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Abstract—JavaScript has become an essential part of the
Internet infrastructure, and today’s interactive web applications
would be inconceivable without this programming language.
On the downside, this interactivity implies that web appli-
cations rely on an ever-increasing amount of computationally
intensive JavaScript code, which burdens the JavaScript engine
responsible for efficiently executing the code. To meet these
rising performance demands, modern JavaScript engines ship
with sophisticated just-in-time (JIT) compilers. However, JIT
compilers are a complex technology and, consequently, provide
a broad attack surface for potential faults that might even be
security-critical. Previous work on discovering software faults in
JavaScript engines found many vulnerabilities, often using fuzz
testing. Unfortunately, these fuzzing approaches are not designed
to generate source code that actually triggers JIT semantics.
Consequently, JIT vulnerabilities are unlikely to be discovered
by existing methods.

In this paper, we close this gap and present the first fuzzer
that focuses on JIT vulnerabilities. More specifically, we present
the design and implementation of an intermediate representation
(IR) that focuses on discovering JIT compiler vulnerabilities. We
implemented a complete prototype of the proposed approach and
evaluated our fuzzer over a period of six months. In total, we
discovered 17 confirmed security vulnerabilities. Our results show
that targeted JIT fuzzing is possible and a dangerously neglected
gap in fuzzing coverage for JavaScript engines.

I. INTRODUCTION

The modern Web is unimaginable without JavaScript (JS).
Driven by powerful JavaScript frameworks such as Angu-
larJS [1], React [8], or jQuery [5], modern web content is
typically created entirely on the client side, rather than being
delivered in the form of HTML [10], [40]. This evolution
caused increasing performance issues for existing JS engines
that relied on simply interpreting JS code. As a result and to
enable a dynamic web experience, modern web browsers have
aggressively moved towards just-in-time (JIT) compilation and
optimization of JS code. While JIT engines provide desirable
performance improvements, they make the execution of JS
code significantly more complex and inherently expose a large
attack surface. Software vulnerabilities based on JIT compiler
faults are attractive to attackers because they provide powerful
exploit primitives and typically allow code execution based

on a single vulnerability. An attacker can chain a successful
attack with an escape from the browser sandbox, gaining
unauthorized privileges by luring a victim to a malicious
website.

By its very nature, JavaScript as a programming language is
flexible and dynamic. Because of this flexibility, JIT optimiza-
tions require assumptions about the global state of the engine,
groups of related objects, or even a single object involved in
the optimized code segment. Such assumptions must either
be proven true or protected by complex runtime mechanisms
that notify the engine when a previously made assumption
is violated. Any assumption that turns out to be false but
remains undetected during execution represents a significant
vulnerability, such as in CVE-2018-4233 (see Section III-B for
details), a bug in the JIT compiler of WebKit. Consequently,
JIT compilation bugs should be a focus of software testing.

A popular method for finding bugs in complex software
systems such as JavaScript engines is fuzz testing (fuzzing for
short). Fuzzing involves testing software with many different
inputs and evaluating how the software responds to those
inputs. The underlying hope is to find corner cases in the
software that lead to non-trivial crashes. An analyst can then
further investigate these crashes to create a proof-of-concept
for an exploit that may break out of the JavaScript sandbox.
In the past, fuzzing was mainly used to find vulnerabilities
in JavaScript engines, and several critical problems with
JavaScript engines were found [28], [28], [36], [43]. However,
previous fuzzing approaches targeted JavaScript engines with-
out focusing on specific components [28], [31], [43] or focused
only on the runtime API [30]. Such approaches can find a wide
range of vulnerabilities, but more complex vulnerabilities that
require the concurrence of multiple preconditions have rarely
been discovered. In particular, JIT compilation vulnerabilities
are precisely such a type of vulnerability.

For JIT optimization to occur at all, certain conditions
must be met: The engine must frequently execute the code
in question, and the code must behave predictably during
the observation because only then the JIT compilation starts.
These conditions imply that not only must the JS code be
structured in a special way to emphasize the faults, but it must
also be executed numerous times in a similar manner and then
change its behavior in an unpredictable way in order for the
JS engine to encounter an error. This behavior is difficult to
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reproduce for a fuzzer that generates code snippets more or
less randomly via mutations.

Classic JS fuzzers [4] generate JS constructs and wrap every
statement in try-catch blocks because they cannot guaran-
tee semantic correctness. Unfortunately, a JIT compiler treats
code wrapped in try-catch differently from code that is not
wrapped, so many JIT errors elude these approaches. Other
work [28], [36], [43] generates test cases from existing JS
corpora. Relying on pre-existing corpora requires a sufficiently
diverse set of vulnerabilities of a specific type to extrapolate
similar ones. This requirement limits the ability to uncover
vulnerabilities dissimilar to existing test cases. In conclusion,
developing a targeted fuzzing approach to detect novel faults
in JIT compilation is a challenge that has not yet been tackled.

In this paper, we address this research gap in fuzzing
coverage and propose the first fuzzer that uses an intermediate
representation (IR) that focuses on discovering just-in-time
compiler vulnerabilities in JavaScript engines. Our IR allows
us to generate new JavaScript programs without initial input
corpora, targeting the JIT compiler. Furthermore, our IR allows
the implementation of semantically meaningful mutation oper-
ations, such as splicing multiple input programs while rewiring
instruction operands, a feature missing in common AST-based
fuzzing approaches.

We implemented the proposed approach and performed
a comprehensive evaluation of our prototype on the major
JS engines Apple JavaScriptCore, Google V8, and Mozilla
SpiderMonkey. We find that our fuzzer compares well with
Superion, a state-of-the-art open-source fuzzer [43], on all
engines. Furthermore, we show that Superion cannot achieve
significant code coverage gains when provided with a com-
prehensive input corpus. In contrast, our approach performs
well in different kinds of setups and we identified 17 security-
critical vulnerabilities.
Contributions. In summary, our main contributions are:

• We present the design and implementation of an IR-
based fuzzing approach targeting JIT vulnerabilities in
JS engines of modern web browsers.

• In a comprehensive evaluation, we discover 17 security-
critical vulnerabilities with our prototype implementation.
A more detailed analysis of the identified vulnerabilities
confirmed that most of the faults are indeed related to the
JIT compiler.

• We perform a comprehensive comparison against modern
browser fuzzers and find that our approach outperforms
the state-of-the-art method called Superion.

II. BACKGROUND AND RELATED WORK

Fuzzing is a popular research area that has received much
attention in the past years. In the following, we briefly intro-
duce this area and discuss work that is closely related to ours.
Given the enormous scope of this area, we cannot provide a
comprehensive overview of all related work and thus focus
mainly on related work that improves JavaScript fuzzing. For
an introduction and overview of the fuzzing research area,
we refer the reader to surveys on fuzzing [34] and greybox

fuzzing [44]. For a comprehensive listing of recent fuzzing
publications, we refer the reader to an online repository that
maintains a list of papers published in this area [9].

A. Fuzzing Overview

Fuzzing can be divided at a high level into several different
approaches, which we briefly explain below. These general
approaches provide a rough classification, and in practice,
many hybrids are used, so that a clear separation is not always
possible.

a) Generative Fuzzing: Generative-based approaches [7]
generate each input from scratch, using generator functions
that output the relevant data. The main advantage of the gen-
erative approach is that the produced inputs are syntactically
correct by design, since the generator functions respect the
underlying syntax expected by the program under test.

b) Mutation Based Fuzzing: Mutation-based approaches
use seed files and manipulate them according to certain rules,
and then continue with the slightly modified files as new seed
files. Mutations can be random and arbitrary, such as bit/byte
flips or randomized addition/deletion of message parts, or more
targeted, such as replacing integers or strings with data points
known to have had problems in the past (e.g., magic values
such as MAX INT or MIN INT ).

Guided Fuzzing: Guided fuzzing [17], [18], [26], [45]
extends the approach used in mutation-based fuzzing and
prunes the mutated files based on relevance according to some
metric (e.g., coverage-guided fuzzing). A popular metric for
pruning in language fuzzing is branch coverage. A fuzzer
using branch coverage collects data about the branches of the
executed target program and deletes/ignores new mutated files
for further consideration if they have not discovered any new
branches during their execution. This approach ensures that the
fuzzing process retains some momentum and does not reach
a dead end.

Structure Aware Fuzzing: Depending on the underlying
program to be fuzzed, especially if it requires a specific syntax
as input, e.g., an interpreter, it is challenging to generate valid
mutations of the input files. In particular, highly structured
input data [16], [21], [25], [31], [38] such as source code can
be challenging, as random changes are likely to result in input
data that is immediately rejected, preventing in-depth testing.
To counter this problem, the fuzzer can be made aware of the
required input structure. In this paper, we explore the use of
an intermediate language for this purpose.

B. JavaScript Fuzzing

Several previous publications cover general fuzzing of
browser engines for JavaScript or stand-alone JavaScript en-
gines, but so far, there has been no publication that focused
on vulnerabilities in JIT compilers. Consequently, there is
a gap in JavaScript fuzzer coverage that we fill with our
approach. Note that previous JavaScript fuzzing work dealt
with using intermediate representations for fuzzing JavaScript
or semantically correct fuzzing of JavaScript, two properties
that our fuzzer has (and needs) for its success in fuzzing JIT
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compiler vulnerabilities. Hence we discuss in the following
how our approach relates to previous work in this area.

One of the first works on this topic was presented by
Holler et al., who proposed to use an abstract syntax tree
(AST) as an intermediate representation [31]. During fuzzing,
the subnodes of the AST are taken and replaced by nodes
from other programs (or even newly generated code) and then
translated back into the actual fuzzed language. Note that this
process generates code that adheres to the syntax of the fuzzed
language. However, no focus was placed on any particular
bug class or semantic validity of the generated code. In our
work, we do not use the AST as an intermediate representa-
tion. Instead, we develop our own intermediate language that
represents a subset of JavaScript. Most importantly, it enables
a focus on JIT errors and the semantic validity of the generated
code.

Most recently, He et al. presented SoFi [29], a semantic-
aware fuzzing approach. To ensure the validity of the generated
test cases, the authors propose to use a fine-grained program
analysis to identify variables and derive the types of these
variables for mutation. In addition, SoFi uses an automatic
repair strategy to fix syntactic and semantic errors in invalid
test cases. Unfortunately, the full source code of SoFi is not
publicly available, and hence we were not able to directly com-
pare our approach to SoFi. Furthermore, we have reservations
that the bugs discovered by SoFi are indeed security-critical
(see Section VII-B2 for details).

Saxena et al. developed an intermediate language to canon-
icalize different JavaScript instructions (e.g., splitting a string)
into a single action to improve fuzzing [39]. In this way,
the small details of an implementation are abstracted into a
higher-level, easier to handle representation. Their focus is
on detecting client-side validation vulnerabilities in JavaScript
applications, rather than the browser’s JavaScript engine itself.
Consequently, their fuzzing was based on the inputs of a
JavaScript program rather than the inputs of a JavaScript
engine (i.e., JavaScript code) itself. In a similar spirit, Hodován
et al. created a graph-based representation of the JavaScript
engine API and used this graph to generate input data for
fuzzing [30]. However, they focus on the API provided by
JavaScript engines and do not generate code beyond it. Con-
sequently, the resulting code focuses on semantic correctness
but is unlikely to detect JIT compiler bugs.

Montage, a fuzzer based on a neural network language
model (NNLM), was proposed by Lee et al. [33]. They
transform an AST into AST subtrees that can be used directly
to train an NNLM. Using Montage, the authors found 37
bugs, including 3 CVEs. Although they found a JIT-related
vulnerability, the overall approach is orthogonal to ours as
they use machine learning on an AST. In contrast, we use
predefined mutations on an IR. Moreover, they do not target
JIT but perform extensive fuzzing of JavaScript engines in
general.

Recently, Ta Dinh et al. presented Favocado [24], a fuzzer
specializing on fuzzing binding layers in JavaScript code. They
report that fuzzing such bindings requires both syntactic and

semantic correctness to achieve the intended test area. This
approach is similar to the challenges we faced in fuzzing
the JIT-related code parts, which also requires high semantic
and syntactic correctness. However, the targeted aspects of
JavaScript engines are not comparable to ours, as we focus on
software faults in JIT compilers.

To improve the semantic correctness of fuzzed inputs,
Dewey et al. studied how Constraint Logic Programming
(CLP) [23] can be used in this area. The authors use CLP
to generate semantically valid code, which is a similar focus
to ours, but they do not focus on JIT compiler vulnerabilities
given that this class of software faults is particularly challeng-
ing to handle.

Wang et al. proposed Skyfire, a seed generation tool for
fuzzing that requires a corpus of inputs and a grammar [42].
Based on this input, Skyfire learns a probabilistic context-
sensitive grammar and uses this grammar to generate seed
inputs. The authors show that their approach works well for
highly structured languages, such as XML. However, they
only provide preliminary results on JavaScript fuzzing, leaving
future work to extend their approach “to better support more
complex languages such as JavaScript and SQL.” [42].

Han et al. presented CodeAlchemist [28], a generative
fuzzer for JavaScript. Park et al. [36] proposed DIE, a novel
method for exploiting hidden information, which they termed
aspects, in input corpora. This method enables a fuzzer to
generate more complex, and consequently more profound,
test programs. They analyze the given input seed files and
extract not only code snippets but also aspects of the code
snippets, such as structure and runtime types. The proposed
fuzzing method then uses this information to generate new
code snippets containing the extracted aspects. Although the
work features a type system similar to ours, the type infor-
mation is applied to the AST layer instead of an IR. While,
generally speaking, ASTs are capable of representing any valid
JavaScript program, this abstraction layer is not ideal for im-
plementing mutations. Analogous to code transformations used
by modern compilers [32], [35], we apply our mutations on
an IR layer. This design decision enables the implementation
of semantically meaningful mutations that produce a high
diversity of generated JavaScript programs, a crucial aspect
for fuzzing.

In an orthogonal approach, Aschermann et al. proposed
Nautilus [14], a multi-language fuzzer that combines an
input grammar with code coverage. Mutations are applied
at the AST layer, hence suffering from the aforementioned
limitations. A more recent work on multi-language fuzzing
called Polyglot [21] improves Nautilus by translating a seed
corpus to a language-agnostic IR. Unfortunately, the mutations
applicable to the IR are quite limited, e.g., not even basic
language features such as variable definitions are amenable to
mutation. In contrast, our specialization allows us to include
highly specialized mutators and generators that specifically
target code to trigger JIT routines. As a result, we find
significantly more security-critical software vulnerabilities in
real-world JIT engines used by major web browsers.
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1 // addition function in C
2 int add(int a, int b) {
3 return a + b;
4 }

5 // addition function in javascript
6 function add(a, b) {
7 return a + b;
8 }

Figure 1: A simple addition function in C and JavaScript.

Regarding JavaScript-related security research without a
specific focus on fuzzing, we refer to two recent survey
papers [13], [41].

III. JUST IN TIME COMPILER VULNERABILITIES

In this section, we first give a brief overview of JIT compi-
lation for JavaScript in modern browsers, followed by a case
study of a JIT vulnerability to illustrate technical challenges.

A. Just in Time Compilation

We use a small, intuitive example to give a brief introduction
to the current approach to designing and implementing an
efficient JS JIT compiler. More specifically, we explain the
basic concept of a mixed-mode JIT compiler architecture,
i.e., an interpreter as a baseline, followed by a sequence of
successively higher optimizing JIT compilers. For a more
detailed and comprehensive explanation of different JIT com-
pilation approaches, including template- and trace-based JIT
compilation, we refer the reader to common compiler and
interpreter literature (e.g., [11], [15], [19], [20], [22], [27]).

JavaScript engines used in browsers contain a parser, a
bytecode compiler, an interpreter, and usually a JIT compiler.
When JavaScript code is first encountered, the parser of the
engine constructs the corresponding AST, which is compiled
to engine specific bytecode by the bytecode compiler [11].
This bytecode is consumed by an interpreter.

However, bytecode interpretation is slow due to the dis-
patching overhead as well as the numerous, often redundant,
type checks being performed by each bytecode handler. If
code is executed frequently, it is desirable to optimize the
execution by compiling the JavaScript code to machine code
and optimizing it on the way. An intuitive example of the
challenges faced by a JavaScript JIT compiler in comparison
with a classic ahead-of-time compiler (e.g., clang) can be
seen in Figure 1: The given C code can directly be compiled
into assembler code, as all required information is present.
Contrary to C, JavaScript is dynamically typed and not all
required information for machine code generation is present.

Consequently, a JIT compiler cannot trivially compile
JavaScript code into machine code if performance is a re-
quirement. The execution must first confirm the types used
and then proceed according to the type at hand. Those types
can range from primitive integers to highly complex objects,
all exhibiting different behavior when used with the same
functionality.

However, during execution, usage patterns become apparent.
E.g., let us assume that the add operation is only observed
being called with integers. Based on this observation, specu-
lative optimization can be performed: The compiler compiles
the JavaScript code specifically for the inferred type profile.
Finally, type guards are added that represent the optimization
type assumptions. The guards check that the given values
are really of the assumed type (in our example, integers).
As long as the guard holds, the code proceeds with the
now optimized function. If the guard fails, the code ’bails
out’ and the execution of the JavaScript code returns to the
interpreter, which executes the non-optimized, slower function.
The resulting abstract assembler code would be similar to
the compiled C code with the difference of containing the
type guards and, as we are talking about integer addition, an
overflow check.

We can summarize such an optimization into the following
steps resulting in a compiled and optimized version of the
function under scrutiny: (1) collect usage pattern data, (2) infer
type patterns, (3) optimize the code for those types, (4) deploy
type guards in front of the optimized code.

The reason why an engine does not immediately JIT com-
pile the JavaScript code of a web page is twofold: First, the
profiler has to collect execution information for JIT optimiza-
tion to work. Second, JIT optimization is time-consuming
because optimizing every aspect of a given JavaScript program
might consume more time than is ever conserved by gains in
execution speed.

To gather the required information before triggering JIT
compilation, a profiler, which is part of the engine, collects
execution information of the executed code. After reaching
an internally specified threshold, the engine schedules the
code for JIT compilation. Later executions directly call the
optimized code instead of executing the function via bytecode
interpretation.

Consequently, a typical modern JIT compiler pipeline con-
sists of the steps visualized in Figure 2. (a) The engine
translates the source code into an AST. (b) The engine
compiles the AST into bytecode for a custom VM and executes
this bytecode using the interpreter a number of times, during
which type information is collected. (c) The engine passes
the bytecode to the JIT compiler, which translates it into
a compiler-specific IR. While the bytecode is designed for
execution by the interpreter, the JIT IR is designed to facilitate
the implementation of various program optimizations. (d) The
JIT compiler optimizes the IR and adds type guards, which
essentially add type information to the IR. (e) Finally, the JIT
compiler lowers the IR to machine code, which is directly
executed on the host CPU.

B. JIT Vulnerability Case Study

CVE-2018-4233 was one of the first vulnerabilities we
discovered during the initial exploration of JIT compiler
vulnerabilities. The JIT compiler tries to merge multiple type
guards and fails to recognize that the type of the checked
variable can change in-between.
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function add(a, b) {
return a + b;

}
for (i = 0; i != 10000; i++) {
add(i, i+1);

}

(a) (b)

Parameter count 3
Register count 0
Frame size 0
12 E> 0xe01fad537e @ 0
25 S> 0xe01fad537f @ 1
34 E> 0xe01fad5381 @ 3
38 S> 0xe01fad5384 @ 6
Constant pool (size = 0)
Handler Table (size = 0)

(c)

// check if param is integer
v0 = LoadArgument 0
CheckIfInteger v0
v1 = LoadArgument 1
CheckIfInteger v1
v3 = v0 + v1
CheckIfIntegerOverflowHappened
return v3

(d)

REX.W leaq rbx,[rip+0xfffffff9]
REX.W cmpq rbx,rcx
jz 0x7bd38d02e44 <+0x24>
REX.W movq rdx,0x3600000000
REX.W movq r10,0x10f1110c0 (Abort)
call r10
int3l
....

(e)

Figure 2: High-level overview of the JIT compiler pipeline: (a) The engine gets the code and (b) translates it into an AST.
(c) The AST is translated to bytecode that is executed by the compiler. (d) The JIT compiler translates bytecode into a JIT
intermediate representation and optimizes it. (e) Finally, the JIT compiler lowers the IR to machine code.

1 function Constructor(a, v) {
2 a[0] = v;
3 }
4

5 var trigger = false;
6 var arg = null;
7 var handler = {
8 get(target, propname) {
9 if(trigger) {

10 arg[0] = {};
11 }
12 return target[propname];
13 },
14 };
15 var EvilProxy = new Proxy(Constructor, handler);
16

17 for(var i = 0; i < 100000; i++) {
18 new EvilProxy([1.1, 2.2, 3.3], 13.37);
19 }
20

21 trigger = true;
22 arg = [1.1, 2.2, 3.3];
23 new EvilProxy(arg, 3.54484805889626e-310);
24 arg[0];

Figure 3: Proof-of-concept code to trigger CVE-2018-4233.

1) Guard Redundancy Removal: The JIT code deploys
guards (Section III-A) to ensure that all type assumptions
made during compilation indeed hold at runtime. Missing any
violated assumption may have severe consequences, ranging
from crashes to exploitable vulnerabilities. Depending on the
code, however, guards can be redundant. The JIT compiler
can remove a redundant check to further optimize the code. To
ensure that guards are redundant, the JIT compiler analyzes the
code between guards for potential side effects. This analysis
can be faulty, as was the case for CVE-2018-4233. A call to
function deemed side-effect free could cause a user-defined
JavaScript callback to be invoked, which in turn could change
the type of a variable.

2) The Concrete Vulnerability: The compiler assumed that
the CreateThis operation, responsible for creating a new
object in a constructor, would not result in any side effects.
However, this assumption is violated by wrapping the con-
structor in a Proxy.

By being able to change the type of an argument object, in
this case from an array of floating-point numbers to an array
of JavaScript values, it is possible to achieve a type confusion
in the emitted machine code.

Figure 3 shows a proof-of-concept to trigger this behavior.
The JIT compiler assumes that the constructor function always
receives an array with doubles as the first argument. It guards
this assumption with a type check at the beginning of the
emitted machine code. However, the CreateThis operation
is executed after the type check of the argument object
and invokes JavaScript through a Proxy callback when the
prototype property of the constructor is retrieved. Changing
the type of the argument of the argument array in the callback
then causes a type confusion when the constructor function
resumes and accesses the array. As a result of executing the
proof-of-concept code the double value 3.54484805889626e-
310, which is stored as 0x414141414141, is wrongly used as
a pointer, resulting in an attacker controlled crash due to an
access violation when dereferencing the address.

IV. METHOD

Fuzzing for JIT compilation vulnerabilities is an area that
has not yet been explored in detail (see Section II) and re-
quires special considerations concerning semantic correctness
(see Section III). In this section, we describe our approach to
fill the current gap in fuzzing JIT compilers for vulnerabilities.
We start by defining a set of requirements that we deem neces-
sary to successfully fuzz JIT compiler engines (Section IV-A)
and then show how a fuzzer based on mutations of a custom
IR can satisfy them (Section IV-B).

A. Requirements

1) Syntactic Correctness: The parsers of JavaScript engines
are simple and easy to understand compared with the rest
of the code base, and are not of interest to us. Additionally,
the parser does not influence the JIT compiler. Consequently,
our fuzzing approach needs to target the components behind
the parser. Aiming at these components requires the syntactic
correctness of emitted programs. Since the parsing phase
rejects syntactically invalid examples, we ensure syntactically
correct programs.

2) Guided Fuzzing: JIT compilers are deeply embedded
within a JavaScript engine. The first element of the engine to
get into contact with the code is the parser, then the interpreter,
and only when the code is executed with the correct pattern
is the JIT compiler triggered. To reach that deep into the
engine, we require feedback to generate increasingly complex
inputs stressing different features, eventually reaching the JIT
compiler.
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3) Semantic Correctness: As explained in Section III, JIT
compiler optimization is only triggered in cases of repeatedly
and reliably executed code. For such executions to occur, we
need semantic correctness of the emitted code. Exceptions
prevent the execution of subsequent code and JIT compilation
altogether, because the engine does not execute the code
often enough. Commonly, fuzzers work around this issue by
wrapping every generated statement with a try-catch block.
This approach does succeed in ensuring execution of sub-
sequent code after the execution encountered an exception.
Unfortunately, this substantially alters the program’s seman-
tics, as an additional control flow is introduced. Therefore,
a JIT compiler treats the generated example differently than
if no try-catch statements had been inserted. In fact, a JIT
compiler cannot perform many optimizations when the control
flow graph is fragmented, as with inserted try-catch blocks.
We confirmed this assumption by adding try-catch constructs
into programs found during fuzzing, which afterward stopped
triggering the defect in most cases. Therefore, it becomes
clear that a central requirement for successful fuzzing of JIT
compilers is the ability to produce semantically correct code
with a high likelihood.

4) Semantic Code Mutations: We determined that we want
to use feedback and require semantic correctness for a suc-
cessful fuzzing framework. One essential component is still
missing: the underlying semantics of the code. A JIT compiler
deals only with the semantic properties of the code, such
as control and data flow. This is due to the JIT compiler
commonly operating on its own IR of the bytecode without any
knowledge of the initial AST and thus syntax. Consequently, it
is desirable to perform mutations on that level and incorporate
the feedback given from guided fuzzing.

The simplest way to use feedback is by using a mutation-
based fuzzing approach. With this process, a fuzzer can
dynamically add samples to the corpus that result in new
coverage, and mutate them further in the future.

Existing mutation-based interpreter fuzzers, such as Lang-
Fuzz, mutate syntactic elements of the code, using represen-
tations such as the AST [31]. However, syntactic elements are
irrelevant to the component targeted by our approach, the JIT
compiler. Further, the AST can be ambiguous. Consequently,
solely semantic mutations are more challenging to imple-
ment as immediate mutations could result merely in syntactic
changes to the program and not semantic ones.

Figure 4 shows an example where two code snippets
with different AST express the same computation. An AST-
based mutation could simply be the transformation between
those two code snippets. To counter this issue, we opted
to use an intermediate representation that is close to the
representation used by the compiler. Mutations on such an
IR avoid semantically meaningless mutations and increase
fuzzing effectiveness. By performing a different set of mu-
tations on an IR, we can detect different defects faster. We
note that an AST mutation could be restricted to counter
meaningless mutations but would then effectively become an
IR on its own.

1 // verbose code
2 function foo(b) {
3 const a = 42;
4 const c = a + b;
5 return c;
6 }
7 // concise code
8 function foo(b) {
9 return b + 42;

10 }

Figure 4: Example of a source code snippet showing a verbose
and a concise version performing the same semantic operation.

1 v0 <- LoadInt 0
2 v1 <- LoadInt 10
3 v2 <- LoadInt 1
4 v3 <- Phi v0
5 BeginFor v0, <, v1, +, v2 -> v4
6 v6 <- BinaryOperation v3, +, v4
7 Copy v3, v6
8 EndFor
9 v7 <- LoadString 'Result: '

10 v8 <- BinaryOperation v7, +, v3
11 v9 <- LoadGlobal 'console'
12 v10 <- CallMethod v9, 'log', [v8]

Figure 5: An example of an IR program with a highlighted
slice of the program.

B. An Intermediate Representation Designed for Fuzzing

As explained in the previous section, our fuzzing approach
uses its own IR. Thus, we centered our fuzzer’s design
around the idea of mutating code in a custom intermediate
representation (IR), then translating the IR code to JavaScript
for execution. We designed our IR to our requirements as
stated in Section IV-A:

IR Design: In our IR, a program consists of a list of
instructions, each in turn consisting of an operation together
with a list of input and output variables. Figure 5 shows an
example program which computes the sum of the numbers
from zero to nine. Note that IR operations can be paramet-
ric. Parameters include constants in operations, property and
method names, the operators of binary and unary operations,
as well as comparisons.

We implemented the control flow using special block in-
structions, for which at least a starting and an ending block
exist. Our IR uses static single-assignment (SSA) form [12],
[37], meaning that any variable has exactly one assignment.
SSA form facilitates the implementation of a define-use anal-
ysis that we employ later on. It also increases the reliability
of type inference and simplifies code generation because, e.g.,
output values will always be assigned to a new SSA variable.
Reassignments of JavaScript variables are possible through a
Phi operation that produces an output reassignable through a
Copy instruction. We give a complete list of implemented IR
operations in Appendix C, together with a description of the
JavaScript language features that they cover.
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Required Invariants: In addition, we require that the fol-
lowing five invariants must hold for every program in our IR,
and thus for the JavaScript programs generated from it:

• All inputs are variables: All input values to an instruction
must be variables. There are no immediate values or
nested expressions. This enables more straightforward
reasoning about the data flow of a program and facilitates
mutations to it.

• Variables are defined before use: To reduce possible
semantic errors, all variables must be defined before being
used, either in the current block or an enclosing one.

• No open semantic blocks: A block beginning must even-
tually be followed either by the corresponding closing
instruction or by an intermediate block instruction, such
as a BeginElse for which the same holds true. This is
necessary to guarantee syntactic correctness.

• Inputs of blocks defined outside: All inputs to block
instructions must be defined in an outer block, reflecting
the variable definition rules of JavaScript

• Usage of Phi: To preserve SSA semantics, the first input
to a Copy instruction must be the output of a Phi
instruction.

Lifting the IR to JavaScript: We lift a program from our IR
to JavaScript by first translating each instruction in isolation.
As a next step, we inline expressions when possible to create
more human-readable code.

C. Mutating the IR

We designed the mutations in such a way that they modify
the central aspects of a program expressed in our IR. In par-
ticular, we achieve the following four goals by our mutations:

• Mutation of the data flow between instructions (Input
Mutation, Generative Mutations)

• Mutation of the computation performed by instructions
(Operation Mutation)

• Mutation of the control flow of the program (Combine
Mutation, Generative Mutation)

• Combination of aspects from two different programs
(Combine Mutation)

In the following, we describe how these goals can be
achieved via different kinds of mutations.

1) Input Mutation: The input mutation is a simple mutation
to the data flow of a program. We replace one SSA input to
an instruction with a different one. This causes the instruction
to operate on another value at runtime, potentially yielding
different results.

2) Operation Mutation: The operation mutation consists of
selecting a random parameterized instruction and changing one
of its parameters. For example, we change constant values,
cause the program to use different methods or properties, or
replace binary or unary operations.

3) Combine Mutation: The combine mutation combines
parts of different programs into a new one: In the simple
version of the mutation, we insert a program in full at a random
position in the second program. This requires renaming of

variables in the inserted program to avoid collisions of variable
names, which is, however, trivially possible.

The more complex version of the mutation only inserts a
part of an existing program into the second one. The mutation
selects a random instruction and, recursively, all instructions
whose outputs are also used as inputs. We then copy the
resulting slice into another program. Figure 5 shows an
example slice of the program. This slice could then simply
be copied into a different program as it is self-contained.

However, this mutation does not alter any existing data flow,
as the SSA variables of the two input programs are not mixed.
To merge the data flows of the two input programs, an input
mutation would need to happen afterwards.

4) Generative Mutation: The generative mutation simply
inserts newly generated code, which makes use of existing
values, at random positions into an existing program. For this
purpose, we implemented several code generator functions that
emit short code snippets. Overal, we implemented one simple
code generator for every language feature of the IR as well
as a small number of special code generators to either trigger
JIT compilation or stress historically error-prone features.

Note that this mutator also ultimately makes it possible to
commence from an initially empty corpus, as the mutator gen-
erates new code and programs increasing the code coverage,
which our fuzzer then adds to the corpus dynamically.

D. Achieving a High Likelihood of Semantic Correctness

The invariants we impose on the IR—each being preserved
by every mutation—avoid some trivial semantic errors, such as
the use of a variable before it is defined. Those restrictions are,
by themselves, not sufficient to ensure semantic correctness
over the generated corpus. We added three additional measures
to improve the semantic correctness.

1) Allowing only a valid corpus: We achieve an additional
degree of semantic correctness by ensuring that only semanti-
cally valid samples are added to the corpus at runtime. In order
to achieve that, it is necessary to not only record coverage
information during every execution, but also whether the
program terminated abnormally due to an uncaught runtime
exception. In all supported engines, this is possible through
the exit code, which will generally be zero if no uncaught
exception was raised, and nonzero otherwise.

2) Only performing small changes: A pivotal insight to
further improve the likelihood of semantic correctness is that
each mutation only has a small probability of turning a valid
(in the semantic sense) program into an invalid one. This is due
to the fact that each mutation is either inherently semantically
correct (combination mutations) or only affects the program in
a minor way (input mutation, operation mutation, generative
mutations).

3) A lightweight type system: Our final step to increase the
semantic correctness of the generative component is a custom
type system, as type errors are a significant source of semantic
errors. For this, we implemented a lightweight abstract type
inference engine. The inference engine, which can statically
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approximate the runtime types of an SSA variable. This infor-
mation is then used to avoid generating trivially invalid code
constructs, such as method calls on non-objects or function
calls on non-callable objects. In order to not limit the diversity
of code that the fuzzer can produce, other mutations generally
ignore type information.

We designed the type system to be as simple as possi-
ble, yet powerful enough to enable inference of the pos-
sible operations that can be performed on the value at
runtime. The basic types supported are Tinteger, Tfloat,
Tstring, Tboolean, Tfunction(signature), Tconstructor(signature),
Tobject([properties],[methods]), Tundefined, and Tunknown

These types can be combined using the union operator,
t1|t2, expressing that a value is one of multiple types. For
example, the outcome of the addition operator in JavaScript
can generally be a number or a string and would as such be
represented as Tinteger|Tfloat|Tstring.

Further, two types can also be combined using the merge
operator, t1 + t2. Such a merged type expresses that a value
is two or more types at the same time. An example for this
would be strings in JavaScript, as they expose properties and
methods to the user. The type system thus represents them
as Tstring + Tobject. Finally, the type system can also model
the list of properties and methods of an object as well as the
signatures of functions and constructors.

The abstract type inference engine has simple rules that
determine the output types of every operation and operates
on a static model of the runtime environment, containing type
information for every built-in object. Whenever two or more
alternative control-flow paths merge, we combine the variable
states, using the union operator. The execution semantics differ
slightly between JavaScript and our inference engine, e.g., the
inference engine does not have a concept of prototypes as they
exist in JavaScript. While simplifying the implementation, this
leads to errors in the static type approximation. However, in
practice, these turned out to be unproblematic, as the type
approximation is used conservatively by the code generators.

As the static type inference system is merely a performance
optimization, it can be disabled entirely, in which case the
types of all variables will become Tunknown and code gen-
erators will generate truly random operations. In practice, we
found that the correctness rate varied between 50% and 75%.

E. Fuzzing on an Intermediate Code Representation

Our fuzzing approach generally follows the standard design
of a mutation-based fuzzer. In every iteration, the fuzzer selects
a program P from the existing corpus (seeded with a single-
line JavaScript program) and mutates it randomly to produce a
new program Pm. The fuzzer then lifts Pm to JavaScript code,
which is subsequently executed on the target engine while
gathering coverage statistics, e.g., through Clang’s sanitizer-
coverage feature.

If execution of Pm increases the coverage of the target
program, Pm is regarded as interesting and kept for future
mutations. However, as our mutations can only increase a
program in size but never shrink it, it is necessary to minimize

Algorithm 1: Scheduling and mutating samples in
FUZZILLI.

1 Corpus← [];
2 Corpus.add(genSeedProgram());
3 while True do
4 P ← Corpus.randomElement();
5 for N do
6 Pm ← mutate(P );
7 exec← execute(lift(Pm));
8 if exec.returnStatus == crash then
9 saveToDisk(Pm);

10 else if exec.returnStatus == normal then
11 P ← Pm;
12 if newCoverage(exec) then
13 Pmin ← minimize(P );
14 Corpus.add(Pmin);

Pm before adding it to the corpus. Otherwise, the size of
the programs in the corpus would keep increasing and slow
down fuzzing. Minimization is naively possible through a
fixpoint iteration that successively attempts to remove instruc-
tions while ensuring that the resulting program still exhibits
the same coverage increase. As the distance between two
interesting programs is often larger than a single mutation
can bridge, we mutate a program multiple times consecutively.
However, to prevent the unnecessary investment of resources,
the last mutation is reverted if it produced an invalid program.
Pseudocode for the high-level fuzzing algorithm is given
in Algorithm 1.

V. EXPERIMENT

We implemented the fuzzer design outlined in the previous
section in the Swift programming language in a tool called
Fuzzilli. We used this prototype implementation for the eval-
uation and ran it against the instrumented JavaScript engine
code of three state-of-the-art JavaScript engines: Google V8,
Apple JavaScriptCore, and Mozilla SpiderMonkey.

A. Fuzzing Time Frame

The vulnerabilities reported in this section are the results of
a consecutive series of fuzzing sessions spanning six months.
Each session lasted for around one week and used around 500
CPU cores. For each session, either the most recent source
code version at that point or, if available, the source code of the
current beta release was used. We ran the fuzzing on Google
Compute Engine (GCE) and predominantly used multiple N1-
standard-4 machine type machines (4 CPUs, 15 GB of RAM).
Further, we chose to use preemptible instances to decrease the
costs.

B. Setup

We compiled the target engines as standalone binaries,
without the web browser bindings. Additionally, we modi-
fied the engines to support the target interface that requires
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Table I: Summary of the found security vulnerabilities for Google V8, Apple JavaScriptCore (JSC), and Mozilla SpiderMonkey
(SM). The table also presents more information about each vulnerability along two taxonomies (effect of the vulnerability and
the time a vulnerability may occur). Finally, we list the age of the vulnerability in months.

Engine Issue Type Runtime Age Description
SM CVE-2019-9813 Type Safety ✓ 18 Incorrect update to inferred property types
SM CVE-2019-9791 Type Safety ✓ > 36 Incorrect type inference for constructors entered via OSR
SM CVE-2019-11707 Type Safety ✓ 20 Incorrect return type inference of Array.prototype.pop
V8 Issue 944062 Type Safety ✓ 1 ReduceArrayIndexOfIncludes fails to add Map checks
V8 Issue 944865 Type Safety ✓ 8 Invalid value representation in V8
JSC CVE-2019-8671 Type Safety ✓ 9 LICM leaves object property access unguarded
JSC CVE-2019-8765 Type Safety ✘ > 6 GetterSetter type confusion during DFG compilation
V8 Issue 939316 Spatial Safety ✘ 4 Optimizing Reflect.construct causes Map pointer OOB
JSC CVE-2019-8518 Spatial Safety ✓ 9 LICM moves array access before bounds check causing OOB
JSC CVE-2019-8622 Temporal Safety ✓ > 36 doesGC() incorrectly models behavior of StringObjects
JSC CVE-2019-8672 Temporal Safety ✓ 30 JSValue use-after-free in ValueProfiles
JSC CVE-2019-8558 Temporal Safety ✘ > 30 CodeBlock use-after-free due to dangling Watchpoints
JSC CVE-2019-8623 Uninit Data ✓ 24 LICM leaves stack variable uninitialized
JSC CVE-2019-8611 Uninit Data ✓ 4 Optimization incorrectly removes assignment to register
SM CVE-2019-9792 Misc ✓ 4 Leaks JS_OPTIMIZED_OUT magic value to script
SM CVE-2019-9816 Misc ✓ > 36 Unexpected ObjectGroup in ObjectGroupDispatch operation
V8 Issue 958717 Misc ✓ 4 Incorrect interaction between DCE and inlining

communication between our fuzzer and the JavaScript engine
over a set of communication pipes. Further, we lowered the
JIT compilation thresholds to trigger JIT compilation earlier,
thus speeding up the fuzzing. In general, we set the thresholds
such that roughly 100 executions of a function would cause
it to be compiled. This threshold allows a sufficient number
of iterations for the engine to collect type information, while
speeding up the fuzzing. Modifying the threshold is a common
technique deployed by previous fuzzing solutions [3]. Finally,
we compiled the engines in a custom debug configuration with
optimizations enabled for performance reasons. The debug
configuration includes a number of internal assertions, which
are removed in release builds for performance reasons.

We enable assertions, as they help with detecting exploitable
defects that do not immediately materialize as memory safety
violations. As an example, CVE-2019-8622 was discovered
through an assertion failure. The JIT compiler assumed that a
specific operation could never cause a garbage collection (GC)
to happen. However, during execution, the lowered operation
did invoke APIs that can, under some circumstances, trigger
GC. This situation can then be exploited by first triggering a
GC at a specifically chosen time and then deliberately crafting
JavaScript code so that a now freed JSObject is afterward
accessed in the JIT compiled code.

Both of these steps are necessary to cause memory safety
violation. As both steps require a non-trivial amount of specif-
ically crafted code, they are unlikely to be directly found
through fuzzing, but the indicators for such a violation are
detected by fuzzing.

C. Results

Many of the vulnerabilities found first materialized as
failed assertions or null pointer dereferences. Afterward, we
performed manual triaging of the crashes to determine if they
were security-critical and exploitable. While some observed
crashes were clearly exploitable given the failed assertion

or crash condition, others first required substantial analysis
to determine exploitability. All identified bugs were reported
to the developers in a coordinated way. We consider all
defects listed to be exploitable and either received a CVE or
Chrome Internal Issue number. Consequently, the issues were
subsequently fixed by the developers.

1) Type Classification: Table I shows a comprehensive
summary of all 17 vulnerabilities found which resulted in
a CVE or internal issue number being assigned to us. All
the identified vulnerabilities were related to JIT compilation
and span across issues such as invalid bounds check removal,
incorrect type inference, and register misallocation issues.

2) Age Determination: We also determined the age of the
vulnerability by compiling old versions of the software and
verifying whether the found test case triggers a crash. For
JavaScriptCore and V8, we used git’s bisecting feature to find
the oldest revision. For Firefox, we used old official releases
and tested on those.

As the test case might not trigger on a different version
for unrelated reasons, or might even trigger another bug,
the age results could contain inaccuracies, but are generally
conservative. In cases where we could not determine the age
of an issue dynamically as described above, we resorted to
manual source code analysis to try to determine when the
vulnerable code was introduced. As this is more error prone
than compiling and testing the code, the results here are less
certain.

VI. CLASSIFICATION OF THE FOUND VULNERABILITIES

To systematize the found vulnerabilities, we first describe
the root causes that lead to each vulnerability, followed by two
taxonomies. The first classifies the vulnerabilities according to
the effect and the second by the time the vulnerability occurs.
A tabular overview of classified vulnerabilities is shown in
Table I.
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A. Root Causes
We identified three common root causes: Optimizations

that move code, incorrect modeling of runtime execution
semantics, and faulty deletion of type checks. Root causes
not fitting this categorization are grouped as miscellaneous.

1) Code Motion: A common optimization consists of mov-
ing code fragments in the program (e.g., loop-invariant code
motion). However, if this is done incorrectly, previously safe
code fragments become unsafe (3 vulnerabilities).

2) Incorrect Modeling: Issues may arise from faulty mod-
eling of runtime execution semantics, such as whether an
operation has side effects or could trigger garbage collection
(2 vulnerabilities).

3) Incorrect Type Inference: A central optimization of JIT
compilers is the inference of runtime type information, which
allows type checks to be omitted. Whenever an incompatible
value is stored in a property with associated type information,
that type information has to be updated because JIT compilers
rely on it to omit runtime type checks (4 vulnerabilities).

4) Misc: Not all found vulnerabilities shared a common
underlying issue. This could be because they are “one-off”
bugs or simply because no other similar vulnerabilities were
found with which they could have formed a category (9
vulnerabilities).

Furthermore, the discovered vulnerabilities can be differen-
tiated according to their effect and time of impact. Next, we
briefly explain these two categories.

B. Classification by Effect
We determined that there were four common clusters (and

a misc cluster) of different types of effects most found
vulnerabilities could have:

1) Type Safety Violations: All vulnerabilities that cause
some kind of type confusion (7 vulnerabilities).

2) Spatial Memory Safety Violations: All vulnerabilities
that cause spatial memory corruption, such as out-of-bounds
accesses to heap allocated memory blocks (2 vulnerabilities).

3) Temporal Memory Safety Violations: All vulnerabilities
that cause temporal memory safety violations, e.g., due to
usage of previously freed memory (3 vulnerabilities).

4) Usage of Uninitialized Data: All vulnerabilities that use
uninitialized data, such as reading a pointer value from an
uninitialized location in the stack (2 vulnerabilities).

5) Misc: All vulnerabilities that do not fit into any of the
preceding categories (3 vulnerabilities).

C. Classification by Time of Impact
There are two different times a vulnerability may occur,

either during runtime or during compile time.
1) Runtime: All vulnerabilities in this category are logical

compiler flaws, possibly leading to memory corruption trigger-
ing in the emitted machine code at runtime (14 vulnerabilities).

2) Compile Time: This category includes “classic” memory
corruption bugs as well as compiler-specific ones, which, lead
to memory corruption during compilation (3 vulnerabilities).

VII. EFFICACY OF OUR METHOD

Due to the non-deterministic nature of fuzzing, the objective
properties of different fuzzing methods are difficult to com-
pare. Another obstacle to performing a meaningful comparison
is the different goals and design principles of fuzzers. We
designed our approach called Fuzzilli specifically for finding
JIT vulnerabilities and specialized accordingly. Moreover, our
method does not require an input corpus and can generate new
JavaScript code on its own. Other JavaScript fuzzers, such as
Superion [43] or SoFi [29], have a more general design goal
and require an input corpus. Consequently, the context of the
design must be considered when comparing them.

To evaluate the efficacy of our method, we perform both a
descriptive and an empirical analysis. We begin our descriptive
evaluation by analyzing both the objective generality and
quality of our approach. Then we present an empirical study
in which we investigate the impact of our different generators,
measure the code coverage of our method, and compare it to
Superion [43]. To allow future replication, we make our code
and artifacts openly available online.

A. Descriptive Efficacy Evaluation

During our experiments, we discovered and reported mul-
tiple previously unknown vulnerabilities in all three major
JavaScript engines and were assigned corresponding CVE or
Issue numbers (see Table I). These findings show that our
approach achieves generality in terms of applicability, i.e., we
did not optimize for a specific engine or benchmark and had a
positive security impact on different highly relevant JavaScript
engines. Furthermore, all three engines have been continuously
tested by vendor-specific fuzzing infrastructures and by third-
party fuzzers. Due to these prior efforts, JavaScript engines are
generally considered well-tested software. Nevertheless, we
found 17 vulnerabilities that eluded competing fuzzers, with
some of the vulnerabilities introduced more than three years
ago. This shows that our fuzzer is a significant qualitative
improvement for JavaScript JIT fuzzing.

B. Empirical Efficacy Evaluation

Our empirical efficacy evaluation is two-fold. First, we
analyze what effect each of our different generators had and
how many mutations we are able to achieve across time for
the three major JavaScript engines.

Second, to show that our fuzzer is competitive in the
context of overall JavaScript fuzzing, we conduct an empirical
evaluation against Superion [43]. This fuzzer represents the
current state of the art in JavaScript fuzzing and the authors
have shown that it outperforms other approaches in several
dimensions.

1) Generator Effect Analysis: We ran our fuzzer five times
for 24 hours against the three JavaScript engines SpiderMon-
key, JavaScriptCore, and V8. During these runs, we logged
the mutations resulting in code coverage increases. Figure 6
shows the results for JavaScriptCore and SpiderMonkey, the
plot for V8 is shown in Appendix A due to page restric-
tions. We can observe that generative and input mutations
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Figure 6: Temporal analysis of the proportion of our different mutation strategies for JSC and SpiderMonkey, respectively.
Measured at 10 minute intervals.

were the most significant contributors when generating new
samples. Combine and operation mutations are the next two
influential mutations. Interestingly, explicitly stressing the JIT
was the smallest contributor during our empirical analysis.
These results show that when fuzzing for JIT vulnerabilities,
there is no need to focus entirely on JIT-related mutations. A
relatively small but constant effort suffices in practice. An in-
depth explanation of the different mutation strategies can be
found in Section IV-C.

There is also no noticeable difference across the different
engines. The distribution of the successful mutators stays
within the same proportions. This observation also holds for
the number of mutation per minute that result in novel samples,
which converge towards zero for both JSC and SpiderMonkey.
However, we find that the initial decline is slower for JSC than
for SpiderMonkey.

2) Comparison with SoFi: We would have preferred to
include a direct comparison with the recently published
SoFi [29] approach. Unfortunately, the authors neither pub-
lished the full source code nor provided the code when con-
tacted. We analyzed the results reported in Table 2 of the paper
and found that the discovered “bugs” in the three relevant
JavaScript engines SpiderMonkey, JavaScriptCore, and V8 do
not seem to represent actual security-critical vulnerabilities.
For example, the first four bugs reported for SpiderMonkey
are marked as invalid by the developers and do not represent
a vulnerability at all. The fifth report is a duplicate. Similarly,
the “bug” reported for JavaScriptCore is marked as invalid
by the developers, too. We were puzzled by this analysis
of the reported results and the unavailability of the source
code. Unfortunately, the concerns could not be resolved in a
direct exchange with the authors, so no direct comparison was
possible.

3) Comparison with Superion: A widely-used metric to
compare fuzzers is code coverage, as it shows how much of an
engine is reached and consequently tested. We opted to lever-

age branch coverage as our metric. As our fuzzer specializes
in JIT fuzzing, we also compare the JIT-specific coverage.
As noted above, our targeted engines are JavaScriptCore, V8,
and SpiderMonkey, given that they are used in modern web
browsers. The exact command line flags for each fuzzer JS
engine are shown in Appendix B.

Setup: We ran each fuzzer five times for 24 hours on 100
cores of a Xeon Gold 5320 CPU with 256GB RAM using
Ubuntu 22.04. Fuzzilli and Superion instances were deployed
in virtual machines with 2GB of RAM for each of the 100
instances. For both fuzzers, corpus sharing was enabled.

Used Corpus: Our fuzzer does not use an input corpus,
whereas Superion does require a corpus. This is a caveat
when trying to perform a fair and objective comparison, as
the corpus might determine the quality and final coverage
of the fuzzing results and progress. A further hindrance is
that Superion does not publish its corpus. We opted to use
the publicly available DIE corpus [2] as input for Superion.
To measure the impact of the start corpus on the success
of Superion, we additionally evaluated on randomly chosen
sub-corpora of DIE. We generated these sub-corpora by suc-
cessively adding random samples until reaching 17% branch
coverage, which is roughly half the coverage yielded by the
entire DIE corpus. Each sub-corpus was used for a separate
evaluation. We acknowledge that not using the original input
corpus might result in worse results than previously reported.
However, the fact that a fuzzer works well without a specific
body is a characteristic that a fuzzer must have to be generic.

Evaluation: To evaluate the code coverage, we split the
collected sample files into sets for each minute of fuzzing.
Each set was evaluated against the corresponding llvm-cov [6]
instrumented engine. We merged the resulting coverage data
for each set across time, starting with the time-wise first set
for Fuzzilli and the coverage of the input corpus for Superion.

The total coverage encompasses the coverage of the whole
engine denoted by the llvm-cov report file as “TOTAL”. To
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Table II: Final mean branch coverage results. DIE Coverage
denotes the coverage already reached by the provided DIE
corpus prior to fuzzing. The first number represents the full
corpus the second, the randomly selected sub-corpora.

Engine DIE Coverage Superion Coverage Our Coverage
JSC 44.56% / 17% 46.71% / 28.14% 43.72%
JSC JIT 56.78% / 34.98% 57.67% / 49.35% 59.22%
V8 35.17% / 17% 36.15% / 23.13% 30.64%
V8 JIT 53.33% / 38.82% 54.22% / 47.93% 53.47%
SM 36.49% / 17% 38.96% / 23.74% 30.53%
SM JIT 59.28% / 43.82% 60.50% / 52.69% 56.27%

gain the JIT specific coverage, we extracted and averaged the
reported coverage for each file potentially involved in JIT
compilation, using regular expressions on the individual file
paths1.

Results: We evaluated the branch coverage and averaged
it across our five runs. Superion improves the initial overall
coverage of the full DIE input corpus by 2.15%, 0.98%,
and 2.47% for JavaScriptCore, V8, and SpiderMonkey, re-
spectively. For the 17% coverage sub-corpus, Superion im-
proves the coverage by 11.14%, 6.13%, and 6.74%. Our
fuzzer reached a final coverage of 43.72%, 30.64%, and
30.53%. Concerning JIT specific coverage, Superion improves
by 0.89%, 0.89%, and 1.22%. For the 17% coverage sub-
corpus the improvements are 14.37%, 9.11%, and 8.87%.
Our fuzzer reached a final coverage of 59.22%, 53.47%, and
56.27%.

We also evaluated the line coverage specifically for
JavaScriptCore, as this is the intersection of evaluated engines
by us and Wang et al., as well as their reported metric [43].
Using the full DIE Corpus with an initial line coverage of
52.01%, Superion improves by 1.44%. For the partial corpus,
Superion improves by 11.49%. Our fuzzer reaches a line cov-
erage of 49.51%. For JIT-specific coverage, Superion improves
the full DIE corpus with an initial coverage of 64.58% by
0.53%. For the partial corpus, with an initial coverage of
44.10%, Superion improves by 14.13%. Our fuzzer reaches
a JIT specific line coverage of 65.60%.

The plots showing branch coverage over time are given
in Figure 7. A tabular overview of the raw branch coverage
results can be found in Table II. Figure 8 visualizes the
comparison along line coverage.

Discussion: Line and branch coverage are similar for
JavaScriptCore, leading to the assumption that either metric
is interchangeable. Overall, Superion outperformed our fuzzer
when provided with the full DIE corpus. The final coverage of
Superion was 3%, 6%, and 8% larger than our final coverage.
However, the coverage that was achieved in addition to the
start corpus was marginal, and the DIE corpus itself already
reached a higher coverage than the final coverage of our
fuzzer. Consequently, the better coverage cannot be attributed
to Superion.

1JSC:’. ∗ /(b3|ftl|dfg|assembler|jit)/.∗’,V8:’. ∗ src/compiler/.∗’,
SpiderMonkey:’. ∗ js/src/jit/.∗’

An interesting observation is that Wang et al. [43] reported
a line coverage increase of Superion for WebKit/JSC from
52.4% to 78.0%, an additional 25.6% of coverage. However,
using the DIE corpus with an initial line coverage of 52.01%
only lead to a final line coverage of 53.45%, an addition of
merely 1.44% (ref. Figure 8). Our assumption is that this is
due to the difference in input corpora and should be considered
a demonstration of the effect different input corpora can have
on the final coverage.

We strictly outperformed Superion when it was only pro-
vided with the reduced corpus. Our fuzzer reached an addi-
tional coverage of 15%, 7%, and 7% for JavaScriptCore, V8,
and SpiderMonkey. In contrast to the large corpus, Superion
could noticeably improve on the coverage again, showing the
impact an initial corpus can make on the results. However,
those improvements are of questionable benefit, as they are
a subset of the already existing larger DIE corpus, which
largely consists of browser vendor test cases. Thus, no overall
improvement in testing of JavaScript engines has been done.

Concerning JIT specific coverage, we outperformed Su-
perion on a full DIE corpus for JSC by 1.6% and got
outperformed by 0.8% and 3.8% for V8 and SpiderMonkey.
But again, the initial coverage by the start corpus itself was
already higher than our final coverage and the added coverage
by Superion was marginal. However, this demonstrates that
we are able to outperform or compete with Superion in terms
of JIT focused fuzzing even if Superion is supplied with a
comprehensive start corpus. The reduced start corpus lead to
similar results for JIT coverage as it did for full coverage.

C. Lessons Learned

We were able to compete with and, for JSC, even outper-
form Superion when it comes to JIT coverage even when pro-
viding Superion with the full DIE corpus. Surprisingly, when
looking at the overall coverage, Superion barely improved
on the full DIE corpus. Concerning a reduced initial corpus,
we strictly outperformed Superion in both JIT and general
coverage.

Finally, we were unable to reproduce the reported 25.6%
improvement of line coverage for JSC even though we also
started at an initial line coverage of 52%. This is perplexing
to us, as this suggests that the corpus used by Wang et al. had
significant and reachable coverage gaps that could be filled but
that do not exist in the DIE corpus. As the original Superion
corpus has not been published, we were unfortunately not able
to try and reproduce their original results. As a consequence,
we emphasize that future fuzzing research has to provide
any initial corpus to enable reproduction, and more emphasis
should be put on reproduction of previous fuzzing results with
different, possibly novel, corpora to estimate how well a fuzzer
generalizes across different corpora.

Concerning the influence of different mutation strategies,
we showed that a small but constant effort to stress the JIT
suffices to be able to focus on JIT vulnerabilities.
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Figure 7: The first row shows the comparison of overall coverage, the second row shows the JIT specific coverage. The engines
are shown in the order JavaScriptCore, V8, and SpiderMonkey. The main line displays the mean across all runs, whereas the
shaded area denotes the confidence band ranging from minimum value to maximum value.

Figure 8: Line coverage evaluation for the overall engine (top)
and concerning JIT specific files (bottom).

VIII. CONCLUSION

During the course of this paper, we showed how JIT
compilation can lead to serious vulnerabilities and why current
fuzzing approaches are insufficient to detect such vulnera-
bilities. We proposed filling this fuzzing gap by our novel
approach of generating semantically correct code, leveraging
an IR with a proportion of JIT focused mutation strategies.

We implemented our approach in the swift programming
language and ran a 6-months experiment on 500 cores against
V8, SpiderMonkey, and JavaScriptCore. During this test time
frame we discovered 17 previously unknown vulnerabilities.
Those vulnerabilities were on average at least 16 months
old and were therefore also overlooked by the fuzzers of the
respective vendors and researchers.

To foster research and strengthen the security of JS engines,
we will open source our code.

We also performed a descriptive and empirical analysis of
our fuzzer. In our descriptive analysis we showcased how
our fuzzer generalizes well across different engines and was
able to find previously unknown vulnerabilities, showing its
qualitative improvements of the state of the art. Our empirical
analysis showed that a constant, but limited, mutation focus for
the JIT is deployed by our fuzzer. Furthermore, the empirical
analysis showed that we are able to outperform or compete
with the state of the art fuzzer Superion when it comes to
JIT focused fuzzing even when providing Superion with a
comprehensive start corpus. When reducing the start corpus,
Superion was unable to outperform us, neither for general
nor for JIT focused coverage across all three engines. Those
results underline the importance to test fuzzer leveraging
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input corpora across multiple different corpora to judge the
generality. We also call for all future fuzzing research to
be required to publish not only source code but also used
evaluation corpora.

However, our fuzzing methodology is not complete as there
is still room to improve type information, e.g., by instrument-
ing the emitted code, to be more exact, which would allow
for even more targeted code generation. Furthermore, our set
of mutations is limited. Increasing the set of mutations to
include focused mutations for control flow could yield even
more deeply hidden vulnerabilities. Also the set of special
features can still be increased, as JavaScript is a complex and
feature rich language and less popular features might contain
yet undiscovered issues.

AVAILABILITY

All of our research artifacts are available online at https://
github.com/evaluating-fuzzilli-for-js-jit-fuzzing and the fuzzer
itself is available at https://github.com/googleprojectzero/
fuzzilli.
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[17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In ACM Conference on
Computer and Communications Security (CCS), 2017.
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APPENDIX A
V8 GENERATOR EFFECT PLOT

Figure 9 shows the fraction of applied mutations over
time in V8. We observed that the distribution is similar to
SpiderMonkey and JavaScriptCore (see Figure 6). Note that
the total number of mutations is lower from the beginning,
but does not converge to zero towards the end, suggesting
that V8 would benefit from longer fuzzing runs as it does not
exhaust its exploration paths as quickly.

Figure 9: Temporal analysis of the proportion of our different
mutation strategies for V8, measured at 10 minute intervals.

APPENDIX B
JS ENGINE FLAGS

The following listings summarize the command line flags
used during the experiments to start the code coverage evalu-
ation. As Superion was fed with the DIE corpus, we supplied
the evaluation with the required setup JavaScript files jsc.js,

ffx.js, and v8.js. Note that Superion did benefit from
changes in commandline parameters, similar to Fuzzilli. We
made sure that all fuzzers are evaluated in a fair and objective
way.

SpiderMonkey:
a) Fuzzilli:

−−fuzzing−safe
−−no−threads
−−baseline−warmup−threshold=10
−−ion−warmup−threshold=100
−−ion−check−range−analysis
−−ion−extra−checks

b) Superion:

−−fuzzing−safe
−−no−threads
−−fast−warmup
−f /chakra .js −f /ffx .js −f /jsc .js −f /v8 .js

JavaScriptCore:
c) Fuzzilli:

−−validateOptions=true
−−thresholdForJITSoon=10
−−thresholdForJITAfterWarmUp=10
−−thresholdForOptimizeAfterWarmUp=100
−−thresholdForOptimizeAfterLongWarmUp=100
−−thresholdForOptimizeSoon=100
−−thresholdForFTLOptimizeAfterWarmUp=1000
−−thresholdForFTLOptimizeSoon=1000
−−validateBCE=true $file

d) Superion:

−−useConcurrentJIT=false
−−useConcurrentGC=false
−−thresholdForJITSoon=10
−−thresholdForJITAfterWarmUp=10
−−thresholdForOptimizeAfterWarmUp=100
−−thresholdForOptimizeAfterLongWarmUp=100
−−thresholdForFTLOptimizeAfterWarmUp=1000
−−thresholdForFTLOptimizeSoon=1000
−f /chakra .js −f /ffx .js −f /jsc .js −f /v8 .js

V8:
e) Fuzzilli:

−−expose−gc
−−fuzzing
−−allow−natives−syntax
−−interrupt−budget=1024

f) Superion:

−−expose−gc
−−fuzzing
−−predictable
−f /chakra .js −f /ffx .js −f /jsc .js −f /v8 .js
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APPENDIX C
OPERATIONS AND GENERATORS

Table III: Overview of the operations implemented in our IR and the corresponding JavaScript language feature that they cover.

Operation Covered JavaScript Language Feature
Nop Empty statement (does nothing)
LoadInteger A number literal containing an integer value
LoadFloat A number literal containing a floating point value
LoadString A string literal
LoadBoolean A boolean literal
LoadUndefined The undefined value
LoadNull The null value
CreateObject An object literal
CreateArray An array literal
CreateObjectWithSpread An object literal possibly using spread syntax
CreateArrayWithSpread An array literal possibly using spread syntax
LoadBuiltin Variable access (builtin objects are accessible through global variables)
LoadProperty Property access using the dot notation
StoreProperty Property access using the dot notation
DeleteProperty Property access using the dot notation
LoadElement Property access using the bracket notation (with a constant integer as property name)
StoreElement Property access using the bracket notation (with a constant integer as property name)
DeleteElement Property access using the bracket notation (with a constant integer as property name)
LoadComputedProperty Property access using the bracket notation
StoreComputedProperty Property access using the bracket notation
DeleteComputedProperty Property access using the bracket notation
TypeOf The typeof operator
InstanceOf The instanceof operator
In The in operator
BeginFunctionDefinition A plain function
Return The return statement
EndFunctionDefinition A plain function
CallMethod A method call
CallFunction A function call
Construct A constructor call
CallFunctionWithSpread A function call possibly using spread syntax
UnaryOperation A unary operation
BinaryOperation A binary operation
Phi Variable definition/assignment
Copy Variable assignment
Compare A comparison operation
BeginWith A with statement
EndWith A with statement
LoadFromScope Variable access (in a with statement, properties of the context object become local variables)
StoreToScope Variable access (in a with statement, properties of the context object become local variables)
BeginIf If statement
BeginElse If statement
EndIf If statement
BeginWhile While loop
EndWhile While loop
BeginDoWhile Do-While loop
EndDoWhile Do-While loop
BeginFor For loop
EndFor For loop
BeginForIn For-In loop
EndForIn For-In loop
BeginForOf For-Of loop
EndForOf For-Of loop
Break Break statement
Continue Continue statement
BeginTry Try-Catch statement
BeginCatch Try-Catch statement
EndTryCatch Try-Catch statement
ThrowException Throw operation
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Table IV: A complete list of all code generators used and a brief description. If a generator emits a block, that block is filled
with the result of another code generator invocation.

Name Description
IntegerLiteralGenerator Loads a random integer
FloatLiteralGenerator Loads a random floating point number
StringLiteralGenerator Loads a random string
BooleanLiteralGenerator Loads a random boolean
UndefinedValueGenerator Loads the undefined value
NullValueGenerator Loads the null value
BuiltinGenerator Loads a reference to a random builtin
ObjectLiteralGenerator Generates an object literal
ArrayLiteralGenerator Generates an array literal
ObjectLiteralWithSpreadGenerator Generates an object literal using spreading syntax
ArrayLiteralWithSpreadGenerator Generates an array literal using spreading syntax
FunctionDefinitionGenerator Defines a new function
FunctionReturnGenerator Generates a return statement
PropertyRetrievalGenerator Loads a random property on an existing value
PropertyAssignmentGenerator Stores an existing value as random property on an existing value
PropertyRemovalGenerator Deletes a random property of an existing value
ElementRetrievalGenerator Loads a random indexed element of an existing value
ElementAssignmentGenerator Stores a random value as indexed element on an existing value
ElementRemovalGenerator Deletes a random indexed element from an existing value
TypeTestGenerator Performs the JavaScript typeof operator on an existing value
InstanceOfGenerator Performs the JavaScript instanceof operator on existing inputs
InGenerator Performs the JavaScript in operator on existing inputs
ComputedPropertyRetrievalGenerator Loads a computed property of an existing value
ComputedPropertyAssignmentGenerator Stores a computed property of an existing value
ComputedPropertyRemovalGenerator Removes a computed property from an existing value
FunctionCallGenerator Calls an existing function with existing values as arguments
FunctionCallWithSpreadGenerator Calls an existing function using the JavaScript spreading syntax
MethodCallGenerator Calls a random method on an existing value
ConstructorCallGenerator Performs a constructor call on an existing function
UnaryOperationGenerator Performs a random unary operation on an existing value
BinaryOperationGenerator Performs a random binary operation on two existing values
PhiGenerator Creates a phi variable with an existing value as initial value
ReassignmentGenerator Reassigns an existing phi variable to a different, existing value
WithStatementGenerator Generates a JavaScript with statement
LoadFromScopeGenerator Inside a with statement, load a property of the context object
StoreToScopeGenerator Inside a with statement, store a property of the context object
ComparisonGenerator Generates a random comparison operation of two existing values
IfStatementGenerator Generates an if-else statement
WhileLoopGenerator Generates a while loop
DoWhileLoopGenerator Generates a do-while loop
ForLoopGenerator Generates a for loop
ForInLoopGenerator Generates a for-in loop
ForOfLoopGenerator Generates a for-of loop
BreakGenerator Generates a break statement
ContinueGenerator Generates a continue statement
TryCatchGenerator Generates a try catch statement with the result of another generator as bodies
ThrowGenerator Throws an existing value as exception
WellKnownPropertyLoadGenerator Loads one of the well-known Symbol properties of an existing value
WellKnownPropertyStoreGenerator Stores to one of the well-known Symbol properties of an existing value
TypedArrayGenerator Constructs a JavaScript typed array
FloatArrayGenerator Constructs a regular JavaScript array containing only floating point numbers
IntArrayGenerator Constructs a regular JavaScript array containing only integers
ObjectArrayGenerator Constructs a regular JavaScript array containing objects
PrototypeAccessGenerator Retrieves the prototype of an existing value
PrototypeOverwriteGenerator Changes the prototype of an existing value to another existing value
CallbackPropertyGenerator Installs a valueOf or toString callback on an existing value
PropertyAccessorGenerator Generates a property getter and setter on an existing value
ProxyGenerator Generates a JavaScript proxy object
LengthChangeGenerator Stores a numeric value as .length property on an existing value
ElementKindChangeGenerator Stores an object value as indexed element into an existing value
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