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Abstract—Traditional block/allow lists remain a significant
defense against malicious websites, by limiting end-users’ access
to domain names. However, such lists are often incomplete and
reactive in nature. In this work, we first introduce an expan-
sion graph which creates organically grown Internet domain
allow-lists based on trust transitivity by crawling hyperlinks.
Then, we highlight the gap of monitoring nodes with such an
expansion graph, where malicious nodes are buried deep along
the paths from the compromised websites, termed as “on-chain
compromise”. The stealthiness (evasion of detection) and large-
scale issues impede the application of existing web malicious
analysis methods for identifying on-chain compromises within
the sparsely labeled graph. To address the unique challenges
of revealing the on-chain compromises, we propose a two-step
integrated scheme, DOITRUST, leveraging both individual node
features and topology analysis: (i) we develop a semi-supervised
suspicion prediction scheme to predict the probability of a node
being relevant to targets of compromise (i.e., the denied nodes),
including a novel node ranking approach as an efficient global
propagation scheme to incorporate the topology information,
and a scalable graph learning scheme to separate the global
propagation from the training of the local prediction model, and
(ii) based on the suspicion prediction results, efficient pruning
strategies are proposed to further remove highly suspicious nodes
from the crawled graph and analyze the underlying indicator of
compromise. Experimental results show that DOITRUST achieves
90% accuracy using less than 1% labeled nodes for the suspicion
prediction, and its learning capability outperforms existing node-
based and structure-based approaches. We also demonstrate that
DOITRUST is portable and practical. We manually review the
detected compromised nodes, finding that at least 94.55% of them
have suspicious content, and investigate the underlying indicator
of on-chain compromise.

I. INTRODUCTION

Allow-list expansion based on transitivity of trust. Ma-
licious website detection has been a longstanding focus for
cybersecurity vendors. The aim is to stem the tide of attacks
such as phishing and malware. The prevailing practice is to
add the domain names of malicious websites to deny-lists,
blocking access to such sites as and when they are found [1],
[2]. The diametrically opposed approach is the restrictive
allow-list: only trusted domains (such as “[.]gov”) are added
to a pool of authorized sites [3], [4]. However, block/allow
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Fig. 1: An example of On-chain Compromise.

lists are generally incomplete, passive, and their updates are
time and labor-intensive [5]. The inherent research question
is “how to develop a dynamic mechanism for expanding
and monitoring the allow/block lists”. To that end, we begin
with a graph expansion algorithm initialized with 56,805 seed
domains (initial allow-list). We visit the default main page for
each seed domain to gather outgoing links from their HTML.
These links are then distilled to their basic domain names (e.g.,
example[.]org for example[.]org/login) and the
crawling is repeated recursively. Consequently, we collected
an organically grown graph comprised of 1.7M nodes and
10M edges, which acts as an expanded allow-list based on the
relationships between each domain’s default main web page.
The motivation of the expansion is based on the hyperlink
relationships as transitivity of trust, allowing the trust between
two parties to be extended further. Namely, if domain A trusts
B, and B trusts C, then A would trust C as well [6], [7].
The benefits of the expansion graph are twofold: (i) providing
the resource to build an extensive and dynamic allow-list;
(ii) providing extra transitivity of trust information to further
monitor the trust of the allow-list.

Research gap of domain monitoring: On-chain Compro-
mise. After obtaining the expansion graph, the successive
procedure is to monitor the expanded nodes from the initial list.
All nodes in the expansion graph are supposed to be benign
domains as they are all accessible from trusted seed domains
in the initial list. Surprisingly, we find malicious nodes in
the graph, indicating the risk that compromised and malicious
domains may inadvertently be included.

Existing studies on domain monitoring mostly focus on
identifying malicious patterns through features extracted from
a pile of malicious and benign webpages, rather than explor-
ing how benign webpages are compromised and eventually
linked to malicious websites. Obviously, it is risky to include
compromised nodes in an allow-list. For example, malicious
domains may steal the reputation of a “.org” domain through
a chain linked by compromised nodes, especially when the
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embedded hidden hyperlinks in reputable websites are capable
of bypassing security checks. Therefore, the goal of monitoring
in this work is “to identify and filter the stealthy suspicious
nodes (including compromised nodes) along the entire chain
from the allowed nodes to the target of compromise”.

Accordingly, we define such a new type of compromise as
On-chain Compromise, where a node in an allow-list could be
directly or indirectly connected to nodes in a deny-list through
stealthy methods such as nested hidden HTML links, resulting
in potential reputation stealing, malware injection, or data theft
threats. The property that distinguishes On-chain Compromise
from existing malicious or compromise attacks is its two-fold
stealthiness for evasion of detection: (i) Content stealthiness.
Unlike malicious webpages that have specific patterns, the con-
tent of compromised webpages could be utterly “clean”, e.g.,
may only contain hyperlinks that are identified as “benign” by
third-party security vendors but lay on the path to malicious
targets. Such hyperlinks could be invisible and constantly
updated, and thus hard to recognize in real-time. Such attacks
are always more stealthy and silent than active attacks, making
it easier for them to remain undetected for a longer period of
time [8]. (ii) Topology (intent) stealthiness. We find the On-
chain Compromises are always conducted in a diluent manner
to evade detection, i.e., the compromised nodes are buried
deeply along the paths away from the malicious targets (nodes
in deny-list, as intent of the compromise). Particularly, there
are many intermediate suspicious nodes existing between the
compromised nodes and denied nodes, which are commonly
identified as “clean” by third-party security vendors. Generally,
they are intended to attack the ranking of a web page in search
engine results by building a hyperlink topology (demonstrated
in § VI). A real-world example is presented in Figure 1,
where nodes a and b are initially allowed nodes; nodes c and
v are intermediate suspicious nodes that are not detected as
malicious domains by existing detection tools; a node d is
a malicious domain in deny-list. We found that, the node b
(c***s.org.**, an anti-child abuse non-profit website) is
compromised by nodes c and v, and is finally connected with
the denied node d.

Technical challenges. Unlike one-step malicious/benign URL
prediction, monitoring the expansion graph involves the iden-
tification of on-chain compromise in stealthy and deep con-
nections. Due to the content and topology stealthiness of the
on-chain compromise, as well as the lack of ground truth, none
of the existing web malicious analysis methods can address
this new problem. We summarize the technical challenges of
detecting on-chain compromise as follows:

C1: Sparse labels and limited supervision information. Due
to content stealthiness, there is no supervision information
available for extracting malicious patterns. Additionally,
only a small percentage of nodes could be detected as
denied nodes, resulting in inaccurate predictions as a
result of insufficient supervision information.

C2: Efficacy. Existing domain examination methods are either
based on individual node features or only focus on the
topology (e.g., applying PageRank [9] and TrustRank [10]
as a semi-automatic technique), resulting in a high false
positive rate and low accuracy (especially when com-
promised nodes are considered). Additionally, lightweight
feature extraction is necessary for fast inference.

C3: Scalability and portability. Graph Neural Networks
(GNNs) excel at a variety of network mining tasks by
considering both individual and global structural informa-
tion [11]. However, existing graph learning approaches
are facing constraints of performance and scalability in
large graphs. Additionally, web-compromising behaviors
have a typical long chain of influence and are stealthy
in nature, which is beyond the 2-hops scope of ordinary
graph learning schemes.

Our integrated scheme. As on-chain compromises cannot be
detected directly due to their stealthiness, a two-step process
is proposed: (i) measuring the suspicion of each domain node
in the expanded graph to be denied nodes; and (ii) post-
processing for the recognition and analysis of compromised
nodes. To conquer the aforementioned challenges, we present
an integrated learning scheme, DOITRUST, leveraging the
strength of both machine learning (based on individual node
features) and web topology analysis (label propagation in
the global view) to uniquely solve the challenge of the on-
chain compromised websites. Particularly, DOITRUST is a fast
and scalable graph neural network-based semi-supervised node
classification model for domain compromise threat measure-
ment, consisting of two components: (i) Suspicion Prediction
to evaluate the learning capability to detect compromise rel-
evant behaviors, and (ii) Compromise Pruning and Warning
as post-processing to confirm the correlation between highly
suspicious nodes and on-chain compromised nodes, and to
analyze the underlying indicator of compromise.

To make our scheme more practical and flexible, the crux
of it is to customize suspicion (denied nodes). Malicious
URLs/domain nodes that could be detected by third-party
security vendors represent only one type and a small fraction of
denied nodes (178 malicious nodes are identified out of 1.7M
nodes). Other denied nodes should be customized according
to specific scenarios. For example, a deny-list for government
organizations should also contain the domains that lead to gam-
bling and pornography web pages. Such customized denied
nodes are always sparsely labeled and evade the detection
of many threat intelligence vendors. Therefore, our graph
learning based semi-supervised node classification utilizes the
global structure information to propagate label information and
globally determine the probability that a domain node is a
denied one. The prediction confidence is used as a suspicion
score. Finally, an enhanced allow-list could be acquired by
pruning high suspicion nodes from the graph as per the
predicted suspicion, while the compromised nodes are the
original “benign” nodes that have high suspicious scores.

Contributions. The main contributions are as follows:

• We construct a Website Domain Graph baseline dataset,
collating 1.7 million Internet domains in the wild, demon-
strating the pipeline of allow-list expansion based on transi-
tivity of trust. Further, a new type of domain compromise,
On-chain Compromise, is identified as the research gap in
monitoring nodes of the expansion graph. We also reveal
two-fold stealthiness as its distinguishable properties.
• We propose a two-step integrated scheme to leverage both

individual node features and topology analysis to solve the
lack of labels and stealthy contents, addressing C1.
• Considering compromising web behaviors as a social engi-

neering problem, we propose a new node ranking approach,
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IncredulityRank, and its top-k approximation algorithm,
as an efficient global propagation scheme to incorporate
the topology information. We demonstrate that suspicion
prediction is efficient even with simple individual features
extracted from URL and HTML, addressing C2.

• To address C3, we implement a graph learning scheme to
separate the global propagation from the training of the
local prediction model, solving the scalability issue for
semi-supervised node classification. We further propose four
strategies of portability for the proposed scheme.

• We extensively evaluate DOITRUST’s performances of de-
nied nodes classification as suspicion prediction. DOITRUST
obtains approximately 90% prediction accuracy with less
than 1% labeled nodes, outperforming the state of the art.
On a graph with 1.7M nodes, the training and inference
time of our model only takes less than 2 minutes on
a single machine. Furthermore, we manually review the
detected compromised nodes, report that 94.55% detected
compromised nodes have suspicious information found in
the HTML, and investigate the underlying indicator of
compromise.

To the best of our knowledge, DOITRUST is the first
work tailored to identify on-chain compromised nodes that are
stealthy and hidden deeply, while providing efficiency, scala-
bility, and portability in the scenarios of limited information.

Responsible disclosure and ethical considerations. All re-
sults have been discussed at length and then reported to
relevant stakeholders. DOITRUST is in the process of industry
deployment, pending for public use. The crawled dataset
purports to study Internet measurement in good faith, and is
secured privately with access granted only to the authors’ affili-
ations. The dataset does not include any personally identifiable
information, with all examples in this work anonymized so as
to prevent linking sensitive activities to specific users.

II. PRELIMINARIES

In this section, we introduce allow-list expansion graph as
preliminary knowledge, along with the problem statement and
our design goals.

A. Allow-list Expansion Graph

To achieve a larger and more realistic expansion, we started
with 56,805 domain names from a self-compiled list of trusted
domains. These domains were gathered from a range of cred-
ible public sources, such as [Redacted] Stock Exchange, the
[Redacted] Charity Registry, non-profit commissions, and vari-
ous government directories. These were then seeded into a cus-
tom web crawler that only followed links listed on the landing
page of a domain name. Further, it only visits the domain name
portion of any URLs found on the main page. For example,
for https://www.nytimes.com/section/world, the
crawler will extract and visit its default main page ny-
times.com. The Breadth-First Search (BFS) strategy is used
to extend the graph until the 6-depth level is reached. The
crawler recursively expands the graph of trusted domains to
1.7 million nodes, which are interconnected via 10 million
edges. By way of trust transitivity, all 1.7M nodes should
be considered as “clean”. However, security vendors, such
as GSB [12], discovered 178 malicious domains within the

graph. This means some domains in the initial allow-list and/or
intermediate nodes are compromised. The spectra of likely
compromised sites cast doubt on the trustworthiness of large-
scale extended allow-lists and even the seed list. Namely, it is
necessary to identify and filter the highly suspicious nodes in
the extended graph before use.

B. Problem Statement and Design Goals

We divide the compromise detection into Suspicion Predic-
tion and Compromise Pruning and Warning. Given the land-
scape of website domain names, we model the web as a graph
G = (V,E), where V is a set of vertices including both labeled
and unlabeled domain names (represented by the default main
page of the domain), and E is a set of directed hyperlinks
(edges) that connect vertices. Practically, for each domain node
v, we collect the HTML of its default main page, Webv , which
contains multiple hyperlinks {url1, url2, . . . , urli} to other
web pages. Figure 1 presents a graph generated by layer-by-
layer crawling. The number of incoming links of a domain
v is its in-degree in(v), whereas the number of outgoing
links is its out-degree out(v). The representation x for each
domain node is a D-dimensional numeric feature vector that is
extracted from the composition of the main web page’s URL,
and the page’s HTML contents. We summarize the definitions
and notations used throughout the paper in Table I below.
We define suspicion as the possibility of a domain v being
denied node-relevant or not, which could be represented as a
numerical value Zv ∈ [0, 1] (e.g., prediction confidence). In
general, we consider compromising intents as malicious (e.g.,
malware or phishing venues recognized via third-party security
vendors), pornography, and gambling websites (customized
compromising intents). Evaluation of domain suspicion is
therefore a suspicion prediction, depending on node features
and/or graph topology. The goals of this classification can be
summarized as follows:

(1) High performance under resource scarcity. The classi-
fier must perform well when only a few sparse labels and
limited supervision information are available.

(2) Low false positive rate and high accuracy. Given
the relative scarcity of labels, the false positive rate of
the classifier must be low. Additionally, the classifier
must achieve high accuracy for both allowed and denied
domains.

(3) High scalability and portability. The classifier must
process a large graph with low latency, i.e., must be trained
and kept up with a load of millions of pages to examine
in a short time. In addition, the overhead for industry
deployment should be not large.

III. DESIGN OF DOITRUST

The DOITRUST consists of the Suspicion Prediction
(§ III-A to § III-D) and Compromise Pruning and Warning
(§ III-E). Motivated by separated graph learning [13]–[15]
(see Appendix D), we propose a graph-based semi-supervised
denied node classification approach for suspicion prediction.
Local prediction and global propagation are decoupled so as
to handle large graphs with few and sparse labels. Concretely,
suspicion prediction is composed of Individual Feature Extrac-
tion, Local Prediction, Personalized Incredulity Ranking, and
Global Propagation, as shown in Figure 2.
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TABLE I: Summary of terms and notations.
Term Description
Initial allowed node A seed node labeled as “allowed”.
Denied node The destination target (intent) of compromise.
Suspicion The possibility of a domain being denied node-relevant or not.
Intermediate node A node lies between compromised nodes and denied nodes,

commonly identified as “clean” by third-party security vendors.
Compromised node An original benign node that has a high suspicious score.
Obvious-positive
alarms

Highly suspicious nodes with obviously suspicious information
found.

Subtle-positive
alarms

Highly suspicious nodes without obviously suspicious informa-
tion found.

Notation Description
G = (V, E) Domain name graph, V is the set of domain names, E is a set

of hyperlinks that connect domains.
X, xi Node features X consists of D-dimension vector xi for node vi.
in(vi), out(vi) in-degree and out-degree for a domain node vi.
fθ, Hu, Zu Local predictor, local embedding and prediction value of node

u.
Π, ~πk(u) Personalized IncredulityRank matrix, top-k personalized In-

credulityRank vector for node u.
α, ρ Teleport probability, approximation indicator.
γ Discount factor for trust evaluation.
δ, ε, pf PIR threshold , estimation error bound and failure probability.
π̂, rmax, π̃, r, π

′ Estimated PIR, residual threshold, reverse vector, residue vector,
random walk estimation vector.

The first step is to apply a flexible and low-cost fea-
ture extractor to produce node features relevant to malware,
phishing, spamming and sexual information by extracting the
content of HTML and URL-based features for each node
in G. After individual feature extraction, we produce local
predictions via a neural network fθ for each node, where
θ is the trainable parameters. Feature extraction and local
prediction are detailed in § III-A. The local prediction outputs
a probability vector Hi = fθ(xi) on each node’s features
independently, allowing for parallelisation and flexibility of
local prediction approaches.

During the global propagation, a message passing scheme
such as the PageRank (PR) [9] or personalized PageRank
(PPR) [13], [15]–[17] can be used to find trusted neighbors
from each node in the whole graph vision, instead of in
a limited 2-hop vision as existing graph neural networks
do (background is provided in the Appendix A and B).
The advantage of such a scheme enables infinitely many
neighborhood aggregation layers effectively. Inspired by the
unique characteristics of web compromising attacks (§ II), we
propose Personal IncredulityRank (PIR) as a new variant of

PPR, specified for the suspicion evaluation on the website
domain graph. The difference between PIR and PPR is that
PIR also accounts for the unsuspicion of a website domain
node’s children inversely, thereby penalizing the node if it
recommends, by way of a hyperlink, an untrustworthy node
(detailed in § III-B). Further, we apply top-k approximation
mechanism to achieve an efficient PIR approximation for a
large website domain graph, as detailed in § III-C. The PIR
approximation may be viewed as a pre-processing that operates
prior to or in parallel with the local predictor training.

The final prediction for node s is aggregated with its
local prediction and the predictions propagated from its top-k
important neighbors Nk(s) associated with importance score
π(s, vj) via the personalized IncredulityRank approximation
scheme, denoted by

Zs = softmax

 ∑
j∈Nk(s)

π(s, vj) ·Hj

 , (1)

where Hj is the local prediction probability vector for node j.
For training, the gradient flows along with the PIR-based prop-
agation scheme during backpropagation, which significantly
increases the model’s accuracy due to implicitly considering
infinitely many neighborhood aggregation layers.

We evaluate three strategies to apply the PIR-based global
propagation: (i) Training Incorporation (TI): The propagation
is only implemented when training the local neural network
for prediction. During inference, only the local fθ is used to
predict the node labels; (ii) Inference Incorporation (II): the
local neural network fθ is trained without considering infor-
mation from any neighbors. During inference, the prediction
of a given node is aggregated by its neighbors’ prediction
probability vector derived from the pre-trained fθ networks
with fixed weights, according to its PIR vector, and (iii) End-
to-end Incorporation (EI): the propagation is implemented
during both training and inference phases. In addition, for some
use cases, the propagation may not be available, and therefore
we also evaluate the strategy without propagation applied in
neither training nor inference (Without Incorporation (WI)).
After evaluation of these strategies, we exploit two possible
implementations: static inference and real-time inference (even
without global propagation), detailed in § V-C. We apply the
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End-to-end Incorporation as the default strategy in our pro-
posed model, i.e., the PIR-based propagation during training
and inference.

The output of DOITRUST is the prediction of the suspicion
value of each node, which indicates the compromise intent.
Extensive allow/deny-lists could be obtained via pruning nodes
of the graph according to the threshold of the suspicion value.
Additionally, we provide two pruning strategies to further
achieve a clean extended allow-list with compromised nodes
pruned as detailed in § III-E.

A. Individual Feature Extraction and Prediction

The first step is to extract individual features that are
relevant to malware, phishing, spamming, and sexual infor-
mation. For lightweight feature engineering, we adopt simple
statistical and lexical features that are automatically and di-
rectly extracted from URL and HTML. In order to assess the
performance of our integrated scheme with the worst case of
training information and model complexity, we chose simple
local features and local predictors.

1) Statistical features: The first type of individual feature
is the statistical features in terms of the HTML tags and URLs.
We select some easily accessed ones from the commonly used
features in existing studies [18]–[21]. Considering dynamic
web page development is the main source of injecting ma-
licious code into web pages, statistical properties in the web
page content are used to detect web pages that are malicious,
such as the number of HTML tags, iframes, scripts tags, and
href tags. These tags could be the sources to inject external
code or for phishing the website by redirecting to malicious
servers. In addition, we also consider the statistical URL
features for each domain, such as the length of a URL, the
number of special characters in URLs (e.g., dots ‘.’, hyphens ‘-
’, forward slashes ‘/’, underscores ‘ ’, and equal signs ‘=’), and
whether an IP address or re-direction is present in a URL. We
provide the list of statistical features in detail in Appendix E.

2) Lexical features: We also consider the content of the
HTML extracted from the domain’s default main page. The
key point is to use the vectorization of textual content. Con-
sidering that the textual content of a web page is often too
large for deep neural network-based embedding, we adopt
a flexible representation mechanism inspired by the idea of
bag-of-words. We vectorize HTML contents with bag-of-
maliciousness (BoM), a numerical representation approach we
proposed for domain suspicion evaluation. Specifically, we
first build a token dictionary that consists of denied words or
symbols summarized from 10K denied web pages (collected
from blacklists and customized category websites such as
pornography and gambling). Then, 2400 most frequent tokens
are selected to build the token dictionary (demonstrated in
Figure 15 in the Appendix). We then convert the set of textual
content of each HTML to a frequency distribution matrix,
where each HTML document is a row, each token from the
denied dictionary is a column, and the corresponding (row,
column) value is the frequency of occurrence of each token in
that HTML document. Namely, each denied token is a column
name, with the corresponding value being the frequency of
that word in the document. We treat each token individually,
regardless of the order of words.

3) Local prediction: With the embedding node feature
vectors, the local node prediction can be simplified as a binary
classification task. A fully connected network (FCN) is applied
to classify the node domain, composed of two layers with 32
hidden sizes and ReLU activation functions. Given the labeled
domain set, the parameters of local prediction FCN is trained
with the Adam optimizer on binary cross-entropy loss.

B. Incredulity Rank

Given PageRank does not consider any knowledge about
the quality of a domain, nor explicitly punish badness, in
practice, it is possible for a skilled adversary to manipulate
PageRank results through link exchange to achieve a falsely
high PageRank score. Therefore, as the interplay of multi-
ple factors relevant to the respectability and credibility of a
website, domain suspicion is hard to evaluate by PageRank.
TrustRank provides a biased PageRank, based on the assump-
tion that benign sites rarely have links to spam sites. However,
TrustRank is also easily manipulated via creating outbound
links to, or secure back-links from, high-ranking and reputable
websites. In addition, totally “benign” website domain nodes
are always hard to define and find, while totally “malignant”
ones are easier to recognize.

Compromising behaviors on the web, such as phishing
or spamming, are more prioritized as a social engineering
problem rather than a technical one. Like in society, distrust
is propagated backward on the web. Phishing, spamming, or
compromising behaviors aim to provide untrustworthy rec-
ommendations for end-users. The recognized untrustworthy
recommendation provides an indicator to review the suspicion
of the recommender. The untrustworthy recommenders are
those who strongly support an untrustworthy recommendation.
Therefore, given the identified untrustworthy recommendation,
it is feasible to find a recommender who strongly supports the
recommendation after a few iterations of distrust backward
propagation. Additionally, it is more feasible to recognize a
web page that is suspicious than completely trusted.

In this section, we investigate and develop the Increduli-
tyRank, as an algorithmic way of evaluating compromising
behaviors in hyperlink networks. Namely, we seek a quantita-
tive approach to automatically evaluate the suspicion of web
neighborhoods for a given node. We first perform a breadth-
first-search over the incoming links from each denied node
in the crawled domain graph, associated with the suspicion
score 1. Then, the suspicion value is inversely split among
in-neighbors that link to a given suspicion seed equally, layer
by layer. The intuitive heuristic involved here is that a page
is likely to be compromised node, if it has out-links to other
denied domains. The shorter the distance away from denied
pages, the higher confidence a page is a compromised node.

A discount function is further applied to split and dampen
the suspicion score based on the steps away from the denied
node. The IncredulityRank proposes an inverse approach to
attenuate distrust values, starting from the denied nodes, then
splitting and dampening distrust values upwards through the
tree. The algorithm determines the suspicion score of a given
node according to the number of steps away from a denied
node and the number of denied domains it leads to. Only in-
coming links to denied nodes are considered, as the algorithm
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aims to trace paths from the given node to each denied node.
Outgoing links from suspicious nodes may direct to legitimate
domains, so the algorithm will avoid penalizing domains
with un-reciprocated incoming links from denied domains.
Formally, if a page node v has a suspicion score of cv and it has
in(v) incoming pages, each of the incoming pages will receive
a score fraction cv/in(v) from node v. The IncredulityRank
score of a page is then the sum of the score fractions received
through its out-links and multiplied by a discount factor γ. We
then normalize summed scores to the standard range of [0, 1]
among all nodes. Intuitively, the higher the suspicion score
a page accumulates from other pages, the more likely it is
compromised. The IncredulityRank score IR(v) for a node v
is then defined as one minus its accumulated distrust score. It
is possible to determine a suspicion score for each node with
respect to the entire graph according to the IR(v).

IR(v) = γ ×
∑

i∈Noutlinks(v)

IR(ci)
distrust

(2)

C. Approximation of Personalized IncredulityRank

Similar to personalized PageRank (PPR), the personalized
IncredulityRank score π(s, t), reveals the relative (dis)trust
score of a target node t with respect to a source node s
in a graph. The challenges when applying existing PPR in
our crawled graph are: sparse initialization values and low
efficiency on a large-scale graph. To address these challenges,
we propose the Personalized IncredulityRank (PIR), which
refines the existing PPR approximation approaches [16] with
adaptive initialization and termination thresholds introduced.

Initialization of PIR values. To initialize trust values, the
existing approaches equally distribute the initial trust values
among trusted seed nodes, or distrust values among denied
nodes, e.g., 1 divided by the number of trusted or denied
nodes. However, this is not applicable in our scenario, where
the initial seeds or denied nodes are rare and sparse, which may
lead to hard-to-converge issues and low quality of trustworthy
evaluation performance. Therefore, we first find all suspicious
paths (shortest only) identified in the graph from seeds to
denied nodes in the crawled domain graph, followed by
initializing the PIR values along the suspicious paths according
to Equation 2. Based on the adaptive initialization, we expand
the non-zero initialized value from 178 (0.01% of all nodes) in
existing methods to 283,117 (16% of all nodes) in our crawled
domain graph using the extended from the same 178 denied
nodes. This fraction could increase when considering more
denied nodes. Our initialization strategy could enhance the
scale of initialized values with reasonable values towards fast
convergence and high quality of suspicion evaluation.

Approximation of personalized IncredulityRank with top-
k nodes. For an inversed web graph G = (V,E), the
propagation scheme requires the Personalized IncredulityRank
matrix Π, in which the uth row is the PIR vector of the given
node u, denoted by ~π(u) = {π(u, q1), . . . , π(u, q|V |)}. Each
entry π(u, qi) measures the importance of a target node q
from the perspective of source u. The global IncredulityRank
of a vertex q can be viewed as the sum of the contributions
from all other vertices, i.e., the sum of the qth column of the
matrix Π. The qth column of the matrix Π is also called the
contribution vector of q. Calculation of personalized PageRank

or PIR values on an entire graph consumes massive com-
puting and storage resources. Thus, approximation solutions
are commonly adopted. Furthermore, for strongly connected
graphs, the PIR matrix is non-zero for all nodes, resulting in
burdensome computing and storage needs. Therefore, a more
efficient approximation is via selecting top-k elements of the
PIR matrix and truncating the rest to zero.

Two common personalized PageRank estimation ap-
proaches are Forward Push [22] and Monte-Carlo (MC) [17]
(backgrounds are in the Appendix B). Forward Push is too
expensive to obtain an exact estimation, which can be stopped
earlier, but the tail term cannot guarantee an approximate
quality. Monte-Carlo (MC) can guarantee that good approx-
imate quality is obtained, but the efficiency is low. Inspired
by FORA [16], [23], BiPPR [24], and Top-PPR [25], we
implement an adaptive top-k PIR estimation algorithm. For-
mally, given a source node s, desired estimation amount k, a
PIR threshold δ, an estimation error bound ε, and a failure
probability pf , the approximate top-k PIR query outputs a
set of k nodes {v1, . . . , vi, . . . , vk} for a node s, with their
estimated PIR scores π̂(s, vi). This top-k PIR estimation
combines four stages:

Step I Forward Push for coarse estimation. Forward Push
from a source node s is conducted to obtain coarse
estimations for the first stage of one iteration using
adaptive initialization and with early termination.

Step II Random walks for refining estimation. Random
walks are used to refine the accuracy of approximation
for the nodes with non-zero residues for the final stage
of one iteration.

Step III Top-k PIR values selection. Top-k PIR selection is
applied to terminate early the iterations of estimation
when satisfying the accuracy criteria of estimation.

Step IV Adaptive threshold for efficiency and scalability. To
further improve the efficiency and scalability of PIR
estimation, an adaptive residue threshold strategy will
be applied to maintain an individual residue threshold
for each node vi ∈ V , denoted by rvimax, instead of
the common threshold for all nodes.

Finally, the estimated PIR values are used for the train-
ing and inference procedures described in Equation 1. The
details of the top-k IncredulityRank approximation are in the
Appendix C.

D. Incorporation Strategies of Global Propagation and Real-
time Inference

Real-time and efficient inference is important for practical
applications, especially for dynamic scenarios. Ideally, the
model is trained once while providing continuous inference
after implementation. Therefore, we evaluate the impact of
PIR-based propagation on the performance of the node classifi-
cation according to four strategies in Table II. We compare the
accuracy of the classification using Training Incorporation (TI),
Inference Incorporation (II), and End-to-end Incorporation (EI)
and Without Incorporation (WI), to investigate the significance
of the PIR-based propagation. For WI, the structural informa-
tion of nodes is assumed to be unavailable. Thus DOITRUST
can only classify a node based on its individual features,
which is the worst case for DOITRUST application since
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TABLE II: PIR-based propagation strategies.

Training Inference

LP GP LP GP

End-to-end Incorporation (EI)
Training Incorporation (TI)
Inference Incorporation (II)
Without Incorporation (WI)

LP: Local propagation; GP: Global propagation.
: the related propagation is involved in the strategy;
: the related propagation is not involved in the strategy.
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Fig. 3: Performance of Training Incorporation (TI), Inference In-
corporation (II), and End-to-end incorporation (EI) and Without
Incorporation (WI).

structural information is not difficult to obtain. The results are
demonstrated in § V-C and Figure 3, which inspires real-time
inference pipeline.

Accordingly, we could provide two use cases, as shown
in Figure 4. (i) One-shot static inference. Given the website
domain graph G associated with feature vectors as the input,
this case aims to learn the semi-supervised node classification
model using only a small fraction of nodes of G to be labeled.
After applying EI training strategy, we obtain local classifiers,
suspicious prediction of nodes in G, and the pruned graph
G′ from G. Here G′ could be used as an extensive allow-
list and deny-list. (ii) Real-time Inference. Given a domain
of a website or a URL x, the pre-trained local classifier,
graph G, and node predictions, this case aims to predict
the label for x in a real-time manner. We demonstrate that
the End-to-end Incorporation (EI) strategy has good accuracy
(more than 90%). Therefore, it is possible to provide accurate
predictions for x ∈ G in real-time. If x 6∈ G, then we
investigate all hyperlinks Hx in the HTML content of x. If
∃x′ ∈ Hx & x′ ∈ G, we figure out the PIR for x, and perform
the global propagation using the top-k important neighbors of
x to get the final prediction of x on the aggregated feature
embeddings via the EI or Inference Incorporation (II) strategy.
As we demonstrate the Training Incorporation (TI) strategy
could also have reasonable accuracy (better than WI), it is
possible to make a prediction for node x with no connection
to G. Namely, if no candidate in Hx belongs to G, then we give
the prediction using the pre-trained local classifier using the
feature of x only. When this is a data drift (a new disconnected
graph appears), we also demonstrate it is feasible to re-train a
new model with less overhead in § V-D.

E. Compromise Pruning

Based on the output label and compromise confidence
value (suspicion prediction), the extensive allow/deny lists
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Fig. 4: One-shot static inference and real-time inference.

could be obtained via pruning nodes of the graph. In this
section, we provide two pruning strategies to achieve almost
100% clean results.

1) Shortest path-based pruning: The first strategy is to
identify all the shortest paths from the benign nodes to denied
nodes, and remove all the nodes along this path to cut out
parts of the graph that were likely compromised. The aim is
to isolate clusters of suspicious and malignant domains by
removing all paths that lead to these clusters. Specifically,
Dijkstra’s shortest path algorithm [26] is applied, followed by
removing every node in the found path, excluding the benign
node and the denied node.

2) Flow-based pruning: The second pruning strategy to
find the most compromised domains in a path is to compute
the flow of domains, which is defined as the number of
shortest paths from the benign nodes to every denied domain
passing through that given domain. A higher flow means that
more paths to denied domains pass through that node in the
graph, and thus represents the domain’s importance in reaching
malignant domains from the benign. We find the deepest node
with the highest flow for each iteration and remove them
from the graph. When no further nodes remain with the flow,
unreachable nodes in the graph can be considered as part of a
suspicious cluster. Specifically, this strategy identifies the most
important nodes in the paths to denied nodes and removes
these from the graph, which will reduce the reachability
of suspicious sites. We prune the deepest node in a path
constructed from the highest flow nodes, which often turns
out to be a compromised domain with multiple hidden links
to suspicious sites. The algorithm can identify and prune these
nodes that lead to the most benign domains while preserving
the legitimate domains that are higher on the same path.
Through pruning, compromised nodes are pruned and a clean
extended allow-list is obtained.

IV. EXPERIMENT SETUPS

A. Data and Settings

Ground truth labeling and scope of investigated web-
site. We labeled allowed and denied domain names to
validate the denied node classification for suspicion evalua-
tion, according to the following ground truth sources: (i) For
denied nodes, labeling resources are derived from malicious
domains detected by GSB (178 labeled), authoritative black-
lists, and customized improper domains according to domain
category list, including PhishTank [27], MalwareURL [28],
malwaredomains.com [29], Zeustracker [30], malwaredomain-
list.com [31], and UT1 blacklists [32]. 53,168 denied domain
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nodes (approximately 3%) were found in the graph, consisting
of malicious domains and customized domains (e.g.,gambling
and pornography); (ii) For allowed domains labeling: to obtain
benign domains, we combine the collected domains that appear
in Alexa 1M Global Sites 2020 [33] together with the initial
trusted seed domains (56,805) as potentially allowed domains.
We further use third-party tools and manual analysis to drop
the malicious and improper domains. Finally, we obtained
54,112 allowed domains. Note we exclude popular interactive
websites, such as Facebook and Reddit, as they may contain
numerous user-submitted links that can lead to the noisy
node. Due to the limitations on crawling time and storage
capacity, in the current stage, we focus our investigation on
top-level domains and the company’s default homepage. We
plan to conduct a measurement research with finer granularity,
applying our approach on a larger scale in the future to detect
more compromised domains.

Small and large datasets. To validate the performance of
DOITRUST on different scales, we set up two datasets: (i) a
Small dataset of 10,000 domain nodes (5K allowed and 5K
denied nodes) randomly sampled from the ground truth nodes
in graph G, and (ii) a Large dataset containing 1M domain
nodes (including 50K allowed nodes and 50K denied nodes)
randomly sampled from the ground truth nodes. We use 80% of
labeled nodes as a training set and the remaining 20% labeled
nodes as a testing set. The rest of the indeterminable nodes in
the graph serve as the network resource but are not involved
in the training and validation due to lack of ground truth for
these two size datasets.

B. Validation Settings

The validation of DOITRUST is two-fold: denied node
prediction validation with full ground truth (automatically
quantitative evaluation), and compromise analysis without
ground truth (post-processing and analysis).

1) Denied node prediction validation: To evaluate the
capability of the semi-supervised denied nodes classification,
we conduct validation on both 2K and 20K validation sets.
The prediction accuracy and false positive rates are used as
the evaluation metrics. Comparisons with learning benchmark
baselines are conducted for this validation, in terms of learning
capability (§ V-A). Additionally, we also compare DOITRUST
with structural ranking baselines (§ V-B) in terms of Precision,
Recall, F1, and Accuracy. Further, we evaluate the portability
of DOITRUST under real-time inference settings in § V-C and
efficiency in real-world deployment in § V-D.

2) Compromise analysis as post-preprocessing: After sus-
picion prediction, the next step is to confirm the correlation
between highly suspicious nodes and on-chain compromised
nodes (highly suspicious but with benign labels), and to
analyze the underlying indicators of compromising. Here, high
suspicious scores are considered as for warning on-chain com-
promise. We manually validate 110 nodes (randomly sample
10%) from the detected on-chain compromised nodes. Here,
we report the accuracy of obvious-positive alarms (highly
suspicious nodes with obviously suspicious information found)
and subtle-positive alarms (highly suspicious nodes without
obviously suspicious information found), detailed in § V-E.
The manual check considers following criteria: (i) a compro-
mised node is on the path from allow nodes to denied nodes;

(ii) a compromised node is with benign label but predicted with
high suspicion score; (iii) the detected compromised node is
obvious-positive alarm if suspicious information found in the
HTML; otherwise, subtle-positive alarm.

C. Benchmark Baselines

To demonstrate the performance of DOITRUST, we adopt
four types of baselines for comparison.

• Individual Machine Learning Baselines (IML): supervised
machine learning approaches (such as Support Vector Ma-
chine and multi-layer perceptron (MLP)) on the individual
node feature only.

• Graph Neural Network Baselines (GNN): we compare the
DOITRUST to state-of-the-art graph neural network ap-
proaches, i.e., graph convolutional network (GCN) [34] (in-
cluding vanilla version without early stopping and hyperpa-
rameter optimization, V-GCN) and graph attention networks
(GAT) [35]. We set our method using the same number of
parameters with GCNs, i.e., two layers with 64 hidden units.

• Scale Graph Neural Network Baselines: we also compare
the DOITRUST to state-of-the-art scale GNNs, i.e., Cluster-
GCN [36], APPNP [15], and PPRGO [13].

• Structural Processing Only Baselines (SPO): we further
compare our results with structural processing only base-
lines, such as PageRank [9], TrustRank [10], and two
application strategies of TrustRank, i.e., Step Function and
Trust Discount Scoring. For domain suspicion evaluation
using SPOs, the individual node features are not considered.

V. EVALUATION RESULTS

According to the two-fold validation setting in § IV-B,
we evaluate the performance of our DOITRUST model for
the semi-supervised denied node classification on the do-
main graph and illustrate its learning capability (§ V-A), and
comparison with structural ranking baselines (§ V-B). We
also show the scalability (§ V-C) and feasibility (§ V-D)
of industry deployment and summarize the recommendation
for stakeholders. Further, we conduct the validation for the
compromised nodes in § V-E and indicate the underlying
reasons of on-chain compromises in § V-F.

A. Learning Capability Evaluation for Suspicion Prediction

To the best of our knowledge, no existing tools can detect
compromised domains, but we can still evaluate the learning
capability of the proposed approach and compare DOITRUST
with benchmarks listed in § IV-C, with respect to the accuracy
of classification based on the initial ground truth. Figure 5
displays the node classification accuracy of each model on
small and large datasets using the default settings. We set
the suspicion threshold as 0.5 to classify allowed and denied
nodes. Since suspicion prediction is a binary classification, it
is natural to select 0.5 as the threshold to determine whether
a node is suspicious. The threshold also holds true to the
compromise analysis and pruning. For other implementations,
this threshold could be elaborated to reduce the subtle-positive
alert and false positive alert. On the Small dataset, our model
achieves 92.50% accuracy (93.2% precision, 91.91% recall and
92.55% F1), outperforming the supervised machine learning
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Fig. 5: Overall accuracy of of different models on two size of datasets.
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Fig. 6: Accuracy for different training set sizes on Small dataset.

approaches (68.20% accuracy for MLP and 64.50% accu-
racy for SVM), state-of-the-art graph neural networks (with
accuracy ranging from 73.50% to 81.20%), and scale graph
neural network baseline models (81.20%-91.20% accuracy).
DOITRUST exceeds the other baseline models on the Large
dataset as well (with 91.8% accuracy, 93.6% precision, 90.35%
recall and 91.94% F1). Note that the commonly adopted GNNs
(i.e., GAT, GCN, and V-GCN) are out of memory when
being applied to the Large dataset. The accurate performance
indicates that the DOITRUST’s learning capability outperforms
other approaches. We also report the DOITRUST’s accuracy
using K-Fold Cross-validation (K = 2, 5, 10). For both Small
and Large settings, the accuracy of our approach increases
from fold 2 to fold 10 cross-validations (91.45%, 92.36%,
and 92.82% for the Small setting, and 90.26%, 91.25%, and
92.16% for Large).

As the well-labeled nodes are limited to obtain in real-
world applications, we further evaluate the performance of our
model with various labeling rates, i.e., the proportion of labeled
training samples in the dataset. We particularly mimic such a
lack of labeled nodes by involving fewer training samples in
the training phase. Figure 6 reports the accuracy of DOITRUST
on different training configurations (varying the percentage of
training samples used during training from 5% to 50%), in
comparison with SVM, MLP, V-GCN, GCN, and GAT. Note
that we only perform the comparison on a Small dataset as
GCN and GAT cannot work well on the Large dataset. The
experimental results indicate that our DOITRUST outperforms
all GNN-based approaches, especially in the more sparsely
labeled scenarios (e.g., using 5% and 10% training samples
during training). The reason is that the PIR-based global
propagation benefits from obtaining important information
from remote neighbors, instead of the 2-hop neighbors for most
of the existing GNNs. Similarly, without global propagation,
the performance of individual machine learning baselines drops
down significantly when fewer training samples are provided.
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Fig. 7: Accuracy when varying teleport probability α and k.

TABLE III: Trust evaluation using structural ranking only.
Method Threshold Precision Recall F1-score Accuracy

PageRank

0.1 53.06% 66.67% 59.09% 54.43%
0.2 50.41% 78.21% 61.31% 51.27%
0.3 50.40% 80.77% 62.07% 51.27%
0.4 50.71% 91.03% 65.14% 51.90%
1.0 49.67% 97.44% 65.80% 50.00%

TrustRank

0.001 52.58% 65.38% 58.29% 53.80%
0.005 49.67% 96.15% 65.50% 50.00%
0.100 49.67% 97.44% 65.80% 50.00%
0.200 49.68% 98.72% 66.09% 50.00%
0.300 49.49% 99.23% 66.04% 49.62%
0.400 49.46% 99.36% 66.04% 49.56%
1.000 49.40% 99.62% 66.04% 49.43%

Step

3 52.16% 97.89% 68.06% 54.05%
4 53.20% 97.44% 68.82% 55.85%
5 53.20% 88.38% 66.41% 55.31%
6 51.09% 67.76% 58.26% 51.45%
7 47.55% 36.26% 41.14% 48.13%

Discount

0.4 51.07% 97.99% 67.14% 52.05%
0.5 51.06% 92.77% 65.87% 51.93%
0.6 47.51% 75.23% 58.24% 46.06%
0.7 43.40% 53.93% 48.09% 41.80%
0.8 36.88% 24.75% 29.62% 41.20%
0.9 28.73% 5.71% 9.53% 45.77%

We then investigate how hyperparameters α and top-k
affect the accuracy of the node classification. As shown in
Figure 7, the node classification accuracy increases with an
increasing hyperparameter α until it reaches its maximum
at around 0.18. When the hyperparameter top-k value is
increased, the accuracy of node classification increases sharply
before 40 and then levels off. It is possible to empirically find
an effective α and top-k to achieve the best accuracy.

B. Comparisons with Structural Ranking Baselines

The aforementioned invisible link injection attack aims
to increase the PageRank score or similar web ranking al-
gorithm scores of suspicious sites to fool search engines, so
it is called ranking attacks. Therefore, existing ranking-based
evaluations can be manipulated by adversaries to boost their
scores, and their performances are reduced significantly. We
further demonstrate these ranking-only approaches result in
low precision, recall, and F1-score, as shown in Table III. Each
node starts with a score of 1/(number of nodes), and then is
divided by its children equally. The converged ranking values
are normalized between 0 and 1.

As we have 50% of allowed and 50% of denied samples in
the dataset, we first select the threshold that splits the dataset
equally. For example, in PageRank, about half of the samples
(46.20%) have ranking scores higher than 0.1. We further vary
the threshold to other values, e.g., 0.2, 0.3, 0.4, and 1.0 in
PageRank; as in practice, it is difficult to know in advance how
the positive and negative samples are distributed in the dataset.
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According to the results presented in Table III, regardless of
the varying thresholds, the PageRank only achieves precision
around 50% (49.67% to 53.06%), which indicates roughly half
of positive predictions are incorrect. The recall presents how
many positive samples are correctly detected as positive. Note
that, even when the threshold is set to 1, there are 2.56% of
positive samples not detected as they have a PageRank score
equal to 1.

TrustRank-based filtering is also evaluated, with the se-
lected seeds from the allow-list nodes. The results are similar
to the PageRank method. We further apply two strategies, Step
Function, and Trust Discount Scoring, used for TrustRank,
to distinguish the allowed and denied domains based on our
crawled domain graph. As a trust attenuation strategy, Step
Function limits the maximum path length from any nodes to
the allow-list nodes and assigns a trust score of 1 to every
node within n steps from the allow-list nodes, and a trust
score of 0 otherwise. In a range from 3 to 7 steps, the
precision and accuracy stay remain 50% (47.55% to 53.20%
and 48.13% to 55.85%, respectively). When the step threshold
is set to 3, recall reaches 97.89% while precision is 52.16%.
This indicates the results have high false positives even while
most positive samples are captured. Based on the F1-score,
we could infer that setting the step threshold as 4 will result
in the best but still not ideal performance. For the Trust
Discount algorithm, each node is assigned a trust score equal
to the sum of its parent’s trust scores multiplied by a discount
factor to dampen the trust score the further it gets from the
allow-list nodes. Trust Discount runs with a discount factor
from 0.4 to 0.9 yielded similar accuracy results to the Step
Function (around 50%). This suggests scores simply scale
based on the percentage of domains above the threshold and
are mainly based on distance from the root node, with limited
improvement in separating benign from malignant domains.
These independent structure checks are therefore not suited
for the large-scale graph with sparsely labeled nodes.

As demonstrated in § V-A and § V-B, after applying
our integrated scheme which combines local features with
global structural information together via the well-designed
IncredulityRank-based propagation scheme, the accuracy of
denied node classification derived from machine learning mod-
els is enhanced from 60% (using simple statistic features only)
and 50% (structural analysis only) to 90% (with only 0.01%
labeled nodes).

C. Static and Real-time Inference Evaluation

We compare performances of different incorporation
schemes (i.e., End-to-end Incorporation, Inference Incorpora-
tion, Training Incorporation, and Without Incorporation) of
the PIR-based propagation according to the accuracy of the
classification, as shown in Figure 3. For the Without Incorpo-
ration strategy, we treat each node independently and train the
local prediction neural network using only the node feature.
As shown in in Figure 3, our proposed method with End-
to-end Incorporation achieves the best accuracy performance
(more than 90%) compared to other strategies. The End-to-
end Incorporation strategy, i.e., the complete implementation of
DOITRUST, enhances the accuracy by nearly 30%, compared
to the WI scenario where the DOITRUST only considers
individual features of the nodes.

As an ablation study, we further compare the other two
strategies, Training Incorporation and Inference Incorporation
(involving propagation only during the inference phase), with
the Without Incorporation case. By involving structural infor-
mation only during the training phase, DOITRUST achieves
an 86.12% accuracy, which still outperforms individual ma-
chine learning baselines, graph neural network baselines, and
structural processing only baselines, as reported in § V-A and
§ V-B. Compared to some of the large-scale graph neural
network baselines (i.e., APPNP and PPRGO), the TI strategy
shows a slight gap in accuracy (around 3% to 5%). However,
considering the time efficiency of our approach, which is
demonstrated in later sections, it is feasible and efficient to
implement DOITRUST with a TI strategy in practice. Fi-
nally, even for the Inference Incorporation (involving structural
information only during the inference phase), the accuracy
increases by 12% compared to without propagation case.
Considering that the training time and complexity are reduced
by removing the propagation during training, it is feasible
to consolidate our method to pre-trained classifiers without
neighbors’ information taken into account, achieving a notable
accuracy enhancement.

D. Efficiency in Real-world Deployment

In this section, we discuss how we could deploy the
DOITRUST in practice and address the challenges of scalability
and efficiency when processing massive data (e.g., a large-scale
domain graph with a million nodes increasing per hour) within
a reasonable amount of time (e.g., training and inference of a
newly updated graph in less than one minute). In addition, we
demonstrate an optimization of DOITRUST, which increases
the execution speed to support the training on billions of nodes
in an industrial environment. Acknowledgments from our
industrial collaborators indicate that DOITRUST is practical
to be used in real-world scenarios.

1) Time efficiency: We evaluate the average training time
per epoch for the DOITRUST, as well as other baselines,
deployed on a real-world server (Ubuntu OS, with NVIDIA
Quadro RTX 4000 8GB GPU and i7 9900 32G CPU), as
demonstrated in Figure 8. According to the results, DOITRUST
is around two orders of magnitude faster than GCN and GAT
on the Small dataset by avoiding the iteratively adjacent matrix
processing and global propagation, and 10x faster than APPNP
via avoiding a higher number of matrix multiplications. For
the Large dataset, the training time of DOITRUST is less
than 5s and faster than other state-of-the-art graph learning
variants baseline models. Therefore, DOITRUST is practical
to be deployed in the real world.

2) Memory efficiency.: We further evaluate the memory
efficiency of DOITRUST in comparison to other baseline
models in the single machine setting. For the Small dataset,
DOITRUST needs 1.5GB of memory, compared to more than
2.0GB for Cluster-GCN and APPNP. The memory consump-
tion scales with graph size, while DOITRUST has relevant
less consumption of memory, increasing to 10.0GB on the
Large dataset, compared to more than 20.0GB for PPRGO
and out-of-memory for APPNP and Cluster-GCN. Our PIR
estimation mechanism effectively bypasses pre-processing and
space overheads, enabling the global propagation scheme to
be tailored for large graphs with frequent updates.
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Fig. 8: Training time of different models on two size of datasets.
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Fig. 9: Demonstration of the transferability of local prediction.

3) System optimization.: The training on a very large-scale
graph with billions of nodes may face significant overheads.
To address this challenge, we explore system optimization by
reducing the scale of nodes involved in the training procedures
while maintaining accuracy. We examine the performance
of the node classification model when training is conducted
on only a subset of nodes, i.e., transferability of the node
classification model. We find the accuracy of the model has
little change when the update of the local prediction neural
network is conducted for only a small, random subset of
nodes. As shown in Figure 9, the accuracy only decreases by
about 0.6 percent when reducing the amount of inferred nodes
by a factor of 10. Additionally, the inference time does not
change significantly when varying the percentage of location
prediction.

4) Efficiency of pre-processing: We also evaluate the ef-
ficiency of the pre-processing step, i.e., the top-k neighbor
estimation. We evaluate the performance of top-k neighbor
estimation between top-k PIR and MC (

√
1− α random walks)

and FORA (δ = pf = 1/n, ε = 0.5). We conduct 100 times
top-1000 queries for each method, and report the average query
time. As demonstrated in Figure 10, our top-k PIR estimation
outperforms all benchmark methods in terms of query time
for both datasets (less than 1 second on average to handle the
huge graph). The memory consumption of top-k PIR for index
and graph are only 411.9MB and 130.8MB, respectively, on
the huge graph. Additionally, for the precision over these top-
1000, the top-k PIR indeed achieves precision at 100%. We
also evaluate the effects on the performance of our proposed
method when varying hyperparameters rmax and k at other
fixed parameters, using the averaged accuracy after ten times
repetitions. We find the average accuracy consistently raises
when increasing k or decreasing rmax. This means a more
accurate approximation of the PIR vector or considering more
top-k neighbors could improve the accuracy. Additionally, the
difference between the highest accuracy and lowest accuracy is
negligible (< 2%), which means the algorithm is not sensitive
to the k and rmax. Furthermore, the performance of the model
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Fig. 10: Top-k PIR performance evaluation.

starts to be stable from the k = 32, for any rmax setting.
Therefore, it is possible to find suitable hyper-parameters with
a smooth trade-off between accuracy and computation cost in
real-world deployment.

E. Validation and Findings on Compromised Nodes

DOITRUST has pruned 1,138 allowed nodes as compro-
mised nodes, which stand around 2.10% of 54,112 nodes in
the extended allow-list, i.e., 2.10% of allowed nodes (that are
determined by third-party tools and manual analysis in § IV-B)
are directly or indirectly connected to nodes in deny-lists and
should not be involved in an allow-list. We further conducted
a manual review on the detected compromised nodes. Specifi-
cally, four expert researchers (two co-authors and two external
experts) manually checked the nodes lying on the path from
detected compromised nodes to denied nodes, analyzing the
HTML source code, the content of web page, and the service
provided by the website. The four experts are separated into
two groups. Each group reports a node as compromised once
the evidence of connectivity between a detected compromised
node and a denied node is found. If the decision on a node
does not match, the two groups will exchange opinions and
have sufficient discussions until an agreement is reached. Due
to the large scale of the graph, which leads to significant
manual efforts, we randomly sampled 110 (10%) detected
compromised nodes in the manual review. Finally, 104 out
of the 110 sampled nodes are validated as true positives, i.e.,
the true positive rate of our DOITRUST is 94.55%. We further
investigate the underlying indicators of compromise in § V-F,
and present several real-world cases of compromised domains
in § VI.

F. Aggregated Measurement and Discussion

At a high level, the typical 2-hop investigative scope of
existing GNNs would be bypassed by such stealthy attacks.
This can be seen in Figure 11, where we aggregated the
number of hops in paths from supposed trusted nodes (i.e.,
compromised sites) to confirmed denied nodes. We see the
mean number of hops stands at 6.94, with a σ of 1.69.
In fact, the 25th percentile stands at 6 hops, meaning the
majority of denied nodes are buried deep along the paths from
the compromised sites. This alludes to the need for deeper
investigative scopes in future approaches.

Takeaway: Searching for indicator of compromise within
HTML is a mature but time- and labor-intensive undertak-
ing. DOITRUST aids in this regard, as it considers specific
web compromising propagation in a global view against the
plausible hyperlink injection. Finally, an obvious conclusion

11



0 200 400 600 800 1000 1200 1400 1600

Flagged Domains

1

2

3

4

5

6

7

8

9

10
S
h
or

te
st

 P
at

h
 L

en
g
th

s

Mean 6.94 (Std 1.69)

75% (8.0)

25% (6.0)

Detected by GSB 176

Detected by Quad9 1,368

Detected by Both 2

Total Flagged Domains 1,546

Fig. 11: Aggregation of the number of hops from supposed trusted
nodes to all discovered denied nodes.

is that developers must maintain vigilance when using web
templates. While these provide ease of use, most come with
substantial security risks. Additionally, major web platforms
such as WordPress should establish much stricter reviews of
the content, themes and plug-ins they offer.

Broader implication: We further examine the unlabeled inter-
mediate nodes along the compromise chain from compromised
nodes to denied nodes. We find most of them have suspicion
prediction values higher than compromised nodes and lower
than denied nodes, and they tend to contain compromise
relevant contents. For example, a number of portal websites
(intermediate nodes) could be maintained by a pornography
website to drive traffic to the main website (the denied node).
In the stealthy compromise attack, the victim is injected with
these portal websites, which is more stealthy than directly
injecting the main website, as these portal websites will not
trigger the alert. Our solution provides a feasible approach to
enable the identification of such stealthy on-chain compromise
by localizing the starting points along the compromise chain.

VI. CASE STUDIES

We further investigate the underlying reasons for on-chain
compromises. One possible reason could be the breached open
source content management system (i.e., WordPress CMS).
CMS widely utilizes content, themes, and plug-ins provided by
third parties, where plausible hyperlinks can be injected into
any elements of HTML and scripts. These plausible hyperlinks
pretend to be benign by manipulating patterns in order to evade
security detection. The criteria of the on-chain compromise
recognition used by our approach mainly focus on the fact that
suspicious nodes are located in the path to denied nodes and are
close to them, accumulating higher suspicion signals. Subtle-
positive alarms result from higher suspicious scores, even when
they have not been compromised yet but are at a high risk
of being compromised. For example, subtle-positive nodes
are developed using themes provided by open-source content
management systems where similar themes are detected as
positive. In another example, the detected node contains no
suspicious contents, but some of its out-links finally direct
to highly suspicious clusters or campaigns. Based on these
inspections, we would argue that subtle-positive alerts are not
false positives, since high suspicion scores can be used as
risk alarms to trigger web security checks or warn that the
web domain is at risk of being compromised. We report the
following typical cases.

Non-Profit website with hidden malicious links. Here, we
identified c***a.org.** as a compromised domain, despite

initially being an allowed seed. Cursory checks show the
site belonging to an anti-child abuse non-profit founded in
1963, which raised concerns when it led to various adult and
malicious domains. For example, a downstream path contained
a series of porn sites that ultimately led to the GSB-detected
liuyuedingxh.buzz. The question then turns to how did
a supposed trusted site become compromised? Accordingly,
its HTML was manually reviewed, with all URLs within it
passing checks by various third-party security vendors. How-
ever, a URL for vi***bb.com was discovered in a hidden
hyperlink tag, as shown in Figure 13(a), which ultimately
led to liuyuedingxh.buzz. Interestingly, the position of
the hyperlink has been set off the viewable screen, via the
attribute left:-1909px. Moreover, we quickly found that
it contained explicit pornographic material. These checks were
performed initially on 22 Jan 2021, and the link persists as of
this writing. Delving further, we see the site was made using a
WordPress theme, which indicates possible malicious injection
via insecure- and/or unmaintained plug-ins. We note the threat
is twofold. On one hand, it is common to use new domain
names for adult, gambling and other inappropriate content.
The stealthy compromise attack allows the attacker to exploit
the reputation and ranking of the new domain through search
engine optimization (SEO), by siphoning off the reputation
score endorsed by the in-link connection injected into the
compromised high-reputation website. Thus, it is possible
when searching for children’s charities, the results may also
include pornography websites, as the website of the children’s
charity has been compromised to links to pornography sites.
On the other hand, the injection of hyperlinks indicates the
possibility of injecting malware or data theft attacks can also
be conducted by the attacker.

Government linked services provider site with hidden
popups. ca***es.com.** is a commercial entity providing
facility management, cleaning, and disaster recovery services
to government agencies. Its domain and URLs were recognized
as clean by security vendors, but a hidden popup contains
multiple links leading to malicious and inappropriate domains,
as seen in Figure 13(b). The display attribute of the modal
was set to none by default, so there was no apparent way
to trigger its visibility. Interestingly, the malicious links were
randomized on each page load, implying a level of sophis-
tication beyond surface-level HTML injection, and that an
external malicious database was dynamically involved. Upon
closer inspection, we noticed that the top-level container for
the hidden popup had a unique ID and class: shbNet-
PaddingWr and shbNetPopupWr, respectively. A simple
online search subsequently surfaced other WordPress sites that
contain similar hidden popups, such as: hu***en.com.**
and ve***or.com.**. We manually edited in the browser
tools to make the dynamically loaded popup window visible
for inspection, as shown in Figure 12(b) in the Appendix.

Private high school website with inappropriate links in in-
visible containers. In yet another example, ‘s**w.edu.**’
is the official website for a private high school, and contains a
highly trusted top-level domain. While not a WordPress site, it
still hosted suspicious links to pornographic websites that were
only found through DOITRUST. As shown in Figure 13(c) and
Figure 12(b) in the Appendix, <div> objects with heights and
widths set to 0 were used to hide links to suspicious adult
or gambling sites. While invisible to the human eye, such
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links would be picked up by web-crawlers, which could be
the motivation. We further present a screenshot that indicates
the hidden hyperlink object in Figure 12(c) in the Appendix.

VII. RELATED WORK

This section discusses supervised webpage classification,
topology analysis for malicious node detection, and graph
learning approaches for web security evaluations.

Supervised webpage classification. Existing studies mostly
focus on collecting statistical features from a pile of malicious
and benign samples from URLs and HTML to identify ma-
licious patterns [18]–[21], [37]. Expressive features and suffi-
cient labeling supervision information are two key components
for the success of the classification. The commonly adopted
features are the on-page features, i.e., information directly
located on the page, including textual content of HTML, tags,
hyperlinks, and anchor text. Statistics on such information
could be conducted automatically and directly to be the
features for the classification. The compromised and bridging
(from compromised victim to target) nodes are always stealthy
to hide the malicious tracks, in order to avoid detection. Ad-
ditionally, the node classification in our work is characterized
by a lack of labeling information. Stealthy patterns and insuf-
ficient supervision information lead to inaccurate predictions,
indicating that existing supervised learning approaches were
ineffective in recognizing on-chain compromises. Besides the
automatically selected features, other hand-selected features
are also used in existing malicious webpage classification, such
as the IP/host-name, or registrar information from third-party
vendors. Such information can be used as additional features
to enhance the feature representation capacity, which will be
exploited as one of the future works.

Topology analysis for malicious recognition. Existing stud-
ies use structural information only to identify malicious be-
haviors, such as by applying PageRank [9] and TrustRank [10]
as a semi-automatic technique to identify malicious websites
from benign websites. They manually identified seed domains
as benign websites and then used the web’s link structure
to discover other likely benign pages. Additionally, Li et
al. [38] applied PageRank on the Host/IP graph connected by
the redirection activity, which is characterized by static and
shallow connections from fixed domains (such as the driver
download website), resulting in relatively fixed malicious pat-
terns. Alternatively, the hyperlink topology is a straightforward
resource to obtain and observe, unlike other topologies that
are often obtained in controlled environments and needed to
trigger malicious activities. We also solely apply the PageRank
or TrustRank analysis in our graph, resulting in low precision,
recall, and accuracy (detailed in § V-B). The reason is ranking-
based approaches only focus on label propagation and fail to
capture malicious behavior propagation when labels are sparse
in the graph. In addition, fully “benign” domains are always
hard to define, which serve as a crucial and sensitive starting
point for the existing structure evaluation approaches. With
these gaps in mind, our idea to enhance detection accuracy is
to integrate individual domain features with global structural
information derived from hyperlinks.

Graph learning for web security. Numerous studies ap-
ply graph analysis to web security evaluations, such as the

trustworthiness of user reviews on social networks [39], the
detection of Sybil attacks [40]–[43], and exposing the exploita-
tion of malicious URLs or accounts in social media [44]–
[46], malicious reuse of taken-down domains [47] and even
malware distribution [48]. Our research is the first study that
focuses on the on-chain compromise of web domains. Unlike
these existing approaches conducting separated graph analysis
and independent classification, our design integrates the graph
analysis into the learning progress. Several works apply graph
neural networks for malicious domain detection, such as HG-
Dom [49] using a heterogeneous graph convolutional network
method on traffic information from the Domain Name System
(DNS). Graph convolutional network (GCN) is also used
for evaluating the maliciousness of domains [50]. However,
existing GNNs face prevailing constraints of performance and
scalability in large graphs, e.g., over-smoothing when increas-
ing the size of the neighborhood and expensive neighborhood
expansion when adding additional layers. Additionally, web-
compromising behaviors have a typical long chain of influence
and are stealthy in nature, which is beyond the 2-hop scope
of ordinary GNNs. Existing approaches, such as PageRank [9]
and its associated graph learning schemes, focusing on the
outgoing links from benign websites, cannot withstand such
attacks. Existing general graph convolutional networks are not
feasible in the on-chain compromise scenario due to scalability
restrictions, especially when the labeling information is mini-
mal and sparse. To the best of our knowledge, DOITRUST is
the first work to enable scalable and portable graph learning
on large-scale graphs, and provide a more practical solution to
the industry setting.

VIII. CONCLUSION

We introduced an integrated scheme to conduct on-chain
compromise analysis called DOITRUST, providing a scalable
and accurate semi-supervised method of compromised domain
measurement and pruning solutions. We created a large-scale
Website Domain Graph baseline dataset associated with ground
truth node labels and statistical features derived from HTML.
By introducing separated learning, the proposed DOITRUST
bypasses expensive message-passing overheads, and can scale
easily to graphs with millions of nodes in consideration of
the influence of relevant nodes located multiple hops away.
Towards the efficient propagation specified for the website do-
main scenario, we develop the Personalized IncredulityRank,
as an algorithmic way of evaluating compromising behaviors
in propagandistic networks. In addition, we provide an efficient
approximation of the PIR approach on a large graph. We
demonstrate the performance of the DOITRUST in terms of
false positive rate, learning capability, scalability, and porta-
bility compared to state-of-the-art approaches. We also show
the flexibility of DOITRUST via incorporating any pre-trained
machine learning models without any additional training, as a
practical solution in industry settings. Although we acknowl-
edge DOITRUST may not be amenable for a strong adaptive
adversary to bypass the newly-designed personalized Increduli-
tyRank, more robust approximations of personalized Increduli-
tyRank based propagation schemes would benefit from this
methodology in the future. Additionally, effectiveness of DOI-
TRUST can be further enhanced by combining it with other
domain evaluation techniques, such as traffic analysis, or by
incorporating elaborate HTML features extraction. We hope
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the system DOITRUST could provide an opportunity for broad
Internet service providers, or any stakeholders, to curb the
rampant emergence of such hidden attacks.
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APPENDIX

A. Graph Neural Networks

GNNs aim to represent a node combining both node
features and the structural graph information [11]. Given a
graph G with an optimized graph structure A, the target
of the GNN is to learn state embedding Z for each node
considering its features X and the aggregated features from
neighborhood nodes, which is used to refine the represen-
tation of the node. Generally, the message-passing of GNN
approaches is conducted with two stages: (1) messages are
propagated along with the neighbors, and (2) the messages
are aggregated to obtain the updated representations [13]. The
parametric propagation function is shared among all nodes,
updating the node state according to its neighborhood. The
local output function is used to produce the output.

The variants of GNN apply various aggregators to gather
information from the neighborhood, mainly divided into Con-
volution and Attention. Graph Convolutional Network (GCN)
approaches are mainly divided into two taxonomies: spectral-
based and spatial-based GCN. Spectral based GCNs [34], [51],
[52] extends the convolution using spectral graph theory via
the layer-wise propagation:

h(l+1) = σ(D−1/2ÃD−1/2h(l)W (l)) (3)

Here, h(l) and W (l) are the output and the trainable parameters
of the lth hidden layer, respectively. σ denotes an activation
function. Ã is the adjacent matrix with self-connections, D is a
diagonal matrix with Dii =

∑
j Ãij . To address the decompo-

sition of the Laplacian matrix and necessary operation on the
whole graph, spatial-based [53]–[55] is conducted in a more
dynamical manner. Graph convolutions are redefined as feature
aggregation with neighbor nodes and improve efficiency and
flexibility with sampling strategies. The attention mechanism
has been successfully used to propagation step in neural graph
networks, such as Graph attention network (GAT) [35]. The
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hidden states of each node are figured out by attending over
its neighbors, following a self-attention strategy.

hi = σ(
∑
j∈Ni

αijWhj), (4)

where αij is the attention coefficient of node j to i, Ni denotes
the neighborhoods of node i in the graph.

B. Personalized PageRank and Approximation

Personalized PageRank (PRR) is a standard definition for
finding vertices in a graph that are most relevant to a given
node, recursively modeling the importance of nodes on a
directed graph. Given a source node s whose point of view
we take, a node is important if its in-neighbors are important,
i.e., the PPR PRs(u) reflecting the importance of each node
u with respect to s. To keep the importance scores bounded,
we normalize the importance given from a node u to a node
v though an edge (u, v) by dividing by u’s out-degree. In
addition, we choose a decay term α, and transfer a fraction
1− α of each node u’s importance to u’s out-neighbors. PPR
has high complexity, especially for large graph, so there are
some approximate estimation algorithms for PPR values [56]–
[59]. Formally, the Personalized PageRank vector with respect
to source node s is the solution to the recursive equation

PPRs(u) = α

N∑
v∈Nin(u)

1

Nout(v)
PPRs(v) + (1− α)

1

n
(5)

Given the adjacent matrix A and degree matrix D of graph G,
the PPR matrix is also defined as the

ΠPPR = α(In − (1− α)D−1A)−1 (6)

Here, each row of ΠPPR is the PPR vector for each node.

One common PPR estimation approach is Monte-Carlo
(MC) [17] via producing rw(s) random walks from a given
source node s. The estimated PPR π̂(s, v) from s to v is
represented as rw(s,v)

rw(s) , where rw(s, v) is the random walks
from s and terminated at v. Monte-Carlo (MC) is a classic
solution for PPR estimation. MC generates rw(s) random
walks from source node s. For each node v, there are rw(s, v)
random walks stopping at v. MC has guarantees on the
approximate solution, with the cost of the efficiency.

Forward Push (FP) [22] is also proposed to approximate
the PIR scores π̂(s, v). With respect to a source node s, every
node v is associated with two values: reserve value π̃(s, v)
and residue value r(s, v). Initially, π̃(s, s) = 0, r(s, s) = 1
and r(s, v) = π̃(s, s) = 0,∀s 6= v. Given a global residual
threshold rmax , the FP iteretively pushes the residues of all
nodes with r(s,v)

dout(v)
> rmax (frontiers) to their reserves and the

residues of their out-neighbors, where dout(v) is the number
of outgoing neigbours of v. Specifically, for each node u in
the set of out-neigbours of v, denoted by Nout(v), the residue
is updated via

r(s, u) = r(s, u) + (1− α)
r(s, v)

dout(v)
, (7)

and the reserve value of v is updated via

π̃(s, v) = π̃(s, v) + αr(s, v), (8)

followed by resetting the residue of v to 0, until no node to
push. Finally, the π̃(s, v) is used to estimate the π(s, v), with
time complexity O(1/rmax) but without guarantee. Similarly,
[60] proposed backward search for PPR estimation.

FORA [16] combines both Forward Push and Monte-Carlo
for the top-k PPR queries via iteratively conducting FP from
s at first, then producing random walks from the nodes with
non-zero residues. Formally, the estimation of PPR is given as

π̂(s, v) = π̃(s, v) +
∑
v∈V

r(s, v)π′(s, v), (9)

where π̃(s, v) and r(s, v) are from FP, and π′(s, v) is from
MC. The total time complexity is minimized at rmax =
ε√
m

√
δ

(2ε/3+2)log(2/pf )
.

C. Approximation of Top-k Personalized IncredulityRank Val-
ues

(i) Forward Push for coarse estimation. The Forward Push
algorithm considers maintaining two values for a given node
s: reserve π̃(s, t), and residue r(s, t). We apply an adaptive
initialization strategy, where the reserve and residue of all
nodes are 0, except for r(s, s), which is set to the initialized
PIR from the aforementioned initialization step. Specifically,
given a graph G, a source node s, teleport probability α, and a
residue threshold rmax, Forward Push is conducted to obtain
π̃(s, t) and r(s, t) for each target node t ∈ V . Forward Push
conducts Push operation to process the residue for each node,
until no node is active (i.e., ∀t ∈ V, r(s, t) > dt × rmax),
where dt is the degree of the target node t. During each
iteration, α portion of t’s residue is converted to the reverse,
i.e., π̃(s, t) ← π̃(s, t) + αr(s, t), the rest (1 − α) portion of
r(s, t) is evenly distributed to the residues of t’s out-neighbors.
After the residue is processed, r(s, t) ← 0. Formally, the
Forward Push of PIR is given as

π̂(s, t) = π̃(s, t) +
∑
v∈V

r(s, v)π′(v, t), (10)

where π̃(s, t) and r(s, v) are from Forward Push, and π′(v, t)
is from MC.

(ii) Random walks for refining estimation. For every node
vi whose residue is larger than zero, we conduct rwi =
r(s, vi) × rw/rsum random walks from it. The number of
random walks rw from each node is decided via

rw = dout × rsum ×
(2ε/3 + 2)× log(2/pf )

ε2 × δ
,

rsum =
∑
vi∈V

r(s, vi),
(11)

where rsum is the sum of residue for all nodes [16], ε is the
estimation error bound, and pf is the failure probability. When
a random walk terminates at a node t, then the π′(v, t) grows
by ( r(s,t)rsum

× rw
rwi

)× rsum

rw .

For the random walk, α part of them is expected to stop at
the current node, and we can immediately record the portion of
such random walks within O(1) time and hence avoid exactly
simulating these random walks. Therefore, the estimation of
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(b) Screenshot of hidden popup (forced visible) from ca***es.com.**(a) Hyper link hidden off-screen in c***a.org.** (c) Hidden hyperlink in footer from s**w.edu.**

Left of browser viewport (-1909px)

Fig. 12: Screenshots from compromised domains initially labeled as benign.

TABLE IV: URLs/HTML statistic features.

Notation Explanation
Length of URLs Several parts are protocol, domain name or IP address, optional part, directory file,

if HTTP GET request is used then a question mark followed by ”key=value” pairs.
In the data set we collected average domain character string length is less in benign
web pages and more in malicious web pages.

Special Characters in
URLs

The special characters that appears in URLs are number of dots (’.’), number of
hyphens (’-’), number of forward slashes (’/’), number of underscores (’ ’), number
of equal signs (’=’) and number o f client and/or server words in the URL. Average
special characters appear less in benign web pages and more in malicious web pages
in our collected data set.

URLs that Contain
Address

This feature is indicative of malicious URLs because instead of domain name the
IP address are used in URLs to compromise the victim.

Re-directions Whether destination and an original URL are in the same domain. Number of
redirection to different pages is more in malicious than in benign web pages.

(a) Malicious link hidden off screen.

(b) Multiple malicious links in a hidden popup.

(c) Malicious links in invisible <div> containers.

Fig. 13: Code samples from compromised domains.

PIR is renewed as

π̂(s, t) = π̃(s, t) + α× r(s, t) +
∑
v∈V

r′(s, v)π′′(v, t) (12)

Here π′′(v, t) = (1 − α)E(Xv
t ) and Xv

t is defined as: when
sampling a random walk from each node v, one of its out-
neighbor u will be randomly chosen, followed by conducting
a random walk from u. Xv

t = 1 means the random walk ter-
minates at t, and otherwise Xv

t = 0. Consequently, r′(s, vi) =
(1− α)r(s, vi) and rwi = r(s, vi)(1− α)× rw/rsum.

(iii) Top-k PIR values selection. We first perform the
aforementioned estimation procedure using δ = 1/(k ×
2i−1), ε′ = ε/2 and p′f = pf/(nlog2(n/k)) for at most
log2(n/k) iterations [23], where i presents the ith iteration.
We then select the top-k PIR estimated value for each node
and assess the accuracy via evaluating whether kth estimation
estimation π̂(s, vk) ≥ (1 + ε)× δ. If the accuracy of the top-k
estimation is not satisfied, we continue the iteration with the
halved value of δ. The global residue threshold rmax could be
set at ε√

m

√
δ

(2ε/3+2)log(2/pf )
[16], and δ is set at 1/n.

(iv) Adaptive threshold for efficiency and scalability. We
use the output PIR values from the first iteration of the Forward
Push to estimate the global PageRank, denoted by pr(u), as
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Fig. 15: Malicious dictionary and bag-of-maliciousness

Fig. 14: Screenshots of associated search results for children’s
charities and pornography/paedophilia websites when searching the
pornography words.

a measurement of the global importance of a node u with
respect to the whole graph. Generally, a node u with larger
pr(u) tends to accumulate higher residue, and then the adaptive
rvimax strategies could be applied [61].

D. Separate Learning for Scalability of GNNs

For each layer of the typical GNNs, the feature trans-
formation is coupled with the propagation (aggregation) of
messages passing among the neighborhoods. This leads to
limitations in terms of the efficiency and scalability of the
existing GNNs. For example, expanding the number of layers
is beneficial to incorporate information from more distant
neighbors, resulting in the over-smoothing and computational
prohibition of recursive neighborhood expansion on large
graph [13], [62], [63]. To address these limitations, Separate
Learning based on decoupled feature transformation from the
propagation is proposed [13]–[15]. Namely, the prediction on
features for each node is produced locally and independently at
first, followed by propagation/aggregation of local predictions
via personalized PageRank. Formally, the node embedding is
defined as

Z = softmax(α(In − (1− α)D−1/2ÃD−1/2)−1H),

Hi = fθ(xi)
(13)

Here, α is a teleport probability, H is the local prediction
matrix for a specific node generated via a neural network fθ,
and Z is the node embedding matrix after propagation. The key
point of decoupling learning is how to efficiently calculate the
dense propagation matrix α(In−(1−α)D−1/2ÃD−1/2)−1 and
pre-computation of personalized PageRank, such as a variant
of power iteration in [15] or sparse approximation in [13].

E. Statistic features derived from URLs/HTML

We summarize the statistic features derived from URLs and
HTML in Table IV.
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