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Abstract—The Content Security Policy (CSP) is one of the
de facto security mechanisms that mitigate web threats. Many
websites have been deploying CSPs mainly to mitigate cross-
site scripting (XSS) attacks by instructing client browsers to
constrain JavaScript (JS) execution. However, a browser bug
in CSP enforcement enables an adversary to bypass a deployed
CSP, posing a security threat. As the CSP specification evolves,
CSP becomes more complicated in supporting an increasing
number of directives, which brings additional complexity to
implementing correct enforcement behaviors. Unfortunately, the
finding of CSP enforcement bugs in a systematic way has been
largely understudied.

In this paper, we propose DiffCSP, the first differential testing
framework to find CSP enforcement bugs involving JS execution.
DiffCSP generates CSPs and a comprehensive set of HTML
instances that exhibit all known ways of executing JS snippets.
DiffCSP then executes each HTML instance for each generated
policy across different browsers, thereby collecting inconsistent
execution results. To analyze a large volume of the execution
results, we leverage a decision tree and identify common causes
of the observed inconsistencies. We demonstrate the efficacy of
DiffCSP by finding 29 security bugs and eight functional bugs. We
also show that three bugs are due to unclear descriptions of the
CSP specification. We further identify the common root causes
of CSP enforcement bugs, such as incorrect CSP inheritance and
hash handling. We confirm the risky trend of client browsers
deriving completely different interpretations from the same CSPs,
which raises security concerns. Our study demonstrates the
effectiveness of DiffCSP for identifying CSP enforcement bugs,
and our findings have contributed to patching 12 security bugs
in major browsers, including Chrome and Safari.

I. INTRODUCTION

Content Security Policy (CSP) [4, 5, 6] is a protection
mechanism that has become a de facto measure of security
mitigation. A web developer declares a CSP for their website
in the web response header or the response body via a meta
tag. This instructs the browser to honor the CSP and govern
the execution and inclusion of various web resources, such as
scripts or images. The CSP specification has evolved into the
level 3 specification (CSP3) [6] since its adoption by major
browsers, including Chrome, Firefox, Edge, and Safari.

1 XSS attack payload:
2 http://[Target URL]/PoC.html#javascript:alert('XSS')
3 CSP: script-src-elem 'sha256-aHbTR...';
4 Target website:
5 <script>
6 let hash = window.location.hash.slice(1);
7 window.location.href = hash;
8 </script>

Fig. 1: An HTML instance that triggers a bug in Chrome; the
adversary bypasses CSP enforcement by exploiting this bug.

CSP has been increasingly deployed on the Web. Most
CSPs are meant to mitigate the impact of cross-site script-
ing (XSS) attacks by limiting the sources from which an
adversary can draw their injected scripts. Weichselbaum et al.
demonstrated that 1,680,000 Internet hosts deployed a CSP,
and 86% of the unique CSPs that they crawled were designed
to mitigate XSS threats [70]. Roth et al. also showed that by
2019, 1,233 out of the 10,000 popular sites listed in the Internet
Archive had deployed a CSP [58].

Due to the nature of a client-side security mechanism, CSP
depends on browsers to honor a given policy and correctly
govern the inclusion of web resources according to the policy.
In particular, CSP plays a crucial role in mitigating XSS
threats by governing the execution of JS snippets based on
their source URL, hash value, or attached nonce. Therefore, a
browser bug in CSP enforcement regarding JS execution causes
actual behaviors to deviate from the CSP specification and the
expectations of site operators. Accordingly, such discrepancies
open security holes for an XSS attacker to bypass CSPs and
inject adversarial JS snippets.

Figure 1 shows a CSP that defines script-src-
elem [35] to have the hash value of sha256-aHbTR....
The expected behavior is that a browser would only
execute the inline JavaScript (JS) snippet in a script
tag or javascript:, the hash value of which is
sha256-aHbTR... (i.e., the JS between Lines 6–7). Hence,
any injected inline scripts will be blocked according to the
defined policy. However, a bug in Chrome and Edge that
we discovered in this paper allows an XSS attacker to inject
arbitrary JS via javascript: navigation regardless of the
hash value in the script-src-elem directive.

Despite the severity of CSP enforcement bugs, to the best
of our knowledge, no previous studies have addressed the
systematic identification of browser bugs in CSP enforcement
regarding JS execution. In this paper, we hence raise the
research question: How can we identify browser bugs in CSP
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enforcement regarding JS execution?

Contributions. We propose DiffCSP, the first testing frame-
work designed to find CSP enforcement bugs in governing JS
execution. To identify bugs in browsers without analyzing their
source code, we choose to generate inputs that are highly likely
to exhibit erroneous CSP enforcement. Specifically, DiffCSP
generates HTML instances that exhibit all the known forms of
executing JS snippets and diverse CSPs. DiffCSP then checks
whether a generated CSP is violated across these generated
HTML instances due to an inherent browser bug by checking
whether the embedded JS snippet in each HTML instance is
executed.

Devising a testing framework that finds CSP enforcement
bugs by generating inputs entails three technical challenges:
(1) the testing framework should generate comprehensive
inputs (i.e., CSPs and HTMLs) that trigger inherent browser
bugs; (2) it should identify unexpected execution results for
each generated input that may lead to finding browser bugs;
and (3) it should help an analyzer examine a large number of
generated inputs that exhibit unexpected behaviors.

To address the first challenge, we define a data-driven
HTML grammar by referencing known CSP bugs [10], known
XSS attack payloads [8], an HTML security cheat sheet [24],
and the ECMAScript specification [17]. That is, this HTML
grammar is designed to derive adversarial HTML instances
that exhibit all known forms of embedding JS snippets. For the
second challenge, we conduct differential testing on generated
inputs on three desktop and five mobile browsers and identify
a set of inputs that cause inconsistent execution results. That
is, we use the inconsistent execution results for each generated
input as a bug oracle.

Notably, different browser vendors may support different
levels of the CSP specification (e.g., until recently, Safari did
not support the strict-dynamic keyword introduced in
2016), and we generate many HTML instances that exhibit
diverse ways of executing JS snippets. Therefore, DiffCSP
reports a large number of inputs that cause behavioral dif-
ferences. Subsequently, it becomes difficult to analyze all
test inputs causing these inconsistencies. To overcome this
challenge, we first vectorize the execution result for each
generated HTML instance and label this HTML instance as
either consistent or inconsistent based on its execution result.
Using these vectors and their labels, we compute a decision
tree to ease the identification of causes that result in a large
number of observed inconsistencies. We then identify all paths
leading to inconsistent execution results in the decision tree.
For each collected path, we manually analyze the conditions
that appear in the path and HTML instances that correspond
to this decision path. Therefore, DiffCSP helps us to identify
causes while avoiding an analysis of each HTML instance that
causes an inconsistency, thus addressing the third challenge.

Using DiffCSP, we found CSP enforcement bugs in three
desktop and five mobile browsers. For the desktop browsers,
we found 37 bugs in Chrome, Firefox, and Safari. These
browser vendors patched 23 bugs; eight of them were patched
solely due to our bug reports, and four were patched in
response to addressing reports from ours and other bug re-
porters. For four bugs, we are awaiting the responses from
the browser vendors. Out of the 37 identified bugs, 29 bugs

1 script-src 'self';
2 default-src http://a.com;

Fig. 2: An example of content restriction using CSP.

undermine security, allowing the attacker to bypass CSPs and
inject executable JS snippets. Furthermore, we identified that
three bugs stem from the vague or missing descriptions in the
CSP standard [6].

In summary, this paper makes the following contributions:

1) We design and implement DiffCSP, the first testing
framework that identifies browser bugs in CSP enforcement
regarding JS execution.

2) We propose conducting differential testing across mul-
tiple browsers by generating a diverse set of test inputs that
exhibit unexpected behaviors regarding CSP enforcement.

3) To systematically analyze the observed inconsistencies,
we leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement.

4) We identify 37 browser bugs, including 29 security
bugs. We find that three bugs are due to unspecified rules
in the CSP specification, thus recommending revision of the
specification. Chromium, Safari, and Firefox browser vendors
have patched 12 of them, providing an award for the bugs
found in Chrome, Safari, and Firefox with a bounty of 4,000
USD.

5) To support open science and reproducible research,
we will release DiffCSP at https://github.com/WSP-LAB/
DiffCSP.

II. BACKGROUND

A. Content Security Policy

A content security policy (CSP) refers to an HTTP response
header or a policy defined via a meta element, which enables
client software (e.g., browsers) to honor a defined policy. By
design, it is a browser’s responsibility to enforce a defined
CSP while rendering a webpage, governing the inclusion of
web resources based on their domain sources or hash values.

Stamm et al. [65] originally proposed CSP, with the
original goal of mitigating cross-site scripting (XSS) attacks.
Browser vendors have adopted CSP and developed its standard
specification. The first specification was finalized in 2015 and
CSP level 2 was already published in 2016. Since then, CSP3
has remained a working draft, however, is the de facto standard
that should be implemented in browsers [6].

A CSP consists of directives, each of which defines a set
of values. Figure 2 shows two directives: default-src
and script-src. In the presence of script-src, this
directive governs the inclusion of scripts. In this case,
this means that the page can only execute external scripts
hosted on http://a.com, but it implicitly disallows inline
scripts, inline event handlers, and eval. All other resources
(e.g., images or fonts) must be loaded from the page’s origin,
given the default-src fallback directive. This directive
controls all resources for which a more specific directive
(e.g., image-src or font-src) is not present in the policy.

The straightforward nature of defining allowed domains
simplified the implementation of CSP enforcement in browsers
in the early stage of CSP. However, CSP level 3 now supports
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25 directives, nine source keywords, and multiple fallback
mechanisms, which bring complexity to implementing correct
behaviors for all possible CSPs. Considering that CSP level 1
has supported only 10 directives with four source keywords,
the usage of CSP has become more complicated due to its
supporting various fine-grained security policies [58].

It is natural for browser vendors to experience difficulties
in implementing correct behaviors for all possible CSPs. For
example, external scripts can be governed by script-src-
-elem, which falls back to script-src, which in turn falls
back to default-src. The script-src-elem directive,
however, was only recently added to the working draft and
may not be implemented by all browsers. Hence, the number
of possible combinations of CSPs and the differing levels
of support across browsers make it challenging to conduct
systematic testing of CSPs.

Consequently, a bug in CSP enforcement poses a serious
security threat. Consider a site operator who deploys a CSP
that forbids inline scripts without matching hashes in the CSP.
A browser bug may enable the adversary to inject a new
inline script, which obsoletes the need to deploy CSPs. In
this paper, we assume an XSS adversary who abuses such
CSP enforcement bugs. The adversary’s goal is to conduct
successful XSS attacks by exploiting an XSS vulnerability
in a target website and bypassing the CSP emplaced on this
website.

III. MOTIVATION AND TECHNICAL CHALLENGES

Recent work [58] has highlighted that XSS mitigation is on
par with framing control and TLS enforcement. However, this
original goal remains the most complex and important aspect
of CSP [43, 70]. It is thus important for browser vendors to
ensure that JS execution adheres to a given CSP.

Unfortunately, there have been no previous studies that
systematically identify browser bugs in enforcing CSP that
govern JS execution. We tackle this bug identification problem
by generating testing inputs and checking whether these inputs
cause unexpected behaviors in enforcing a given CSP. That is,
we generate a set of inputs that trigger inherent browser bugs
that cause erroneous CSP enforcement.

Finding CSP enforcement bugs via input generation entails
three technical challenges: (1) generating comprehensive test-
ing inputs that trigger CSP enforcement bugs, (2) identifying
unexpected browser behaviors for the generated inputs that
leads to the identification of bugs, and (3) analyzing the causes
of the bugs triggered.

Generating inputs. Each browser vendor has already im-
plemented their own regression tests that check for CSP
enforcement. It is thus vital to generate a comprehensive set
of testing inputs that trigger inherent bugs that the existing
regression testing set does not cover. In our study, we observed
that the regression tests in WebKit and Chromium missed
several test instances that involve page navigation in a child
iframe or window instance (§V-D). We also found that these
tests were applied as-is to the browser’s regression test set,
without any combination or mutation.

To address this challenge, we generate diverse CSPs and
adversarial inputs of HTML files that exhibit all known ways of

embedding executable JS snippets. Specifically, we reference
previous browser attacks [10, 11], known XSS attack pay-
loads [8], and the ECMAScript specification [17] in deriving
an HTML grammar. We then use this grammar to generate
25,880 HTML instances. Note that DiffCSP conducts testing
on 25,880 HTML instances against 1,006 CSPs, whereas the
Chromium team has implemented their own web platform tests
consisting of 98 HTML files to vet the correctness of CSP
enforcement involving JS execution [39].

Implementing bug oracles. Given a test input (i.e., a gener-
ated CSP and an HTML instance embedding a JS snippet), the
identification of erroneous behaviors should precede the deci-
sion regarding whether the testing CSP and HTML instance
trigger a CSP enforcement bug. However, given a large number
of testing inputs, the manual identification of their correct
behaviors by referencing the CSP specification is infeasible.
Note that this manual identification involves generating a
test case, mapping this test case to the corresponding CSP
specifications, extracting the correct behavior, and converting
this behavior into a testing oracle, a process that needs to be
done just once per case. Considering that we generate 25,880
HTML instances that embed JS snippets and test them against
1,006 different CSPs, the manual identification of correct
behaviors for these cases is not scalable.

For this, we conduct differential testing that executes
each generated HTML instance with a testing CSP across
different browsers. We then identify inconsistent execution
results, which elucidate erroneous behaviors to be checked. We
assume that the test inputs that cause different results between
browsers, even by at least one browser, are highly likely due
to inherent bugs in CSP enforcement.

Identifying root causes. Considering that we generate a large
number of HTML instances and CSPs for differential testing,
it is natural to generate a large number of inputs that cause
inconsistent execution results. Thus, the manual analysis of
each inconsistent behavior to identify its root causes would be
intractable. Accordingly, we propose a new way of analyzing
the inconsistent execution results observed. We compute a
decision tree for the execution results and analyze this de-
cision tree to identify common factors behind the observed
inconsistencies.

IV. DESIGN

A. Workflow

Figure 3 illustrates the overall architecture of DiffCSP,
which consists of three components: GENERATOR, EXECUTOR,
and ANALYZER. At a high level, these components work
together to conduct three steps: (1) the GENERATOR generates
two sets of test inputs: a set of CSPs and another set of
HTML instances, each of which contains a JS snippet; (2) the
EXECUTOR coordinates the testing of browsers to execute each
HTML instance for each test CSP and collects JS execution
results and their inconsistencies across the testing browsers;
and, after the EXECUTOR runs all test inputs in all testing
browsers, (3) the ANALYZER computes a decision tree using
the observed execution results. We use this computed decision
tree to group testing inputs that share common conditions
for observed inconsistencies and then conduct a post-mortem
analysis for the testing inputs sampled from these groups.
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Fig. 3: DiffCSP architecture.

B. GENERATOR

The GENERATOR generates a set of CSPs and another set
of HTML instances, which become test inputs for differential
testing. Our goal here is to generate diverse types of test CSPs
and HTML instances regarding JS execution. In particular,
we compose all known ways of executing simple JS snippets
in HTML as well as diverse CSPs governing JS execution.
Additionally, the GENERATOR generates a set of status codes
that will be mapped to a subset of the generated HTML
instances to test the effect of status codes on CSP enforcement.

CSP generation. Table I shows all directives and their values
that the GENERATOR leverages to generate CSPs. We design
this component to generate policies involving default-
-src [13], script-src [33], script-src-elem [35],
and script-src-attr [34] directives, which are all the
directives that affect JS execution according to the CSP3
working draft [6].

For these directives, we define 12 representative val-
ues grouped into five categories (i.e., keyword, host-source,
schemes, nonce-source, and hash-source) by referring to the
policy specification [36]. Since the [HASH] value in the hash-
source group should be different for each tested JS, the value
is not fixed when generating a policy; it is changed later before
the EXECUTOR executes the test HTML instance (§IV-C).

To define a host-source value, we assume three
web servers: (1) a self-origin server (http://127.-
0.0.1:8000), (2) an allowed-origin server (http://-
127.0.0.1:8080), and (3) a blocked-origin server
(http://127.0.0.1:8082). The self-origin server is de-
signed for testing CSPs containing self. The allowed-origin
and blocked-origin servers are for fetching allowed and blocked
cross-origin JS snippets, respectively.

We also define corner cases for directives and values,
which are likely to be provided by site operators. For example,
according to the CSP specification, the URLs in directive
values should contain only ASCII characters [36]1. However,
it is reasonable that one unfamiliar with the specification may
write URLs with non-ASCII characters [26] in a CSP. With

1Non-ASCII domain names cannot be entered into a CSP, but instead must
be Punycode- encoded.

Directive
default-src, script-src,
script-src-elem, script-src-attr
Corner case Capitalized directive (Default-src)

Value

Keyword
none | unsafe-inline | unsafe-eval |

self | strict-dynamic | unsafe-hashes

Host-source
Self URL (http://127.0.0.1:8000) |
Allowed URL (http://127.0.0.1:8080) | *

Schemes data: blob: http: https:

Nonce-source nonce-123

Hash-source sha256-[HASH]

Corner case
Non-ASCII URL (http://üüü.de) | empty |

Capitalized keyword (‘None’) |
Capitalized host (Http://127.0.0.1:8000) |
Capitalized nonce (‘Nonce-123’)

TABLE I: Elements used to generate testing CSP.

the expectation that such exceptional cases render behavioral
differences across browsers, we prepare a non-ASCII URL
value. We also prepare four more directive values: empty and
the capitalized forms of keyword, web server address, and
nonce-source [14, 16, 29, 31].

The GENERATOR enumerates all possible combinations
of the directives and values above. However, we restrict the
GENERATOR to generating CSPs having at most two directive
values for each generated directive. Through this process, the
GENERATOR generates 1,006 CSPs. For each generated policy,
it assigns a unique identifier, CSP_ID, which the EXECUTOR
and ANALYZER use to associate behavior with a specific CSP.

HTML generation. Table II summarizes an HTML grammar
that DiffCSP leverages to generate test inputs of HTML
instances. To design this grammar, we referenced known
CSP enforcement bugs [10, 11], XSS attack payloads [8],
an HTML security cheat sheet [24], and the ECMAScript
specification [17]. We emphasize that DiffCSP does not simply
reuse the referenced HTML and JS examples; rather, we build
grammar out of these referenced files. The GENERATOR is thus
able to compose all possible combinations of HTML instances
that embed simple JS snippets [62, 69].

The GENERATOR enumerates a set of test HTML instances
by traversing the defined HTML grammar in a depth-first
manner. From a root grammar rule with the non-terminal
symbol of [HTML], the GENERATOR composes an HTML
instance by applying an applicable grammar rule and replacing
each non-terminal symbol.

Specifically, the GENERATOR starts by composing an
HTML instance by applying a derivation rule with the
non-terminal symbol of [HTML]. From the current HTML
instance in composition, it identifies non-terminal sym-
bols (i.e., [JS_REQ_URL], [JS_INLINE_URL], [PAGE],
[SCHEME], [JS], and [HTML]) and replaces each non-
terminal symbol by applying an applicable grammar rule.
The GENERATOR repeats this process until either of the
following termination conditions is satisfied: (1) the GEN-
ERATOR encounters an element in [JS_REQ_URL] or
[JS_INLINE_URL], or (2) the number of applied grammar
rules exceeds five. The first termination condition denotes that
the GENERATOR successfully composes an HTML instance
that executes an inline script or imports a JS script. The
second condition means that the GENERATOR discards the
generated HTML instance when it becomes too complicated.
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Symbol HTML/JS Derivation Rule Feature Value

[JS_REQ_URL]
http://127.0.0.1:8000/self.js?csp_id=[CSP_ID]&html_id=[HTML_ID]&status_code=[CODE]

JS Execution
Method

Self-JS: 0
http://127.0.0.1:8080/allowed.js?csp_id=[CSP_ID]&html_id=[HTML_ID]&status_code=[CODE] Allowed-JS: 1
http://127.0.0.1:8082/blocked.js?csp_id=[CSP_ID]&html_id=[HTML_ID]&status_code=[CODE] Blocked-JS: 2

[JS_INLINE_URL] http://127.0.0.1:8000/executed?csp_id=[CSP_ID]&html_id=[HTML_ID]&status_code=[CODE] Inline JS: 3

[PAGE] self.html | about:blank | self.txt - -

[SCHEME] javascript:‘[HTML]’ | javascript:[JS] | data:text/html,[HTML] | data:application/js,[JS] | ... - -

[JS]

Category #1: executing inline JS fetch(‘[JS_INLINE_URL]’) - -

Category #2: evaluating string eval(‘[JS]’) | newFunction(‘[JS]’) | setTimeout(‘[JS]’,0) Included or not 0-1

Category #3: dynamically fetching JS var o=document.createElement(’script’); Included or not 0-1
o.src=‘[JS_REQ_URL]’;document.body.appendChild(o)

Category #4: redirecting to scheme location=‘[SCHEME]’ | window.open(‘[SCHEME]’) | Included or not 0-1
var o=document.createElement(’iframe’);o.src=‘[SCHEME]’;document.body.appendChild(o) | ...

Category #5: expanding document document.body.innerHTML+=‘[HTML]’ | document.write(‘[HTML]’) Included or not 0-1

Category #6: writing to opened document w=window.open(‘[PAGE]’);w.document.write(‘[HTML]’) Included or not 0-1

[HTML]

Category #1: executing inline JS in script tag <script>[JS]</script> Included or not 0-1

Category #2: fetching JS in script tag <script src=[JS_REQ_URL]></script> Included or not 0-1

Category #3: redirecting to scheme <a id=x href=‘[SCHEME]’></a><script>x.click()</script> | Included or not 0-1
<object data=‘[SCHEME]’></object> | <iframe src=‘[SCHEME]’></iframe> | ...

Category #4: executing inline JS in event handler <iframe onload=‘[JS]’></iframe> | Included or not 0-1
<audio src/onerror=‘[JS]’></audio> | <details ontoggle=‘[JS]’ open>test</details> | ...

Category #5: writing to frame <iframesrcdoc=‘[HTML]’></iframe> | <iframeid=x src=[PAGE]> Included or not 0-1
</iframe><script>x.onload=_=>x.contentDocument.write(‘[HTML]’)</script> | ...

Category #6: changing location of iframe <iframe id=x src=[PAGE]></iframe> Included or not 0-1
<script>x.onload=_=>x.src=‘[SCHEME]’</script> | ...

Category #7: evaluating string via frame’s function <iframe id=x src=[PAGE]></iframe> Included or not 0-1
<script>x.onload=_=>x.contentWindow.eval(‘[JS]’)</script> | ...

Category #8: expanding document <svg xmlns=http://www.w3.org/2000/svg>[HTML]</svg> |

Included or not 0-1<template id=x>[HTML]</template>
<script>document.body.appendChild(x.content.cloneNode(true))</script> | ...

TABLE II: Grammar rule to generate testing HTML.

Idx Derived HTML

1 <script>[JS]</script>
2 <script>fetch(‘[JS_INLINE_URL]’)</script>

3
<script>fetch("http://127.0.0.1:8000/executed

?csp_id=[CSP_ID]&html_id=[HTML_ID]
&status_code=[CODE]")</script>

4
<script>fetch("http://127.0.0.1:8000/executed

?csp_id=[CSP_ID]&html_id=0
&status_code=[CODE]")</script> → HTML #0 generated!

... ...
923 <script nonce=123>[JS]</script>
... ...

TABLE III: Example of derivation process to generate HTMLs.

Table III shows an example of the composition process. The
GENERATOR starts by applying the first rule of [HTML] in
Table II and then continues derivation for the scanned non-
terminal symbol, i.e., [JS].

For each generated and saved HTML file, the GENERATOR
assigns a unique identifier to the [HTML_ID] of the generated
page (e.g., Idx 4 in Table III). Note that [CSP_ID] and
[CODE] have not yet been assigned at this stage. Later, the
EXECUTOR changes these values (§IV-C).

Regarding the testing of nonce-source values in test
CSPs, the GENERATOR is required to generate nonce-protected
scripts. Therefore, if a <script> tag is found while scan-
ning an element, the GENERATOR derives two pages, a
page having <script> and another page having <script
nonce=123> (e.g., Idx 1 and 923 in Table III). Then, the
GENERATOR respectively performs the composition of the

testing code.

In total, the GENERATOR generates 25,880 HTML in-
stances. To boost the testing efficiency of DiffCSP, it merges
the generated HTML instances into a number of test units,
each of which becomes an HTML file. Here, we set the
number of HTML instances in each group to 80 in order not
to cause instability in the execution pipeline. However, when
a function related to page redirection, such as window.open
or location.href, is included in an HTML instance, the
inclusion of other HTML instances in the same file will stop
the testing of HTML instances that appear after this HTML
instance involving page redirection. Thus, each HTML instance
involving page redirection is excluded from this optimization
process; such an instance is stored in a separate file.

With this approach, the GENERATOR generated 11,663
HTML files from 25,880 HTML instances. Each generated
HTML file is then stored in the web root directory of the self-
origin server that EXECUTOR accesses for differential testing.

Status code. Specific HTTP status codes may cause security
flaws, such as changing the execution context of JS snip-
pets [27, 28] or disabling certain HTTP headers [3]. Motivated
by these prior bugs, we define representative status codes
to systematically study if and how the status codes affect
CSP enforcement. In particular, the GENERATOR leverages
five representative status codes (i.e., 100, 200, 300, 400, and
500) when generating test instances. For testing efficiency, we
map all status codes to a limited set of the generated HTML
instances (§IV-C).
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Content Security Policy #5:
    script-src http://127.0.0.1:8080;

test_1.html:
  <script>fetch(http://127.0.0.1:8000
           /executed
           ?csp_id=5&html_id=1
           &status_code=200)</script>
    

  <script src=http://127.0.0.1:8080
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Fig. 4: EXECUTOR workflow.

C. EXECUTOR

Given a set of test CSPs and HTML files, the EXECUTOR
enumerates all combination pairs. For each pair of a CSP and
an HTML file, it executes the HTML file that has the CSP
across different browsers and then checks whether each JS
snippet embedded in this HTML file is executed.

For testing efficiency, all HTML files are executed with
the 200 response code. Additionally, a limited set of HTML
files is executed with all the defined status codes; we sample
eight HTML files from 11,663 HTML files (i.e., 640 HTML
instances) containing at least one of each [HTML] category
in Table II.

Testing browsers. For differential testing, we leverage three
desktop and five mobile browsers, compiling a set of eight
browsers. We observe that rendering engines govern JS ex-
ecution enforcement behaviors. Therefore, we test three ren-
dering engines (i.e., Chromium, Firefox, and WebKit) using
executions results of three desktop browsers and two rendering
engines (i.e., Chromium and Gecko) using execution results of
five mobile browsers (§V-A).

Workflow. Figure 4 illustrates the workflow of the EXECUTOR.
Assume that the EXECUTOR tests test_1.html with a
CSP corresponding to the CSP_ID of 5 and with the status
code 200. The EXECUTOR instructs a testing browser to send
the request to test_1.html with the csp_id parameter
of CSP_ID 5 and the status_code parameter of CODE
200. When the testing server receives this request, it sends
a response by setting the CSP corresponding to the CSP_ID
in the HTTP header and setting the status code correspond-
ing to CODE, along with sending the body embedded with
test_1.html. In this process, [CSP_ID] and [CODE] are
replaced with given parameters. When [HASH] exists in the
test CSP, the string is replaced with the concatenation of all
hashes that correspond to the inline snippets in the HTML file.

The main goal of the execution step is to determine whether
or not a script was executed in light of the specified CSP. If
the testing browser executes an inline script, this will invoke
the fetch function. Therefore, the testing server will receive
a request to the executed path of the self-origin server
(the fourth row in Table II). If a testing browser executes a
script fetched from cross-origin servers, the browser sends a
JS fetching request to the specified URL (see the first to third
rows in Table II). Thus, the testing server is able to check

whether each embedded script (an inline script or a JS script
fetching from a cross-origin) is executed for the given testing
triad of an HTML file, a CSP, and a status code by checking
the csp_id, html_id, and status_code parameters in an
incoming request. The EXECUTOR then stores these execution
results in a database for each testing browser.

DiffCSP determines that a tested triad renders inconsis-
tent behaviors when at least one testing browser reports a
different JS execution result. For instance, if Chrome allows
JS execution for a specific testing triad while Firefox and
Safari block JS execution, we consider that the HTML file
in this triad potentially triggers a browser bug. Naturally, this
approach does not tell which browsers have a bug [42, 47,
48], considering that the majority or minority browser vendors
may implement enforcement incorrectly. However, those triads
become promising data points for the next analysis step, which
involves a manual post-mortem analysis aided by decision
trees (§IV-D).

D. ANALYZER

The EXECUTOR reports behavioral inconsistencies for a
large number of the generated triads, each of which consists of
a CSP, an HTML instance, and a status code. Note that Dif-
fCSP generates 4M and 3.5M triads, for which the execution
results may respectively differ by the three desktop and five
mobile browsers (§V-B). Manually identifying the root causes
of all execution inconsistencies is infeasible; it would demand
the analysis of each generated triad that reports an inconsistent
execution result.

To address this challenge, we propose to leverage a decision
tree. A decision tree is designed to derive a set of human-
readable conditions that lead to a classification decision. We
leverage this capability to compute a set of conditions that lead
to inconsistent execution results. Each leaf node that indicates a
decision corresponds to a set of training instances; the decision
tree derives the same path and conditions for those training
instances.

Using this capability, we leverage a computed decision
tree to group generated triads that share the same decision
paths. Then, from each group that contains an inconsistent
execution result, we pick one triad and analyze this triad
with the conditions that appear in the corresponding path.
That is, instead of analyzing all generated triads in each
group, we analyze one example for each group. In other
words, we leverage a decision tree to derive an interpretation
of observed execution results and use this interpretation to
identify representational inputs for each decision path.

Figure 5 illustrates how we build and leverage a decision
tree. The ANALYZER converts each CSP, HTML, and status
code triad into a vector. It then uses the generated dataset to
train a decision tree.

Dataset. The dimension of a feature vector is 37; 22 features,
14 features, and one feature represent a CSP, an HTML
instance, and a status code, respectively. For a generated CSP,
each element in Table I is encoded into a feature vector.
It consists of 22 binary features, and each feature value
represents whether the corresponding feature is present. 14
features are from a generated HTML instance. Each feature and
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Fig. 5: ANALYZER workflow.

its value are listed in the third and fourth columns in Table II,
respectively. For the status code, we use the status code itself
as a feature. For each vector representing a generated triad, we
use one of two class labels: inconsistent (positive) or consistent
(negative).

Decision tree. Given a computed decision tree, we manually
enumerate all paths from a root to the leaf nodes that represent
inconsistent execution results. Each path consists of tree nodes,
each of which contains a condition that involves features.

Figure 5 shows a decision tree with three paths leading
to inconsistent execution results. The first path leading to
inconsistent results (script-src ∧ status code 100) represents
a bug in which Chromium-based browsers ignore a CSP when
the response comes with the status code 100. This step enables
an auditor to identify factors causing the inconsistent results
and analyze an instance sampled from the training instances
that share this path. This step enables to avoid the analysis of
the 276K instances that belong to that path.

The second path (script-src ∧ status code 200–500 ∧
sha256-[HASH] ∧ Executing JS in event handler) represents
a bug where Firefox enables unsafe-hashes by default in
the script-src directive. This inconsistency occurs when
a hash-source value exists in the directive value and an event
handler in a generated HTML instance.

DiffCSP computes two decision trees: one for the desktop
browsers and the other for the mobile browsers. Note that
the purpose of computing the decision trees is not to classify
a given instance, but to facilitate the analysis of identifying
causes for inconsistent execution results. Thus, we do not split
the training instances for the testing dataset.

DiffCSP reported 19M execution results for all generated
triads. Leveraging a decision tree computed from all these
instances generates a complex decision tree, the depth of which
is beyond 30, making it intractable to manually analyze 61,479
paths leading to inconsistencies. We conduct the following
two optimization methods so that the tree can explain the
root causes for the observed inconsistencies while limiting the
number of paths to be inspected: (1) we randomly sample
consistent training instances to match their number to the
number of inconsistent training instances, and (2) we set the
decision tree depth to 10 for desktop browsers and mobile
browsers, respectively.

We empirically confirmed that when the tree depth is 10,
the recall of the tree is kept high (i.e., 0.95 for desktop browsers

Idx Desktop Version

1 Chromium 99
2 Firefox 95
3 WebKit (Safari) 15.4
Idx Mobile Version Package Name Device # of Downloads

4 Chromium 101 com.android.chrome Nexus +10,000,000,000
5 Chromium 100 com.opera.browser Pixel 3 +100,000,000
6 Gecko 100 org.mozilla.firefox Nexus +100,000,000
7 Chromium 102 com.brave.browser Pixel +50,000,000
8 Gecko 96 org.torproject.torbrowser Pixel 3 +10,000,000

TABLE IV: Browsers under testing.

and 0.92 for mobile browsers) while the number of paths to be
inspected decreases (§V-E). In each computed decision tree,
we investigated every path that corresponds to at least one
generated triad causing an inconsistent execution result. For
each path, we sample one triad of an HTML, a CSP, and a
status code, corresponding to this path and analyze this triad
along with the conditions that appeared in the path. As a
result, we examined 525 and 581 paths for desktop and mobile
browsers, respectively.

V. EVALUATION

We evaluate the efficacy of DiffCSP to find browser bugs in
enforcing CSPs that govern JS execution using three desktop
and five mobile browsers (§V-B). We then describe the root
causes of the identified bugs, categorize these causes into
10 groups, and explain the security implications of the bugs
(§V-C). We also analyze the degree to which the computed
decision tree helps find the causes of the identified bugs
(§V-E). Finally, we demonstrate the performance of DiffCSP
in finding CSP bugs (§V-F).

A. Experimental Setup

Browsers. We ran a series of experiments on the eight
browsers listed in Table IV. For desktop browsers, we selected
the three most popular browsing engines: Chromium, Firefox,
and WebKit [23]. We have observed that all testing results for
Chrome and Edge were identical because they use the same
rendering engine as Chromium. Since the rendering engine
governs JS execution according to a given CSP [2, 10], we used
the testing results of Chromium to represent those of Chrome
and Edge. We also used WebKit to test the rendering engine of
Safari. Note that new Safari features have been implemented in
WebKit before their releases. In addition, 11 of the 18 (61%)
WebKit bugs that we discovered were present in the latest
version of Safari 15.4.

For mobile browsers, we selected five popular browsers.
Specifically, we first selected 20 mobile browsers in the order
of their downloads from Google Play Store as of May 2022
and then excluded nine ARM-based apps, the APKs of which
do not support Android API 30 (i.e., Android 11) x86 system
images, which is required for our testing environment using an
emulator. We also excluded six mobile browsers using Android
WebView. Those execution results depend on the version of
the WebView service installed on a mobile device, which may
significantly vary across user devices. When they use the latest
WebView service, the execution results become identical to
those of the Chromium mobile browser.
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We observed that the test results for mobile browsers
using the same rendering engine were identical. Therefore,
we grouped the execution results of the mobile browsers
under testing into two groups: Chromium (Chrome, Opera, and
Brave) and Gecko (Firefox and Tor).

In summary, we tested three rendering engines (i.e.,
Chromium, Firefox, and WebKit) for the desktop browsers
as well as two engines (i.e., Chromium and Gecko) that
corresponds to five mobile browsers.

Environment. For desktop browser testing, we conducted
experiments on two machines running x86_64 Ubuntu with
88 CPUs and 378 GB of main memory. To automatically visit
each testing page from each browser, we compiled a test script
using Playwright 1.18.0 [30]. For each HTML file, we set the
timeout of execution to three seconds. When this page involves
page redirection and has a single HTML instance, we set the
timeout to one second.

For mobile browser testing, we performed our testing on
four servers running x86_64 Debian with 192 CPUs and 1.5
TB of main memory. To automate the testing process, we relied
on Android Virtual Device (AVD) [7] and the Android Debug
Bridge (ADB), which is a command-line tool that helps us
communicate with a device [1]. For the testing devices in our
emulators, we used a Galaxy Nexus with Android API 25 (i.e.,
for x86-based apps) and a Pixel 3 with Android API 30 (i.e.,
for ARM-based apps).

B. Bugs Found

Table V summarizes CSP enforcement bugs that we found
using DiffCSP. We found a total of 37 browser bugs after
analyzing 7.5M discrepancies that DiffCSP reported. Recall
from §IV-D that we identified 525 and 581 paths leading to
the inconsistent execution results in the desktop and mobile
decision trees, respectively. Each path leading to an inconsis-
tent result corresponds to a set of HTML instances, CSPs, and
status codes. From such a set of test inputs, we selected one
triad of an HTML file, a CSP, and a status code. We then
analyzed this triad and identified the causes along with the
conditions that appeared in the path.

Of the 37 browser bugs, we manually confirmed that 29
bugs imposed a security threat and eight were functional
bugs. For each security bug, we analyzed its implications by
questioning whether an adversary is able to exploit the bug
and bypass a certain CSP, thus injecting an arbitrary JS script.
We further confirmed whether attack payloads exploiting such
a security bug were blocked by other browsers.

Of the 29 security bugs, 27 bugs (93%) enable the adver-
sary to inject an executable JS, the execution of which should
be blocked according to the CSP standard. The remaining two
bugs entail relatively low-security implications. However, by
exploiting these bugs, an adversary is capable of bypassing pre-
request checks and sending a request to an arbitrary endpoint.

We clustered the 37 bugs into two groups: (1) bugs due
to unclear/incorrect descriptions in the CSP specification and
(2) implementation flaws that stem from vendors’ mistakes in
not properly following the specification. The third column of
Table V categorizes the identified vulnerabilities into these two

groups (s represents group (1) and the others belong to group
(2)).

Bug disclosures. We reported all 27 security bugs resulting
from vendor’s mistakes to the three browser vendors (i.e.,
Chromium, Firefox, and WebKit, representing Safari). At the
time of writing, 23 bugs have been patched by the vendors.
Among them, 12 bugs were patched in response to our bug
reports, and the other bugs were patched in response to reports
from the browser vendors or users. Also, we are currently
awaiting responses for four bugs from the vendors. For the
reported bugs, the Chromium team awarded us a bug bounty
of 4,000 USD.

C. Root Causes

Table V lists the 37 identified bugs and their causes.
We further categorized these root causes into 10 groups, as
shown in the table. The third column of the table depicts the
conditions of the page, the CSP, or the HTTP status code that
contributes to triggering the bugs. The fourth column shows
the expected behavior (i.e., whether to execute a given JS
testing code) according to the CSP specification [6] regarding
the conditions in the third column. We manually extracted
these expected behaviors from the specification to check the
correctness of our findings. When the specification does not
describe the expected behavior for the identified conditions,
we mark it with s and count the number of bugs to one.

The fifth to ninth columns indicate whether each browser
exhibits the expected behavior. When the browser conducts
the expected behavior as the specification describes, we mark
it with a 3, and an 7 otherwise. N/A indicates a bug that
still poses a security threat. However, we did not count it as
a bug because the corresponding browsers did not support
certain directives or directive values. For example, we mark
inconsistency #7 as N/A for Firefox because it does not
support the processing of the script-src-elem directive,
even though the CSP3 standard demands its support. In the
following, we list five root causes out of the 10 ones. We
describe the remaining causes in Appendix IX-A.

Cause #1: Incorrect CSP inheritance. An embedded iframe
or a newly opened new window loaded from a local scheme
(e.g., blob, data, javascript, or about) should inherit
the CSP of their parent document [12]. The goal here is to
prevent the adversary from bypassing the parent’s CSP by
opening a child window or embedding a child frame that
contains attack code under the adversary’s control.

We found that Safari incorrectly inherits a parent CSP,
allowing string-to-JS execution in child pages even when the
parent CSP blocks eval(). The following snippet shows a
test HTML instance that exhibits this bug.
1 CSP: script-src 'nonce-123';
2 <iframe id="x" src="about:blank"></iframe>
3 <script nonce=123>
4 let hash = window.location.hash.slice(1);
5 x.onload=_=>x.contentWindow.eval("'" + hash + "'");
6 x.contentWindow.location.reload();
7 </script>

Note that because unsafe-eval is not included in the CSP, a
site operator would expect the string evaluation by eval() to
be blocked. Also, since nonce-123 is included in the CSP,
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Category Idx Page / CSP / HTTP header condition Expected Behavior
(Manually Extracted)

Desktop Mobile # of
Bugs

Security
Bugs

Cause #1: Incorrect CSP inheritance
1 Dynamically calling eval() from the about: frame (‘unsafe-eval’ is not specified) eval() should be blocked 3 3 7 3 3 1
2 Dynamically changing frame.src to JS URL with embedded inline script Inheritance should occur 3 3 7 3 3 1
3 Dynamically changing frame.src to data URL with embedded HTML Inheritance should occur 3 3 7 3 3 1
4 Dynamically changing frame.src to blob URL with embedded HTML Inheritance should occur 3 3 7 3 3 1
5 Dynamically changing frame.src to JS URL with embedded HTML Inheritance should occur 7 3 7 7 3 2
6 Dynamically writing JS embedded HTML to static file s (3 indicates inheritance has occurred) 7 3 7 7 3 1
Cause #2: Incorrect hash handling
7 javascript:[JS] with script-src-elem [hash-source] JS from JS URL should not be executed 7 N/A 3 7 N/A 1
8 script-src [hash-source]; script-src-elem ‘none’ Hashed script should not be executed 3 N/A 7 3 N/A 1
9 script-src[hash-source] ‘unsafe-hashes’;script-src-attr ‘none’ Hashed script should not be executed 3 N/A 7 3 N/A 1
Cause #3: Non-ignored directive values
10 default-src ‘strict-dynamic’ ‘unsafe-inline’ ‘unsafe-inline’ should be ignored 7 N/AN/A 7 N/A 1
11 script-src ‘strict-dynamic’ [host-source] [host-source] should be ignored 3 3 7 3 3 1
Cause #4: Non-supporting specific directives
12 The script-src-elem directive Directive should be supported 3 7 3 3 7 1
13 The script-src-attr directive Directive should be supported 3 7 3 3 7 1
Cause #5: Non-supporting specific directive values
14 The nonce-source in the default-src directive Value should be supported 3 †7 3 3 †7 1
15 The hash-source in the default-src directive Value should be supported 3 7 3 3 7 1
16 ‘strict-dynamic’ in the default-src directive Value should be supported 3 7 7 3 7 2
Cause #6: Auto-enabling directive values by default
17 Auto-enabled ‘unsafe-hashes’ in the script-src directive Value should be disabled by default 3 7 3 3 7 1
18 Auto-enabled * in the script-src-elem directive Value should be disabled by default 3 N/A 7 3 N/A 1
Cause #7: Auto-enabling directive values on specific conditions

19 Auto-enabled ‘unsafe-inline’ in the script-src-elem directive
Condition: ‘strict-dynamic’ is specified in the script-src-elem directive Value should be disabled by default 3 N/A ‡7 3 N/A 1

20 Auto-enabled ‘unsafe-inline’ in the script-src-elem directive
Condition: The hash-source is specified in the script-src-attr directive Value should be disabled by default 3 N/A 7 3 N/A 1

21 Auto-enabled ‘unsafe-inline’ in the script-src-elem directive
Condition: The hash-source is specified in the script-src-elem directive Value should be disabled by default 3 N/A 7 3 N/A 1

22 Auto-enabled ‘unsafe-inline’ in the script-src-attr directive
Condition: The hash-source is specified in the script-src-elem directive Value should be disabled by default 3 N/A 7 3 N/A 1

23 Auto-enabled ‘unsafe-inline’ in the script-src-attr directive
Condition: The hash-source is specified in the script-src-attr directive Value should be disabled by default 3 N/A 7 3 N/A 1

Cause #8: Non-supporting CSP for specific status code
24 100 status code in HTTP header CSP should be enabled 7 3 3 ¶3 3 1
Cause #9: Incorrect handling of malformed CSPs
25 Non-ASCII character within directive value s (3 indicates the directive is disabled) 3 7 3 3 7 1
Cause #10: Allowing out-going requests
26 Parser-inserted script (i.e., script tag) with ‘strict-dynamic’ Out-going JS request should be blocked 3 7 3 3 7 1
27 Parser-inserted script (i.e., written script tag) with ‘strict-dynamic’ Out-going JS request should be blocked 7 3 3 7 3 1

Functional
Bugs

28 Nested srcdoc with JS fetching (The URL of the JS is specified in the CSP) JS from allowed URL should be executed 3 7 3 3 7 1
29 Nested data scheme with JS fetching (The URL of the JS is specified in the CSP) JS from allowed URL should be allowed 3 7 3 3 7 1
30 Calling cloneNode() for inline script (Nonce-source for inline script specified in CSP) Nonced inline script should be executed 3 7 3 3 7 1
31 Executing javascript:[JS] (hash for [JS] specified in CSP) s (3 indicates script is executed) 7 3 7 7 3 1
32 NoCSPiframe.contentWindow.eval() (‘unsafe-eval’ is not specified) eval() should be allowed 3 3 7 3 7 2

33 JS fetching from NoCSPiframe.srcdoc with following CSP:
default-src ‘none’; script-src ‘unsafe-inline’ [Allowed URL] JS from allowed URL should be executed 3 7 7 3 7 2

Total 37
† Only for inline scripts (e.g, <script nonce=123>[Inline script]</script>), not for JS fetching (e.g., <script src=[URL] nonce=123></script>).

‡ Only for inline scripts existing in script tag, not in the JS navigation. ¶ The bug was patched in Chromium 100.

TABLE V: Experimental results with eight major browsers: Chromium , and Gecko (Firefox) , WebKit (Safari) .

they would expect that only the nonce-protected JS will be
allowed. However, Safari allows string-to-JS execution under
certain page conditions, allowing an attacker to bypass the
emplaced CSP and execute arbitrary scripts if the page is
vulnerable to XSS attacks. Especially, we observed that calling
eval() is allowed if it is called dynamically from a child
window or iframe with the src property of about:blank.
We reported this bug to the WebKit team, and the vendor fixed
the bug.

We also observed that Safari did not conduct CSP inher-
itance when it involves javascript:, data:, or blob:
navigation. Also, in Chromium, this kind of bug is triggered
when the navigation to a URL involves the javascript:
scheme. These bugs occur because the browsers do not check
the CSP of a parent document when asynchronous navigation
is involved (e.g., dynamically changing the src attribute of
an existing iframe to a local scheme URL).

For example, consider the following test CSP and webpage
that triggers inconsistency #3.

1 CSP: script-src 'nonce-123';
2 <iframe id="z" src="self.html"></iframe>
3 <script nonce=123>
4 z.addEventListener("load",() => { z.src =
5 "data:text/html,<script>alert(1)<script>";});
6 </script>

In this example, when the load event of the iframe is fired,
the src attribute of the iframe is changed to the data URL
that executes the JS snippet in Line 5. It is expected that this
iframe will inherit the parent’s CSP, thus blocking JS execution
of this embedded HTML instance. However, the identified bug
contributes to bypassing CSP enforcement, which allows the
inline script in Line 5 to be executed. We emphasize that
the defined CSP does not affect the executed script at all.
Therefore, the injected script is capable of bypassing frame
busting as well as TLS enforcement even if the CSP defines
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those directives.

We have reported these bugs to the WebKit team and
the vendor has fixed these bugs. We have also reported the
identified bug to the Chromium team and are awaiting their
response.

Regarding the CSP inheritance that involves static files, we
observed that Chromium and Safari do not pass over the CSP
of a parent window to its child window or iframe when they
open static files. Note that site operators cannot define a CSP
via meta tags in static files, such as .txt, .js, and .ico,
due to the nature of these file formats. Site operators may set
a CSP in an HTTP(S) response header when delivering these
files. However, the current practice overlooks assigning CSPs
for static files in real-world services [22, 37, 41].

An XSS attacker is able to exploit this bug to establish
a same-origin document context for XSS attacks [47, 64].
Assume that a target website allows unsafe-inline in
the script-src directive. Then, an XSS attack may open a
window with the target website’s favicon file path. The ad-
versary then writes an attack script code in this window,
which will be executed using the first-party origin without any
CSP restrictions. One may argue that the unsafe-inline
requirement in the target website does not necessitate the
injection of an attack script in the new window. However,
the XSS attacker is able to bypass other restrictions im-
posed by the CSP, such as TLS enforcement (block-all-
-mixed-content and insecure-requests), frame
busting (frame-ancestors), fetch (connect-src), and
invoking eval(). Furthermore, 56% of websites using CSPs
have deployed unsafe-inline in their directives [58].

We reported these bugs to each vendor, and the Chromium
vendor stated that, according to the CSP standard, the case
of inheriting CSPs is limited to navigation by the local
scheme, so this behavior is working as expected. However,
they acknowledged that this bug has the security implications
aforementioned, and this issue is under discussion.

Cause #2: Incorrect hash handling. As described in Figure 1,
Chromium allowed the execution of arbitrary inline scripts
present in javascript: even when their hash value does not
match any hash values in the script-src-elem directive.
If a website has an XSS vulnerability and blocks arbitrary JS
execution by checking hash values in script-src-elem,
the attacker can exploit this bug to trivially bypass hash
checking and inject an executable script. We reported this bug
to the respective vendor; however, this bug had already been
patched internally in May 2022.

We also found incorrect directive fallback when han-
dling a hash-source value in WebKit. Note that browsers
should only use script-src as a fallback when both
script-src-elem and script-src-attr are not ex-
plicitly set in a given CSP [21]. However, WebKit uses the
presence of a hash-source in the script-src directive even
when script-src-elem or script-src-attr exists in
a CSP. This means that the interpretation of a CSP satisfying
the conditions above significantly differs by browsers, which
may permit non-allowed scripts to be executed. This bug had
been patched in the latest version of WebKit at the time we
discovered it.

Cause #3: Non-ignored directive values. According
to the specification pertaining to strict-dynamic,
host-source, and scheme-source expressions as well as
unsafe-inline and self keyword-source should be
ignored when strict-dynamic is specified in the
script-src or default-src directive of a given CSP.

Unfortunately, we observed that Chromium did not ignore
unsafe-inline even when strict-dynamic was spec-
ified in default-src. We also found that Safari did not
ignore the host-source when strict-dynamic is specified
in script-src.

Since neither Firefox nor Safari supports
strict-dynamic in default-src (inconsistency #16),
it may seem impossible to find inconsistency #10 through
differential testing. However, the following testing page and
CSP enabled the finding of this bug:
1 CSP: default-src 'unsafe-inline' 'strict-dynamic';
2 <script>
3 var o = document.createElement('script');
4 o.src = 'http://127.0.0.1:8000/test.js';
5 document.body.appendChild(o);
6 </script>

In Firefox and Safari, due to inconsistency #16, the inline
script in Lines 3–5 is executed. However, the execution of
the script generated by this script stops as it tries to fetch
JS code from a URL not specified in the CSP. However,
Chromium executes inline scripts due to this bug because
unsafe-inline is not ignored. Moreover, interestingly, it
allows arbitrary JS fetching from dynamically created scripts
due to the strict-dynamic effect.

Site operators may specify unsafe-inline or host-
source in a CSP, which they expect to be ignored by
strict-dynamic in CSP3-supported browsers [38]. How-
ever, this bug allows the injection of an inline JS script, which
should be blocked. We reported these bugs to the Chromium
and WebKit vendors, and they patched these bugs.

Cause #4: Non-supporting specific directives. Fire-
fox does not support the script-src-elem [35] and
script-src-attr [34] directives. Despite the known fact
that Firefox supports CSP3 [9], we noticed that Firefox did
not enforce the expected behaviors when these directives were
present in given CSPs.

This inconsistency bug poses a security threat. Assume a
site operator specifies their CSP with script-src-elem
‘none’ to prevent the execution of inline scripts. Firefox en-
ables the execution of inline scripts, contrary to the operator’s
expectations. Since these bugs are already known, we have not
reported them. Firefox browser vendors had not implemented
these two directives for approximately three years. Recently,
Firefox implemented them in July 2022 [20] just two weeks
before our submission.

Cause #5: Non-supporting specific directive values.
Firefox does not support nonce-source, hash-source, and
strict-dynamic in the default-src directive. Also,
Safari does not support the strict-dynamic in the
default-src directive. These inconsistent behaviors stem
from Firefox and Safari not implementing a fallback mech-
anism; according to the specification, nonce-source, hash-
source, and strict-dynamic in the default-src direc-
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Fig. 6: The number of decision tree paths for each root cause.

tive should be applied as a fallback when the script-src
directive is missing [13, 21].

These incomplete fallback behaviors have various se-
curity implications. Consider a website that defines the
CSP of default-src [hash-source] ‘unsafe-
-inline’. Note that, according to the specification,
unsafe-inline should be ignored if nonce-source, hash-
source, or strict-dynamic is specified. Chromium hon-
ored this policy by not allowing any inline scripts. However,
Firefox and Safari executed inline scripts, allowing an adver-
sary to execute an injected JS script.

The Firefox vendor has been aware of this bug, but it
has not been fixed since the CSP2 was released six years
ago [18]. After we discovered these three bugs via DiffCSP,
we reported to the vendor that these bugs hadn’t been fixed
yet, and recently, in November 2022, these bugs were finally
patched. Regarding the bug in Safari, we reported the bug to
the corresponding vendor via WebKit Bugzilla, and the vendor
acknowledged and fixed the bug.

D. Summary and Lessons

Complex CSP specification. We observed that the majority
of bugs (18 out of 29 security bugs) were eventually trig-
gered by combinations of multiple directive values in test
CSPs. This result shows that different browsers interpret the
same CSPs in different ways. Interestingly, we noticed that
many of the bugs occurred due to divergent interpretations
regarding new CSP3 directives and fallback mechanisms. In
particular, 15 out of 18 bugs are caused by directives or values
introduced in CSP3 (four from strict-dynamic, six from
script-src-elem, four from script-src-attr, and
one from unsafe-hashes).

We believe that this trend is inevitable because the expected
behaviors become complicated as the number of directives
and values increased to 24 and 11, respectively, in the CSP3
specification [58]. At the same time, this increasing complexity
in CSPs requires systematic browser testing. We believe that
our differential testing approach using a large number of
adversarial HTML instances contributes to finding holes in
existing regression tests in browser vendors.

CSP bypass via page redirection. We observed that eight
out of 29 bugs (28%) were due to the improper updating of
a CSP to enforce when page redirection occurs. In particular,
when an iframe or a window was loaded once and its source
or content was changed asynchronously, we observed many
cases in which the parent CSPs were not properly inherited.
However, we observed that Firefox correctly followed the CSP

standard for these cases. WebKit, on the other hand, did not
systematically test these edge cases, potentially allowing an
attacker to execute arbitrary JS from the same origin.

Specification bugs. We have also identified that unclear or
insufficient descriptions in the specification contributed to
causing inconsistencies #6, #25, and #31. For inconsistency #6,
we recommend inheriting the CSP of a parent window to its
child window or iframe when these child instances open static
files, and these files are delivered without any CSP headers.

To clarify the specification regarding inconsis-
tency #25 (§V-C), we recommend the following two
procedures: (1) remove only bogus source expressions, not
entire directives, except in the worst case (i.e., when only
none is left in the directive); and (2) accommodate and parse
non-ASCII characters for source-expressions.

Regarding inconsistency #31, the specification said that
hash-source can be applied to javascript: navigation [15]
if unsafe-hashes is present. However, it does not clearly
specify what exactly to hash (i.e., whether to include javas-
cript:). Chromium-based browsers and Safari use the entire
attribute value (i.e., sha256(javascript:alert(1))),
but Firefox only uses everything after javascript: (i.e.,
sha256(alert(1))) to compute the hash value. Although
this inconsistency does not pose a security threat, we recom-
mend clearly specifying which part should be computed as a
hash in the specification.

E. Decision Tree

Recall that we analyzed 525 and 581 paths in the deci-
sion trees of the desktop and mobile browsers, respectively.
Figures 6a and 6b show the number of decision paths that
contribute to identifying each security bug. The x-axis repre-
sents each inconsistency bug index, and the y-axis represents
the number of paths that correspond to each found bug. We
observed that a large number of decision paths corresponds to
inconsistencies #12 and #13. This is because Firefox does not
support the script-src-elem and script-src-attr
directives. In our decision trees, these conditions are the
majority cause of observed execution inconsistencies.

We also studied how helpful the decision trees are in
analyzing the root causes of inconsistent execution results.
We measured whether the root causes are well explained in
conditions in the paths of the decision trees. In particular, we
counted the number of paths that (1) completely explain the
root cause and (2) partially explain the root cause, respectively.
Here, the complete explanation path means that the conditions
for a directive, a directive value, an HTML instance, and a
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Fig. 7: The relationships between the depth of the decision tree, the
recall of the training instances, and the number of decision paths.

status code are all present in the path to describe the observed
inconsistency. For example, the second path of Figure 6a is
a complete explanation path because its conditions have the
script-src directive, the directive value of hash-source,
an HTML instance that has JS execution in an event handler,
and the 200 status code.

We observed that 538 of the 941 paths (57%) that map
to their causes of the security bugs are complete explanation
paths. We also observed that 24 out of the 27 inconsistencies
(89%) were completely explained by at least one path. For
the three inconsistencies (#8, #9, and #11) that were not fully
explained, the number of instances that cause the inconsistency
is small; the branching for that condition occurs below depth
10 in the tree. However, increasing the depth of the tree for
desktop browsers to 14 reveals a path that completely explains
the root causes of these inconsistencies.

Decision depth. We analyzed how recall and the number of
paths to inspect change while varying the depth of the desktop
decision tree. Figure 7 shows that increasing the depth causes
an increase in the number of paths that need to be manually
inspected. It also contributes to increasing the recall rate of
the training instances, meaning that the decision tree becomes
more explanatory by reducing non-explainable inconsistent
execution results (i.e., false negatives). Note that we observed
an analogous pattern in the mobile decision tree. We choose
to set the depth of the decision tree to 10, which exhibits a
high recall rate and produces an acceptable number of paths
to analyze.

False positives (FPs). Among the 525 and 581 paths in the
desktop and mobile decision trees, 39 and 42 were FPs out
of 11,663 HTML files, respectively. These FPs correspond
to the cases in which our testing frameworks reported false
execution results because the execution of the generated test
files exceeded a given timeout. Recall that we set the number
of HTML instances in each file to 80 to boost the testing
efficiency (§IV-C). This means that tests towards the end of
the file may not be executed before the timeout, leading to
inconsistent behavior and, thus, a false report. In practice, these
FP cases can be scheduled again for further testing with an
extended timeout to remove false positives.

F. Performance

A total of 200 hours with 88 cores and 153 hours with
192 core CPUs were consumed to find CSP enforcement bugs
for desktop and mobile browsers, respectively. In addition,
two researchers spent two days analyzing the decision trees
to identify the root causes of the detected 37 bugs.
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inputs.

Figure 8 shows the cumulative number of unique security
bugs over the tested triads, each of which consists of a CSP,
an HTML instance, and a status code. In particular, on the x-
axis, we show the cumulative number of tested triads, and these
triads are sorted in the order in which DiffCSP fetches those
for execution. We increase the bug count on the first triad on
the x-axis of which inconsistent execution results contribute to
finding a bug. For 50% of the identified security bugs, DiffCSP
tested less than 21.3% of the generated triads. For 90% of the
bugs, it required testing 91.4% of the triads. The results of
this analysis show that extending the test generation grammar
and running DiffCSP has the potential to discover more bugs
when DiffCSP is capable of generating new HTML instances
involving JS execution.

VI. LIMITATIONS AND DISCUSSION

We leverage the inconsistent execution results for each
generated input as a bug oracle. Therefore, DiffCSP cannot
find a bug if all the browsers under testing exhibit the same
bug [42, 47, 48]. One can overcome this limitation by defining
expected behaviors for each input, enabling the testing of a
single browser implementation. However, defining the correct
behavior for each combination of 25,880 HTML instances
and 1,006 CSPs is an open research problem. The automatic
extraction and adoption of these correct behaviors represent
interesting technical challenges that we leave to future research.

We also note that our sampling strategy of selecting one
representative test instance among the test instances that share
the same path may cause false negatives in identifying a new
cause. This can happen when the test instances that corre-
spond to a certain path yield both consistent and inconsistent
execution results. For such cases, we manually analyzed all of
the 187 and 217 paths that leading to leaf nodes having both
inconsistent and consistent execution results in the desktop and
mobile decision trees, respectively. However, this additional
analysis did not reveal any new causes.

We acknowledge that our HTML grammar is not nec-
essarily complete in generating all possible HTML forms
for executing JS snippets. Therefore, if there exist unknown
HTML forms of executing JS snippets, DiffCSP may miss CSP
enforcement bugs, producing false negatives. However, note
that, among 47 reported CSP bugs involving JS execution since
2010, including 18 ones that we found, DiffCSP generated
HTML instances that triggered 46 bugs (97%).

We emphasize that the grammar rules that we proposed
include not only the general rules corresponding to the HTML
and ECMAScript specifications but also the adversarial gen-
eration rules corresponding to the 28 known CSP bugs. We
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observed that these adversarial payloads were applied as-is to
the browser’s regression test set, without any combination or
mutation. These adversarial grammar rules helped DiffCSP to
identify 10 more bugs, which would not be discovered by only
using the general grammar rules and the known payloads.

DiffCSP supports extending the current HTML grammar
by adding new derivation rules. Security researchers and
practitioners are thus able to add their own derivation rules
to attempt to find more bugs. Specifically, they can extend
the grammar by symbolizing and classifying new HTML or
JS snippets with reference to the grammar in Table II. The
testing CSPs can also be extended by adding new directives
or values to Table I.

We adopt the interpretation of the computed decision trees
to group test instances that share the same decision paths,
thereby avoiding to analyze each inconsistent execution result
and its corresponding test input. However, to identify common
causes of these bugs, we still manually analyzed 525 and 581
paths for the desktop and mobile browsers, respectively. This
step required two authors to spend two days identifying the
causes of these paths.

We note that the conditions that appear in the decision
tree paths help distinguish bugs due to unsupported features
from bugs caused by developer mistakes. For example, five
inconsistencies due to unsupported specific directives and
directive values are distinguishable from other inconsistencies
because those unsupported features appeared in the conditions
in the paths leading to the groups having those bugs. These
conditions can help browser vendors quickly disregard such
cases.

VII. RELATED WORK

Content Security Policy. Prior work has largely focused on
studying the prevalence and struggles with CSPs [44, 49, 51,
56, 57, 71, 72], finding that building applications that are
compliant with a safe CSP is a challenging task that few sites
master. Follow-up work has then attempted to aid developers
in the process of building CSPs. Pan et al. [56] proposed
CSPAutoGen, which automatically composes declarations for
enforcing a CSP in real-time through both analyses of existing
resources and rewriting to enable compliance. Doupé et al. [49]
introduced an automatic code rewriting technique to extract
trusted inline scripts from web applications and use these
extracted scripts in the script-src directive in generated
CSPs.

Another recent line of research focuses on analyzing the
trend of insecurity regarding CSPs deployed on the Web [43,
45, 50, 58, 60, 64, 65, 66, 68, 70]. Weichselbaum et al. [70] ex-
amined the effectiveness of deployed CSPs in 1,680,000 hosts
on the Internet. They also demonstrated that approximately
95% of the collected policies offered little security protection
against XSS attacks due to the usage of unsafe-inline
and unsafe endpoints. Calzavara et al. [43, 45] examined the
updates in CSPs and demonstrated that the CSPs were not fre-
quently updated to mitigate insecure practices. Roth et al. [58]
performed a historical analysis of how CSP adoption has
evolved from 2012 to 2018. They found that many CSPs can
be bypassed through expired domains or domains with typos,
but more importantly, developers often struggle for years to

set up a CSP or give up entirely. They nevertheless provided
clear evidence of the uptake in CSP deployment, necessitating
a thorough analysis of the enforcement in browsers. Eriksson
and Sabelfeld [50] then analyzed the not-yet implemented
navigate-to directive and proposed to automate the pro-
cess of curating policies with the directive.

All of this research has demonstrated that curating a
functional and secure CSP is a challenging task. However,
none of the works have attempted to systematically analyze
to what extent CSPs are properly implemented in browsers, in
particular for edge cases. In contrast, with DiffCSP, our work
aims to understand enforcement bugs in browsers, which may
even result in the bypassing of seemingly secure CSPs.

For their 2016 paper, Calzavara et al. [43] also evaluated
browser supports for CSPs. Contrary to DiffCSP using differ-
ential testing, they manually composed tests and modeled their
expected behaviors, leaving many corner cases unexplored.
In particular, they utilized visual cues to model the expected
behavior corresponding to each page and manually accessed
the test page from each browser to examine whether the
visual cues were well represented (e.g., JS should be executed
and an alert should appear). Due to this manual approach,
they modeled 15 tests, contributing to finding one CSP bug
involving JS execution.

By contrast, DiffCSP conducts scalable and systematic
CSP enforcement testing by leveraging various types of ad-
versarial HTML instances and differential testing, enabling
to avoid a manual analysis to identify correct behaviors for
each generated test, thereby helping to find a total of 37
bugs. By conducting differential testing, we narrow down the
scope of promising tests that invoke potential bugs and then
sample representative tests using the decision trees to manually
investigate.

Browser security policy testing and analysis. There has
been a surge in research in the study of web security poli-
cies provided by browsers [47, 54, 55, 67]. In particular,
several works have focused on testing SSL/TLS implemen-
tation [42, 48], same origin policy [61, 63], HTTPOnly
cookies [73], HSTS [53], and clickjacking protection [46]
Calzavara et al. [47] found that the inconsistent adoption
of security mechanisms across different pages within the
same origin can express conflicting security requirements.
Roth et al. [59] discovered that client-side policies, including
CSPs, X-Frame-Options, HSTS, and security cookies, were ap-
plied differently when accessing the same site through different
settings. Recently, there have been several studies on security
policies in mobile browsers [52, 54, 55]. Luo et al. [54]
investigated the browser supports for eight different secu-
rity mechanisms, including CSP, HSTS, and referrer header,
across 351 unique browser versions. Kondracki et al. [52]
demonstrated that enabling data-saving functionality in mobile
browsers poses security threats, including TLS man-in-the-
middle attacks and HSTS deactivation.

VIII. CONCLUSION

With CSP’s adoption rates rising and more sites to mitigate
the impact of cross-site scripting (XSS) flaws every day, it is
imperative that enforcement of these policies is consistent and
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secure across all browsers. While prior work had found indi-
vidual bugs in CSP, our community lacked a comprehensive
and systematic way of testing CSP implementations.

To close this research gap, we proposed DiffCSP, the
first differential testing framework designed to identify CSP
enforcement bugs regarding JS execution. Our key contribu-
tions are (1) to propose an HTML grammar enumerating all
known HTML instances that execute simple JS snippets, (2) to
conduct differential testing to identify the correct behavior for
each generated CSP and HTML instance, and (3) to analyze
a large volume of execution inconsistencies by leveraging
decision trees. Our testing uncovered critical flaws in major
browsers, including Chrome, Firefox, and Safari, which allow
an XSS attacker to fully bypass CSPs. We found 29 security
bugs and eight functional bugs, demonstrating the effectiveness
of DiffCSP in finding CSP enforcement bugs.
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IX. APPENDIX

A. Additional Root Causes

Cause #6: Auto-enabling directive values by default.
We observed that Firefox enabled unsafe-hashes in the
script-src directive by default. We argue that this default
behavior deviates from the CSP specification and poses a
security threat.

1 CSP: script-src-elem 'sha256-Mg0QnPgA...';
2 <img onload =
3 "document.write(this.getAttribute('data'))"
4 </img>

Consider a webpage with the CSP of script-src
‘sha256-Mg0QnPgA...’, as shown above. Note that
the inline script in Line 3 must be blocked because
unsafe-hashes is not specified in the CSP. However,
Firefox allows the execution of the inline script in the onload
handler due to this bug. In this case, the adversary is able
to reuse the existing event handler to execute an injected
script [68]; they are able to inject the arbitrary tag embedding
the exploiting payload in the data attribute, thus allowing the
XSS attack. This bug had been reported to Firefox by others
over three years ago, but Mozilla hasn’t patched it [19]. After
we found this bug via DiffCSP, we mentioned to the vendor
that this bug hadn’t been fixed yet, and recently, in November
2022, it was finally patched.

We also found that Safari enables * in the
script-src-elem directive by default. This default
behavior bug imposes a security threat; when a site
operator attempts to block all script requests by specifying
script-src-elem ‘none’, Safari allows fetching
scripts from arbitrary endpoints, contrary to the operator’s
expectations. We reported this bug to the WebKit team, and
the vendor patched the bug.

Cause #7: Auto-enabling directive values on spe-
cific conditions. We have found several bugs in Sa-
fari in which specific directive values are automati-
cally enabled under certain conditions. For example, Sa-
fari automatically activates unsafe-inline for the
script-src-elem directive when strict-dynamic
is present. Also, when a hash-source is specified in the
script-src-elem or script-src-attr directive, we
observed that unsafe-inline is auto-enabled for both
directives. Unfortunately, inconsistencies #20–#23 could be
triggered even with an arbitrary hash value rather than the
hash of an inline script in a testing webpage. These bugs are
thus able to enable unsafe-inline in certain CSPs, thus
allowing an XSS attacker to inject inline scripts.

We have identified these bugs in our differential testing.
However, they had already been patched by the time that we
identified them.

Cause #8: Non-supporting CSP for specific status code. We
observed that Chromium ignored a CSP when the HTML re-
sponse came with the status code of 100. We further confirmed
that this behavior also occurred when the status code is 101
or 102. This means that Chromium-based browsers ignore any
CSPs when a webpage is fetched with one of these response
status codes.

Note that the 1xx class of status code indicates that a
server has received a request and continues to generate its
response [25]. According to the WHATWG fetch standard, a
response with the status code 100 or 102 should be ignored,
and status code 101 should have a body set to null [40].
We observed that Safari and Firefox correctly followed this
standard. However, Chromium treated the content of these
responses normally as if they had the status code of 200, while
ignoring the headers of these responses. Therefore, when a
naive developer writes a web page with any of the response
codes above, the attacker is able to inject an arbitrary JS script
regardless of the CSP in this webpage.

Chromium developers acknowledged and patched our re-
porting of this bug and stated that this bug contributes to by-
passing not only CSP but also other security policies, including
HTTP Strict Transport Security (HSTS) and X-Frame-Options.

Cause #9: Incorrect handling of malformed CSPs. We
observed that Chromium and Safari ignored an entire given di-
rective when the directive contains an invalid value. In contrast,
Firefox only drops an invalid value in the directive. For in-
stance, consider the CSP of script-src http://a.com
http://<non-ASCII-chars>.com. Chromium and Sa-
fari ignore the script-src directive, allowing the execution
of any scripts. Conversely, Firefox still honors the directive by
allowing the execution of scripts from http://a.com and
blocking the execution of other inline and external scripts.

Interestingly, the CSP specification describes the
Chromium and Safari behavior as valid [29]. The reason
is to prevent the worst scenario that the page itself does
not work due to a malformed CSP. Assume that we specify
default-src http://<non-ASCII-chars>.com.
If a browser only drops the invalid value, the CSP becomes
default-src, which is semantically equivalent to
default-src ‘none’, which blocks all resources. On
the other hand, if a browser drops the entire directive in
compliance with the CSP specification, it blocks no resources
on the page. Although the handling of malformed CSPs
adopted by the current specification provides convenience to
end users, it poses a security threat.

Cause #10: Allowing out-going requests. According
to the script directives pre-request check in the CSP
specification [32], when there is strict-dynamic in
the script-src directive, the request from the parser-
inserted script (e.g., regular script tags) must be blocked.
However, Firefox does not follow this specification and sends
outgoing requests for <script src=[URL]></script>
even though CSP is script-src ‘nonce-123’
‘strict-dynamic’. In Chromium-based browsers,
the same bug occurs when a page is <script
nonce=123>document.write(‘<script
src=[URL]><script>’);</script>, and its CSP
is script-src ‘nonce-123’ ‘strict-dynamic’
[URL].

Since script execution is still blocked, the impact of the
problem for XSS attacks is limited. However, such scripts can
be used for the exfiltration of sensitive data. We have reported
these bugs; however, the vendors have not responded yet.

16


	Introduction
	Background
	Content Security Policy

	Motivation and Technical Challenges
	Design
	Workflow
	Generator
	Executor
	Analyzer

	Evaluation
	Experimental Setup
	Bugs Found
	Root Causes
	Summary and Lessons
	Decision Tree
	Performance

	Limitations and Discussion
	Related Work
	Conclusion
	References
	Appendix
	Additional Root Causes


