherently harder to detect. Given that said, OBSAN
keeps false positives at a low level (on average 4.2%; see
Sec. VIII-A) to ensure normal usages are seldom interrupted.

Main Audiences and Requirements. The main audiences
of OBSAN are DNN model owners who compile their well-
trained DNN models using DL compilers. OBSAN is integrated
into the compilation pipeline of production DL compilers
to generate hardened DNN executables. To clarify, OBSAN
hardens a DNN executable in its prediction phase; it is not used
to detect OOB issues during the “compile time” of the DNN
executable or during the model training phase. OBSAN detects
OOB issues in production usage of released DNN executables
with reasonable costs (see Sec. VIII).

To facilitate initializing OBSAN checks, we require model
owners to use a dataset representative of the expected benign
inputs for the model. As a common approach, they can use
standard model training datasets; typical training datasets (e.g.
CIFAR-10 [37] adopted in our evaluation) shall depict the nor-
mal behavior comprehensively. This is consistently assumed by
many existing AE detection works [48, 74, 85].

To clarify, the adopted training datasets do not need to be
exposed to other (untrusted) parties. The main audiences of
OBSAN, model owners, can use their local training datasets
to train a model, and then use DL compilers to compile the
trained model into an executable. During the compilation,
OBSAN is inserted into the executable (as how ASan/UBSan is
injected into C/C++ executables). Then, the OBSAN-injected
DNN executable is released for use. For other cases where
model owners sell their trained models to users and let them
to compile, model owners can distribute partially optimized
models (after the quantization process which requires training
data; see Sec. V-B) together with the range data recorded
for FOBSAN, and users can compile the models with DL
compilers and enable OBSAN. In this case, only necessary
(e.g., range) data derived from the training set is published.

We envision the use of OBSAN can notably increase the
complexity of synthesizing AEs, even if that the data capturing
normal behaviors was disclosed publicly (e.g., the “range data”
noted above). This is consistently assumed by existing AE
defense works: AE generation is typically a multi-objective
optimization process, and OBSAN checks introduce many
extra “constraints” (optimization objectives) that need to be
considered in this process.

Usage Cases. OOB encapsulates a variety of defect-triggering
DNN inputs (as in Fig. 2) that need users’ attention. We discuss
each of them as follows:

Detecting perception-broken inputs. Audiences may be aware
that detecting images with invalid formats (e.g., RGB image
pixels falling outside of [0, 255]) is straightforward. Neverthe-
less, in addition to format validity, real-world images contain
perception-level contents (e.g., ear in a portrait photo) that are
human-perceivable. In fact, DNN models generally presume
that inputs are real-world meaningful images. More specifi-
cally, there are constraints over the pixels values of input im-

(a) normal (b) perception-broken (c) undefined (e) white-box AE(d) black-box AE

Fig. 2: Usage cases of OBSAN. OBSAN can detect various
abnormal inputs (b–e) by checking OOB. It, however, will not
flag normal inputs (a). When drawing this motivating example,
we increase the attack budget in (d) and (e) to better visualize
the adversarial perturbations over AEs. AEs with different
visual quality are evaluated in Sec. VIII and Sec. IX-A.

ages such that the content is human-perceivable [27, 106], akin
to the input constraints (e.g., type or range) of conventional
programs. DNNs lack input check routines.2 Thus, detecting
images with broken contents (as in Fig. 2(b)) is challenging
and critical, since DNNs are deemed to behave abnormally
when processing broken inputs. To our observation, input with
perception-broken (or perception-meaningless) contents would
trigger OOB and will be captured by OBSAN.

Detecting undefined inputs. OBSAN also captures undefined
inputs. Suppose a DNN is trained to classify between cat
and dog images, then a fish image (as in Fig. 2(c)) can be
treated as an undefined input. Instead of randomly “classi-
fying” this image, we underline that DNN should alert the
model owner explicitly. This is not easy, as DNNs are known
to be over-confident in its inputs [13, 79]. That is, though it
randomly classifies an undefined input as a cat or a dog, the
associated confidence score is usually high and similar (hardly
distinguishable) to that of classifying normal inputs. However,
OOB is generally observable internally in DNN, suggesting
the viability of detecting undefined inputs using OBSAN.

Detecting AE. Besides images with broken/undefined contents,
we highlight that OBSAN can be used to detect AEs, which
are images visually identical to normal images, but with subtle
(pixel-level) changes that can confuse a DNN and incur mis-
predictions. AEs are often images that are visually similar to
normal inputs and do not affect human judgments, yet they
lead DNNs to behave abnormally. To date, AEs have been
extensively leveraged to exploit DNNs, causing substantial
confusion or even severe consequences in daily usage [18].
Though AEs are much more subtle than broken/undefined
images, recent research [46] has shown that AEs can frequently
trigger OOB behaviors as well. As a result, we envision
that OBSAN will be able to detect AEs, preventing active
attackers from manipulating the prediction outcomes of DNN
executables. To clarify, de facto AE generation algorithms
can be classified into white-box and black-box: white-box
methods generate AEs under the guidance of DNN gradients
whereas the black-box methods, with wider application scope,
can generate AEs by only using the DNN prediction outputs
as the feedback. We present two AEs generated using the
black-box and white-box algorithms in Fig. 2(d) and Fig. 2(e),
respectively. OBSAN is evaluated for detecting white-box AEs
in Sec. VIII and mitigating black-box AE generation (as a
downstream application) in Sec. IX-A.

Extended Applications. We also discuss two important down-
stream applications enabled by slightly extending OBSAN.

2Extracting perceptual-constraints is still an open problem.

4

i0 i1

ik-1

ik

…
seed image
mutated image

AE

ri: DNN prediction
(use as feedback)

r0 r1

rk-1

rk-2 ik-2
backtrack

Attacker backtracks
when no response (rk-2)

Fig. 3: A schematic view of online AE generation attacks.
In the k-th iteration, the attack mutates input ik to ik+1

according to feedback rk (e.g., DNN predictions). By repeating
the iteration progressively, an AE is generated from the seed
input i0. OBSAN can mitigate the attack by interrupting the
progress and forcing the attacker to backtrack.

Mitigating online adversarial attacks. In practice, online ad-
versarial attacks for DNN executables (i.e., generating AEs)
are launched by iteratively accessing the output predictions
and perturbing inputs, as seen in Fig. 3. By impeding this
generation progress, OBSAN can be extended to mitigate
online AE generation. We find that when the mutated input is
“close” to AE (i.e., becomes an AE after only a few iterations),
though the prediction has not yet flipped, OOB behaviors
are triggered in most cases. Therefore, when OBSAN detects
OOB, it can be extended to yield a dummy (empty) response
to remote adversary queries. As a result, the attacker receives
no feedback for mutating inputs and is forced to backtrack
and perform random mutations, as illustrated in Fig. 3. See
evaluations in Sec. IX-A.

Enabling feedback-driven fuzzing. DNN fuzz testing detects
security flaws or mis-predictions of DNN models. Software
greybox fuzzing is usually guided by the code coverage,
assuming that “high code coverage promotes uncovering more
bugs”. Nevertheless, fuzz testing for DNN executables are not
yet explored. Overall, fuzzing DNN executables denotes a
costly and challenging setting, such that coverage information
is obscure within DNN executables — a black box. In addition
to detecting anomaly inputs, OBSAN checks can be slightly
extended to constitute feedback to guide DNN executable
fuzzing. In this setting, the OOB checks of OBSAN are
modified to record neuron states following previous litera-
tures [46, 58, 61]. Aiming at maximizing the covered neuron
states, neuron coverage-guided fuzzing can be effectively con-
ducted on DNN executables; see details in Sec. IX-B.

IV. OVERVIEW: OOB DETECTION

A. Detecting Forward OOB with FOBSAN

(a) A shallow layer (b) A deep layer
n1 n1

n2n2

L2 = 0.5

L2 = 1

n1

n2

L1 = 1
L2 = 1

L∞= 1

(c) Various Lp norm (d) L2 norm within [0.5, 1]

n1

n2

0

Fig. 4: Motivating examples. (a) and (b) show that during the
forward propagation, neuron activations for inputs belonging
to the same prediction class are bounded. (c) and (d) illustrate
Lp-norm in the two-dimensional space.

Forward Neuron Activation. Consider Fig. 4(a)-(b), which
illustrate the activations of two randomly selected neurons
from a shallow layer and a deep layer from a well-trained
convolution neural network performing classification. Each dot
corresponds to one normal DNN input (i.e., training data)
and each color denotes one predicated class. Though the
distributions vary with layers, neuron activations for inputs
belonging to the same prediction class tend to concentrate
into a bounded region (i.e., the purple region in Fig. 4(a)-
(b)). It is generally acknowledged that the output bounds
specified by normal inputs describe the normal behavior of
each neuron [46]. Consider a neuron n1 whose normal output
w.r.t. class c lies within [l1, u1]. A defect-triggering input,
which induces unsafe/abnormal behaviors of the DNN, will
likely lead to OOB outputs of n1 that fall out of [l1, u1].
Overall, we define forward OOB as follows:

Let the normal output bounds of a neuron n be [lcn, u
c
n] w.r.t.

class c. A forward OOB occurs when an input i∗ causes
the output of n to fall out of [lcn, u

c
n].

Deciding Activation Bounds [lcn, u
c
n]. Existing work [46] re-

lies on profiling DNN models using training data to determine
the normal neuron output bounds; training data is usually
believed to encode the typical behavior of DNNs. Recall, as
stated in Sec. III, that when FOBSAN is used to harden DNN
executables, a training dataset is required. Overall, to harden a
well-trained DNN model m, we first profile m by feeding it the
training data and logging the normal value bounds [ln, un] for
each neuron n; this normal value bound is taken as [lcn, u

c
n]

for class c, where c is the class the training input belongs
to. Then, when compiling m into an executable e, we place
one FOBSAN check to hook the output of each neuron n.
Then, during normal usage of e, each FOBSAN check will
constantly check if the output of its hooked neuron n falls
out of the normal range [ln, un]. If more than T neurons (see
below) manifest OOB outputs, the FOBSAN check will report
the abnormality to the user.

Deciding Threshold T . Given DNNs process diverse inputs, it
is reasonable that some normal inputs trigger the OOB outputs
of some neurons, but the DNN behaves normally.

Our preliminary study shows that an abnormal input trig-
gers many more OOB neurons than that of the normal inputs.
Therefore, we set a threshold T for #OOB to detect abnormal
inputs such that FOBSAN will not flag an input as anomaly
unless its triggered #OOB outputs is above T . Intuitively, as in
Fig. 4(b), neuron activations (w.r.t. one class) distribute toward
certain (not all) directions. That is, it is reasonable to assume
that, when sufficient training data have been fed, the majority
of neurons’ activation ranges will have been fixed, and only
a few neurons still need to expand their output bounds when
more training data is fed. Therefore, after feeding 90% training
inputs to update the bounds [lcn, u

c
n], we use the reamining 10%

of data to both update the bounds and decide T : we record
#OOB (number of neurons with OOB outputs) whenever a
training input causes the bounds to be updated, and then set T
to (1−µ)a+µb, where a and b are the recorded minimum and
maximum #OOB, and 0 ≤ µ ≤ 1 is a user-decide parameter
to indicate the user’s preference between fewer false negatives
(when µ is closer to 0) and fewer false positives (when µ is

5

closer to 1). In practice, we find µ = 0.3 to be a good choice,
and we use this value to evaluate FOBSAN.

B. Detecting Backward OOB with BOBSAN

Backward Gradients. DNN gradients encode rich information
of how predictions are made (since it adjusts the decision
logic during training; see Fig. 1(b)) and many existing works
leverage DNN gradients to explain the mechanism behind each
prediction [69, 77]. As demonstrated in Eq. 1, for an l-layer
DNN Fθ(x) = fl ◦ fl−1 ◦ · · · f2 ◦ f1(x) with parameters
θ = (θ1, θ2, · · · , θl) and input x, the gradient is (inversely)
back-propagated using g(x) via layers.

∂g(x)

∂θ
=
∂g(x)

∂fl

∂fl
∂fl−1

∂fl−1

∂fl−2
· · · ∂f2

∂f1

∂f1
∂θ

(1)

Recent research has pointed out that gradients over DNN
weights, when propagated using the Kullback-Leibler (KL)
divergence between DNN output (i.e., a vector of confidence
scores for all classes) and the uniform distribution U (assum-
ing all classes have equal confidence scores), have bounded
magnitudes [28]. The gradient computation is formulated as:

∂g(x)

∂θ
=
∂DKL(U ||Fθ(x))

∂θ
, (2)

where x is the model input, U = (1/C, 1/C, · · · , 1/C) ∈ RC ,
C is the number of classes, and DKL(p||q) =

∑
j pj log

pj
qj

.
Note that unlike gradient computation during DNN training
which propagates the gradient using the distance (defined by
developers) between DNN outputs and the ground truth label,
this formulation does not require the ground truth label of
an input; the uniform distribution U forms the reference to
measure gradient deviations. Thus, it can be used as sanity
checks for DNN executables when processing arbitrary inputs
in the wild. Following, we define backward OOB as:

For an l-layer DNN, let the range of a normal gradient at
layer k (in a high-dimensional space) be [lk, uk], then a
backward OOB occurs when the gradient ∂g(x∗)

∂fl
· · · ∂fk+1

∂fk
,

which is propagated using g(x∗) = ∂DKL(U ||Fθ(x∗)),
falls out of [lk, uk].

Deciding Gradient Bound with Lp-Norm. Unlike neuron
activations which are scalar values, the gradient Gk(x∗) =
∂g(x∗)
∂fl

· · · ∂fk+1

∂fk
of the k-th layer is a vector of often high

dimensions. In practice, its magnitudes are characterized using
Lp-norm, which denotes the distance between a vector and the
origin, as formulated in Eq. 3.

Lp(Gk) =
p
√
Gk[1]p +Gk[2]p + · · ·+Gk[d]p (3)

Fig. 4(c) displays sets of points (connected as lines) whose
Lp = 1 with varying p values in a 2-dimensional space; p
value decides the geometry of the distance criterion. Fig. 4(d)
highlights points (equivalent to 2-dimensional gradients) hav-
ing L2 norm within [0.5, 0.1]. The gradient value of a DNN
layer, if falling out of the purple ring, is deemed a backward
OOB. For BOBSAN, we feed 10% of the training data as
normal inputs to the instrumented DNN and collect the values
of L = {Lp(Gk(r))} for every input r. We then set lk, uk to
Pα(L) and Pβ(L), respectively, where Px(·) represents the xth

percentile. Similar to FOBSAN discussed earlier, we provide
α and β as two configurable parameters to allow tweaking
of BOBSAN. Based on empirical observation, we use α = 1

and β = 99.5 for BOBSAN evaluation and encourage users to
tune these parameters based on their needs. We refer readers
to Sec. V-B for suggestions on deciding p.

V. OBSAN DESIGN

Given the prosperous development of TVM and its active
community, we implement OBSAN in TVM and will explain
how the two variants of OBSAN are integrated with TVM. We
then discuss three optimizations to reduce OBSAN overhead.
In We discuss implementation details of OBSAN in Sec. VI.

A. Hardening DNN Executables with OBSAN

Output of Hardened DNN Executable. An illustration of
using OBSAN to protect DNN executables is given in Fig. 5.
A DNN model, either in the high-level PyTorch/ONNX format
(Fig. 5(a)) or in unprotected DNN executable format (omitted
in Fig. 5), only outputs predictions (i.e., class labels and
confidence scores). In contrast, as shown in Fig. 5(c), DNN
executable hardened with OBSAN is extended to yield ad-
ditional OOB “alert” (i.e., error messages). The reason for
this design choice is two-fold: 1) Users (developers) do not
usually expect DNN models, even in their executable form, to
throw exceptions, as they normally consist of only arithmetic
operations. 2) It will be significantly harder for an exception-
throwing OBSAN to interact with other tools due to the lack
of a standard on exception handling in DNN executables. As
an implied result, OBSAN will not terminate the execution
immediately after OOB is detected, unlike ASan or UBSan.

Instrumenting DNN Models. Fig. 5(b) introduces how OB-
SAN is incorporated into TVM. As introduced in Sec. II-B,
TVM first converts the input DNN model into graph IR
(namely Relay IR), and also performs TVM frontend opti-
mizations. More importantly, we provide another optimization
O1 (pruning; see details in Sec. V-B) at this step to reduce the
overhead of the entire (instrumented) model.

Then, OBSAN is involved to instrument the model on its
converted Relay IR. Depending on the variant of OBSAN,
the instrumentation will function in different modes. For
FOBSAN, the model needs to first be instrumented in a so-
called “Record Mode,” which produces an auxiliary recorder
executable instead of the final protected executable. This
intermediate executable facilitates the collection of the normal
output bounds of each neuron, as introduced in Sec. IV-A.
After this data is collected by feeding each training data
sample into the recorder executable, the original model is
instrumented again in “Detect Mode,” where the recorded
bounds of each neuron n will be embedded in n’s FOBSAN
check inserted into the hardened executable. For BOBSAN,
however, the model is directly instrumented in Detect Mode
where instructions to calculate backward OOB information, as
outlined in Sec. IV-B, are inserted into the model.

From a high level, OBSAN has design principles similar to
those of software sanitizers: given a program (DNN model),
OBSAN identifies “interesting” spots and inserts checks to
hook these these locations and perform sanitization tasks like
bounds checking. To instrument a model, the instrumentation
pass of FOBSAN traverses the model’s computational graph
in Relay IR and hook each neuron. As for BOBSAN, we
implement new TVM operators, in accordance with DNN

6

Relay
IR

Unprotected
Model

Training Data

Range Data
Instrument

TVM Backend
Optimizations

Optimizations
TVM Backend
Optimizations

Record Mode

Detect Mode
Build

Build Recorder
Executable

Test Data

Hardened
Executable

required by

TVM &
Frontend Optimizations

Predictions OOB
Info

Test Data

Predictions
model in PyTorch/ONNX/etc. formats

(a) DNN model (b) Instrumenting DNN models (c) Hardened DNN exe

<latexit sha1_base64="SkTI5y5/KkKXjR+VUvU03XIKwr4=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRoi6LbtxZwT6gDWEynbZDJ5MwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65l3vmBDFnSjvOt1VaW9/Y3CpvV3Z29/ar9sFhR0WJJLRNIh7JXoAV5UzQtmaa014sKQ4DTrvB9Cb3u49UKhaJBz2LqRfisWAjRrA2km9XByHWE4J5epf5qZv5ds2pO3OgVeIWpAYFWr79NRhGJAmp0IRjpfquE2svxVIzwmlWGSSKxphM8Zj2DRU4pMpL58EzdGqUIRpF0jyh0Vz9vZHiUKlZGJjJPKZa9nLxP6+f6NGVlzIRJ5oKsjg0SjjSEcpbQEMmKdF8ZggmkpmsiEywxESbriqmBHf5y6ukc153L+qN+0ateV3UUYZjOIEzcOESmnALLWgDgQSe4RXerCfrxXq3PhajJavYOYI/sD5/APqok08=</latexit>

O1

<latexit sha1_base64="3x8QN5h9UTgpchbTLmUeLq+mLco=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJWkFPVY9OLNCrYW2hA22027dLMJuxuhhv4SLx4U8epP8ea/cdPmoK0DC8PMe7zZCRLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek+vcf3ikUrFY3OtpQr0IjwQLGcHaSL5dHURYjwnm2e3Mzxoz3645dWcOtErcgtSgQNu3vwbDmKQRFZpwrFTfdRLtZVhqRjidVQapogkmEzyifUMFjqjysnnwGTo1yhCFsTRPaDRXf29kOFJqGgVmMo+plr1c/M/rpzq89DImklRTQRaHwpQjHaO8BTRkkhLNp4ZgIpnJisgYS0y06apiSnCXv7xKuo26e15v3jVrrauijjIcwwmcgQsX0IIbaEMHCKTwDK/wZj1ZL9a79bEYLVnFzhH8gfX5A/wtk1A=</latexit>

O2
<latexit sha1_base64="np2thaWWpzirXWFU4FG567yU6kQ=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyXRoi6LbtxZwT6gDWEynbZDJ5MwMxFqyJe4caGIWz/FnX/jpM1CqwcGDufcyz1zgpgzpR3nyyqtrK6tb5Q3K1vbO7tVe2+/o6JEEtomEY9kL8CKciZoWzPNaS+WFIcBp91gep373QcqFYvEvZ7F1AvxWLARI1gbybergxDrCcE8vc389Czz7ZpTd+ZAf4lbkBoUaPn252AYkSSkQhOOleq7Tqy9FEvNCKdZZZAoGmMyxWPaN1TgkCovnQfP0LFRhmgUSfOERnP150aKQ6VmYWAm85hq2cvF/7x+okeXXspEnGgqyOLQKOFIRyhvAQ2ZpETzmSGYSGayIjLBEhNtuqqYEtzlL/8lndO6e15v3DVqzauijjIcwhGcgAsX0IQbaEEbCCTwBC/waj1az9ab9b4YLVnFzgH8gvXxDf2yk1E=</latexit>

O3

<latexit sha1_base64="btwfN5ISQAjkMjnftLl6t5h71k4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHUizcr2g9oY9lsN+3SzSbsTtQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8PxZco+N8W7ml5ZXVtfx6YWNza3unuLvX0FGiKKvTSESq5RPNBJesjhwFa8WKkdAXrOkPLyd+84EpzSN5h6OYeSHpSx5wStBI9x1kT6hpel29JXLcLZacsjOFvUjcjJQgQ61b/Or0IpqETCIVROu268TopUQhp4KNC51Es5jQIemztqGShEx76fTqsX1klJ4dRMqURHuq/p5ISaj1KPRNZ0hwoOe9ifif104wuPBSLuMEmaSzRUEibIzsSQR2jytGUYwMIVRxc6tNB0QRiiaoggnBnX95kTROyu5Z+fTmtFSpZnHk4QAO4RhcOIcKXEEN6kBBwTO8wpv1aL1Y79bHrDVnZTP78AfW5w/Ct5Kx</latexit>

OBSan

<latexit sha1_base64="TEOCvLSW7wSeltBUaEclSMl/2OM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiRT2WCuLNivYD2lA22027dLMJuxOxhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzz48F1+A431ZuZXVtfSO/Wdja3tkt2nv7TR0lirIGjUSk2j7RTHDJGsBBsHasGAl9wVr+6HLqtx6Y0jyS9zCOmReSgeQBpwSM1LOLXWCPoGl6dVO7I3LSs0tO2ZkBLxM3IyWUod6zv7r9iCYhk0AF0brjOjF4KVHAqWCTQjfRLCZ0RAasY6gkIdNeOjt8go+N0sdBpExJwDP190RKQq3HoW86QwJDvehNxf+8TgLBhZdyGSfAJJ0vChKBIcLTFHCfK0ZBjA0hVHFzK6ZDoggFk1XBhOAuvrxMmqdl96xcua2UqrUsjjw6REfoBLnoHFXRNaqjBqIoQc/oFb1ZT9aL9W59zFtzVjZzgP7A+vwBzqeTMg==</latexit>

FOBSan

Input Data
Output Data

DNN Model/Executable
Pipeline Phase

<latexit sha1_base64="btwfN5ISQAjkMjnftLl6t5h71k4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHUizcr2g9oY9lsN+3SzSbsTtQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8PxZco+N8W7ml5ZXVtfx6YWNza3unuLvX0FGiKKvTSESq5RPNBJesjhwFa8WKkdAXrOkPLyd+84EpzSN5h6OYeSHpSx5wStBI9x1kT6hpel29JXLcLZacsjOFvUjcjJQgQ61b/Or0IpqETCIVROu268TopUQhp4KNC51Es5jQIemztqGShEx76fTqsX1klJ4dRMqURHuq/p5ISaj1KPRNZ0hwoOe9ifif104wuPBSLuMEmaSzRUEibIzsSQR2jytGUYwMIVRxc6tNB0QRiiaoggnBnX95kTROyu5Z+fTmtFSpZnHk4QAO4RhcOIcKXEEN6kBBwTO8wpv1aL1Y79bHrDVnZTP78AfW5w/Ct5Kx</latexit>

OBSan

<latexit sha1_base64="btwfN5ISQAjkMjnftLl6t5h71k4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHUizcr2g9oY9lsN+3SzSbsTtQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8PxZco+N8W7ml5ZXVtfx6YWNza3unuLvX0FGiKKvTSESq5RPNBJesjhwFa8WKkdAXrOkPLyd+84EpzSN5h6OYeSHpSx5wStBI9x1kT6hpel29JXLcLZacsjOFvUjcjJQgQ61b/Or0IpqETCIVROu268TopUQhp4KNC51Es5jQIemztqGShEx76fTqsX1klJ4dRMqURHuq/p5ISaj1KPRNZ0hwoOe9ifif104wuPBSLuMEmaSzRUEibIzsSQR2jytGUYwMIVRxc6tNB0QRiiaoggnBnX95kTROyu5Z+fTmtFSpZnHk4QAO4RhcOIcKXEEN6kBBwTO8wpv1aL1Y79bHrDVnZTP78AfW5w/Ct5Kx</latexit>

OBSan

Fig. 5: Workflow of OBSAN. OBSAN incorporates three available optimizations O1−3 at different phases of the instrumentation.

operators, to compute gradients; see details in Appx. B. We
present two DNNs instrumented using either FOBSAN or
BOBSAN in Appx. A to ease understanding.

Optimizations to Reduce OBSAN Overhead. OBSAN is
designed to insert a subgraph into the original computation
graph of the input DNN in Relay IR. This allows TVM’s
graph-level and follow-up backend optimizations to be applied
normally to OBSAN as well. More importantly, we design and
apply three optimization schemes O1−3 to lower the overhead
of inserted OBSAN checks. As shown in Fig. 5(b), one of
them, O1, is applied globally to the entire computation graph.
The other optimizations, O2−3, are applied locally to the
inserted OBSAN subgraph and do not alter the original model’s
computational graph; optimization details are in Sec. V-B.
Also, in Record Mode, these optimizations are omitted as there
is no OOB detection logic in the auxiliary recorder model.

OBSAN then runs TVM’s standard backend optimization
passes on the resulting model to ensure any follow-up or lower-
level optimizations are applied to the instrumented model as
a whole, and finally invokes TVM’s build module to produce
the output DNN executable for use, as shown in Fig. 5(c).

B. Optimizing Overhead of OBSAN

Similar to conventional sanitizers like ASan/UBSan, OB-
SAN incurs high overhead as it extensively hooks DNN lay-
ers/neurons. Thus, we present three schemes O1−3 below to
reduce OBSAN overhead. Among them, O1 does not need to
access Relay IR and is applied in the early optimization stage
(Fig. 5(b)), while O2−3 are applied on the subgraphs inserted
by OBSAN. As a supplement, we also present and tentatively
evaluate an intuitive extension of O2 on the project website [2].
We now give more details on the optimization schemes.

O1 Quantization. Quantization is a well-established tech-
nique to reduce computational and storage complexity of DL
models. It uses integers as a low-precision substitution for
the floating point numbers involved in forward and backward
propagations while retaining the prediction accuracy of the
models [34, 35, 84, 96, 105]. While a wide range of techniques
exist for optimizing DNN models, quantization is perhaps the
most frequently considered optimization when building DL
systems on low-power devices (in contrast to GPUs), a scenario
also primarily targeted by DL compilers like TVM. We use
quantization to reduce the overhead incurred by OBSAN.

To clarify, at this step we leverage a post-training quantiza-
tion scheme; it calibrates the quantized model by computing
quantization parameters (zero point and scale) based on the
activations of the DNN model when training data is fed,

creating a floating point → integer mapping of higher quality.
Also, we use mixed-precision quantization, where the quan-
tized model still uses full-precision representations for certain
intermediate results (e.g., outputs of conv2d operations) and
performs dequantization and requantization when needed; this
circumvents the severe precision loss and overflow problems
that can arise in single-precision quantized models. Therefore,
our quantization does not notably degrade prediction accuracy
(only 0.4% on average for all three models; see Table V).
In sum, we observe that quantization:1) lowers the model
execution time without causing large accuracy losses, and 2)
applies globally to the whole model. Thus, we deploy it at
the early optimization stage (as in Fig. 5(b)). We use the
quantization module from the ONNX Runtime toolbox [1].
The default setup, as adopted in OBSAN, converts floating
point numbers to 8-bit integers.

O2 Layer-Wise Checks Pruning. A common optimization to
reduce the performance overhead of software sanitizers is to
debloat the inserted checks [81, 103]. Inspired by these efforts,
we propose O2 to reduce overhead of both FOBSAN and
BOBSAN. In particular, the proposed scheme, namely layer-
wise checks pruning, determines whether a layer is important
using a parameterized predicate (see below). If a layer is
deemed unimportant, it will not be hooked by OBSAN.

For FOBSAN, we construct the pruning predicate by first
assigning an importance score to each applicable layer in the
model and then pruning the checks for layers with importance
scores below a configurable level. To compute the importance
scores, we use a popular heuristic [11, 51] based on weight
magnitudes: Suppose a layer has n scalar weight parameters
collected (flattened) into a vector w, then the importance score
of the layer is S = 1

n

∑
w2
i , where wi denotes elements in w.

The layers are then sorted by their importance scores, and the
checks for a configurable fraction γ of the layers are pruned,
starting from those with the lowest importance scores.

BOBSAN, on the other hand, requires the computational
graph to be free of discontinuity (gaps) to perform backward
propagation. Thus, users can instead configure the last n layers
of the model as important. Moreover, we clarify that only a few
layers will usually be sufficient for OOB detection regardless
of the DNN model. n will typically be a small integer rather
than a fraction like γ. In Appx. A, Fig. 7 will present a
case, where after using O2, we only retain the last layer’s
connectivity to BOBSAN. To “prune a layer,” we only remove
its edges to the subgraph inserted by FOBSAN or BOBSAN.
By leaving untouched the computational graph of the protected
DNN, O2 does not affect the prediction accuracy of the DNN.

7

In contrast, O1 (quantization) globally optimizes the DNN
model and the inserted OBSAN.

O3 Deciding p for Lp-Norm. This optimization scheme is
exclusively designed for BOBSAN. Recall Sec. IV-B depicts
the geometric interpretations of different Lp-norms. Though p
is often used as a fixed hyperparameter, we clarify that the
selection of p has an observable effect on OOB detectability.
Moreover, varying p influences the execution overhead, e.g.,
p = 2 introduces more overhead than the other settings in
computing Lp-norm if the DNN has extensively large layers
or too many layers. Thus, it is necessary to select an optimal
p value to maximize BOBSAN’s effectiveness and efficiency.
At this step, we explore the optimal value of p based on
benchmark results; see our findings in Sec. VIII-B.

VI. OBSAN IMPLEMENTATION

Implementation as Compiler Passes. The current codebase
of OBSAN [2] is implemented as several TVM passes. TVM
provides a Python interface and APIs using which users can
implement their own instrumentation passes. OBSAN uses
this interface for the implementation. OBSAN is not limited
to TVM, and we discuss migration in Sec. X-B. Users can
select either FOBSAN or BOBSAN (or both). We give our
recommendations on selecting FOBSAN and BOBSAN in
Sec. VII. As a common setting, when compiling DNN into
executable, we enable the default optimization levels of TVM.

Implementation Consideration. This paper champions to
implement OBSAN at Relay IR level; this shares conceptually
similar design consideration with C/C++-compiler-inserted
sanitizers like ASan and UBSan. Though those sanitizers are
technically feasible to be inserted into C/C++ source code,
inserting them during compilation is more beneficial due
to more analysis-friendly compiler IR and compiler analysis
utilities. Doing so is also necessary for us to protect the most
DNN models, as it allows us to bypass design discrepancies
between different DL frameworks. For example, PyTorch has
trouble exporting its Adaptive Max/Avg Pool operators to
ONNX [3, 6]. And ONNX [4], though being an open exchange
standard, lack many backward operator definitions like Av-
gUnpool, which we consider a consequence primarily of its
forward-propagation-centric design goal. Nevertheless, since
OBSAN instruments compiler IR directly lowered from DL
framework languages, these problems are resolved. Moreover,
implementing our checks at the IR level facilitates the use
of TVM-provided analysis utilities and passes. For instance,
local structures in graphs may change after quantization (e.g.
modified/inserted nodes), and we perform flexible pattern
matching with TVM’s graph tools and the type system to
recover their original semantics.

That said, instrumenting compiler IR poses several techni-
cal hurdles. First, as DL compilers focus mainly on forward
propagation of DNNs, they usually come with incomplete
support for backward operations like computing gradients. To
solve this, we extended TVM by implementing support for
gradient computation for more operators; we also implemented
our backward propagation toolkit to insert checks for BOB-
SAN. Also, selecting the proper IR to work on requires delib-
erate consideration and exploration. For OBSAN, IRs we may
choose from include Relay IR, TIR, and LLVM IR, ordered
by their respective levels in the TVM compilation pipeline.

(a) OOB score distributions produced by
FOBSAN.

(b) OOB score distributions produced by
BOBSAN.

brown region brown region

Fig. 6: OOB score distributions for different types of inputs
to DNN models instrumented with the two variants of OB-
SAN. Green and red curves represent normal and AE inputs,
respectively, and undefined and perception-broken inputs are
encoded in purple and brown.

Although TIR and LLVM IR may allow finer optimizations
for protected executables, much information of the original
computational graphs might be lost. Based on this, we decided
that Relay IR will be a more suitable IR to work on.

VII. OBSAN USAGE SCENARIOS

TABLE I: The usage scenarios. ∆ denotes partial support.
perception-broken undefined AE

FOBSAN 3 5 3
BOBSAN ∆ ∆ 3

Sec. III has discussed three representative usage scenarios
of OBSAN. We outline FOBSAN and BOBSAN’s suitability
for these use cases in Table I and present empirical justification
in Fig. 6. First, since “broken regions” are replaced with
meaningless noise, a broken input can be viewed as i + δ
where i is the normal input and δ is the noise. Perception-
broken images thus primarily induce abnormal forward neuron
activations. Therefore, we deem FOBSAN as proper to capture
broken inputs in Table I. As illustrated in Fig. 6(a), the brown
region (denoting broken inputs) is clearly separated from the
normal inputs in the green peak. As for BOBSAN, the brown
region and the green region have distinct peak, though certain
amount of overlaps are present in Fig. 6(b).

An undefined input, though having meaningful contents,
denotes a new class which leads to new decision logics.
Hence, abnormal behaviors are more obvious when observing
the back propagation, as back propagation characterizes the
decision logic of a DNN (Sec. II-A). In this regard, BOBSAN
is appropriate to detect undefined inputs, and as shown in
Fig. 6(b), the purple region (denoting undefined inputs) con-
tains peaks that are distinct from those of the normal inputs
(green region). In contrast, the purple and green regions mostly
overlap in Fig. 6(a). We clarify that, though BOBSAN shows
a reasonable capacity to detect undefined images, this task is
inherently challenging. Often, “undefined inputs” share aligned
perceptual contents with training data. For instance, a dog
image in the training data and a fish image not in the training
data may present comparable visual features, such as yellowish
colors and round shapes, to a DNN, creating challenges for
BOBSAN to flag undefined images.

AEs alter a DNN’s decision logic. Moreover, from the
implementation viewpoint, AEs are often generated by adding
carefully designed perturbations, which can also be formulated
as i+δ (similar to broken inputs). Conceptually, therefore, AE
induces both abnormal forward activations and backward gra-

8

dients. Fig. 6 empirically shows that AE can be well-separated
from normal inputs using both FOBSAN and BOBSAN.

Similar to how ASan and UBSan are selected for use,
users with concern on AE and perception-broken images can
choose to enable FOBSAN, whereas users concerned more
with AE and undefined images can opt for BOBSAN. Also,
given both FOBSAN and BOBSAN can detect AEs, and
they do not conflict with each other (i.e, the forward and
backward computation), they can be further integrated as a
hybrid OBSAN to boost the performance for detecting various
kinds of anomalous inputs; see experiments in Sec. IX-A.

VIII. EVALUATION

This section studies the following research questions. RQ1:
Can OBSAN achieve high OOB detectability when hardening
DNN executables? RQ2: Can OBSAN be optimized to re-
duce the performance overhead using the three optimization
schemes O1−3? RQ3: What is the effectiveness of OBSAN
in supporting downstream AE defense and feedback-based
fuzzing applications? Before answering each research question,
we first report the evaluation setup. We then present evaluation
to answer RQ1 and RQ2 in this section. Sec. IX answers RQ3.

TABLE II: Statistics of instrumented DNN models.
Model #Parameters #Neurons #Layers

ResNet50 [26] 23.5M 26,570 54
GoogLeNet [72] 5.5M 7,162 56

DenseNet121 [64] 7.0M 10,250 121

DNN Models. Table II reports the statistics of three DNN
models used for the evaluation. All three leveraged models are
large-size DNNs with complex architectures and a diverse set
of DNN operators. They are all widely-used for CV tasks. Each
of them has 7k to 27k neurons with up to 23.5M parameters.

TABLE III: Processing time and exe size. “Compile/Instr.” de-
notes compilation + instrumentation when OBSAN is enabled.

Model Compile
time (sec)

Compile/Instr.
time (sec) DNN exe

size (MB)

DNN exe (with
OBSan) size (MB)

FOBSAN BOBSAN FOBSAN BOBSAN
ResNet50 30.2 38.5 30.7 89.9 92.5 89.9

GoogLeNet 36.6 49.1 37.2 21.4 22.7 21.4
DenseNet121 79.8 94.0 80.7 27.3 28.9 27.4

Processing Time & Size Increase. Our experiments are
launched on an AMD Ryzen 3970X with 256GB of RAM.
Table III reports the compilation costs with and without
OBSAN. We consider compiling with OBSAN sufficiently fast
as a one-time effort that only increases the compilation time
by around 20%. In addition, FOBSAN checks also needs to
be initialized by feeding samples from training datasets; we
use the full training dataset (CIFAR-10 [37]) for this step
and report that it takes about 2 minutes. We also report the
average size increase of DNN executables fully instrumented
with OBSAN is less than 10%, indicating trivial disk cost.

A. RQ1: OOB Detectability

Setup and Metrics. This section reports the OOB detectabil-
ity and performance overhead of OBSAN. We compute the
false positives (FPs) and false negatives (FNs) to assess the
accuracy of detecting OOB inputs. To prepare test inputs,

we use all 10,000 images from the test split of the CIFAR-
10 dataset to form a collection of normal inputs. Then, we
generate 10,000 AEs using one state-of-the-art AE generation
algorithm, Projected Gradient Descent (PGD) [36, 49], with the
default set of configuration which has a perturbation budget of
ε = 0.3. Note that, as this algorithm launches a white-box
attack (requires DNN gradients to guide AE generation), it
has proved very difficult to defend against, either theoretically
or empirically [67, 98]. We use PGD to synthesize AEs against
DNN models running on PyTorch; for each model, we generate
10,000 AEs, and we confirm all of them can trigger mis-
predictions of the corresponding DNN executables when not
enabling OBSAN. For undefined inputs, we form a test set
with 10,000 images from the ChestX-Ray8 dataset [88]; these
images have radically different features and information from
CIFAR-10 on which the DNN models are trained. Finally,
we also generate 10,000 perception-broken inputs from the
CIFAR-10 training split by randomly identifying image regions
and replacing them with Gaussian noise. These regions are
generated by applying erosion and dilation transformations
from OpenCV [16], a common image processing toolkit.

We feed these four collections of inputs in alignment
with the usage scenario distinctions discussed in Sec. VII
to benchmark OOB detectability. That is, we feed the same
normal and AE inputs to both FOBSAN and BOBSAN as
both of them can detect these two categories of OOB. For
perception-broken (PB) and undefined (UD) inputs, however,
we feed the former only to FOBSAN and the latter only to
BOBSAN. In accordance with Table IV, FPnorm is the ratio
of normal inputs triggering OBSAN alarms while FNae, FNpb,
and FNud denote the ratio of AE, PB, and UD inputs that are
overlooked by OBSAN checks, respectively. Ideally, all FP and
FN cases should be rare. We also measure the inference time of
each (OBSAN-enabled) DNN executable using TVM’s built-in
benchmark function and control the standard deviation at a
low level (1% of mean) with repeated executions.

Results. Table IV reports the evaluation results. Overall, we
interpret that OBSAN manifests promising OOB detectabil-
ity. The FPs and FNs are reasonably low for different nor-
mal/abnormal inputs across all three models. The reader may
find the FNud ratio for BOBSAN to be relatively high. As
clarified in Sec. VII, flagging undefined inputs (which often
share similar perceptual contents with the training inputs) is
inherently different, and we deem these results as reason-
able. Nevertheless, the FNae and FPnorm are generally low,
indicating that OBSAN can accurately flag defect-triggering
inputs of DNN executables and OBSAN rarely interferes the
normal execution. During production usage, users may launch
postmortem analysis on these small collection of inputs that
trigger alert of OBSAN and confirm that they are FPs.

Despite the encouraging OOB detectability, performance
overhead is notable: FOBSAN extensively instruments each
DNN neuron, and it incurs an average of 102% (up to 143%
for the DenseNet121 case) performance slowdown.

We clarify that some BOBSAN-specific optimizations are
properly enabled when producing the results in Table IV as our
preliminary study finds that BOBSAN with no optimization
at all (i.e. when every layer is hooked) would have been
impractically slow for informative comparison. We thus op-
timize BOBSAN to hook only the last layer of each DNN

9

TABLE IV: OOB detectability and overhead. Here, optimizations O2−3 have been applied to BOBSAN (details in Sec. VIII-B).
Model Infer time (ms) Infer time with OBSAN (ms) FPnorm ratio FNae ratio FNpb/ud ratio

FOBSAN BOBSAN FOBSAN BOBSAN FOBSAN BOBSAN FOBSAN (PB) BOBSAN (UD)
ResNet50 1.22 3.28 1.30 1.11% 6.11% 2.35% 0.01% 10.57% 65.36%

GoogLeNet 3.79 5.75 4.36 2.52% 9.17% 0.00% 0.00% 0.06% 77.78%
DenseNet121 2.65 6.45 2.64 1.27% 6.69% 0.01% 0.02% 0.32% 55.02%

TABLE V: Quantization evaluation for unprotected models (left half) and OBSAN-protected models (right half).

Model Infer.
time (ms)

Quant. Infer.
time (ms) Pred. acc. Quant.

pred. acc.
OBSAN
variant

OBSAN OBSAN + quantization
Infer.

time (ms)
FPnorm

ratio
FNae

ratio
FNpb/ud

ratio
Infer.

time (ms)
FPnorm

ratio
FNae

ratio
FNpb/ud

ratio

ResNet50 1.22 0.76 93.78% 93.55% FOBSAN 3.28 1.11% 2.35% 10.57% 2.57 1.44% 0.00% 61.13%
BOBSAN 1.30 6.11% 0.01% 65.36% 0.82 6.31% 0.00% 65.79%

GoogLeNet 3.79 1.63 92.85% 92.59% FOBSAN 5.75 2.52% 0.00% 0.06% 3.60 2.89% 0.00% 25.07%
BOBSAN 4.36 9.17% 0.00% 77.78% 1.67 9.38% 0.00% 75.96%

DenseNet121 2.65 2.21 94.03% 93.34% FOBSAN 6.45 1.27% 0.01% 0.32% 5.74 0.90% 6.78% 27.05%
BOBSAN 2.64 6.69% 0.02% 55.02% 2.28 4.72% 9.64% 73.62%

TABLE VI: Layer-wise checks pruning (O2) for FOBSAN.
Model Pruning

config.
Pruned

#neuron/total
Pruned

%neuron
Infer.

time (ms)
FPnorm

ratio
FNae

ratio
FNpb

ratio
ResNet50 (baseline) N/A N/A N/A 3.28 1.11% 2.35% 10.57%

ResNet50 0.2 7680/26570 28.9% 2.88 1.25% 0.82% 1.90%
ResNet50 0.4 17152/26570 64.55% 2.39 0.27% 28.21% 0.03%
ResNet50 0.6 22016/26570 82.86% 2.05 0.3% 99.42% 0.00%
ResNet50 0.8 25024/26570 94.18% 1.62 0.07% 100.00% 0.00%
ResNet50 1.0 26560/26570 99.96% 1.23 0.42% 22.84% 99.11%

ResNet50 (w/ quant.) 0.2 7680/26570 28.9% 2.19 1.40% 0.20% 49.79%
ResNet50 (w/ quant.) 0.4 17152/26570 64.55% 1.81 0.57% 24.13% 32.98%
ResNet50 (w/ quant.) 1.0 26560/26570 99.96% 0.75 0.25% 99.83% 98.00%

(optimization O2) and set p = 2 (optimization O3) for BOB-
SAN; we will discuss further details on this in Sec. VIII-B. In
the following section, we explore reducing the incurred high
performance overhead without primarily hindering the OOB
detectability.

Answer to RQ1: When securing common DNN models,
OBSAN can achieve a reasonably high accuracy in detect-
ing OOB inputs with low FPs and FNs (particularly for
AEs). Detecting undefined inputs is fundamentally difficult.
Nevertheless, the performance overhead is notable.

B. RQ2: Optimization Evaluation

Sec. V-B introduces three optimizations O1−3. This section
first benchmarks the effectiveness of individual schemes, and
then assess combining them together. To ease comparison, we
also report the overhead and detectability of OBSAN after
combining all recommended optimizations in Table IX.

O1 Quantization. We report the quantization evaluation in
Table V. We interpret that models, after quantization, manifest
a reasonable boost in terms of inference speed (the second
column in Table V). Nevertheless, the quantized executable,
after inserting OBSAN, is still much slower comparing to the
baseline, e.g., it takes the vanilla ResNet50 executable 1.22ms
(as in Table IV) to make one inference, whereas FOBSAN
can still double the cost (2.57ms). Also, as a tradeoff, FNpb/ud
increased, particularly the latter. In contrast, we report that the
detectability of AE inputs are still high; some evaluations even
report FNae ratios dropping to zero. DenseNet121 appears to
be an “outlier” with observably higher FNae ratios. To clarify,
this is because we use the same threshold selection parameters
(µ in Sec. IV-A and α and β in Sec. IV-B) for all three
models to keep our setup easy to follow; in practice, users are
suggested to fine-tune these parameters for individual models
to explore the best performance. Additionally, quantization

has no negative impact on FPnorm, meaning that normal use
of protected DNN executables is largely uninterrupted. The
changes observed in OOB detectability is mainly because
quantization prioritizes to preserve the prediction accuracy
for normal inputs during the floating point → integer remap
process. This can compress the space for OOB data and cause
the distributions for different types of data, as shown in Fig. 6,
to converge and become harder to distinguish.

O2 Layer-Wise Checks Pruning. Recall O2 can be applied
to optimize both FOBSAN and BOBSAN. In Table VI (first
6 rows), we report the pruning results for FOBSAN. Here,
pruning config. refers to the value of γ mentioned in Sec. V-B,
and as it increases towards 1, more checks are pruned. For
BOBSAN, the pruning results are reported in in Table VII,
where the Last n layers column reports the number of
layers retained to hook with BOBSAN, starting from the last
layer of a DNN. Overall, we observe that, with more layers
pruned, the inference time is largely reduced, especially for
BOBSAN where the performance gain can be as high as
36x; when nearly all checks are pruned, the inference cost is
almost negligible (recall the baseline for ResNet50 is 1.22ms).
Consistent findings are also reported for the other models, data
of which are available on the project website [2].

FOBSAN and BOBSAN also behave differently to varying
pruning configurations: For FOBSAN, FNae increases steadily
from 0.82% to 100% as γ moves from 0.2 to 0.8, but it
then drops to a lower level when γ is 1.0. Interestingly, FNpb
spikes at this configuration, rising from about 0% to 99%,
rendering almost a complete loss of capabilities to detect
perception-broken inputs. In fact, this can be seen as a radical
remap of the OOB score space, similar to what may happen
if an extreme quantization profile is applied: Compared with
unpruned ResNet50 whose OOB score ranges from [0, 26570],
this pruning configuration limits the range to [0, 10], resulting
in more difficulty in separating different types of inputs.

10

BOBSAN, as shown in Table VII, shows steady improve-
ments over all metrics as more check layers are pruned, and
its performance peaks when only the last layer of checks
are preserved; this is particularly desirable because it gives
the best protection with the lowest runtime overhead. Recent
research also underlines that the last layer usually has a
high distinguishability of (anomalous) DNN behaviors [28].
However, we highlight that “checking only the last layer”
may not be proper for all DNNs; depending on the DNN
architectures (e.g., considering a very shallow model) and the
type of input data, other layers may also be needed. Also, from
Table VII, we see why it is unsuitable to consider unpruned
BOBSAN as a baseline: DNNs can easily comprise more
than 100 layers, at which level unpruned BOBSAN becomes
impractical for real-world use. Therefore, for optimal results,
we recommend always using the pruning optimization for
BOBSAN and only retaining the checks for the last layer.

TABLE VII: Layer-wise pruning (O2) for BOBSAN.

Model config. Last n
layers

Infer.
time (ms)

FPnorm

ratio
FNae

ratio
FNud

ratio
ResNet50, p = 2 5 47.13 6.21% 18.82% 63.63%
ResNet50, p = 2 4 35.07 6.16% 24.53% 63.64%
ResNet50, p = 2 3 18.19 5.93% 13.18% 67.16%
ResNet50, p = 2 2 7.16 6.06% 1.00% 65.40%
ResNet50, p = 2 1 1.30 6.11% 0.01% 65.36%

TABLE VIII: Selection of p (O3) for BOBSAN under different
n configurations for layer-wise checks pruning (O2).

Model p
Infer.

time (ms)
FPnorm

ratio
FNae

ratio
FNud

ratio
ResNet50, n = 1 1 1.29 4.11% 20.76% 82.61%
ResNet50, n = 1 2 1.30 6.11% 0.01% 65.36%
ResNet50, n = 1 ∞ 1.29 5.92% 16.79% 67.47%
ResNet50, n = 2 1 6.72 2.70% 100.00% 89.62%
ResNet50, n = 2 2 7.16 6.06% 1.00% 65.40%
ResNet50, n = 2 ∞ 6.22 5.73% 71.74% 69.30%
ResNet50, n = 3 1 16.69 3.88% 100.00% 85.20%
ResNet50, n = 3 2 18.19 5.93% 13.18% 67.16%
ResNet50, n = 3 ∞ 15.06 5.92% 72.62% 68.80%

O3 Optimizing p for Lp-Norm. We explore an optimal p for
BOBSAN’s Lp-norm by benchmarking three common p values
and report results in Table VIII.

To allow a clearer comparison between different settings,
we repeat the evaluation for different values of n (1, 2, 3) for
layer-wise pruning (O2), where n = 1 is the recommended
configuration for production, as mentioned earlier. Theoret-
ically, varying p values will result in different performance
penalties and detection accuracies as they decide how the Lp-
norm is calculated. In our experiments, this is especially visible
in the n = 3 case where p = 2 brings an extra overhead of
20.78% compared to p = ∞, but it also also offers the best
OOB detectability in terms of all FPnorm, FNae, and FNud.
However, this observation may not be universally true for users
protecting their own models. Thus, we recommend p = 2 as
the default value, and users can perform similar benchmarks
following our setup to optimize this value for their scenarios
based on their tradeoff preferences. In addition to Table VIII,
supplemental data on the project website [2] report consistent
findings for other models.

Answer to RQ2: Layer-wise selection (O2) reduces over-
head with a reasonable tradeoff of AE detection. It also
alleviates FPnorm, by enhancing DNN robustness. Quan-
tization (O1) reasonably reduces the cost while incurring
relatively trivial loss in accuracy and OOB detection. Users
can consider to set p = 2 as the default setting for O3,
particularly when O2 is enabled to hook only the last layer.

TABLE IX: Overhead and detection capabilities of OBSAN
with all optimizations enabled as recommended.

OBSAN
variant Model Infer. time (ms) OBSAN

Overhead
FPnorm

ratio
FNae

ratio
FNpb/ud

ratioVanilla OBSAN

FOBSAN
w/ opt.

ResNet50 1.22 2.19 79.51% 1.40% 0.20% 49.79%
GoogLeNet 3.79 3.12 -17.68% 2.41% 0.00% 26.02%

DenseNet121 2.65 4.80 81.13% 1.21% 5.11% 21.43%
Average 2.55 3.37 47.65% 1.67% 1.77% 32.41%

FOBSAN
w/ opt.

ResNet50 1.22 0.82 -32.79% 6.31% 0.00% 65.79%
GoogLeNet 3.79 1.67 -55.94% 9.38% 0.00% 75.96%

DenseNet121 2.65 2.28 -13.96% 4.72% 9.64% 73.62%
Average 2.55 1.59 -34.23% 6.80% 3.21% 71.79%

Combining Optimizations. We also explore combining opti-
mizations O1−3 as it is common to enable all (non-conflict)
optimizations for C/C++ compilers. Our optimizations are
designed to be compatible with each other, and we assess
the overhead and detection accuracy of OBSAN after enabling
all optimizations using the best settings discussed above in
Table IX. In short, the overhead is on average 48% for
FOBSAN and -34% for BOBSAN, with reasonably high OOB
detectability. We interpret the results as promising, illustrating
that OBSAN achieves a proper balance between speed and
detectability, and has high applicability in production usage.

Recommandation. In sum, we suggest enabling all opti-
mizations simultaneously with recommended configurations
whenever possible in production. In particular,

FOBSAN. We recommend enabling quantization (O1) and
layer-wise pruning (O2) at γ = 0.2; this shall effectively
reduce the performance overhead without notably impeding
AE detection, and maintain a reasonable level of FNpb. More-
over, Table IV shows that, when enabling full FOBSAN,
the ResNet50 executable is 169% slower than the executable
without protection. And with the recommended optimizations
enabled, the overhead is reduced to 79.51% (Table IX). Similar
conclusions are drawn for the other two models.

BOBSAN. We recommend enabling quantization (O1), checks
pruning until the last layer (O2), and setting p = 2 (O3). This
combo should offer the lowest overhead with reasonably strong
OOB protection, and users can further tune optimization pa-
rameters in accordance with their use cases and tradeoff prefer-
ences. As in Table IX, when enabling this optimization combo,
the inference time of ResNet50, GoogLeNet, DenseNet121
executables are only -32.79%, -55.94%, and -34.23% of the
executables without protection, respectively. Simultaneously,
BOBSAN facilitates highly accurate detectability of AEs, i.e.,
both ResNet50 and DenseNet121 cases have zero FNae.

Furthermore, we mentioned the use of a hybrid OBSAN
in Sec. VII, namely integrating both FOBSAN and BOBSAN
into the same executable for extra protection; our optimizations
are also compatible with this setup. Soon in Sec. IX-A,
we compare hybrid and non-hybrid OBSAN’s effectiveness
in mitigating query-based AE generation attack, where all
optimizations are enabled as recommended above. We report

11

that with hybrid OBSAN, most attacks (on average 77%)
can be mitigated, whereas non-hybrid OBSAN (using either
FOBSAN or BOBSAN) shows less desirable effectiveness.

In our fuzz testing application (Sec. IX-B), we anticipate
to fully instrument each neuron with FOBSAN, as FOBSAN
checks can provide neuron coverage information as feedback
to guide fuzzing. This is comparable to logging branch or
basic block coverage in fuzzing C/C++ executables. In that
application, we only enable quantization which should consid-
erably accelerate the fuzzing process. Moreover, accuracy is
not a concern in fuzz testing, so only the “neuron coverage”
feedback is obtained from FOBSAN.

IX. RQ3: DOWNSTREAM SECURITY APPLICATIONS

To answer RQ3, we assess OBSAN’s ability over two secu-
rity applications: inhibiting online AE generation (Sec. IX-A)
and guiding feedback-driven fuzzing (Sec. IX-B).

TABLE X: Preventing online AE generation.

Scenario Configuration #AE Infer.
time (ms)

#queries
per seed

Attack
success rate

Default

w/o OBSAN 97.60 1.22 2.17 99.59%
w/ FOBSAN 8.49 2.19 19.68 8.66%
w/ BOBSAN 96.52 0.82 4.64 98.49%
w/ HOBSAN 5.25 3.03 20.92 5.38%

Sophisticated

w/o OBSAN 62.41 1.22 127.26 63.68%
w/ FOBSAN 56.17 2.19 130.52 57.32%
w/ BOBSAN 30.98 0.82 146.05 31.61%
w/ HOBSAN 28.03 3.03 139.13 28.60%

A. Mitigating Query-Based Online AE Generation

Setup. As a common assumption in query-based online AE
generation, we assume that the DNN executable is a blackbox
to an adversary. The attackers cannot access the internals of
this DNN executable. To generate AEs to exploit the DNN
executable, attackers would launch query-based blackbox AE
generation, interacting with the target DNN model and mim-
icking how a remote DNN API is exploited via queries. Here,
attackers can feed their crafted inputs to the DNN executable
and observe the model prediction outputs [29, 59, 78, 95, 97].
For this attack, we employ a SOTA AE generation method to
simulate a realistic attacker [10].

As in Table X, we consider two representative adversary
behaviors: In the default scenario, the attacker is configured
with a higher perturbation budget (ε = 0.3) and a lower
number of queries per seed (50). In the sophisticated scenario,
the attacker decides to use a low perturbation budget, which
means to mutate images in a finer-grained, incremental manner.
AEs are expected to manifest better visual quality with such a
low budget setting. Particularly, they use a budget ε = 0.035,
but allow more queries per seed (500). We assess three OBSAN
settings: FOBSAN, BOBSAN, and the hybrid OBSAN (termed
HOBSAN), where HOBSAN inserts both variants in a DNN
executable. We configure HOBSAN to issue an alert if either
FOBSAN or BOBSAN alerts. For each setting, we also enable
all applicable optimizations for OBSAN in accordance with our
recommendations in Sec. VIII-B.

Extending Blackbox AE Generation. For this application, we
configure DNN executable such that it refrains from respond-
ing to attacker’s query whenever OBSAN alerts. Accordingly,
to mimic a practical attacker who may be aware of the usage

of OBSAN in the executable, we extend the employed SOTA
blackbox AE generation algorithm; a schematic view has been
given in Fig. 3 in Sec. III, such that whenever the attacker
receives no response, they “backtrack” by reverting the most
recently-performed mutation and performing random mutation.

Results. We randomly select 100 images from the CIFAR-10
test set as seeds. For each seed, we allow the AE generation
algorithm to issue queries until the allowed numbers of queries
(either 50 or 500) are exhausted. We launch each experiments
for five times and average the results. Table X reports the
evaluation results. To clarify, two seeds are excluded as they
already trigger mis-predictions, given an initial accuracy of
98%, which we deem reasonable under this setting. In the
default scenario, the SOTA AE generation algorithm is highly
effective; it can generate AEs from nearly all seeds within 50
queries (97.60

98 = 99.59% success rate, 2.17 queries per seed
on average). Nevertheless, after enabling FOBSAN, we find
that a much lower number of 8.49 AEs (8.66% success rate,
a 91% decrease) are successfully generated, and the average
number of queries required to generate an AE over a seed
is prolonged (19.68 queries, a 9x increase). For BOBSAN,
however, it only provides negligible protection against this
attack scenario, although it still slightly postpones the gen-
eration of AEs (2x queries per seed). HOBSAN gives the
best protection in this scenario, successfully defending against
95% of the attacks. The fact that HOBSAN provides better
protection than FOBSAN alone indicates that FOBSAN and
BOBSAN are respectively sensitive to slightly different sets
of AEs. In the “sophisticated” scenario, the AE generation
algorithm only successfully generates AEs for 63.7% of the
seeds, but with generally improved visual quality. Under this
setting, FOBSAN, in contrast to its prior performance, only
mitigates about 10% of the attacks, while BOBSAN blocked
52%. HOBSAN further lowers the attack success rate, giving
a protection effectiveness of 57% against sophisticated attacks.

Readers may be curious about the difference between
FOBSAN and BOBSAN in the default scenario. In this sce-
nario, the attacker makes relatively heavy mutations to the seed
inputs, causing the mutation results to resemble perception-
tweaked inputs in earlier experiments, which FOBSAN is bet-
ter at detecting; in the sophisticated scenario, on the contrary,
mutations are more subtle and can cause the AEs to be more
similar to undefined yet natural inputs. Careful readers may
further notice that BOBSAN also produces satisfactory results
on detecting white-box AEs generated with the same pertur-
bation budget (Table IV). White-box AEs are generated with
knowledge of gradients, which BOBSAN also uses for OOB
detection; this makes BOBSAN sensitive to these AEs. The
blackbox AEs here, however, are generated without gradients,
bypassing BOBSAN’s sensitivity to gradient-based attacks.

B. DNN Executable Feedback-Driven Fuzzing

Motivation. We setup another downstream application, mim-
icking a typical in-house fuzzing scenario on DNN executa-
bles. While there exists a large number of previous literatures
on DNN fuzzing, they primarily target on DNN models
running on DL frameworks like TensorFlow. Note that it is
insufficient to only fuzz DNN models in DL frameworks, as
DNN executables may exhibit inconsistent behaviors compar-
ing with the same models running on DL frameworks, due

12

TABLE XI: Boosting DNN executable fuzzing with FOBSAN.
The “greybox” setting denotes the DNN executable with
FOBSAN injected, whereas the “blackbox” setting denotes the
DNN executable w/o FOBSAN.

Model #mis-predictions %neurons covered

Blackbox
ResNet50 4268 18.48%

GoogLeNet 4513 16.10%
DenseNet121 2550 39.00%

Greybox
ResNet50 44132 21.29%

GoogLeNet 49550 17.91%
DenseNet121 32027 44.09%

to floating number precision losses or potential bugs in DL
compilers [42, 71]. As a result, we assume it is necessary for
users to fuzz the compiled DNN executables and detect its
attack surface under AEs. Blackbox fuzzing randomly mu-
tates inputs. Greybox fuzzing mutates inputs under coverage
feedback. Fuzzing software executables [100] is often done
by intercepting compilation and inserting counters to record
branch coverage. Accordingly, FOBSAN can provide neuron-
wise coverage, enabling greybox fuzzing in DNN executable.

Setup. We assume that the DNN model is compiled by TVM
into executables with FOBSAN inserted. We use a slightly
extended version of FOBSAN to adapt to the needs of fuzzing:
While the original FOBSAN is designed to be “trained” with
training datasets to compare neuron activations and detect
abnormal inputs, the fuzzing task’s goal is to discover mis-
predictions that can reveal the internal deficiencies of DNN
models. Therefore, we drop the comparison between neuron
activations and their reference data (and thus the need for
training before using), and instead compare the neuron outputs
(scaled to [0, 1]) with a manually set threshold; if neuron
outputs are above the threshold, we mark the neuron as
covered. In this experiment, we set this threshold to 0.9, a
relatively high value to require a neuron being activated to
a great extent in order to count as a “coverage”. As noted
in Usage of Sec. VIII-B, since we do not need an accurate
OOB score in this application, we enable quantization to
harvest reduction of FOBSAN’s overhead. We however disable
pruning because we need the complete information on which
neurons have been covered. We view this as a practical setting
that can be followed in daily usage of FOBSAN to fuzz DNN
executables. When mutating DNN inputs, we use mutation
methods proposed in [61, 80, 92]. We use executables of all
three models in this evaluation.

Results. We let each of the 6 experiment run for six hours and
collect the results, as reported in Table XI. After each task is
finished, we measure the number of triggered mis-predictions
(#mis-predictions) and overall percentage of covered neurons
(%covered neurons). We also report that this evaluation does
not result in any crashes, indicating that memory exploitation
opportunities for DNN executables may be limited. A great
number of mis-predictions found indicates that fuzz testing
is of high effectiveness, as per the stated goal of the task
earlier. In contrast, the percentages of covered neurons are not
particularly high and the gaps between blackbox and greybox
settings are less than 10%. While this can be accounted by
the adoption of a high threshold to count “neuron coverage,”
it should not be a significant indicator of fuzzing performance.
We find that under the feedback of FOBSAN, the fuzzing
campaign becomes far more effective than that of the blackbox

setting. In greybox, the numbers of triggered mis-predictions
for all three models exceed 10 times higher than those of the
blackbox settings. We interpret the results as highly promising
and are consistent across all three popular models.

Answer to RQ3: OBSAN facilitates representative down-
stream applications to secure real-world usage of DNN
executables and enable feedback-driven fuzz testing of
DNN executables.

X. DISCUSSION

A. Comparison with Existing Approaches

Many methods have been proposed to protect DNN models
against OOB inputs. However, various obstacles prevent them
from being applied to protect DNN executables. Holistically,
they are implemented at the DNN model level, which narrows
down the range of DNN executables that they may be able to
protect (e.g., due to incompatibilities between DL frameworks;
see below). Moreover, we see it as a major trend that existing
works emphasize effectiveness more than efficiency: None of
our reviewed representative works (see below) report their
performance overhead. We note that high overhead deems an
obstacle for production adoption by DNN executables. Below,
we review recent and representative works for a conceptual-
level comparison with OBSAN. Then, we conduct an empirical
comparison from both the accuracy and overhead perspectives.

Methodological Comparison. At this step, we review recent
works on AE and OOB inputs detection and compare the
technical differences between OBSAN and them. To allow a
more insightful review, we classify visible works in this field
into five categories according to the methodology they em-
ploy for anomalous input detection: coverage-, classification-,
reclassification-, gradient-, and statistics-based.

¬ Coverage-based works [46, 61, 85] borrow the concept of
coverage from fuzzing (as explained in Sec. III) and build on
the assumption that OOB inputs cause increases in coverage
metrics. They then use these metrics to detect undesired
inputs. Conceptually, they are similar to FOBSAN and can
usually be implemented on DNN executables; we include
this class of works in our later experimental comparison.
Nevertheless, methods implementable for DNN executables
may not entail real-world suitability. For example, they may
require the user to provide a malicious training dataset [85] or
may require unsupported operations for common DL compilers
(e.g., set operations); we exclude methods with such require-
ments (e.g., [85]) in our empirical comparison considering the
adoption difficulty.

­ Classification-based works [48, 74, 85] train new auxiliary
models in advance for each protected DNN model; to use
their methods, we need to somehow integrate the auxiliary
models into the to-be-shipped DNN executable for OOB input
detection. As noted in Sec. III, DL compilers expect well-
trained DNN models as input and generally do not support
training. This makes the said methods hard to implement as a
standalone compiler pass, besides the high time cost that may
be incurred for training; these factors discourage adoption. To
clarify, though FOBSAN, as mentioned in Sec. V, also has an
initialization phase, we do not train new models (only feeding
each training sample to the DNN executable for a forward
pass to decide OOB thresholds) and thus is compatible with

13

DL compilers. To include this class of works in our empirical
comparison, we workaround the compatibility issue by training
a set of auxiliary models externally and compiling them into
DNN executables.

® Reclassification-based works [40, 41, 107] assume that ad-
versarial features are usually subtle and can be “muted” by
modifying the inputs; re-feeding the modified input to the
protected model and comparing the classification results before
and after allows anomalous inputs to be detected. OBSAN is
different from these works in two aspects. First, OBSAN does
not depend on the nature of adversarial features; instead, it
focuses OOB, a generalized concept that encompasses both ad-
versarial and “non-adversarial” features, e.g., undefined inputs.
Second, OBSAN provides floating point OOB scores while
these methods only output stepwise or binary scores; they will
be harder to tune and less informative to analyze than OBSAN,
as laid out in Sec. IV. Below, we compare OBSAN with these
works empirically. That said, we still note that the premise
on adversarial features may be rather strong and can limit the
detection to a specific class of adversarial attacks [107].

¯ Gradient-based works [28, 41, 45] make use of the gradi-
ent information during inference, for example to extract a
compressed representation of the network’s inference pro-
cess [28, 45] or to transform the input for later use such as
reclassification [41]. As explained in Sec. IV-B, BOBSAN also
falls into this category. In terms of computational complexity,
gradient calculation and backward propagation are typically
not fast, e.g., they may require additional large matrix multipli-
cations. Moreover, different ways to derive gradients (e.g., with
respect to different variables) and to transform them into OOB
metrics can lead to distinct overhead and detection capability.
BOBSAN is currently designed with both speed and detection
capability into consideration; we launch empirical comparison
between our implementation with these methods below.

° Statistics-based works [17, 39, 43, 82] calculate statistical
metrics from the activations or classification outputs of the
protected DNN model and use them to detect OOB inputs.
Typically, this class of methods requires to compute empirical
mean, variance, etc. on the training set during initializa-
tion [39, 82], which can be more costly than OBSAN’s two
variants (see Sec. V; BOBSAN does not need initialization).
Below, we empirically assess this category of works about
accuracy and overhead. Some heavyweight works also require
modifying the training and inference processes of the protected
models [17]; we deem them expensive and technically chal-
lenging, if at all feasible, for DNN executables.

Empirical Comparison. We explore the technical feasibility
of (re-)implementing existing works, and narrow down to six
works, which we believe are the most representative and well-
performing cases. We implement and run experiments on all
three DNN models for these six works: DeepGauge [46],
DLA [74], ANR [40], ODIN [41], GradNorm [28], and
ViM [82]. A summary of them is in Table XII; we con-
sider them representative for a wide range of methodologies.
These works are divided into two groups, “vision-based”
and “semantics-based”, to compare with either FOBSAN or
BOBSAN. We select the OBSAN variant against which a work
should be compared based on whether or not it is able to detect
undefined (UD) inputs: as noted in Sec. III, UD inputs are
generally inputs from outside the trained DNN model’s knowl-

edge and are not maliciously crafted. In other words, there
are no “visual artifacts” in them to be picked up. Holistically,
vision-based OOB detectors, as listed in Table XII, rely on the
the artifacts’ vision patterns (e.g., noise-like pixel patterns) to
detect OOB inputs. It is easy to see that UD inputs do not
contain such noise-like patterns, and cannot be detected by
vision-based OOB detectors (we confirmed with preliminary
experiments). Hence, for vision-based methods, we compare
them with FOBSAN instead of BOBSAN.

We also compare with three representative works marked
as “semantics-based” in Table XII. They essentially analyze
whether new (unexpected) semantics appear in an input to
decide if it was anomalous, thereby fitting to detect AE and
UD inputs. Nevertheless, our tentative experiments show that
perceptual broken (PB) inputs can hardly be detected by them.
Therefore, we compare these methods with BOBSAN.

For each work, we run benchmarks to collect its inference
time, FPnorm, FNae, together with either FNpb (for the first
three works compared with FOBSAN) or FNud (for the rest,
compared with BOBSAN). To offer a fair comparison, we do
not enable optimizations for OBSAN during these experiments.
We report the experimental results in Table XIII (for compar-
ison against FOBSAN) and Table XIV (for BOBSAN).

When focusing only on benign and AE inputs, we see
that OBSAN is not the best performing method in terms of
detection accuracy; ODIN has the lowest FPnorm and FNae
ratios. However, ODIN is significantly slower, with overhead
on average 9.64x and 17.96x those of FOBSAN and BOBSAN,
respectively; this is because it backpropagates through the
entire protected model to obtain gradients w.r.t. the input, and
uses this information to derive an augmented input which
will be fed again to the protected model, increasing the
computational complexity to a level unsuitable for use by DNN
executables in production.

In each of the two comparison groups, we also identify
DLA and GradNorm as the respective fastest methods in their
groups. Nevertheless, DLA is difficult to adopt in practice,
as it requires training a series of auxiliary classifier models,
which is not supported by DL compilers and also very time-
consuming (55 minutes on average, compared to FOBSAN’s
initialization time of about 2 minutes, as reported in Sec. VIII);
GradNorm, on the other hand, has no extra requirements but
is not as accurate as OBSAN, particularly on large mod-
els. GradNorm has comparable results with BOBSAN on
GoogLeNet, as reflected by the FPnorm and FNae columns of
the GoogLeNet comparison setting in Table XIV. We note that
GoogLeNet is relatively small and has the fewest parameters
among all three models (see Table II). The FNae of GradNorm
on other two large models are much higher than BOBSAN
and the FNud is almost trivial. When PB and UD inputs are
further considered, we observe that DeepGauge and ViM have
the best FNpb and FNud ratios in their respective groups and
also comparable execution overhead to OBSAN, but they do
not perform well in terms of FPnorm and FNae. In sum,
we conclude from the experiments that both FOBSAN and
BOBSAN strike a balance between runtime overhead, ensuring
normal inference for benign inputs (reasonably low FPnorm),
and achieving encouraging detection capabilities for OOB
inputs (FNae, FNpb, FNud).

14

TABLE XII: A list of existing works empirically compared. We spent considerable engineering efforts over most of them to
identify workarounds and make them compatible with DL compilers. See our released code for their extensions [2].

Work Methodology Category Logical category Compared with
DeepGauge Coverage Vision-based FOBSAN (AE + PB)

DLA Classification Vision-based FOBSAN (AE + PB)
ANR Reclassification Vision-based FOBSAN (AE + PB)
ODIN Reclassification + Gradient Semantics-based BOBSAN (AE + UD)

GradNorm Gradient Semantics-based BOBSAN (AE + UD)
ViM Statistics Semantics-based BOBSAN (AE + UD)

TABLE XIII: Comparison between FOBSAN and other works.

Model Method Infer.
time (ms)

FPnorm

ratio
FNae

ratio
FNpb

ratio

ResNet50

(None) 1.22 - - -
DeepGauge 3.35 52.62% 0.00% 0.00%

DLA 1.40 20.46% 0.00% 77.55%
ANR 4.79 62.92% 86.23% 42.49%

FOBSAN 3.28 1.11% 2.35% 10.57%

GoogLeNet

(None) 3.79 - - -
DeepGauge 5.84 31.55% 0.00% 0.00%

DLA 3.91 16.3% 0.00% 67.63%
ANR 8.12 80.75% 63.15% 58.81%

FOBSAN 5.75 2.52% 0.00% 0.06%

DenseNet121

(None) 2.65 - - -
DeepGauge 6.54 38.65% 0.00% 0.00%

DLA 2.75 17.87% 0.00% 16.91%
ANR 6.06 65.11% 74.48% 63.53%

FOBSAN 6.45 1.27% 0.01% 0.32%

TABLE XIV: Comparison between BOBSAN and other works.

Model Method Infer.
time (ms)

FPnorm

ratio
FNae

ratio
FNud

ratio

ResNet50

(None) 1.22 - - -
ODIN 79.66 1.55% 0.00% 96.58%

GradNorm 1.25 4.11% 20.76% 82.61%
ViM 1.80 13.46% 8.60% 24.99%

BOBSAN 1.30 6.11% 0.01% 65.36%

GoogLeNet

(None) 3.79 - - -
ODIN 42.90 3.67% 0.00% 97.96%

GradNorm 3.75 6.46% 0.00% 78.61%
ViM 3.78 10.55% 57.29% 75.79%

BOBSAN 4.36 9.17% 0.00% 77.78%

DenseNet121

(None) 2.65 - - -
ODIN 26.69 2.29% 0.22% 91.79%

GradNorm 2.65 3.89% 11.04% 88.48%
ViM 2.70 14.71% 0.06% 28.45%

BOBSAN 2.64 6.69% 0.02% 55.02%

B. Extensibility

Migration to Other DL Compilers and Kernel Libraries. As
shown in Sec. IV, the design of OBSAN is orthogonal to
particular DL compiler frameworks. In the current research, we
implement OBSAN on TVM given its popularity and adoption
in real-world production scenarios. We anticipate that the
current implementation of OBSAN can be smoothly migrated
to other DL compilers like Glow [68], which also generate
DNN executable files or shared objects from high-level DNN
descriptions. The migration demands extra, non-trivial engi-
neering efforts, but should not incur new research challenges.
Users can extend our codebase [2] for the migration.

Migration to Other Artechitures. The current implemen-
tation of OBSAN instruments DNN executables running on
CPUs of 64-bit x86 platforms. We clarify that recent DL
compiler testing works also mainly configure DL compilers in
the same setting — generating executables running on CPUs
of 64-bit x86 platforms [42, 71, 91]. This seems to be the
most mature setup for today’s DL compilers. However, in
contrast to C/C++ sanitizers which are frequently architecture
specific [33, 70], the core techniques of OBSAN are platform

independent. Therefore, it is reasonable to assume that port-
ing the current CPU-based sanitizer implementation to other
architectures (e.g., GPUs) poses no new research challenges.

XI. RELATED WORK

We have discussed existing literatures on detecting OOB
inputs in Sec. X. Below, we review related work on optimizing
sanitization techniques. Existing works have proposed program
analysis techniques to flag and remove redundant sanitizer
checks, for example, removing an unnecessary array bound
check by confirming that the value ranges of an array in-
dex are always valid [15, 24, 54, 76, 94]. Most existing works
focuses on launching specific analysis to remove redundant
checks inserted in C/C++ executables, which cannot be di-
rectly extended to optimize OBSAN. ASAP [81] observes
that sanitizer checks on the hot paths often contribute less
important to vulnerability detectability, given that (unknown)
vulnerabilities mostly reside in cold paths that are not fully
tested. Shaving those less important checks on hot paths,
however, reduce overhead. Our pruning (O2 and O4) also
identify neurons/layers that are less important, and prune their
accompanied OBSAN checks. [101, 103] identify redundant
checks using static analysis or heuristics. For instance, in case
two checks are found to repeatedly check the same array
index in a sequential program, the second check may be
removable without undermining security. Nevertheless, it is
obscure to identify “redundant” OBSAN checks, given that
DNN layers/neurons are hardly semantics-identical.

CONCLUSION

With the promising trend of compiling DNN models into
executables, security hardening over DNN executables is yet
unavailable. We propose OBSAN, a sanitization technique
capturing OOB behavior of DNN executables. We demonstrate
the high OOB detectability of OBSAN, and with various
optimization applied, we reduce its runtime overhead to a
low level, promoting its usage in production. We present two
downstream applications and discuss its extensibility.

REFERENCES

[1] Onnx runtime. https://onnxruntime.ai/.
[2] OBSAN. https://sites.google.com/view/oob-sanitizer/.
[3] Github issue: Onnx support for adaptivemax/avgpool. https://github.

com/pytorch/pytorch/issues/5310, 2018.
[4] Onnx operator definitions. https://github.com/onnx/onnx/blob/main/

docs/Operators.md, 2018.
[5] Relay IR. https://tvm.apache.org/docs/arch/relay intro.html, 2021.
[6] Github issue: [torch.onnx] onnx export failed on adaptive avg pool2d

because input size not accessible not supported. https://github.com/
pytorch/pytorch/issues/74034, 2022.

15

https://onnxruntime.ai/
https://sites.google.com/view/oob-sanitizer/
https://github.com/pytorch/pytorch/issues/5310
https://github.com/pytorch/pytorch/issues/5310
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://tvm.apache.org/docs/arch/relay_intro.html
https://github.com/pytorch/pytorch/issues/74034
https://github.com/pytorch/pytorch/issues/74034

[7] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. {TensorFlow}: A system for {Large-
Scale} machine learning. OSDI, 2016.

[8] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with WIT. IEEE
S&P, 2008.

[9] Amazon. Amazon SageMaker Neo uses Apache TVM for performance
improvement on hardware target. https://aws.amazon.com/sagemaker/
neo/, 2021.

[10] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and
Matthias Hein. Square attack: A query-efficient black-box adversarial
attack via random search. Lecture Notes in Computer Science, page
484–501, 2020.

[11] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured
pruning of deep convolutional neural networks. JETC, 13(3):1–18,
2017.

[12] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral
compiler for expressing fast and portable code. CGO, 2019.

[13] Yu Bai, Song Mei, Huan Wang, and Caiming Xiong. Don’t just
blame over-parametrization for over-confidence: Theoretical analysis
of calibration in binary classification. ICML, 2021.

[14] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei
Zhou, and Antonio Torralba. Understanding the role of individual
units in a deep neural network. Proceedings of the National Academy
of Sciences, 117(48):30071–30078, 2020.

[15] Rastislav Bodı́k, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating
array bounds checks on demand. PLDI, 2000.

[16] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobb’s journal of
software tools, 3:120, 2000.

[17] Senqi Cao and Zhongfei Zhang. Deep Hybrid Models for Out-of-
Distribution Detection. pages 4733–4743.

[18] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. Adversarial attacks and defences:
A survey. arXiv preprint arXiv:1810.00069, 2018.

[19] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. {TVM}: An automated end-to-end optimizing compiler
for deep learning. OSDI, 2018.

[20] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. 2015.

[21] Samet Demir, Hasan Ferit Eniser, and Alper Sen. DeepSmartFuzzer:
Reward guided test generation for deep learning. arXiv preprint
arXiv:1911.10621, 2019.

[22] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao.
A quantitative analysis framework for recurrent neural network. ASE,
2019.

[23] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness
testing: testing software for discrimination. In ACM ESEC/FSE, pages
498–510. ACM, 2017.

[24] Rigel Gjomemo, Phu H Phung, Edmund Ballou, Kedar S Namjoshi,
VN Venkatakrishnan, and Lenore Zuck. Leveraging static analysis
tools for improving usability of memory error sanitization compilers.
In 2016 IEEE International Conference on Software Quality, Reliabil-
ity and Security (QRS), pages 323–334. IEEE, 2016.

[25] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[27] Xiaofei He, Wei-Ying Ma, and Hong-Jiang Zhang. Learning an
image manifold for retrieval. In Proceedings of the 12th annual ACM
international conference on Multimedia, pages 17–23, 2004.

[28] Rui Huang, Andrew Geng, and Yixuan Li. On the Importance of
Gradients for Detecting Distributional Shifts in the Wild. In Advances
in Neural Information Processing Systems, volume 34, pages 677–689.
Curran Associates, Inc., 2021.

[29] Zhichao Huang and Tong Zhang. Black-box adversarial attack with
transferable model-based embedding. ICLR, 2019.

[30] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo
Riccio, Andrea Stocco, and Paolo Tonella. Taxonomy of real faults in
deep learning systems. ICSE, 2020.

[31] Texas Instruments. The AM335x microprocessors support
TVM. https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/
linux/Foundational Components/Machine Learning/tvm.html, 2021.

[32] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma,
and Yida Wang. Efficient execution of quantized deep learning models:
A compiler approach, 2020.

[33] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer.
{FuZZan}: Efficient sanitizer metadata design for fuzzing. USENIX
ATC, 2020.

[34] Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for
neural network quantization. arXiv preprint arXiv:1912.10207, 2019.

[35] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network
quantization with adaptive bit-widths. CVPR, 2020.

[36] Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks,
2020.

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[38] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. CGO, 2004.

[39] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple
Unified Framework for Detecting Out-of-Distribution Samples and
Adversarial Attacks. NeurIPS, 2018.

[40] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi,
and Xiaofeng Wang. Detecting Adversarial Image Examples in Deep
Neural Networks with Adaptive Noise Reduction. 18(1):72–85.

[41] Shiyu Liang, R Srikant, and Yixuan Li. ENHANCING THE RELI-
ABILITY OF OUT-OF-DISTRIBUTION IMAGE DETECTION IN
NEURAL NETWORKS. page 27.

[42] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming
Zhang. Coverage-guided tensor compiler fuzzing with joint ir-pass
mutation. OOPSLA, 2022.

[43] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-
based Out-of-distribution Detection. NeurIPS, 2020.

[44] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang.
Optimizing {CNN} model inference on cpus. USENIX ATC, 2019.

[45] Julia Lust and Alexandru P Condurache. GraN: An efficient gradient-
norm based detector for adversarial and misclassified examples.
page 6.

[46] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su,
Fuyuan Zhang, Minhui Xue, Bo Li, Li Li, Yang Liu, et al. DeepGauge:
Comprehensive and multi-granularity testing criteria for gauging the
robustness of deep learning systems. ASE, 2018.

[47] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao,
Wei Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou.
Rammer: Enabling holistic deep learning compiler optimizations with
rtasks. OSDI, 2020.

[48] Shiqing Ma and Yingqi Liu. NIC: Detecting adversarial samples with
neural network invariant checking. NDSS, 2019.

[49] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[50] Clang User’s Manual. Undefined behavior sanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html, 2019.

[51] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016.

[52] Timothy Prickett Morgan. INSIDE FACEBOOK’S FUTURE RACK
AND MICROSERVER IRON. https://www.nextplatform.com/2020/
05/14/inside-facebooks-future-rack-and-microserver-iron/, 2020.

[53] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly compatible and complete spatial
memory safety for C. PLDI, 2009.

[54] George C Necula and Peter Lee. The design and implementation of a
certifying compiler. ACM SIGPLAN Notices, 33(5):333–344, 1998.

[55] Nvidia. NVVM IR. https://docs.nvidia.com/cuda/nvvm-ir-spec/index.
html, 2021.

[56] NXP. NXP uses Glow to optimize models for low-
power NXP MCUs. https://www.nxp.com/company/blog/
glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:
BL-OPTIMIZES-NEURAL-NETWORKS, 2020.

[57] OctoML. OctoML leverages TVM to optimize and deploy models.
https://octoml.ai/features/maximize-performance/, 2021.

[58] Augustus Odena and Ian Goodfellow. Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing. arXiv preprint
arXiv:1807.10875, 2018.

16

https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://octoml.ai/features/maximize-performance/

[59] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. AsiaCCS, 2017.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. 2019.

[61] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore:
Automated whitebox testing of deep learning systems. SOSP, 2017.

[62] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. CRA-
DLE: Cross-backend validation to detect and localize bugs in deep
learning libraries. ICSE, 2019.

[63] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier,
Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
Problems and opportunities in training deep learning software systems:
An analysis of variance. ASE, 2020.

[64] Pytorch. Dense Convolutional Network (DenseNet). https://pytorch.
org/hub/pytorch vision densenet/, 2021.

[65] Qualcomm. Qualcomm contributes Hexagon DSP improvements to
the Apache TVM community, 2020.

[66] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. Acm Sigplan Notices, 48(6):519–530,
2013.

[67] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial attacks
and defenses in deep learning. Engineering, 6(3):346–360, 2020.

[68] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Sum-
mer Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan
Lele, Roman Levenstein, et al. Glow: Graph lowering compiler
techniques for neural networks. arXiv preprint arXiv:1805.00907,
2018.

[69] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual ex-
planations from deep networks via gradient-based localization. ICCV,
2017.

[70] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker.
USENIX, 2012.

[71] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-
Chi Cheung, and Xiang Chen. A comprehensive study of deep learning
compiler bugs. FSE, 2021.

[72] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[73] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn
Volckaert, Per Larsen, and Michael Franz. SoK: Sanitizing for security.
2019.

[74] Philip Sperl, Ching-Yu Kao, Peng Chen, Xiao Lei, and Konstantin
Böttinger. DLA: Dense-Layer-Analysis for Adversarial Example
Detection. pages 198–215. IEEE Computer Society.

[75] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer: Fast
detector of uninitialized memory use in C++. CGO, 2015.

[76] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Eliminating redundant
bounds checks in dynamic buffer overflow detection using weakest
preconditions. IEEE Transactions on Reliability, 2016.

[77] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribu-
tion for deep networks. ICML, 2017.

[78] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. Hybrid batch
attacks: Finding black-box adversarial examples with limited queries.
USENIX Security, 2020.

[79] Keke Tang, Dingruibo Miao, Weilong Peng, Jianpeng Wu, Yawen Shi,
Zhaoquan Gu, Zhihong Tian, and Wenping Wang. Codes: Chamfer
out-of-distribution examples against overconfidence issue. ICCV,
2021.

[80] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. DeepTest:
Automated testing of deep-neural-network-driven autonomous cars.
ICSE ’18, 2018.

[81] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes
Kinder. High system-code security with low overhead. IEEE S&P,
2015.

[82] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. ViM:
Out-Of-Distribution with Virtual-logit Matching. CVPR, 2022.

[83] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham,
and Lin Tan. EAGLE: Creating equivalent graphs to test deep learning
libraries. 2022.

[84] Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu,
and Jian Cheng. Two-step quantization for low-bit neural networks.
CVPR, 2018.

[85] Run Wang, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yihao Huang, Jian
Wang, and Yang Liu. FakeSpotter: A Simple yet Robust Baseline for
Spotting AI-Synthesized Fake Faces. volume 4, pages 3444–3451.

[86] Shuai Wang and Zhendong Su. Metamorphic object insertion for
testing object detection systems. In ASE, 2020.

[87] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: Analyzing the impact of
undefined behavior. SOSP, 2013.

[88] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi
Bagheri, and Ronald M. Summers. Chestx-ray8: Hospital-scale chest
x-ray database and benchmarks on weakly-supervised classification
and localization of common thorax diseases. CVPR, 2017.

[89] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang.
Deep learning library testing via effective model generation. FSE,
2020.

[90] Sally Ward-Foxton. Google and Nvidia Tie in MLPerf;
Graphcore and Habana Debut. https://www.eetimes.com/
google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut, 2021.

[91] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang.
Metamorphic testing of deep learning compilers. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 6(1):1–28,
2022.

[92] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue,
Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, and Simon See.
Coverage-guided fuzzing for deep neural networks. arXiv preprint
arXiv:1809.01266, 2018.

[93] Xilinx. Xilinx support TVM on DPU. https://www.xilinx.com/html
docs/xilinx2019 2/vitis doc/deploying running.html, 2020.

[94] Zhichen Xu, Barton P Miller, and Thomas Reps. Safety checking of
machine code. ACM SIGPLAN Notices, 35(5):70–82, 2000.

[95] Jiancheng Yang, Yangzhou Jiang, Xiaoyang Huang, Bingbing Ni, and
Chenglong Zhao. Learning black-box attackers with transferable priors
and query feedback. 2020.

[96] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing
Deng, Jianqiang Huang, and Xian-sheng Hua. Quantization networks.
CVPR, 2019.

[97] Jianhe Yuan and Zhihai He. Consistency-sensitivity guided ensemble
black-box adversarial attacks in low-dimensional spaces. ICCV, 2021.

[98] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial
examples: Attacks and defenses for deep learning. IEEE transactions
on neural networks and learning systems, 30(9):2805–2824, 2019.

[99] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and
Sanjay Rajopadhye. Alphaz: A system for design space exploration in
the polyhedral model. In International Workshop on Languages and
Compilers for Parallel Computing, pages 17–31. Springer, 2012.

[100] Michał Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.cx/
afl/, 2021.

[101] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong
Su. {SANRAZOR}: Reducing redundant sanitizer checks in {C/C++}
programs. OSDI, 2021.

[102] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and
Sarfraz Khurshid. DeepRoad: GAN-based Metamorphic Testing and
Input Validation Framework for Autonomous Driving Systems. In
ASE, 2018.

[103] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Trian-
dopoulos, and Jun Xu. Debloating address sanitizer.

[104] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and
Lu Zhang. An empirical study on tensorflow program bugs. ISSTA
2018, 2018.

[105] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang.
Improving neural network quantization without retraining using outlier
channel splitting. ICML, 2019.

[106] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros.
Generative visual manipulation on the natural image manifold. In
European conference on computer vision, pages 597–613. Springer,
2016.

[107] Fei Zuo and Qiang Zeng. Exploiting the sensitivity of l2 adversarial
examples to erase-and-restore. AsiaCCS, 2021.

17

https://pytorch.org/hub/pytorch_vision_densenet/
https://pytorch.org/hub/pytorch_vision_densenet/
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/deploying_running.html
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/deploying_running.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

TABLE XV: Implementations of inverted operators for backward propagation, where x and y are the input and output of each
operator/layer, and x∗ and y∗ are the input and output of each inverted operator/layer.

Operator/Layer Description Inverted Implementation

Fully connected layer y = Wx+ b. W and b are the parameters. The inverted layer can be implemented as another
fully connected layer y∗ = WT x∗ + b

Convolution layer y =
∑

kernelW ? x+ b. W and b are the parameters. The inverted layer can be implemented as a transposed
? is the 2D cross-correlation operator [19, 60]. convolutional layer of parameters W and b.

ReLU y = max(0, x). Activation function w/o parameters.
g =

{
1, x∗ > 0
0, x∗ ≤ 0

y∗ = gx∗.

LeakyReLU
y =

{
x, x > 0
αx, x ≤ 0

g =

{
1, x∗ > 0
α, x∗ ≤ 0

α is a hyperparameter. y∗ = gx∗.

Max Pooling
Record y[. . . , w, h] = max x[. . . , w + k[0], h+ k[1]] 1) Let y∗[. . . , w + k[0], h+ k[1]] = 0.
and (i, j) = arg max x[. . . , w + k[0], h+ k[1]]. 2) For each (w, h, i, j) pair, set
for each (w, h) pair. k is a 2D kernel. y∗[. . . , i, j] = x∗[. . . , w, h].

Average Pooling
y[. . . , w, h] = 1

k[0]
1

k[1]

∑
x[. . . , w + k[0], h+ k[1]].

k is a 2D kernel.

1) Let g = 0 and for each (w, h),
set g[. . . , w : w + k[0], h : h+ k[1]]
= g[. . . , w : w + k[0], h : h+ k[1]] + 1

k[0]
1

k[1]

2) y∗ = gx∗.

Sigmoid y = σ(x) = 1

1+e−x . Activation function w/o parameters. y∗ = σ(x∗)(1− σ(x∗))

Tanh y = tanh(x) = 2

1+e−2x − 1 y∗ = 1− tanh(x∗)2

Input

Conv1

ReLU1

Linear1

Output

Backward OOB Info

DKL

<latexit sha1_base64="myba+BQxastJXB1AFQYyPOybqx0=">AAACaXichVFNLwNBGH66vqq+Wi7CpdEQp2ZWCHESHCQcUC0JTbO7piz7ld1pEzb9A05ughOJiPgZLv6AQ3+COJK4OHh3u4nQ4J3MzDPPvM87z8yojqF7grF6TGppbWvviHcmurp7evuSqf6CZ1dcjec127DdLVXxuKFbPC90YfAtx+WKqRp8Uz1cCPY3q9z1dNvaEEcOL5rKnqWXdU0RRBUWS/7ySq2UzLAsCyPdDOQIZBDFqp28xQ52YUNDBSY4LAjCBhR41LYhg8EhrgifOJeQHu5z1JAgbYWyOGUoxB7SuEer7Yi1aB3U9EK1RqcY1F1SpjHKntgde2WP7J49s49fa/lhjcDLEc1qQ8udUt/JYO79X5VJs8D+l+pPzwJlzIRedfLuhExwC62hrx6fveZm10f9MXbNXsj/FauzB7qBVX3Tbtb4+iUS9AHyz+duBoWJrDyZnVqbzMzNR18RxzBGME7vPY05LGEVeTr3AKc4x0XsRUpJg9JQI1WKRZoBfAsp8wktRovs</latexit>

Grad

Mul

Input

Conv1

ReLU1

Linear1

Output

Comp

Comp

Forward OOB Info

Conv1Ref

Linear1Ref

(a) Instrumentation using .
ReLU1 is excluded from OOB checks.

(b) Instrumentation using . Only
the last layer is hooked with .

<latexit sha1_base64="TEOCvLSW7wSeltBUaEclSMl/2OM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiRT2WCuLNivYD2lA22027dLMJuxOxhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzz48F1+A431ZuZXVtfSO/Wdja3tkt2nv7TR0lirIGjUSk2j7RTHDJGsBBsHasGAl9wVr+6HLqtx6Y0jyS9zCOmReSgeQBpwSM1LOLXWCPoGl6dVO7I3LSs0tO2ZkBLxM3IyWUod6zv7r9iCYhk0AF0brjOjF4KVHAqWCTQjfRLCZ0RAasY6gkIdNeOjt8go+N0sdBpExJwDP190RKQq3HoW86QwJDvehNxf+8TgLBhZdyGSfAJJ0vChKBIcLTFHCfK0ZBjA0hVHFzK6ZDoggFk1XBhOAuvrxMmqdl96xcua2UqrUsjjw6REfoBLnoHFXRNaqjBqIoQc/oFb1ZT9aL9W59zFtzVjZzgP7A+vwBzqeTMg==</latexit>

FOBSan
<latexit sha1_base64="UtpxvK9srAXHK7sxRBI7iC7aR7s=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyURUY+lXrxZ0X5AG8pmu22XbjZhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBbHgGl3328qtrK6tb+Q3C1vbO7tFe2+/oaNEUVankYhUKyCaCS5ZHTkK1ooVI2EgWDMYXU395gNTmkfyHscx80MykLzPKUEjde1iB9kjappWb6p3RE66dsktuzM4y8TLSAky1Lr2V6cX0SRkEqkgWrc9N0Y/JQo5FWxS6CSaxYSOyIC1DZUkZNpPZ4dPnGOj9Jx+pExJdGbq74mUhFqPw8B0hgSHetGbiv957QT7l37KZZwgk3S+qJ8IByNnmoLT44pRFGNDCFXc3OrQIVGEosmqYELwFl9eJo3TsndePrs9K1WqWRx5OIQjOAEPLqAC11CDOlBI4Ble4c16sl6sd+tj3pqzspkD+APr8wfIf5Mu</latexit>

BOBSan
<latexit sha1_base64="UtpxvK9srAXHK7sxRBI7iC7aR7s=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyURUY+lXrxZ0X5AG8pmu22XbjZhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBbHgGl3328qtrK6tb+Q3C1vbO7tFe2+/oaNEUVankYhUKyCaCS5ZHTkK1ooVI2EgWDMYXU395gNTmkfyHscx80MykLzPKUEjde1iB9kjappWb6p3RE66dsktuzM4y8TLSAky1Lr2V6cX0SRkEqkgWrc9N0Y/JQo5FWxS6CSaxYSOyIC1DZUkZNpPZ4dPnGOj9Jx+pExJdGbq74mUhFqPw8B0hgSHetGbiv957QT7l37KZZwgk3S+qJ8IByNnmoLT44pRFGNDCFXc3OrQIVGEosmqYELwFl9eJo3TsndePrs9K1WqWRx5OIQjOAEPLqAC11CDOlBI4Ble4c16sl6sd+tj3pqzspkD+APr8wfIf5Mu</latexit>

BOBSan

Fig. 7: A simple DNN model instrumented by the two variants
of OBSAN with layer-wise checks pruning (O2) enabled.
Subgraphs inserted are marked by dashed line boxes.

APPENDIX A
INSTRUMENTATION EXAMPLES

Fig. 7 shows two concrete examples of OBSAN instrumen-
tation on a simple DNN model, where the attached OBSAN
subgraphs are highlighted in dashed line boxes and the original
models and prediction results are unaltered.

Instrumenting Models for FOBSAN. To instrument a model
to detect forward OOB, the instrumentation pass of OBSAN
traverses the model’s computational graph in Relay IR and
hook each interesting layer with checks which compare the
layer’s outputs with its reference values, as noted above.
Fig. 7(a) shows a simple case of FOBSAN instrumentation
where the intermediate outputs of the Conv1 and Linear1 layers
are compared with their respective references and the results
are then aggregated to produce the final OOB information. The
outputs of the ReLU1 layer are omitted from the instrumenta-
tion as an optimization (optimization O2; see Sec. V-B). Since
the reference values need to be built using the training data,
FOBSAN also introduces two range building components, one
for Conv1 (Conv1Ref) and the other for Linear1 (Linear1Ref).
These components will be gradually updated in the Record
Mode (Fig. 5(b)) and allow FOBSAN to capture and store the
required reference values.

Instrumenting Models for BOBSAN. The instrumentation is
slightly different to enable the backward variant of OBSAN.
The model output layer is traversed first, and the traversal
continues towards the input layer, carrying along the gradient
information as calculated in Sec. IV-B to finish the backward
propagation. Although no reference values are needed for
BOBSAN and thus storage requirements are lowered, the
calculation of gradients can be computationally expensive as
it can involve operations like matrix multiplication. We thus
optimize BOBSAN in the sense that only the last n layers
are instrumented; see O2 in Sec. V-B for details. Fig. 7(b)
illustrates the instrumentation of a simple DNN model using
BOBSAN where only the last layer is included in gradients
computation. Our experiments show that with such optimiza-
tions, BOBSAN typically offers satisfactory OOB detection
capability while maintaining low computation costs.

APPENDIX B
EXTENDING FOR GRADIENT COMPUTATION

To enable backward propagation of DNN executable e for
gradient computation, we first implement an inverted operator
f−1
i for each operator fi in e. We then compose each inverted

operator from the ending layer (f−1
l ; following the order in e)

to the starting layer (f−1
1) and build a new inverted DNN e∗ =

f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
l . As a result, the backward propagation

can be accomplished by feeding e∗ with g; see Eq. 2 for the
calculation of g.

Table XV lists operators from the DNNs evaluated in
this paper and how the correspondingly inverted operator is
implemented. We clarify that these operators are representative
and cover operators in most popular DNNs. We also make OB-
SAN extendable for users to implement new inverted operator
(see [2]) which should be straightforward given the gradient
computations are rigorously defined math formulas.

18

	Introduction
	Preliminary
	Deep Neural Networks
	DL Compilers
	Software Sanitizers

	Motivation, Assumption, and Usages
	Overview: OOB Detection
	Detecting Forward OOB with FOBSan
	Detecting Backward OOB with BOBSan

	OBSan Design
	Hardening DNN Executables with OBSan
	Optimizing Overhead of OBSan

	OBSan Implementation
	OBSan Usage Scenarios
	Evaluation
	RQ1: OOB Detectability
	RQ2: Optimization Evaluation

	RQ3: Downstream Security Applications
	Mitigating Query-Based Online AE Generation
	DNN Executable Feedback-Driven Fuzzing

	Discussion
	Comparison with Existing Approaches
	Extensibility

	Related Work
	References
	Appendix A: Instrumentation Examples
	Appendix B: Extending for Gradient Computation

