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Abstract—Virtual Reality (VR) has shown promising potential
in many applications, such as e-business, healthcare, and social
networking. Rich information regarding users’ activities and
online accounts is stored in VR devices. If they are care-
lessly unattended, adversarial access will cause data breaches
and other critical consequences. Practical user authentication
schemes for VR devices are in dire need. Current solutions,
including passwords, digital PINs, and pattern locks, mostly
follow conventional approaches for general personal devices.
They have been criticized for deficits in both security and
usability. In this work, we propose SoundLock, a novel user
authentication scheme for VR devices using auditory-pupillary
response as biometrics. During authentication, auditory stimuli
are presented to the user via the VR headset. The corresponding
pupillary response is captured by the integrated eye tracker.
User’s legitimacy is then determined by comparing the response
with the template generated during the enrollment stage. To
strike a balance between security and usability in the scheme
design, an optimization problem is formulated. Due to its non-
linearity, a two-stage heuristic algorithm is proposed to solve it
efficiently. The solution provides necessary guidance for selecting
effective auditory stimuli and determining their corresponding
lengths. We demonstrate through extensive in-field experiments
that SoundLock outperforms state-of-the-art biometric solutions
with FAR (FRR) as low as 0.76% (0.91%) and is well received
among participants in the user study.

I. INTRODUCTION

Motivation. The rapid development of virtual reality (VR)
has been seen in the past few years with a consistently growing
popularity. According to a recent report [83], the VR market
is around $28 billion in 2022; by 2030, the number is forecast
to reach over $87 billion with a constant annual growth rate
of 15%. With the capability of providing an immersive and
interactive experience, VR has revolutionized gaming and en-
tertainment and permeated a variety of applications, including
e-commerce, education, healthcare, and military [102]. For
example, retailers can bridge physical and online stores via VR
to provide an immersive shopping experience for customers
[60]; medical practitioners may communicate with patients in
a VR environment for remote diagnosis [67]; military actions
can be simulated and practiced in a virtual battlefield [53].
In the above applications, tremendous amounts of sensitive
data are collected, processed, and stored on VR devices, such
as customers’ credit card information, patients’ health status,
and military secrets. Adversarial access to VR devices would

cause data breaches and other critical consequences. Therefore,
implementing user authentication mechanisms in VR is a
crucial step in resisting unauthorized access.

However, user authentication on VR devices is still at
the infant stage. Current solutions, including passwords, dig-
ital PINs, and pattern locks, mostly follow conventional ap-
proaches for general personal devices. Users have to use some
external hand controllers to enter the credentials. They have
been criticized for the usability deficit: It takes users substantial
effort to select correct keys from the virtual keyboard using
the controller [95]. What’s worse, they are shown to be
vulnerable to shoulder-surfing attacks. As the user enters her
credential, the hand movement leaves a trajectory that can
be easily mapped to the entered secrets with the keyboard
layout [36, 95, 118]. Per the statistics from prior work [36],
the success rate of shoulder-surfing attacks towards PINs and
drawing patterns in VR is as high as 18%.

To address the above issues, great efforts have been devoted
to exploring practical alternatives. Existing approaches can be
generally categorized into the following classes: knowledge-
based methods [35–37, 62, 116], physiological biometrics
[9, 25, 51, 88], behavioral biometrics [56, 69, 75, 90, 117],
token-based methods [23], and a mixture of above [61, 113,
118]. Among them, physiological biometrics attract the most
attention due to its high usability and authentication accuracy.
Nonetheless, its wide deployment is still faced with several
challenges. First, to access the user’s biometrics, such as
electroencephalogram (EEG), electrocardiogram (ECG), elec-
tromyography (EMG), and iris patterns, dedicated and costly
sensors are needed. These sensors are mostly unavailable in
current VR headsets. While iris scans have been deployed on
HoloLens 2, a high-end augmented reality (AR) device costing
at least $3,500, they are less likely to integrate into an even
broader set of medium-/low-end terminals with much lower
budgets. Second, most physiological biometrics are irrevoca-
ble. Once a biometric credential is compromised or stolen, it
cannot be reset. This property is also called cancelability.

Our approach. In this paper, we propose to leverage a new
kind of biometric, auditory-pupillary response, for user au-
thentication on VR headsets. By presenting users with auditory
stimuli, the pupil’s reaction, in the form of size changes, is uni-
versally observable among human beings [14, 40, 63, 70, 85].
The auditory-pupillary response is an autonomic reflex that
dilates or constricts the pupil, mediated by the sympathetic
and parasympathetic nervous systems, which are both parts
of the autonomous nervous system. The biological uniqueness
in the complex neural pathways and structure of iris muscles
present particular features that make it possible to explore
auditory-pupillary responses for user identification. As vali-
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dated in our preliminary study (see Section II-B), inter-subject
pupillary responses exhibit distinguishable patterns under the
same stimulus, whereas intra-subject pupillary responses are
consistent in multiple trials. These observations motivate us
to develop SoundLock, a novel reflex physiological biometric
authentication method for VR devices based on the auditory-
pupillary response. During authentication, carefully designed
auditory stimuli are rendered to the user via the VR device’s
audio channel. The corresponding pupillary response is cap-
tured by the eye tracker integrated into the device. The user’s
legitimacy is then determined by comparing the response with
the template generated during the enrollment stage.

Compared with conventional authentication methods for
VR, such as passwords, digital PINs, and drawing patterns,
our scheme has the following prominent advantages. First, its
usability has been greatly enhanced as it significantly reduces
user effort for credential entry. A user’s biometric, i.e., the
auditory-pupillary response, is automatically gathered by the
device. The entire process is hand-free and relieves users from
memory burdens. Second, since the user’s eyes are completely
blocked by the VR headset, it is impossible for an adversary to
gain visual observation of the authentication process to launch
shoulder-surfing. Meanwhile, SoundLock, as a new kind of
reflex physiological biometric for VR, outperforms existing
static biometric [21, 48, 56, 69, 84] in the following aspects:
First, auditory-pupillary responses are revocable. In the case of
having one pupillary response stolen or counterfeited, a new
credential can be easily generated by changing its associated
stimulus. Second, SoundLock can be implemented on many
mainstream VR headsets, e.g., HTC VIVE Pro Eye, Pico
Neo series, Varjo VR-3, and Fove VR [1–5], which are
already equipped with eye trackers. It is well accepted that
incorporating eye-tracking technology is a trend in VR to assist
in simulating depth of field and focus and providing users a
more realistic and natural visual experience [26, 44, 94].

Despite these attractive properties, the design of Sound-
Lock is faced with several non-trivial challenges. First, while
pupillary response exhibits prominent inter-subject distin-
guishability, identifying essential features out of raw pupil
size measurement for accurate user authentication is not an
easy task. No prior research has been conducted on this
topic. We thoroughly investigate 60 features, including mor-
phological features that are pupillary response-specific and
general statistical features, and narrow them down to 20 that
best represent the uniqueness of each individual. We validate
through a comprehensive evaluation that the selected features
effectively produce high authentication accuracy. Second, to
enlarge the credential pool, we adopt multiple auditory stimuli.
However, the multi-stimuli prolong the authentication time and
thus impair usability. To mitigate this issue, we model the
problem into an optimization problem that maximizes the au-
thentication accuracy while satisfying a hard constraint on the
authentication time (see Section IV). It aims to balance security
and usability. Realizing that it is challenging to directly solve
the problem optimally owing to its non-linearity, we devise a
two-stage heuristic algorithm to find the approximate solution
efficiently. Lastly, like other biometrics, the auditory-pupillary
response may exhibit variations over time. As a result, its
authentication performance may degrade over a long time span.
To deal with this issue, we adopt an adaptive biometric strategy
to consistently update the classification model with the coming

of new samples.
To evaluate the performance of SoundLock, we imple-

ment it on a VR device and carry out extensive experiments
involving 44 participants. It achieves an F1-score of 0.984,
FAR of 0.76%, and FRR of 0.91%, outperforming state-
of-the-art solutions. Besides, our scheme can be performed
within a practical authentication time of 7 s. SoundLock also
demonstrates satisfactory consistency under various testing
conditions. Finally, the user study manifests that our scheme
is well received among the participants; especially, 72.7% of
them are willing to adopt SoundLock as the authentication
scheme on their (future) VR devices.

To summarize, the contributions of this paper include:
• We investigate a new kind of reflex physiological

biometric, auditory-pupillary response, for user au-
thentication on VR devices. We validate its feasibility
through a measurement study.

• To model the response for user authentication, we
investigate a set of morphological and statistical fea-
tures, which are proven effective in producing high
authentication accuracy.

• To strike a balance between security and usability in
the design, we formulate an optimization problem. A
two-stage heuristic algorithm is proposed to efficiently
solve the problem with an approximate solution.

• We perform extensive in-field experiments to eval-
uate SoundLock. Results demonstrate that the pro-
posed scheme outperforms state-of-the-art biometric
authentication solutions and is well received among
participants in the user study.

II. PRELIMINARIES

A. Background on Auditory-Pupillary Response
The pupil size has been proven sensitive to a wide variety

of auditory stimuli [14, 40, 63, 70, 85]. Fig. 1 exhibits pupil
size, measured in pixels, changes as a subject is presented
with an auditory stimulus, a white noise that starts at 1 s
and stops at 5 s. This sample is randomly selected from our
collected dataset. Measures from only one eye are collected
since pupillary responses in both eyes have been confirmed to
be consensual [45]. The presentation of an auditory stimulus
results in a multi-phasic pupillary response. The initial phasic
response is evoked with transient pupil dilation shortly after
the stimulus onset, followed by a constriction. This process is
followed by the second round of, and sometimes more rounds
of, dilations and constrictions with attenuated amplitudes.
After the stimulus offset, the pupil gradually returns to its
baseline, i.e., the pupil size under the no-stimulus condition,
accompanied by minor fluctuations [79].

Physiologically, the pupillary response is controlled by
two muscles: the iris radial muscle (IRM) increasing the
pupil size and the iris sphincter muscle (ISM) reducing the
pupil size [18]. The balance between the sympathetic and
parasympathetic nervous systems determines pupil size. The
underlying mechanisms are complex; the relative contribution
of the two systems depends on a variety of factors, such as
stimulus characteristics and cognitive activities. Pupil dilation
is controlled by the IRM. IRM consists of fibers that are
oriented radially and connect the exterior of the iris with the
interior. When IRM contracts, it pulls the interior of the iris
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Fig. 1: Pupillary response to auditory white noise.

outward, thus increasing the size of the pupil. Upon perception
of auditory stimuli, psycho-sensory arousals are first triggered
at the hypothalamus and the locus coeruleus. The activities
on the hypothalamus and the locus coeruleus reflect arousals
and project to the intermediolateral column of the spinal cord.
The arousals finally reach IRM via a complicated network of
nerves and cause contraction. In contrast, pupil constriction
is controlled by ISM, which encircles the pupil like a cord
that reduces pupil size when it contracts. As shown in Fig.
1, the pupil constricts once it dilates to a large extent. This
process operates through the opposite action of pupil dilation.
ISM is directed through the parasympathetic pathway. The
activated Edinger-Westphal nucleus transmits information via
the oculomotor nerve to the ciliary ganglion, which is located
behind the eyeball. The information is further sent via the short
ciliary nerve to innervate the ISM to contract. In short, the
pupil dynamics observed under auditory stimuli are a joint
effect delivered by IRM, ISM, and their corresponding neural
pathways [57, 63, 70, 98, 105, 106].

B. Measurement Study
While the phenomenon of auditory-pupillary response is

well recognized, whether it can be exploited for user authen-
tication remains unclear. Our measurement study intends to
answer this question by carrying out extensive experiments.
A total of 32 subjects are invited. They listen to auditory
stimuli of different types via the HTC VIVE Pro VR headset.
A total of 20 stimuli are adopted, including white noise,
monotones, prompt sounds, natural sounds, and human voices.
They have been widely adopted in prior works on auditory-
pupillary response [14, 40, 50, 63, 70]. Each auditory stimulus
is a 6-second audio track. Subjects’ pupillary responses are
captured by a Pupil Labs eye tracker that is integrated into the
headset. To facilitate the data collection, a specialized app is
built using Unity, a cross-platform engine for VR development.
To avoid impact from visual stimuli, participants are exposed
to a dark VR environment, i.e., no image is displayed. The
above process is repeated 20 times for each participant. The
following analysis is conducted based on the collected 12,800
samples, i.e., time-resolved pupil size sequences.

Intra- and inter-subject pupillary response. Fig. 2 shows
pupillary responses from four trials under the same stimulus.
Three of them are collected from the same subject. The three
intra-subject responses exhibit similar patterns, although they
are from different trials. It indicates that pupillary response
is relatively consistent for the same user. Meanwhile, inter-
subject responses exhibit distinguishable patterns. To better
quantify the intra-/inter-subject response relationship, Fig. 3
further plots the confusion matrix (160×160) of pupillary re-
sponses among the 32 participants in response to one stimulus.
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Fig. 2: Intra-/Inter-subject pupillary response.
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Pearson correlation coeffi-
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Fig. 4: Normalized values of
60 features extracted from
pupillary responses.

5 samples are randomly selected from each participant. The
Pearson correlation coefficient (PCC) is adopted. The PCC
values on the diagonal line (µ = 0.91, σ = 0.02) are sig-
nificantly higher than those off the line (µ = 0.36, σ = 0.14).
It implies that individuals exhibit diverse pupillary responses
when presented with the same auditory stimulus, while those
from the same subject are consistent.

Pupillary response under various stimuli. We then play
a variety of auditory stimuli to the subject. It is observed in
Fig. 5 that the corresponding pupillary responses vary across
the stimuli. We further extract 60 features out of the raw
measures. Fig. 4 depicts their normalized values. Polynomial
regression is applied for better illustration. The feature vectors
are distinguishable with respect to various stimuli. Intuitively,
it is possible to generate a large number of credentials for a
user from her pupillary responses by applying various auditory
stimuli. More importantly, these credentials can be easily
revoked: In the case of having one pupillary response stolen,
a new credential can be generated by changing its associated
stimulus, which is called cancelability [80]. In contrast, this
property does not exist in conventional biometrics, such as
fingerprints, irises, and faces, which are static to human beings.
Once their credentials are damaged or counterfeited, the user
cannot cancel the pre-stored credentials or reset them.

Summary. Our findings are encouraging. First, given the
same auditory stimulus, intra-subject pupillary responses ex-
hibit consistent patterns in multiple trials, while inter-subject
pupillary responses are distinguishable. This property lays the
foundation for our idea that utilizes auditory-pupillary response
as a new kind of biometric for user authentication. Second, the
responses are diverse with respect to various stimuli. It thus
motivates us to employ a sequence of stimuli to enlarge the
pupillary response-based credential pool. More importantly,
the property that the induced credential is stimuli-dependent
offers the potential to design a cancelable biometric. An in-
use pupil credential can be revoked and updated by simply
applying new auditory stimuli. Lastly, we observe in the
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Fig. 5: Pupillary response under different stimuli.

measurement that the pupil demonstrates a stable behavior in
response to auditory stimuli: It first dilates with the stimulus
onset and then constricts, followed by a couple of more
rounds of dilation-constriction until the stimulus offset. The
transitional changes in the pupil size generate consecutive
waveforms bearing rich information for authentication. We will
investigate in Section III-B how to extract essential features.

C. Problem Statement
System model. We consider a general user authentication

scenario on VR devices, where a user has to provide a
correct credential to log in. We assume that the headset is
equipped with an eye tracker for pupil detection and pupil
size measurement. The proposed authentication scheme is
composed of two stages. In the enrollment stage, the headset
plays carefully designed audio stimuli and records users’
corresponding pupillary responses. A set of relevant features
are extracted upon which a classification model is trained and
optimized. In the login stage, a user is presented with the same
stimuli. The collected pupillary response is compared with the
enrolled ones to determine the user’s legitimacy.

Many mainstream VR headsets are equipped with eye
trackers nowadays, such as Meta Quest Pro, HTC VIVE Pro
Eye, PlayStation VR2, Pico Neo series, Varjo VR-3, and Fove
VR. The list continues to grow. It is well recognized that eye
tracking benefits VR in the following aspects: a) delivering a
higher-quality graphics experience through foveated rendering,
b) improving wearing comfort by automatically adapting the
device to the user via calculating the user’s inter-pupillary
distance, and c) enhancing the interactions among virtual
avatars to better reflect the user’s visual attention. It is well
accepted that incorporating the eye-tracking technology is a
trend in the future development of VR [44, 94].

Adversary model. The adversary’s goal is to impersonate
the legitimate user and log into the VR headset. The adversary
is assumed to have physical control of the headset and suffi-
cient time to perform the attack. For example, the VR device is
lost or stolen. We primarily consider the impersonation attack
[58] throughout this work. The adversary intends to use its
own biometric credential, i.e., pupillary response, under the
auditory stimuli to get authenticated. Other common attacks
will be discussed in Section V-A.

III. BASIC SCHEME DESIGN

We start by introducing a basic scheme that renders a
single auditory stimulus. It consists of three main components:
preprocessing, feature extraction and selection, and classifi-
cation. Upon the acquisition of a pupillary response, it is
first preprocessed for signal cleaning. Then a set of response-
specific features are extracted as well as selected. In the
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Fig. 6: (a) Raw measurement of pupillary response in the
frequency domain. (b) Raw measurement (top) and processed
(bottom) pupillary response in the time domain.

enrollment stage, these features are used to train the classifier;
in the login stage, they are fed into the trained classifier for
authentication.

A. Preprocessing
The pupillary response is acquired by an embedded eye

tracker sampling at 200 Hz. Fig. 6b (top) plots the raw
measurements, which are mixed with noise and zero-readings.
This component aims to eliminate them and extract useful
information from the raw measurement. The background noise
is mainly caused by internal and external electromagnetic
radiations (e.g., VR display refreshing, power line emanation,
and their harmonics) that primarily exist above 50 Hz. In
opposition, the frequency components of pupil size variations
mainly reside at the lower end of the frequency band, as shown
in Fig. 6a. Hence, we apply a low-pass filter with a cutting
frequency of 40 Hz to eliminate the above-mentioned noise.
The intermittent zero-readings exist in the measurement due to
spontaneous blinks. We apply the classic interpolation method
to smooth the pupillary response signals. Fig. 6b (bottom) plots
the pupillary response after preprocessing.

B. Feature Extraction and Selection
We extract two types of features from the processed pupil-

lary response: morphological features and statistical features.
The former is features specifically proposed to outline the
morphology of the auditory-pupillary response patterns; they
reveal the intrinsic geometrical characteristics in the multi-
phasic signals. The latter is provides a more general description
of the signal statistics. As demonstrated in Fig. 7a, a pupillary
response can be divided into two phases: excitation phase
and recovery phase. In the following, we provide details of
extracting the candidate morphological features from both
phases.

Excitation phase. It is between the stimulus onset and the
stimulus offset. In this phase, the pupil is provoked by the stim-
ulus and experiences transitional dilations and constrictions.

• Response lag. It is defined as the latency between the
stimulus onset and the moment the pupil reacts to
it, as shown in Fig. 7b. Prior studies show that this
value is mostly determined by the neural pathways
while less affected by mechanical properties of the
iris muscles [63, 106]. Differences in response latency
among individuals have been reported [12, 16, 33, 38,
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100, 115]. In general, senior people tend to exhibit
longer response lag [38, 100].

• Peak/Valley magnitudes. Upon the stimulus onset, the
pupil size increases as the pupil dilates and reaches
a large extent. Thereafter, the pupil size decreases as
it constricts. Multi-round dilations and constrictions
generate a series of waveforms. The corresponding
peak (valley) magnitudes then serve as the features as
shown in Fig. 7c (Fig. 7d). A classic peak detection
technique [20] is applied to identify peaks and valleys
in the response waveforms.

• Dilation/Constriction rates. Apart from the peak and
valley magnitudes in the response waveforms, we are
also interested in the dilation/constriction rates. They
are manipulated by a complex mechanism involving
the iris muscles and many components along the
neural pathways such as the nerve fibers in the inter-
mediolateral column, the super cervical ganglion, and
the ciliary nerves [57, 63, 98]; these rates reflect the
biological heterogeneity in the human nervous systems
and iris muscles. The dilation rate is calculated as
the pupil size change in one dilation divided by
the associated time duration. The definition of the
constriction rate follows similarly.

• Polynomial coefficients. n-degree polynomials are ap-
plied to approximate the response waveforms during
the excitation phase. We mainly focus on the first two
waveforms as the rest tend to attenuate mixed with
more noise. n is set to 4 empirically. Fig. 7e depicts
derived approximate polynomials; they align well with
the ground truth. The corresponding coefficients in the
polynomials are treated as a subset of features.

• Area under the curve (AUC). It is the area of the re-
sponse curve during the excitation phase, as illustrated
in Fig. 7f. In general, the AUC tends to be larger when
a user is more agile with the auditory stimulus. AUC is
derived by taking the integral of the pupillary response
over time.

Recovery phase. It starts from stimulus offset and lasts
until the response cutoff.

• Recovery time. It is the time the pupil takes to return
to its baseline. As depicted in Fig. 7g, it denotes the
time interval between the stimulus offset and when
the pupil stabilizes with negligible deviations from its
baseline.

• Damped oscillation. With the stimulus offset, the pupil
size gradually returns to its baseline, accompanied
by oscillatory behavior, as illustrated in Fig. 7h. We
propose to approximately characterize this pattern
using a classic damped sine wave model: y(t) =
Ae−λt cos (ωt− ϕ)+C [39]. The function parameters,
A, λ, ω, and ϕ, are taken as a subset of features.

• Pupillary unrest index (PUI). Human eyes exhibit
continuous pupil size fluctuations, known as pupil-
lary unrest [41, 71, 89]. Although its origins are
complex, this phenomenon is mediated by fluctuating
inhibitory activity within the parasympathetic Edinger
Westphal nucleus, possibly driven indirectly by the
locus coeruleus [43, 82, 92]. The pupillary unrest
index (PUI) has been proposed in prior work to
characterize the pupillary unrest behavior [54]. It is
defined as cumulative changes in the average pupil
size in consecutive observation windows. We thus
adopt PUI as part of the features.

• Baseline size. The pupil baseline size, depicted in
Fig. 7i, has been well recognized as a user-specific
biometric trait [22, 72]. It is the eye’s natural status
when no external stimulus is applied. In this work,
several baseline-related parameters are considered, in-
cluding the average size, maximum, minimum, stan-
dard deviation, and interquartile range. The baseline
can be estimated once the pupil is recovered from the
excitation status or before stimulus onset.

Aside from the above-mentioned morphological features,
we also take into account general statistical features of pupil
size from both phases, such as average, variance, median,
skewness, and kurtosis. Since these statistical features have
been widely adopted in signal characterization [8, 72, 118],
we do not expand the discussion here. A full list of candidate
features is given in Table VIII of Appendix A.

Feature selection. This step selects from the candidate
features the most relevant ones for user authentication. The
refined feature set helps to reduce the computation complexity
and avoid model overfitting. To this end, we calculate the
Fisher score for each feature, which is defined as the ratio
between the feature’s inter-class and intra-class variances; a
higher ratio indicates a more significant role in contributing
to classification accuracy. All candidate features are sorted
according to their normalized Fisher scores in Fig. 16 (see
Appendix A). Finally, the top 20 features are selected to feed
into the classification model. These selected features include
morphological features such as the dilation rates, the peak
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magnitudes, and the second valley magnitude; the only selected
statistical feature is the average pupil size. The reason that
morphological features rank relatively higher is probably that
they precisely characterize the dynamics in pupillary response,
whereas statistical features that are more generic and abstract.

C. Classification
The remaining task is to apply a classification method

over the selected features for user authentication, i.e., to
discriminate between the legitimate user and imposters. Two
types of classifiers are adopted and evaluated in this work: one-
class classifiers and binary classifiers. The former is trained
only with samples from the class of interest, i.e., the enrolled
legitimate user. The latter is trained on an explicitly labeled
dataset of both classes, i.e., the legitimate user’s samples
and imposters’ samples. The following representative machine
learning models are employed. k-nearest neighbor (k-NN): It
measures the similarity between testing samples and training
samples and makes the decision by comparing the similarity
with a threshold. It has been proven effective especially in
cases with small training datasets. Support vector machines
(SVM): Its main idea is to find a hyperplane in a multi-
dimensional space that distinctly separates data points from
different classes. Aside from k-NN and SVM, other com-
mon classification methods, including logistic regression (LR),
Gaussian Naive Bayes (GNB), and random forest (RF), are
also evaluated in this work.

IV. ADVANCED SCHEME WITH MULTI-STIMULI

The basic scheme utilizes one auditory stimulus. Inspired
by the strong password selection criteria, e.g., more characters
and a mixture of numbers, letters, and special characters,
we propose to present the user multi-stimuli to enhance the
response feature diversity. Specifically, a series of stimuli are
played sequentially. Then, all the responses are concatenated
and serve as the user’s credentials. While the idea is simple,
a critical issue is to decide the duration of each stimulus, as a
too-long overall duration would impair the usability.

To facilitate the discussion, we adopt the metric Kullback-
Leibler divergence (KLD) [47]. It is an indicator of similarity
between two probability distributions P (x) and Q(x)

DKL =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (1)

We let P (x) be the feature distribution of the enrolled user, and
Q(x) be that of the reference users, i.e., all the other users from
the dataset. X stands for the feature space, and x ∈ X denotes
any possible interval of a feature value. Here KLD represents
the distinguishability of the enrolled user from all other users.

Time

...

on off
t1 t2 t3

Fig. 9: The time sequence of multiple stimuli.

The larger the value is, the more distinguishable the user is, and
the more accurately it can be identified. We further formulate
KLD as a function of time. After the stimulus onset, more
features are extracted from the measurement as time proceeds.
For instance, features in the excitation phase are first derived,
followed by features from the recovery phase. Fig. 8 shows the
normalized KLD with respect to time. We first plot the KLD
under a single stimulus (the cyan curve labeled as “Single
stimulus” in Fig. 8). The stimulus starts at t = 0. KLD first
rises quickly as t is between 0 s and 2 s. Its growth slows down
as t passes 2 s. This implies the marginal benefit diminishes for
involving more features under the same stimulus. We also show
the KLD of employing two stimuli (the orange curve labeled as
“Multi-stimuli” in Fig. 8). The first stimulus starts at t = 0 and
stops at t = 2 s; then, the stimulus is off for 2 s, after which the
second stimulus emerges from t = 4 s. The KLD experiences
another significant increase shortly after the presence of the
second stimulus. We make the following observations from
Fig. 8. First, the features do not contribute equally in terms of
user classification. The features identified earlier tend to play a
more significant role than the ones identified later. Second, the
involvement of multiple stimuli introduces more diversity in
the pupillary response features and thus benefits classification
accuracy.

Problem formulation. In the following, we discuss how
to design auditory stimuli. An optimization problem is formu-
lated, where the objective is to maximize the overall KLD in
the corresponding pupillary response while keeping the entire
authentication time within a practical threshold T0, which sets
a hard constraint on the authentication time. Formally, the
optimization problem is expressed as follows

max DKL(P ||Q)

s.t.
N∑
i=1

(ti + τ)×mi ≤ T0

mi ∈ {0, 1}

(2)

We aim to select a couple of (e.g., 2-4) auditory stimuli
from the pool of size N , i.e., N different audio tracks. The
binary variable mi equals 1 if the i-th stimulus is picked
and 0 otherwise. The stimuli selection is necessary as the
pupil reacts differently toward various stimuli, as evidenced
by our measurement study. Some stimuli are more effective
in eliciting distinct patterns in pupillary responses than others.
The variable ti stands for the duration of the i-th stimulus.
τ is a constant representing the interval duration between two
adjacent stimuli, which manages the tradeoff between accuracy
(the possibility that the pupil has returned to its baseline at the
next stimulus onset) and usability (reasonable authentication
time). After closely inspecting our collected data, we set it to 2
s empirically with 1.5% outliers.

∑N
i=1(ti+τ)×mi is thus the

authentication time. The variables in the above-mentioned op-
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Algorithm 1: Two-stage heuristic algorithm
input : Pi (i ∈ [1, N ]) and Q
output: Solution of m and t

1 Calculate KLD for each stimulus i;
2 K = ⌈T0

τ ⌉;
3 Select top-K stimuli with highest KLD;
4 for j = 1 to 2K − 1 do
5 Formulate the simplified (2) given the j-th stimuli

combination;
6 Solve it via the approximate gradient descent

algorithm;
7 Pick the stimuli combination with the highest KLD;
8 The corresponding m and t serve as the final solution.

timization problem include ti’s and mi’s, i ∈ [1, N ]. Note that
the problem formulation is user-specific, because the feature
distribution in each individual’s pupillary response is diverse.
Correspondingly, the solutions of ti’s and mi’s are different
across users; that is, each user is associated with a diverse
optimum stimuli set and its duration. The problem formulation
and calculation are performed during the enrollment stage.

A heuristic algorithm. The objective function and con-
straint of the above optimization problem are both non-linear.
Besides, the two variable sets m and t are linked to each
other. Hence, it is impractical to optimally solve it directly.
In the following, we propose a heuristic algorithm to find
the approximate solution with high computational efficiency.
The algorithm is composed of two stages, each fixing the
value of m and t, respectively. The algorithm takes Pi

(i ∈ [1, N ]) and Q as inputs, where Pi is the user’s feature
distribution in the pupillary response under stimulus i and
Q is the feature distribution of all reference users. In the
first stage, we rank the KLD of each stimulus and select K
candidate stimuli that generate the highest KLD. Here K is
calculated as ⌈T0

τ ⌉. It represents the maximum number of
stimuli that can be accommodated within T0. Recall that τ
is the interval duration between two adjacent stimuli. In the
second stage, we exhaustively search for the maximum KLD
among 2K − 1 possible stimuli combinations. To this end, we
calculate KLD for each stimuli combination. Since mi’s are
fixed under each combination as a result of the first stage,
the original optimization problem is significantly simplified
with ti’s as the only variables. Now the remaining question
is how to solve the simplified optimization problem. For this,
we employ the approximate gradient descent (AGD) algorithm
[11, 59, 103]. It is an iterative method and useful especially
when the derivative is hard to derive directly as in our case.
The AGD algorithm finds an approximate solution for ti’s.

Dealing with long-term biometric changes. Like other
biometrics, the auditory-pupillary response may exhibit varia-
tions over time [76, 86]. As a result, it can make the template
acquired during the enrollment stage poorly representative of
newly collected data samples, leading to degraded authenti-
cation performances. This phenomenon is known as template
aging [42]. Many strategies have been developed to account for
this issue [78, 81, 86]. Their main idea is to consistently update
the classification model with new samples. In this work, we
follow the existing approach to tackle the possible biometric
pattern changes in the pupillary response. The core idea is to

retrain the classification model with new samples from suc-
cessful authentication trials. Our key steps are summarized as
follows. 1) The system maintains a training dataset (reference
set) of a fixed size after initial enrollment. The optimum train-
ing size is determined by the classifier, which is investigated in
Section VII-A. Like traditional passwords, this training dataset
is securely stored in the device. 2) When a new authentication
sample arrives, it is labeled legitimate if the authentication
is successful. 3) The dataset is updated with new samples in
a first-in-first-out manner: these new samples are added into
the reference set while the same number of outdated samples
is discarded in the meantime. 4) The classification model is
retrained over the updated dataset each several days or even
more frequently, depending on the authentication frequency of
the user. Since lightweight classifiers are employed in the pro-
posed authentication scheme, the corresponding computation
overhead of training is minimal. Note that there are even more
sophisticated adaptive mechanisms (e.g., [55, 64, 77]). We plan
to integrate them into our design in future studies.

V. SECURITY ANALYSIS

A. Robustness Against Attacks

We primarily consider the impersonation attack throughout
this work. The adversary intends to use its biometric credential,
i.e., pupillary response, under the auditory stimuli to get
authenticated. To launch the attack, the attacker is assumed to
have physical access to the victim’s VR headset. It happens,
for example, when the device is lost/stolen or temporarily
possessed by the victim’s roommate. Our evaluation results
show that the success rate of such attacks is merely 0.76% on
average. The robustness of SoundLock against the imperson-
ation attack will be presented with details in Section VII-B.

Like other biometric methods, adversaries can also attack
SoundLock via the replay attack, where the adversary injects
a previously recorded sample of the pupillary response. Such
an attack is extremely difficult to perform in our case. As
the user’s eyes are fully covered by the VR headset, it is
impossible to record the target’s pupillary response exter-
nally. On the other hand, it is possible for the adversary
to access the victim’s pupillary response samples via, say,
pre-installing malware to the headset. Luckily, our scheme
adopts the challenge-response authentication framework. With
the interactive property, the attacker should know the auditory
stimuli in advance to output the timely and correct response
from the list of pre-recorded samples. It renders the attack very
difficult to execute. Moreover, we argue that the device would
be faced with an even more severe situation, if malware is pre-
installed with access to the on-device authentication database.

Recent studies have also shown the feasibility of fabricating
fake fingers and faces to bypass biometric authentication
[13, 30, 110]. They are considered as a special kind of mimicry
attacks. This attack is almost impossible to execute in our
case, as the fabricated eyeball should be able to react to
specific auditory stimuli. The pupil changes are subtle, smooth,
dynamic, and unique to each individual. It is of great challenge,
if not impossible, to build a mechanical device to mimic
pupil dilation and constriction precisely. We are aware of
some bionic eyes, which are essentially miniature cameras
with necessary HCIs to optic nerves. Still, there is no “pupil”
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TABLE I: Entropy of various authentication methods.

Work Authentication method Entropy (bits)

Wang et al. [108] Password 20 − 23

Wang et al. [107] PIN (4-digit[1], 6-digit[2]) 8.41[1], 13.21[2]

Sae-Bae et al. [87] Keystroke 3.48 − 4.62
Youmaran et al. [114] Iris 278 − 288
Takahashi et al. [99] Fingerprint 18.6

Adler et al. [7] Face 37.0 − 55.6
SoundLock (this work) Pupillometry 81

in bionic eyes. Besides, it costs around $150,000, which is
extremely costly to deploy [104].

It is also possible that the auditory-pupillary response may
be leaked, say, because of using a malicious (or compromised)
device. Luckily, this new kind of biometric is revocable. In the
case of having one pupillary response stolen or counterfeited,
a new credential can be easily generated by changing its asso-
ciated stimulus. It is also one of the prominent advantages of
adopting auditory-pupillary response over other conventional
biometrics for authentication.

B. Entropy Analysis

Entropy has been widely adopted to evaluate the security
strength of authentication methods such as passwords [108]
and PINs [107]. It is a measure of uncertainty in a random
variable [29]. The classic entropy of a variable x with the
distribution P (x) is defined as H = −

∑
x∈X P (x) logP (x).

In the context of biometric systems, however, the classic
entropy overlooks intra-user variability by assuming each
user has fixed biometric features and overestimates biometric
information [97]. To tackle this issue, some prior works adopt
an alternative metric relative entropy to measure the security of
a biometric system [7, 97, 114]. We thus consider this metric
too. Relative entropy is defined as the decrease in uncertainty
about a person’s identity due to a set of biometric features
measurements [7]. It is measured under the framework of

KLD, K =
∑

x∈X P (x) log

(
P (x)

Q(x)

)
, where P (x), Q(x), and

X represent the feature distribution of the target user, that of
the reference set, and the feature space. It quantifies how much
a single user’s biometric feature distributions diverge from
those of the population. It is noteworthy that the dataset plays
an important role in the entropy computation as it defines the
feature distributions P (x) and Q(x). According to the samples
and their feature distributions collected in our dataset, K is
calculated as 81 bits on average. Table I shows the relative
entropy of SoundLock, keystroke, iris, fingerprint, and face,
and the classic entropy of password and PIN. We can tell from
the equations of these two kinds of entropy that classic entropy
is an upper bound of relative entropy. In other words, the
latter is a more conservative measure of authentication system
security than the former [97]. The result shows that even the
relative entropy of SoundLock (81 bits) largely exceeds those
of passwords and PINs. SoundLock ranks second among all
methods. It implies that dynamic pupillary response bears high
uncertainty in the biometric information across individuals. It
thus serves as a promising biometric for user identification.
While the iris is associated with the highest relative entropy,
the iris scanner is prohibitively costly to equip to a wide
spectrum of VR devices.

VI. EXPERIMENT METHODOLOGY

A. Experiment Setup
Apparatus. We perform all experiments using an HTC

VIVE Pro VR headset tethered to an Exxact TensorEX 1x
Intel Core X-Series processor workstation. A Pupil Labs eye
tracker is integrated into the VR headset. All virtual scenes
and the prototype of SoundLock are implemented using Unity,
a cross-platform engine for VR development, and scripted in
C# and Python. The prototype is developed to render stimuli
and capture the pupillary response (i.e., time-series pupil size)
through the eye tracker’s API. It includes functions of enroll-
ment, optimization, authentication, and device lock/recovery.

Experiment setup. Before the experiment, participants
receive an introduction to the concept of SoundLock as well
as experimental instructions. After providing informed consent
to take part in the study, they are asked to fill out a pre-
study questionnaire based on the introduction to evaluate
the expected usability of SoundLock. Then, participants are
instructed to put on the VR headset. A student researcher
assists in adjusting the device to ensure the wearing comfort
and the correctness of eye tracker readings. Throughout the
entire experiment, the lab environment is kept quiet by default.
Next, the participant’s pupillary response is recorded while
performing the authentication tasks. Task details are presented
in Section VI-B. There is a short break between authentication
tasks. After the experiment, participants are asked to fill out a
post-study questionnaire to evaluate the perceived usability of
SoundLock through the tasks.

To facilitate evaluation, we adopt several commonly used
metrics: false acceptance rate (FAR), false rejection rate (FRR),
equal error rate (EER), F1-score, and area under the ROC curve
(AUC).

B. Experiment Design
The entire experiment consists of two phases: a pilot study

and an in-field study.
Pilot study. The purpose of the pilot study is a) to collect

preliminary data for the measurement study (see Section II-B),
b) to select from the candidate classifiers the one with the
best overall performance, and c) to fix the classifier’s training
size and hyperparameters. In the pilot study, each participant
is asked to listen to a set of 20 auditory stimuli consec-
utively. Their corresponding pupillary response is recorded.
The auditory stimuli include white noise, monotones, prompt
sounds, natural sounds, and human voices. Each stimulus is a
6-second audio track. Each stimulus is repeated 20 times for all
participants. With the collected dataset, we carefully tune the
training size and hyperparameters of each candidate classifier
proposed in Section III-C. Then, we compare all candidate
classifiers and select the one with the best performance. Results
will be discussed in Section VII-A.

In-field study. The in-field study is performed with the
prototype, the authentication system implemented with the best
classifier as discussed above. The purpose is to evaluate the
security and usability of the SoundLock prototype. Participants
are asked to perform the following experiment tasks.

• Enrollment: Each participant is presented with a set
of 20 auditory stimuli, with each stimulus 5 times.
Their auditory-pupillary responses are recorded. All
the samples are used to train the classifier as well
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as to determine the user-specific stimuli via the al-
gorithm introduced in Section IV. In this way, each
participant’s biometric credential is enrolled.

• Authentication: In this task, the user-specific stimuli
sequence is presented to the participant. Access is
granted if the newly recorded pupillary response is
classified as a legitimate one. A participant has three
chances to pass the authentication. It is deemed suc-
cessful if the biometric credential is verified in at least
one in three trials.

• Impersonation attack: In this task, participants are
asked to perform impersonation attacks. The attacker
intends to use its own biometric credential, i.e., pupil-
lary response, under the auditory stimuli to get au-
thenticated. Specifically, each participant is randomly
assigned with three other participants’ biometrics to
mimic. The attacker is presented with the victim’s
customized stimuli. The attack is deemed successful
if the attacker gets authenticated in any one of three
consecutive trials.

• Participants are asked to repeat the authentication task
in a few follow-up sessions to examine the scheme
performance under various conditions (see Section
VII-C). Specifically, to investigate the impact of user
motion, participants are asked to perform authentica-
tion under four types of motions: static (baseline),
eye movement, head rotation, and body stretch. To
evaluate the SoundLock performance across different
time of day, a series of sessions are scheduled for the
same group of people from 10 AM to 6 PM, with a
2-hour interval in between. To examine the impact of
visual fatigue, authentication tasks are also conducted
as participants are exposed to the VR environments
for different time duration. We further carry out a
longitudinal study. Participants are re-invited 7 days
and 14 days after the main session to repeat the tasks.
The purpose is to show if auditory-pupillary response
as a biometric credential would change over time.

Attendance and time consumption. A total of 32 par-
ticipants completed the pilot study. The average time spent is
around 60 min, including 50 min for displaying all auditory
stimuli samples and data recording with 10 min overhead.
In the in-field study, 44 participants completed the main
session, which consists of the enrollment, authentication, and
impersonation attack tasks. They all participated in the impact
of the user motion and the visual fatigue sessions right after the
main session. The above sessions take around 50 min including
necessary overhead, such as Q&A and reading/signing the
consent form. 25 of them participated in the impact of time
session. 28 and 18 of them completed the 7-day and 14-day
longitudinal study, respectively. A user study is conducted; it
consists of a pre-study and a post-study before and after the
main session, respectively.

C. Recruitment and Ethical Aspects
Participant recruitment and demographics. The partici-

pants are recruited and informed through emails, social media
postings (departmental Facebook website), and verbal commu-
nications. When a participant shows interest in participating in
our study, we provide him/her a screening questionnaire asking
about age, gender, race, and hearing and visual abilities. We

screen participants with no hearing and visual impairments
(corrected hearing ability with hearing aids and corrected
visual ability with glasses and contact lenses will be allowed).
Efforts have been made to recruit a diversified population
based on age, gender, and race. After that, the participants
are officially invited and asked to schedule a time and date
with the researchers for the study. A total of 44 participants
are recruited. They are all college students, faculty, and staff,
aged between 17 and 40. Their demographic information is
given in Table II. Each phase takes around 1 hour on average.
Participants are compensated at a rate of $10 per hour.

Ethical aspects. The participants are provided with the
Informed Consent document before the study. The document
provides a detailed description of the study’s procedure, bene-
fits/risks, intentions, compensation, possible risks/discomforts,
and rights. In order to make sure that participants are aware
of the study procedures, the research team reads the sum-
marized and important contents of the consent document at
the beginning of each experiment and answers any questions
the participant may have. The consent document is signed in
person when the participants are in the lab. Subjects have the
option to decide whether to participate in the experiments or
not. During the experiment, they are free to take a break or quit
at any time without penalty. They can ask any questions related
to this research. The research team signs a confidentiality
agreement with the participants regarding the protection of
their biometric data, which are anonymized and securely
stored, and will only be used for the purpose of this research.
The entire study is IRB-approved.

VII. RESULTS

A. Pilot Study–Classifier Selection
In the pilot study, the objective is to examine the candidate

classification models and select the one that fits our scenario
the best. The results will be used in the prototype development.

Classification model comparison. We implement different
classification models as discussed in Section III-C, namely k-
NN, OC-SVM, B-SVM, LR, GNB, and RF. 10-fold cross-
validation is performed with the collected dataset. Specifically,
the dataset is randomly split into two subsets, a training set
and a testing set. Then, the classifier is trained and tested,
with each user iteratively regarded as legitimate and the rest
being imposters. This process is repeated 10 folds to prevent
overfitting. We plot FAR and FRR in Fig. 10 by tuning the
hyperparameters of the classification models.

For k-NN, it measures the distance between the testing
sample and k training samples and compares it to a threshold
α: if the distance is below α, the testing sample is deemed
legitimate; otherwise, it is adversarial. Therefore, a larger α
implies a looser detection rule that more likely considers an
input sample legitimate and vice versa. By controlling the
hyperparameter α, i.e., the distance threshold, we obtain the
EER of k-NN equal to 1.5% at α = 1.0 (see Fig. 10a).

For SVM, its idea is to find an optimal hyper-plane in
high-dimensional space to perform classification. We adopt
the radial basis function (RBF) kernel, a popular kernelized
function, to transform the non-linear data to higher dimensions.
A critical hyperparameter for the RBF kernel is γ, the standard
deviation of the kernel function that defines the decision
boundary qualitatively; a larger γ indicates a more relaxed
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TABLE II: Participants’ demographics. Auth exp* is about the participant’s prior experience with authentication on VR.

Gender # % Age # % Iris color # % Eye wear type # % VR usage # % Auth exp* # %

Female 16 37 ≤18 4 9 Brown 34 77 None 28 64 Frequent 5 11 Proficient 3 7
Male 27 61 19-24 24 55 Hazel 6 14 Glasses 13 29 Occasional 8 18 Limited 5 11
Other 1 2 25-30 12 27 Blue 2 5 Contact lenses 3 7 Rare 13 30 None 36 82

31-36 3 7 Green 1 2 Never 18 41
≥37 1 2 Other 1 2

TABLE III: Performance comparison among different classifi-
cation models.

Classification type Model EER (%) F1-score AUC

One-class k-NN 1.5 0.983 0.996
OC-SVM 3.4 0.956 0.989

Binary

B-SVM 4.3 0.935 0.986
LR 4.6 0.929 0.990

GNB 7.8 0.909 0.956
RF 3.9 0.944 0.984

decision criterion to avoid the hazard of overfitting, resulting
in a higher possibility that the input is accepted; a smaller γ
implies a strict and sharp decision boundary. Figure 10b (10c)
illustrates the FAR and FRR of the OC-SVM (B-SVM) as γ
changes, with other parameters optimized. We find the lowest
EER for OC-SVM as 3.4% at γ = 6.3 × 10−3. For B-SVM,
the lowest EER is 4.3%, obtained at γ = 3.2× 10−3.

Similarly, for LR, which uses a logistic function to model
the dependent variable to generate a classification output, an
essential hyperparameter is C, the inverse of regularization
strength; a larger C corresponds to less regularization and
vice versa. As depicted in Fig. 10d, the lowest EER of LR
is obtained as 4.6% by tuning C to be 2.5.

As a widely adopted probabilistic machine learning algo-
rithm, GNB works by calculating each data point and assigning
the point to the higher class probability that it belongs to.
An important hyperparameter is the variance smoothing v,
which indicates the portion of the largest variance of all
features added to variances for calculation stability. By setting
v = 10−7, we obtain the lowest EER of GNB as 7.8%, as
shown in Fig. 10e.

RF consists of many decision trees and uses bagging and
feature randomness when building each tree to create an
uncorrelated forest of trees whose prediction by committee
is the most accurate. An important hyperparameter is n, the
number of trees. A larger n leads to more accurate predictions
at the cost of higher computation time and power consumption.
We plot in Fig. 10f the FAR and FRR curves as a function of
the n. We find the EER converges to 3.6% as n approaches
140.

Table III compares all the classification models in terms
of EER, F1-score, and AUC. Among them, k-NN produces
the optimal FAR-FRR tradeoff with the lowest EER of 1.5%
as well as the highest F1-score (0.983) and AUC (0.996). Its
superior performance is primarily due to its robustness with
respect to the data size. Compared with other models that
generally require a large training dataset, k-NN better fits our
scenario, where only a limited number of training samples
(around 5) are collected.
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Fig. 10: FAR, FRR, and EER of each classification model.
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Fig. 11: Impact of training data size on EER.

Training data size. Fig. 11 shows the EER with respect
to the training data size, i.e., the number of enrolled samples.
Given the same training data size, k-NN achieves the lowest
EER among the six classifiers, while GNB exhibits the worst
performance. This is because the latter relies on the assumption
that each class follows a Gaussian distribution. A larger dataset
is thus needed to properly model the distribution. Empirical
study indicates that it typically takes at least tens to hundreds
of samples, depending on the task, to deliver a satisfying
performance [10, 68, 74]. In contrast, only 5 samples are
needed for k-NN to obtain EER as low as 1.5%. It indicates
that k-NN attains a promising authentication accuracy with
much fewer training samples.

To sum up, k-NN outperforms the other five models in
classification accuracy, given the same training data size in
our case. More importantly, it takes as few as 5 samples to
sufficiently train the classifier. Hence, the enrollment stage can
be performed efficiently.

B. In-field Study–System Performance
As a proof-of-concept implementation, we develop the

prototype of SoundLock. Motivated by the results from the
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TABLE IV: Performance comparison with state-of-the-art
schemes. *Values are obtained from [36].

Approach FAR (%) FRR (%) F1-score Auth time

PIN* - >1.14 - 2.54-2.95
Drawing pattern* - >5.19 - 2.82-3.87

OcuLock [56] 3.55 3.55 0.983 ≤10
SkullConduct [88] 6.90 6.90 - ≤23

Brain Password [51] 2.50 2.50 0.955 ≈4.80
ElectricAuth [25] 0.83 2.00 - ≈1.30

SoundLock (this work) 0.76 0.91 0.984 ≤7

pilot study, we implement k-NN as the classifier and fix its
hyperparameters as discussed. A total of five training samples
are collected from each participant in the enrollment stage. A
series of in-field tests are conducted to evaluate the system’s
performance.

Authentication accuracy vs. authentication time. We
first examine the authentication accuracy of SoundLock with
respect to authentication time in Fig. 12a. Authentication
time is defined as the span from stimulus onset until the
response cutoff. In other words, it includes the time to present
stimuli and the time for the pupil to react. Both FAR and
FRR drop given a longer authentication time. This is because
more features are extracted and thus enhance the classification
accuracy. We also notice that the benefit of a longer duration
becomes marginal if it is beyond 7 s, with the average FAR
and FRR as low as 0.76% and 0.91%, respectively. Fig.
12b depicts the authentication accuracy by adopting different
numbers of stimuli; the error rate decreases with more stimuli
presented. It complies with the result in Fig. 8–more stimuli
enhance the distinguishability of the target user. Based on these
observations, we adopt the multi-stimuli scheme and set the
authentication duration threshold T0 as 7 s in the optimization
formulation to strike a balance between security and usability.
Table IV compares the authentication time between Sound-
Lock and existing works. Classic PINs and drawing patterns
generally require a shorter time according to evaluation results
from [36]. However, it demands relatively high motor skills
for users to quickly enter these credentials in VR. They have
been criticized as unfriendly to the elderly population and
new users. Besides, relying on visual cues may hinder their
usage for people with visual impairments. Among biometric
schemes, SoundLock exhibits reasonable authentication time.
Note that all these schemes need extra sensors, such as an
EEG, to acquire the biometric signals.

Authentication accuracy comparison with state-of-the-
arts. We further compare overall authentication accuracy
between SoundLock and state-of-the-art solutions. Table IV
shows that SoundLock almost achieves the best performance
among all biometric methods in terms of FAR (0.76%), FRR
(0.91%), and F1-score (0.984). Besides, it outperforms PIN
and drawing pattern in FRR. It means a legitimate user gets
denied by PIN or drawing pattern at a higher chance. This is
because these two methods require necessary motor skills to
perform especially on VR terminals. Errors would occur during
credential entry when controllers are not operated properly.
C. Performance Under Various Scenarios

In practical scenarios, a user may perform the authentica-
tion under different conditions, such as motion, time of day,
and exposure time to VR environments. It is critical to evaluate
if SoundLock is susceptible to these conditions.
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Fig. 13: Performance under various conditions.

Impact of user motion. Since a user may make some
movements during the authentication, it is important to show
that the proposed scheme is motion-insensitive. In the experi-
ments, participants are asked to perform four types of motions:
sitting (static), eye movement, head rotation, and body stretch.
The corresponding authentication accuracy is depicted in Fig.
13a. We find that the best performance is achieved at the static
status with averaged FAR = 0.83% and FRR = 0.90%. Eye
movement is associated with the highest FRR. This is because
it introduces errors in the eye tracker calibrating the pupil
size. Still, the authentication accuracy is practically acceptable
with FAR = 0.85% and FRR = 2.69%. Based on the above
results, users would be recommended to minimize their eye
movement for the login duration. Other moving actions such
as head rotation and body stretch also marginally increase
the FRR, possibly due to the slight displacement of the eye
tracker. Nevertheless, the increase is negligible; besides, the
FAR remains consistent among various types of user motions
(0.80 ± 0.05%), which suggests that user motions would not
impact the security property of SoundLock.

Impact of noisy environments. We evaluate the impact of
ambient noise on the performance of SoundLock. Three kinds
of noises have been considered: white noise, office noise, and
home noise. In particular, the white noise is synthesized with
all the audible frequencies at the same intensity. The office
noise is composed of people chatting, typing, phone ringing,
computer fans, paperwork, etc. The home noise is a mixture
of air conditioning, laundry, door locking, repairing, and TV
sounds. All these soundtracks are downloaded from Mixkit
[66]. In the experiments, the sounds are played as background
noises by a pair of external speakers connecting to a second
PC in the lab. We thus simulate the VR usage scenarios in
generic, office, and home environments, respectively. Results
are shown in Fig. 14. We find that the performance, FAR and
FRR, degrades slightly as the sound level increases from 40
dB to 80 dB. Note that sound levels are in the 40-80 dB range
in most offices and homes [27]. It indicates that the ambient
noise does influence the pupillary response. On the other hand,
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Fig. 14: Performance under various noise types and levels.

the influence is limited. Take home noise as an example. FAR
= 0.67% and FRR = 0.88% as the sound level is 40 dB. They
become 0.83% and 1.33%, respectively, if the noise is at 80
dB. It may be attributed to the fact that the stimulus audio is
played via the VR headset, which is much closer to the user’s
ears than the noise sources. The former is thus dominant in
the perceived sound.

Impact of time of day. We further examine if SoundLock
is subject to the time of the day it is performed. A series of
tests are scheduled over the same group of participants from
10 AM until 6 PM, with a 2-hour interval in between. We find
in Fig. 13b that the performance is relatively stable throughout
the day. To quantify the statistical difference in the FAR and
FRR across different time of the day, we employ the Kruskal-
Wallis test [46]. The test result indicates there is no significant
difference on both FAR (χ2 = 2.56, p > 0.05) and FRR
(χ2 = 6.05, p > 0.05) with respect to the time of the day.

Impact of exposure time to VR environments. It is well
known that wearing VR for long periods can cause visual
fatigue and motion sickness due to vergence-accommodation
conflict [24]. It is therefore interesting to evaluate the perfor-
mance of SoundLock with respect to users’ exposure time to
VR environments. In the experiment, each participant is asked
to stay in the immersive environment for various periods of
time, i.e., 10, 20, or 30 min, before performing the authenti-
cation. A participant can freely quit the experiment whenever
they report discomfort or at any time they desire. In particular,
users can choose to watch VR videos, play VR games, or
browse online via the device. Table V summarizes the results.
We observe that both FAR and FRR slightly increase under a
long exposure time. The increase of FRR is relatively more
prominent, by 0.74% from 0 min to 30 min. Conversely,
FAR only sees a minor increase of 0.16% over time. This
indicates the security of SoundLock is not influenced much,
since incorrectly accepted adversarial authentications are lim-
ited; however, there is a moderately increasing chance that a
legitimate user is wrongly classified. It indicates that pupillary
response drifts slightly as the user is exposed to the VR
environment for a while.

Longitudinal study. To investigate the long-term perfor-
mance of SoundLock, participants are invited to attend two
follow-up sessions, 7 days and 14 days after the main session,
to repeat the authentication process. 28 and 18 participated
in the two follow-up sessions, respectively. The adaptation
strategy introduced in Section IV is adopted. For comparison,
we also test in the last session the performance of SoundLock
without adaptation. The result is summarized in Table VI. The
error rate increases as time proceeds without adaptation, with
FAR (FRR) rising from 0.79% (0.91%) to 8.89% (5.56%),

TABLE V: Performance un-
der different exposure time
to VR environments.

Expos. time FAR (%) FRR (%)

0 (baseline) 0.76 0.91
10 min 0.81 1.11
20 min 0.88 1.54
30 min 0.92 1.65

TABLE VI: Longitudinal
study results. *Without the
adaptation strategy.

Time span FAR (%) FRR (%)

0 (baseline) 0.76 0.91
7 days 1.19 2.14

14 days 2.22 1.48
14 days* 8.89 5.56

after a 14-day duration. It implies that the biometrics, i.e.,
the auditory-pupillary response, drifts slowly over time. In
comparison, the long-term performance becomes stable with
the integration of our adaptation strategy. Specifically, the FAR
(FRR) is 2.22% (1.48%), which merely exhibits a performance
change of +1.46% (+0.57%). It suggests that our approach
effectively deals with the temporal variation in pupillary re-
sponse. Note that participants do not perform authentication
in between sessions. We optimistically expect an even better
long-term performance when SoundLock is under daily usage
as the adaptation can be executed more frequently.

D. User Study
The goal of the user study is to evaluate the usability of

SoundLock from participants’ subjective perceptions.
Design. The study consists of a pre-study and a post-

study, conducted before and after the main session of the
experiment, respectively. To investigate the impact of the in-
field experiments on user perception, the same questionnaire
is used in both studies. In part-I of the questionnaire, all par-
ticipants are asked to provide their perception of SoundLock
by responding to 9 questions on a 5-point Likert scale (with 1
= strongly disagree and 5 = strongly agree). These questions
cover multiple aspects of security and usability. Table VII lists
all the questions. Part-II of the questionnaire includes three
open-ended questions regarding overall experience “What’s
your overall experience with SoundLock?”, concerns “Do you
have any concerns or did you notice any potential issues of
SoundLock?”, and suggestions “Do you have any suggestions
to improve SoundLock in the future?”.

Results. All 44 participants respond to the questions. Fig.
15b displays the distribution of answers to part-I questions in
post-study. In general, participants express their satisfaction
with SoundLock, especially in Q1 (µ = 4.32, σ = 0.97,
median = 5), Q2 (µ = 4.07, σ = 1.16, median = 4), Q4
(µ = 4.20, σ = 0.92, median = 4), Q5 (µ = 4.43, σ = 0.86,
median = 5), and Q6 (µ = 4.48, σ = 0.81, median = 5). The
least rated one is Q3 (µ = 3.55, σ = 1.25, median = 4). As
reported by several participants in the open-ended questions,
this is caused by a couple of audio tracks in the stimuli pool.
After close examination, listening discomfort is observed in
audio tracks with bursting and high-pitch sound.

We then compare the survey results between the pre-
study and the post-study using the Student’s t-test [96], to
investigate whether there is a significant statistical difference
between the two studies. According to the test result, the
most significant difference between the two studies lies in Q1
(t(86) = 2.06, p = 0.021 < 0.05), Q4 (t(86) = 1.87, p =
0.032 < 0.05), Q5 (t(86) = 1.73, p = 0.044 < 0.05), and Q6
(t(86) = 1.70, p = 0.046 < 0.05). Q7 has the least significant
inter-study difference (t(86) = 0.05, p = 0.480). In general,
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TABLE VII: Part-I questions.

Question

Q1 SoundLock is a secure authentication scheme.
Q2 The authentication result is accurate.
Q3 There is no discomfort using SoundLock.
Q4 SoundLock is easy to use.
Q5 SoundLock is easy to learn.
Q6 SoundLock does not introduce much cognitive load.
Q7 The login time is acceptable.
Q8 SoundLock can be used on a daily basis.
Q9 I am willing to use SoundLock on my (future) VR device.

the average rating is higher in the post-study than the pre-
study for all questions; even Q7 sees a slight improvement
(µpre = 3.59 vs. µpost = 3.61). These results indicate
that SoundLock exceeds users’ expectations after they have
real experience with it. Q9 reflects the user’s overall attitude
towards SoundLock for real-world usage. The result for Q9
in the pre-study (post-study) is µpre = 3.75, σpre = 1.20
(µpost = 4.07, σpost = 1.04). Meanwhile, 63.6% (72.7%)
users report a score larger than 3, i.e., agree or strongly agree,
in the pre-study (post-study). This means that most users are
willing to adopt SoundLock as the authentication method for
VR devices. To summarize, SoundLock is well perceived by
users, primarily due to its high security (Q1), ease to use (Q4),
ease of learning (Q5), and low cognitive load (Q6).

Subjective feedback. A total of 24 participants respond to
the open questions in part-II of the questionnaire. 13 partici-
pants leave feedback on the overall experience of SoundLock.
Among them, 4 deem the authentication process in SoundLock
to be fun, e.g., “It was a fun experience!” (P9). 3 appreciate
the idea and logic behind SoundLock, e.g., “The idea of using
pupil for authentication is smart.” (P35). 5 participants report
satisfactory usability of SoundLock, e.g., “I don’t need to do
anything and the authentication is automatically done.” (P40).

Questions are raised by 9 participants. 3 of them ques-
tion the robustness against consanguinity, e.g., “Will twins or
siblings be able to hack into each other’s profile?” (P35).
This question is mainly due to the observation that identical
twins or even siblings tend to share certain similar biometrics.
Since there are no twins or siblings in our hired participants,
we are unable to answer the question. We plan to investigate
this as part of our future work with an extended group of
subjects. 2 participants express privacy concerns, e.g., “Will my
pupillary response be used to infer what I’m thinking?” (P38).
Since the auditory-pupillary response is a reflex biometric, the
pupillary response is stimulus-dependent. Basically, it reflects
how human eyes react to an audio sound rather than the
user’s cortical processing, i.e., mental behavior. So far, we are
unaware of any existing results on this topic. 3 participants
mention some discomfort in listening to a couple of auditory
stimuli with bursting and high-pitch sound. As a solution, we
plan to investigate an even larger auditory stimuli pool in our
future work. Volunteers will be invited to listen to and rate
those stimuli. Any unpleasant ones will be discarded.

10 participants provide their comments for potential im-
provement. Among them, 3 suggest lowering the sound vol-
ume. It is worth mentioning that participants exhibit different
tolerance of sound volume. 3 participants suggest combining
with other forms of stimuli, such as colors, images, and videos.
4 propose to generalize SoundLock to the AR platform and
other terminals, e.g., “I think the system can be extended

to smartphones, which will prove a valuable addition. The
speaker can emit a sound and the eye image can be captured
by the camera.” (P1). Many of the comments are valid and
inspire us with potential future work.

VIII. RELATED WORK

User authentication on VR. While password and PIN
serve as the most popular authentication mechanisms on VR
devices [73], they have been criticized for these usability
deficits: it takes users substantial effort to select correct
letters/digits/characters from the virtual keyboard using the
virtual laser extended from their controllers. Moreover, such
authentication schemes have been proven highly vulnerable
to shoulder-surfing attacks. Due to the occlusion of the VR
headset, the user is unaware of the surroundings, rendering
it easier for an adversary to acquire the entered credential
through observation [32]. To address these issues, both industry
and academia have been actively searching for practical alter-
natives. The existing methods can be broadly categorized into
five classes: knowledge-based methods [6, 35, 37, 62, 116],
physiological biometrics [9, 25, 51, 88], behavioral biometrics
[56, 69, 75, 90, 117], token-based methods [23], and a mixture
of them [61, 113, 118]. A recently published SoK paper
provides an extensive discussion on this topic [95]. Please refer
to it for more details. According to its discussion, physiological
biometrics seem to outshine their peers so far due to their high
usability and accuracy. Nevertheless, they bear at least two lim-
itations for broad deployment. First, to capture users’ biometric
information, such as electroencephalogram (EEG), electroocu-
lography (EOG), electrical muscle stimulation (EMS), and iris
patterns, sophisticated sensors are required. For example, iris
scan has been deployed for user authentication on HoloLens
2 [65], a high-end AR device costing at least $3,500. Due to
its high price, the iris scanner is less likely to equip to general
VR devices1 in the near future [101]. Besides, biometrics are
unique to an individual. Once such credentials are damaged or
counterfeited, the user cannot cancel the pre-stored credentials
or reset them with different biometric input. This property is
also called cancelability. In contrast, our approach exhibits the
following advantages. First, it is free from additional high-
end sensing devices; instead, it only needs an eye tracker,
which has been integrated into many prevalent commercial
VR headsets [1–5]. It is well accepted that incorporating eye-
tracking technology is a trend in VR to assist in simulating
depth of field and focus and providing users with a more
realistic and natural visual experience [26]. Second, auditory-
pupillary responses are cancelable. In the case of having one
pupillary response stolen, a new credential can be generated by
changing its associated stimuli. A comprehensive comparison
with prior user authentication schemes for VR is provided in
Table IX in Appendix B.

Pupillary biometrics for user authentication. The idea
of exploiting pupillometry for user authentication has been
around for a decade [17, 22, 72]. Most efforts have been
devoted to enhancing authentication accuracy. For example,
Bednarik et al. [15] proposed combining pupillary biometrics
with eye movements for user authentication. A similar idea
is adopted in [31]. However, implementing these schemes is
faced with several practical challenges: eye movements and

1The price of Meta Quest 2, the most popular VR device so far, ranges
from $299 to $399.
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Fig. 15: Participants’ subjective response distributions.

pupillary behaviors are task-dependent and light-sensitive. To
overcome these limitations, researchers proposed leveraging
pupillary light reflex (PLR) for user authentication [28, 111,
112]. PLR is an involuntary reaction of the human eyes to
an external light stimulus: as a user is presented with lights
of various combinations of chromas and intensities, her pupils
will constrict and dilate accordingly. Typically, to elicit promi-
nent and acute changes in pupil size (to create distinguishable
features for classification), users are presented with strong light
stimuli. It may lead to snow-blindness and flash-blindness
effects [19, 34, 93]. Performing it on a daily basis could
potentially bring severe health issues, e.g., temporary or even
permanent vision impairment. Alternatively, SoundLock avoids
the above concern as it employs auditory stimuli.

Challenge-response protocols for biometric authentica-
tion. Challenge-response has recently emerged as a popular
authentication protocol and is frequently combined with bio-
metrics for user identification. It leverages a user’s physiologi-
cal response to a given stimulus, i.e., challenge, injected by the
interactive device. The assumption is that each user’s response
to a given challenge is unique. Examples of challenge-response
biometrics include: the palm’s/finger’s response to vibrations
[49, 52], EEG response to visual stimuli [9, 51, 109], or muscle
response to electrical stimulation [25]. For example, Velody
[49] makes use of the unique and nonlinear hand-surface
vibration response for user identification. Similarly, VibWrite
[52] enables user authentication via finger inputs on ubiquitous
surfaces through physical vibration. It is implemented using a
pair of vibration motors and a receiver that can be attached
to any surface. Lin et al. [51] proposed a psychophysiological
authentication protocol using carefully designed visual stimuli
to acquire brain response signals. A similar idea is adopted in
[9, 109]. Compared to conventional biometric authentication,
the credentials created under challenge-response protocols are
revocable–once a credential is counterfeited, it is convenient
to reset it. Nonetheless, all the above schemes either rely on
sophisticated sensors for response data acquisition or require
actuators for challenge generation (e.g., motor vibrator), which
do not exist in VR headsets. Hence, they are inapplicable
here. Recently, reflexive eye behaviors in response to visual
stimuli [91] have been exploited for user authentication. Their
stimulus consists of presenting a single red dot on a dark
screen that changes position multiple times. Then reflexive
saccades are triggered; the distinctive gaze path is treated as

the unique signature. This scheme requires explicit action, i.e.,
eye movement, from the user. Instead, SoundLock elicits users’
involuntary pupil size changes in response to auditory stimuli
with bare cognitive effort.

IX. LIMITATIONS AND FUTURE WORK

In this section, we discuss several limitations of this work
and present our future research directions.

Enrollment time. SoundLock is associated with a rela-
tively long enrollment time. Under the current design, it ranges
between 800 to 820 seconds. This is because SoundLock
collects user’s pupillary responses to the entire stimuli pool
which consists of dozens of audio clips in the enrollment
stage. The user-specific optimization is applied to find the best
stimuli sequence for an individual. Note that the enrollment is
only performed once for each user. To further reduce it, we
can replace the current online user-specific optimization with
offline optimization on the population scale, that is, an optimal
stimuli sequence is derived for a large population group. In this
way, only one stimuli sequence is rendered in the enrollment
stage rather than the entire pool. The enrollment time would
be substantially reduced accordingly. If a user’s credential is
counterfeited, a new stimuli sequence should be requested. As
another possible approach, rather than presenting a user with
the whole stimuli pool, we can reasonably present a subtset.
We will carefully select the stimuli that generate the highest
entropy among users. Besides, analysis is necessary to evaluate
its impact on authentication accuracy.

Multi-modality stimuli. SoundLock only makes use of
auditory stimuli. In fact, visual stimuli, such as lights, images,
and moving objects, would also evoke pupillary response. In
our future work, we plan to investigate biometric authentication
methods exploiting multi-modality stimuli. Hopefully, it would
introduce new feature dimensions and thus further enhance the
system entropy. There are several research questions deserv-
ing thorough investigation. First, how to combine visual and
auditory stimuli? There are at least two strategies, to display
the two kinds of stimuli sequentially or concurrently. Different
strategies would lead to distinctive pupillary response patterns
(and thus entropy) and time efficiency. Second, under the new
design, a new set of prominent and reliable features should be
extracted from the raw data to optimize the accuracy. Third, the
user-specific stimuli optimization will be revisited to balance
security and usability with multi-modality stimuli.
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Scalability. SoundLock has been tested among 44 subjects.
In our future work, we plan to find out whether the proposed
biometric works for a larger and more diverse population.
Besides, the current benchmarking of system entropy is based
on the dataset collected so far. With extended participation, the
calculation result would reflect the ground truth better. Besides,
SoundLock is only prototyped and evaluated on one kind of
VR model (HTC VIVE Pro) and has been exclusively focused
on the VR platform. Next, we plan to evaluate SoundLock
on a broader set of VR headsets and examine the impact of
device heterogeneity. Additionally, we will also examine the
feasibility of generalizing our idea to other platforms, such as
AR terminals and smartphones.

X. CONCLUSION

In this paper, we present SoundLock, a novel user authenti-
cation scheme designed for VR devices. SoundLock recognizes
legitimate users by extracting carefully designed features from
pupil size changes in response to auditory stimuli. We first
introduce a basic scheme using a single stimulus, followed by
an advanced scheme with multi-stimuli. A proof-of-concept
prototype of SoundLock is implemented on a VIVE Pro
VR headset. Extensive in-field experiments are performed
involving 44 participants. Results show that SoundLock offers
high authentication accuracy, which outperforms state-of-the-
art biometric authentication solutions for VR. SoundLock also
exhibits consistent performances under various testing condi-
tions. Our user study reveals that SoundLock is well received;
72.7% of the participants are willing to adopt SoundLock as
the authentication mechanism on their (future) VR devices.
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APPENDIX A
CANDIDATE FEATURES

Table VIII lists all the 60 candidate features introduced in
Section III-B, including their names, categories, phases, and
notations. They are sorted by the normalized Fisher score as
demonstrated in Fig. 16. The top 20 features are selected.

APPENDIX B
COMPARISON AMONG USER AUTHENTICATION SCHEMES

ON VR
Table IX provides a comprehensive comparison among

some representative user authentication schemes for VR. The
existing schemes are categorized into knowledge-based authen-
tication (white), physiological biometric authentication (light
gray), behavioral biometric authentication (medium gray), and
multi-factor authentication (dark gray). All schemes are com-
pared from multiple aspects of usability and security.
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TABLE VIII: List of all the 60 candidate features.

Index Feature name Category Phase Notation Index Feature name Category Notation

1 Response lag Morphological Excitation rl 44 Average Statistical avg
2-3 Peak magnitudes Morphological Excitation p1−2 45 Maximum Statistical max
4-5 Valley magnitude Morphological Excitation v1−2 46 Minimum Statistical min
6-7 Dilation rates Morphological Excitation dr1−2 47 Variance Statistical var
8-9 Constriction rates Morphological Excitation cr1−2 48 Median Statistical med

10-19 Dilation polynomial coefficients Morphological Excitation dpc1−10 49 Root mean square Statistical rms
20-29 Constriction polynomial coefficients Morphological Excitation cpc1−10 50 Skewness Statistical skew

30 Area under curve Morphological Excitation auc 51 Kurtosis Statistical kurt
31 Recovery time Morphological Recovery rt 52 Roughness Statistical rough

32-35 Damped oscillation Morphological Recovery do1−4 53 Sharpness Statistical sharp
36-37 Pupillary unrest Morphological Recovery pu1−2 54 First quartile Statistical q1

38 Baseline average Morphological Recovery bavg 55 Third quartile Statistical q3
39 Baseline maximum Morphological Recovery bmax 56 Interquartile range Statistical iqr
40 Baseline minimum Morphological Recovery bmin 57 Mean absolute deviation Statistical mad
41 Baseline variance Morphological Recovery bvar 58 Slope sign change Statistical ssc
42 Baseline median. Morphological Recovery bmed 59 Mean crossing Statistical mx
43 Baseline interquartile range Morphological Recovery biqr 60 Willison amplitude Statistical wa

Normalized Fisher score
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Fig. 16: All candidate features sorted by their normalized Fisher scores.

TABLE IX: Comparison among different user authentication approaches for VR.  : method fulfills criterion. G#: method quasi-
fulfills criterion. #: method does not fulfill criterion. –: not enough information.

Scheme Extra sensor-free Hand-free Auth speed Accuracy Revocability Against
replay

Against
shoulder-surfing

Against
impersonation

Against
guessing

PIN  # ⋆ ⋆ ⋆ ⋆ ⋆  # # – #
Drawing pattern  # ⋆ ⋆ ⋆ ⋆ ⋆  # # – #
3D pattern [116]  # ⋆ –  #  – #

CueVR [6]  # ⋆ ⋆ ⋆  #  – #
LookUnlock [35]   ⋆ –  # G# – #
RoomLock [37]  # ⋆ ⋆ ⋆ ⋆  # G# – #
RubikAuth [62]  # ⋆ ⋆ ⋆ ⋆ ⋆ ⋆  #  – #

SkullConduct [88] #  ⋆ ⋆ ⋆ # #    
Brain Password [51] #  ⋆ ⋆ ⋆ ⋆ ⋆ ⋆      

Arias-Cabarcos et al. [9] #  ⋆ ⋆ ⋆      
ElectricAuth [25] # # ⋆ ⋆ ⋆ ⋆ ⋆ ⋆      

SoundLock (this work)   ⋆ ⋆ ⋆ ⋆ ⋆      
GaitLock [90]   ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ # # G#   
OcuLock [56] #  ⋆ ⋆ ⋆ ⋆ #     

Kupin et al. [48] # # ⋆ ⋆ ⋆ ⋆ ⋆ # – –   
Mustafa et al. [69]   – ⋆ ⋆ # –    
Pfeuffer et al. [75]  G# – ⋆ # # #   
Zhang et al. [117]   ⋆ ⋆ ⋆ ⋆ ⋆ – –    
GlassGesture [113]   – ⋆ ⋆ ⋆  –    

RubikBiom [61]  # ⋆ ⋆ ⋆ ⋆ ⋆  –    
BlinKey [118]   ⋆ ⋆ ⋆ ⋆  –    
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