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Abstract—With the wide deployment of microphone-equipped
smart devices, more and more users have concerns that their
voices would be secretly recorded. Recent studies show that
microphones have nonlinearity and can be jammed by inaudi-
ble ultrasound, which leads to the emergence of ultrasonic-
based anti-eavesdropping research. However, existing solutions
are implemented through energetic masking and require high
energy to disturb human voice. Since ultrasonic noise can only
remain inaudible at limited energy, such noise can merely cover
a short distance and can be easily removed by adversaries, which
makes these solutions impractical. In this paper, we explore
the idea of informational masking, study the transmission and
coverage constraints of ultrasonic jamming, and implement a
highly effective anti-eavesdropping system, named InfoMasker.
Specifically, we design a phoneme-based noise that is robust
against denoising methods and can effectively prevent both
humans and machines from understanding the jammed signals.
We optimize the ultrasonic transmission method to achieve higher
transmission energy and lower signal distortion, then implement
a prototype of our system. Experimental results show that
InfoMasker can effectively reduce the accuracy of all tested
speech recognition systems to below 50% even at low energies
(SNR=0), which is much better than existing noise designs.

I. INTRODUCTION

Microphones are commonly seen in many kinds of electric
devices nowadays, which keeps raising concerns over voice
privacy. It is not exaggerating that an individual is constantly
surrounded by several microphones wherever he/she is. As
shown in Figure 1, the microphones, embedded in smart
devices such as smart speakers, smart TV, and people’s smart-
phones, can be exploited, compromised or even misconfigured
to eavesdrop on the conversations happened in the environ-
ment [10]. The resulting speech recordings, once interpreted
either by human or an automatic speech recognition (ASR)
system, could leak large amount of victim’s private information
thus violating personal privacy. Lots of news report the risk
of being eavesdropped all the time by smart home devices
including Siri, Alexa, and Google Assistant [37], [31], [51].
Several highly visible news have shown the consequences
caused by eavesdropping: In 2013, NSA was reported to
routinely monitors calls of world leaders [34]; In 2018, the
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Fig. 1: InfoMasker prevents eavesdropping.

defense secretary of the UK was interrupted by voice assistant
during Commons statement because Siri listens constantly to
seek the wake word [33], which can be treated as a new form of
eavesdropping. In 2020, the Ukraine prime minister submitted
his resignation because a leaked recording suggesting he had
criticized the president [18].

Anti-eavesdropping, although not a new problem, still
needs reliable solutions desperately with the proliferation of
microphone-equipped smart devices. However, even the latest
solutions in industry are far from mature. Some manufac-
turers have developed products utilizing audible noise jam-
ming. Project Alias [23] and Paranoid Home Wave inject
white/chatter noise into a smart speaker to jam the potential
sound monitoring and lifts the jamming if a custom wake
word is detected [36], but they require a special jammer
attached to the microphones of smart speakers, which limits
their application scenarios. In addition, studies have shown it is
possible to recover the original signal with speech processing
techniques, even under white-noise jamming [49].

Audio injection via ultrasound [55], [40] is a trendy re-
search topic in recent years, and the technique have been
applied in various applications including anti-jamming. One
one hand, a lot of works try to address the formidable threat
brought by ultrasound injection, such as EarArray (NDSS’21)
[54] and AIC [21]. On the other hand, works utilizing the
technique keep emerging, and jamming microphone with ultra-
sound is one of these popular research strands. The procedure
is as follows: jamming signals are first transmitted on an
ultrasonic frequency area inaudible to human auditory system;
the signals would be leaked into the audible frequency range
automatically due to the non-linearity of microphones. Based
on this, Chen et al. implemented a bracelet-like wearable
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to emit special ultrasound signals, achieving good jamming
coverage [10]. However, it depends on users’ irregular arm
movements to achieve omni-directional jamming, thus limiting
its usability and being ineffective in other scenarios (e.g.,
meeting). Li et al. propose a system emitting their noise to
disturb unauthorized microphones’ recording while allowing
the recording of legitimate devices utilizing the noise pattern
knowledge [28]. Sun et al. design MicShield [46], a selective
jamming mechanism to jam smart speakers with ultrasonic
waves carrying white noise while passing authentic audio
commands utilizing fast wake word prediction. The above
ultrasonic jamming approaches rely on high energy to interfere
with speech signals and make the recordings uninterpretable.
Nevertheless, these studies have obvious limitations. To be spe-
cific, they only work in a short distance (i.e., shorter than 1 m),
lack of human interpretation test on the jammed signals, and
do not evaluate the robustness of their noise against denoising
algorithms (see the experiments in Section IV). A determined
eavesdropper can easily leverage these vulnerabilities to bypass
these jamming methods.

We systematically analyze existing studies, and find all
of them realize jamming based on energetic masking which
is one of the two types of masking effects determining the
obscuring performance in jamming. According to research in
speech perception, the energetic and informational masking
accumulatively resolve the level of interference. Since existing
methods solely depend on energetic masking for jamming, a
relatively high power is required to guarantee their perfor-
mance. Meanwhile, long-range jamming also requires boosting
the noise energy. Such a dual requirement for high energy
constraint creates a central dilemma between jamming distance
and inaudibility for these works. Because non-linearity also ex-
ists in speakers and power higher than certain threshold makes
the jamming noise audible at the ultrasound transmitters [41],
these ultrasonic jamming approaches all trade off jamming
distance for noise inaudibility. Another major shortcoming
of these methods is that they overlook the importance of
informational masking thereafter do not design sophisticated
noise form, which makes their noises easily removable by
speech enhancement methods (e.g., noise removal algorithms).
This is devastating for an anti-eavesdropping application as an
adversary is very likely to apply denoising before extracting
the semantic contents.

In this paper, we aim to propose an anti-eavesdropping
system to achieve effective and reliable jamming in real-
world privacy preservation scenarios. We explore the idea
of informational masking and compose our jamming noise
with multi-layers of phoneme sequences. As a result, the
phoneme structure of the original speech signal can be greatly
obscured by our phoneme-based noise (highlighted in red
in Figure 1). since phoneme is the basic elements of sound
used to distinguish words, the chaotic phoneme pattern makes
the obscured speech signals intelligible. Moreover, our noise
shows inherent robustness against noise reduction algorithms.
The basic units of our noise are genuine phonemes, and such
characteristic causes noise removal methods fail to disentangle
the speech elements from our distracting ones due to the high
similarity between them. We encourage readers to listen to
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Fig. 2: Nonlinearity in microphone. The data in the left figure
is recorded by a Huawei P10 smartphone and the inputs are
two single tones with frequencies of 800Hz and 1000Hz.

audio examples at the demo website 1.With the utilization
of informational masking, the requirement on high energy is
relaxed, and we further address the challenge on increasing
jamming range without losing inaudibility. We study the limi-
tations of transmitting ultrasonic sound in the physical world,
then optimize the noise transmission including designing a
unique transmitter, choosing appropriate modulation, and tai-
loring noise shape to compensate device distortions, etc. In
general, we summarize our contributions as follows:

• We propose a new type of noise, named Phoneme-
Based Audio Jamming Noise, based on the idea of
informational masking.

• We conduct an in-depth study of the ultrasound trans-
mission method, and then optimize several aspects to
make it practical in real-world scenarios and more
suitable for our noise.

• Based on our noise and the optimized transmission
method, we design and implement a system named In-
foMasker. Through extensive experiments, our system
is proved to have high effectiveness and high security
in real-world scenarios.

II. PRELIMINARY

In this section, we introduce the nonlinearity effect in the
microphone, then we describe the linguistic structure of speech
signals and how humans and machines understand them.

A. Nonlinearity in Microphone

A microphone is a type of transducer which converts
acoustic signals into electrical signals. Previous studies show
that the preamplifier in most types of microphones, including
Electret Condenser Microphones (ECMs) and Micro Electro
Mechanical Systems (MEMS) Microphone, involves nonlinear
operations which cause inter-modulation distortion in its output
[8]. As a result, the microphone’s output contains both the
frequency components of the input and all possible linear com-
binations of them [26]. To illustrate, suppose the microphone’s
inputs are two single tones with frequencies of f1 and f2, the
nonlinearity makes the output contains not only components
with frequencies of f1, f2, but also f1+f2, f1−f2, 2f1, 2f2...
etc., as shown in the left of Figure 2.

To inject a human audible noise signal n(t) into a micro-
phone stealthily, we first modulate n(t) onto a high-frequency

1https://github.com/desperado1999/InfoMasker. Relevant codes will also be
released here.
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carrier c(t) = cos(2πfct) via amplitude modulation and
then transmit the modulated signal along with the carrier at
the same time. When these signals arrive at a microphone,
the non-linearity produces distortion that are harmonics and
cross-products of the carrier and the modulated noise [55],
generating a low-frequency shadow signal and other high
frequency components. The shadow signal is the same as n(t)
and other components will be filtered out by the low-pass filter
in the microphone, as shown in the right of Figure 2.

B. Informational Masking

Informational masking, which is first defined in [38],
describes the degradation of the auditory detection threshold in
the human brain when the target sound is embedded in other
interferers with similar characteristics. Informational masking
is usually associated with its complementary term: energetic
masking, which occurs when interferers are present at the
same time and frequency bands [27]. Unlike energetic masking
which mainly depends on the relative energy between the
target and the interferer in each frequency band, the degree of
information masking mainly depends on the similarity between
the target and the interferer. Generally speaking, these two
types of masking are not independent and they always affect
the auditory detection threshold simultaneously.

C. Human Auditory System and ASR

One of the main tasks of the human auditory and ASR sys-
tems is extracting semantic information from speech signals.
In order to improve speech intelligibility, both systems need to
first eliminate the noise in the signals, then extract phoneme
series, the primary component of a speech signal, and decode
the phoneme sequence into meaningful content.

The attention mechanism in the human auditory system,
as known as ”Cocktail Party Effect”, has a strong noise
reduction effect [14], [27], [7], [29]. It allows a listener to
distinguish signals from different sources and then eliminates
the influence of uninterested noises, thus achieving the effect
of denoising. To be more vivid, imagine you are whispering
to a friend in a crowded cocktail bar where there are many
people talking loudly. Although other people’s voices may
be louder than your friend’s, you are still able to focus on
his/her voice and understand what he/she is talking about.
This mechanism also helps human beings to reduce the impact
of masking effect caused by interferences. The effectiveness
of the attention mechanism mainly depends on the degree of
difference between the target signal and the noise in three as-
pects: fundamental frequency, temporal properties, and spatial
distribution. A larger difference means better discrimination
with the help of the attention mechanism.

A typical ASR system works similarly to the human
auditory system to ”comprehend” speech signals. Most of
these ASR systems will first extract voice features, such as
mel-frequency cepstral coefficients (MFCC), from the audio
segments and then recognize the phoneme series from these
features using an acoustic model. Then with the help of the
pronunciation model and language model, the phoneme series
will be decoded into normal text information. To improve
recognition accuracy, noise reduction methods are always ap-
plied before recognition. The widely used speech enhancement
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Fig. 3: System Model.

methods for ASR systems can be roughly divided into two
types: noise reduction and noise separation. The former, such
as spectral subtraction and wiener filter, targets on reducing
the noise from the signals. This type of method relies on
the invariance of statistical characteristics of noise and the
differences in temporal properties between the noise and the
target speech signal. The noise separation, such as blind signal
separation, targets on separating source signals from mixed
signals. Such methods rely on the assumption that each source
signal is independent.

In this work, we aim to prevent both humans and machines
from extracting semantic information embedded in speech
signals by injecting noise signals into the recordings. To
achieve this target, the injected noise should interfere with
human and ASRs’ understanding of semantics. Equally critical,
the injected noise should be difficult to remove by both
auditory attention mechanism and noise reduction algorithms.
Therefore, we design our noise that is highly correlated with
speech signals to affect the phoneme structure of the target
speech signal, which disturbs human and ASR understanding
of the semantics, and improve the robustness of noise against
speech enhancement methods.

III. PROBLEM FORMULATION

In this section, we first introduce the system and threat
model and then discuss the design goals of our system.

A. System Model

We consider scenarios where people want to protect their
voice privacy in a common indoor environment such as a
conference room, a dining room and an office. Without losing
generality, we use the office as an example in this paper. As
shown in Figure 3, the system involves three entities:

User(s): The users are the people who want to prevent their
voices from being eavesdropped on.

Recording Device(s): The recording device is the col-
lection of all devices equipped with microphone(s) in the
environment, such as mobile phones and smart home devices.
Due to the black box nature of most electronic products,
they are not fully controlled by the users and may secretly
record users’ conversations. Considering the ease of use, users
are unlikely to put these devices in hidden areas which may
cause non-line-of-sight (NLOS), so we do not consider NLOS
scenario in this paper.
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InfoMasker: InfoMasker is a jamming device equipped
with ultrasound transmitters. It can generate special noise
signals according to the users’ registration information and
inject these signals into surrounding recording devices to make
the recordings unrecognizable to both humans and machines.
Please note that we do not cover the voice call scenario since
all microphones in the environment will be jammed.

B. Threat Model

We consider an adversary who can control recording
devices in the environment (e.g., the manufacturer of the
smart home devices). To eavesdrop on the content of the
conversation, the adversary would record the speech signals,
improve the recordings’ intelligibility using speech enhance-
ment methods, and then extract semantic information. In this
work, we assume the adversary has the following capabilities
in each step of eavesdropping:

Audio Recording. We assume the adversary can control
one or more recording devices in the environment to record
single-channel or multi-channel audio signals.

Speech Enhancement. To improve the intelligibility of
recordings, the adversary can enhance the quality of speech
signals with different speech enhancement methods including
noise reduction algorithms and BSS (Blind Signal Separation)
algorithms if multi-channel recordings are acquired.

Semantic Information Extraction. We consider the adver-
sary can jointly use different ASRs in conjunction with human
listening to extract semantic information from the enhanced
recordings, where the human can recognize recordings accu-
rately and ASRs can interpret speech contents efficiently.

We also consider a powerful adversary who knows our
noise generation methods and can train a specific ASR system
to extract information from the recordings jammed by our
noise.

C. Design Goals

We envision the following design goals of InfoMasker:

Effectiveness: The noise transmitted by InfoMasker should
be able to prevent the target speech from being recognized
by ASR systems and the human auditory system, and the
target speech signal can be produced by a single people or
by multiple different people.

Robustness: The noise signal injected by InfoMasker
should be robust against noise reduction and speech enhance-
ment methods.

Low-interference: The noise signal transmitted by the
InfoMasker should be inaudible to human beings.

IV. PHONEME-BASED INFORMATIONAL MASKING

A. Key Insight

The main goal of this paper is jamming microphones in
the environment by transmitting noise to make the disturbed
recordings unrecognizable to both human and ASR systems.
The success of jamming ASR systems mainly relies on the
noise’s robustness against noise reduction methods, while
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Fig. 4: Generation of phoneme-based noise.

the success of jamming the human auditory system mainly
relies on the two masking effect: informational masking and
energetic masking. The effectiveness of energetic masking
mainly depends on the relative energy of the noise to the target
signal, while for informational masking, it mainly depends on
the content of the noise [7], [27], [14]. Existing works [40],
[28], [10] focus on utilizing energetic masking to jam speech
signals, which leads to a high demand for energy and is not
suitable in the ultrasonic transmission scenario.

In this paper, our key insight is exploiting the informational
masking effect to form noise. Previous studies have shown that
when presented with noises, the differences in phonetical prop-
erties such as fundamental frequency (F0) between the noise
and the target speech signal will assist listeners to filter out the
noises and understand the target speech signal[7]. Therefore,
we first construct noise that has similar F0 properties to the
target speech signal. Additionally, through experiments we find
that the difference in speech rate between the noise and the
speech also affects the effectiveness of informational masking,
which inspires us to treat speech rate as another factor in our
phoneme-based noise design.

B. Noise Design

As shown in Figure 4, our phoneme-based noise consists of
three phoneme sequences: S1, S2, and S3. S1 is a sequence of
random vowels without gaps in between, and it is accelerated
by a preset parameter to include more vowels per unit time for
better jamming effectiveness, and the parameter is set to 1.1
according to our experiments. The reason we choose vowels
is that compared to consonants, vowels make up most of the
energy in speech signals. Because the difference in phonetical
properties such as fundamental frequency (F0) between the
speech signal and the noise will assist listeners in separat-
ing the noise, we extract the phoneme data from the target
people’s speech materials to minimize such difference. Simple
concatenation of the phoneme data will cause discontinuity
at phoneme boundaries. To smooth the connected phoneme
data, we apply a hamming window with a length of 25ms at
the juncture between phonemes. Without special mention, this
smoothing method is also applied to the following sequences
that make up our noises.

Then we consider narrowing down the speech rate gap
between the noise and the target signal. Since the target signal’s
speech rate is unknown, we add another vowel sequence S2

with random speech rate. Different from S1, there are gaps
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Fig. 7: Comparison of the robustness of different noises against
the built-in noise reduction in a Vivo Nex smartphone.

of random length between the vowels in S2. Each vowel is
accelerated or decelerated with a randomly chosen speed factor
that follows a uniform distribution U(0.3, 1.8) which is chosen
according to our experimental results. In addition to making the
rate more similar to the target signal, S2 also makes the noise
more varied and shows less constant patterns, which helps with
the robustness against noise reduction methods.

Apart from vowels, we add a consonant sequence S3 to
increase the diversity of noise. As the difference in consonants
between different people is much less than that in vowels,
we extract the consonant data from a public speech corpus
(LibriSpeech [35]). Then we connect these consonants without
gaps to form S3.

Our noise is the superposition of the above three phoneme
sequences. We adopt the metric STOI [47], a function of
Time-Frequency(TF)-dependent intelligibility measure, to test
the intelligibility of the speech signal jammed by different
noises. STOI ranges in [0, 1] and a higher value indicates
better intelligibility. The result in Figure 5 shows that our noise
outperforms other tested noises. We further test the robustness
of our noise. As shown in Figure 7, our noise is robust against
the noise reduction process in the Vivo Nex smartphone, while
the other types of noise are suppressed significantly.

V. SYSTEM DESIGN

A. System Overview

The system overview of InfoMasker is shown in Figure 8.
Its workings involve three phases: registration, data augmenta-
tion, and jamming. In the registration phase, InfoMasker will
first collect speech materials from the users and then extract
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Fig. 8: Overview of InfoMasker.

their voice features from these materials. Then depending on
the amount of speech materials, InfoMasker will segment the
speech materials into phoneme data or search its database
to find a shadow speaker whose voice features are the most
similar to the extracted features of the target speaker. Data
augmentation is then applied optionally according to the users’
security requirements to expand the data samples. Finally,
during the jamming process, the system will continuously
generate phoneme-based noise based on the augmented data
and transmits the noise to jam microphones in the environment.

B. Registration Phase

As stated in Section IV, the phoneme-based noise is gener-
ated from the target people’s speech data. However, collecting
a large number of speech samples of the target people is time-
consuming thus not practical all the time. Our solution is to
pick speech data similar to the target people’s voices from a
dataset. The similarity between the target people’s voices and
the dataset audio clips is represented by the cosine similarity
of their feature vectors, extracted from the speech data with
the method proposed in [50]. Denote two feature vectors as e1
and e2, then the cosine similarity of them can be represented
as 1− d(e1, e2), where d(e1, e2) =

e1·e2

||e1||||e2|| .

To evaluate the effectiveness of this solution, we test
four types of noise showing different similarity to the target
people’s speech: the target people’s voice, the speech with the
highest similarity in the dataset, the dataset speech with the
same gender to the target, and the dataset speech with different
gender. We also use Gaussian white noise as a baseline. The
dataset we used here is train-clean-360 from LibriSpeech [35].
As shown in Figure 9, the jamming performance of the noises
decreases as the voice similarity drops, and there is about
10% gap in Word Error Rate (WER) between the best and
the worst case 1. Based on the results, we consider two types
of registration scenarios according to the number of users.

Single-User Registration. In this scenario, our priority
is protecting a specific user’s voice privacy. Meanwhile the
voice privacy of others is also protected, merely with a 10%
less effectiveness as shown in Figure 9.

1In this paper we use Tencent ASR [48] for speech recognition if there is
no special description
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There are two registration ways depending on whether
the user has enough time or not. Given enough time, the
user can record adequate speech data with Harvard Sentences
dataset [1], which has a set of phonetically balanced sentences.
With these recordings, we can extract sufficient and balanced
phoneme data for noise generation. In contrast, if the regis-
tration is time-restricted, the user just need to record a few
sentences for voice feature extraction. Then the data showing
the highest similarity in the dataset will be chosen for noise
generation. To get the appropriate recording length for this
time-restricted registration, we test the impact of the length
on the cosine similarity between the feature vector extracted
from the recording of the limited length êt and the ideal feature
vector et (i.e., ground truth) (see Figure 6). We find that when
the length is smaller than 5 seconds, the distance first drops
rapidly with increasing speech length, and then drops much
slower. This shows that when the length reaches certain level,
its benefit to the similarity turns moderate.

We further calculate the similarity value between the people
in the dataset who match the target people best under varying
length of the target people’s recording, which is shown as
d(echosen, et) in Figure 6. Meanwhile, we use the target
people’s long enough recording to extract a feature vector, find
the people showing the highest similarity to it, and calculate
their similarity which is presented as a relatively flat curve
denoted as d(eclosest, et).

The result in Figure 6 shows that with the increase of
the length of the registration speech, d(echosen, et) becomes
close to d(eclosest, et), and the distance between them is ne-
glectable when the length is greater than 5 seconds, indicating
5-second speech is appropriate for registration.

Multi-User Registration. In this scenario, we protect the
voice privacy of all the people present in the environment.
Please note that the online scenario (such as a video call) is
not covered since all microphones in the environment will be
jammed. Similar to the second way of registration in the single-
user scenario, the users need to read the sentences selected
from Harvard dataset and their voice features are extracted
from the recordings. However, different from the single-user
scenario, each user may be matched to a different speaker in
the dataset. To improve the jamming performance for each
user, we use the average of all user’s voice vectors as the
representative feature for this group of people, then finds the
best-matching data in the dataset and for noise generation.

Please note that our system is totally offline during the
usage, so the registration phase will not cause privacy leakage.

C. Data Augmentation

After the registration, we are now able to generate
phoneme-based noise. However, since the amount of phoneme
data is limited by the dataset, the probability of occurring
recurring fragments in the noise will increase as more noise
is generated, especially when the dataset is small. When
an attacker locates these fragments, it is very possible for
him to recover part of the semantic information from the
recordings with the help of language models, similar to the
key reused scenario in running key cipher. To prevent this, a
data augmentation process that fine-tunes the phoneme data is
applied to increase the total amount of data. To retain a high
similarity between the augmented data and the target people’s
audio, the fine-tune should be restricted to a people’s inner
differences. Here we adopt the following properties used in
emotion recognition [12], speech rate, F0 mean, F0 contour,
and energy, which have inherent inner differences because of
the people’s different emotions as shown in Table I In addition,
we randomly reverse each single phoneme data, which has
little effect on the data’s phonetical properties but disrupts its
semantic information.

Phonetical
Properties

Modification
Range

Emotional Impact
↑ ↓

Speech Rate 0.3-1.8 Fear or Disgust Sadness
F0 Mean 0.9-1.1 Anger or Happiness Disgust or Sadness

F0 Contour 0.7-1.3 Anger or Happiness Sadness
Energy 0.5-2.0 - -

Sequential Order - - -

TABLE I: Phonetical properties for data augmentation

Speech rate. In emotion recognition, a high speech rate
usually implies disgust or fear, while a low speech rate
indicates sadness [12]. We change the original speech rate with
a factor α according to [13] and α is uniformly sampled from
[0.3, 1.8], which is obtained experimentally to guarantee an
acceptable impact on phonetical properties. Please note that the
change of speech rate here is independent of the acceleration
of S1 in the noise design, which aims to increase the number
of vowels per unit time of our noise.

F0 mean. A typical adult male’s F0 mean always falls in
[85, 155] Hz, and that of an adult female is [165, 255] Hz [6].
A high F0 mean usually implies anger or happiness, and vice
versa sadness [15]. Similar to before, we vary the F0 mean
by a multiplicative factor α which is uniformly sampled from
[0.9, 1.1]. This range is also determined experimentally to limit
the impact on phonetical properties.

F0 contour shows the audio’s pitch change along with
time. An exaggerated contour usually implies anger or hap-
piness, and vice versa means sadness. We exaggerate or
flatten the F0 contour according to Equation 1 using World
vocoder [30] with a factor α uniformly sampled from [0.7, 1.3].

F0
′
= α(F0− F0) + F0 (1)

Energy. We modify the average amplitude of the data in
the time domain with a factor randomly sampled from [0.5, 2].

Sequential order. For human speech data, the reverse
in the time domain has little effect on phonetical properties

6
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Fig. 10: Impact of data augmentation on the audio’s phonetical
features. The boxes illustrate the distribution of d(ê, et) where
et is the target people’s voice feature and ê is the feature
extracted from different types of audio.

but will disrupt the semantic information. In this paper, we
randomly reverse each phoneme data in the time domain.

To visualize the impact of data augmentation, we encode
each audio into a feature vector [50] thus obtaining vectors
from different types of audio, then calculate the cosine distance
between these vectors and the average feature vector of the
corresponding people. We compare four types of data: the
data from the same people, from the people who have the
closest voice feature to the target people among the dataset
(LibriSpeech train-clean-100 [35]), the data processed by all
five augmentation methods, and processed by every single
method. Results in Figure 10 show that augmenting the data
with a single method has limited impacts on its phonetical
features. Even when augmented by all the five methods, the
data is more similar to the original data than that of the closest
people in the dataset.

VI. NOISE TRANSMISSION

Considering the implementation of InfoMasker, we need to
address the limitations involved with acoustic sensors and the
conflict between jamming range and inaudibility. We detail the
noise transmission method that responds to these challenges.

A. Characteristics of Transmitters

We first study the characteristics of a widely-used off-the-
shelf transmitter [4] to prepare for our array design. To sim-
ulate the noise injection scenario, we play 39kHz and 41kHz
single tones through two transmitters separately and measure
the energy of the demodulated signal around transmitters with
a sound level meter. The result in the left of Figure 11 shows
that the energy around transmitters attenuates rapidly with
angle, which drops nearly 10 dB within 25◦ and so cannot
meet the jamming requirements in the real-world. There are
two reasons account for this. Firstly, compared to human
audible sound, ultrasound propagates straight. Secondly, the
success of noise injection requires both the carrier and the
modulated noise signal arrive at the recorder. We further
analyze the energy attenuation with varying distance when
different number of transmitters are deployed. As shown in the
right of Figure 11, although the energy attenuates rapidly as
distance increases, we also witness the increase of ultrasound
energy via utilizing more transmitters.

There are two insights from these results: 1. To increase
the effective jamming distance, we can simply increase the
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Fig. 11: Characteristics of the transmitter. Left: Energy dis-
tribution of two transmitters. Right: Energy attenuation with
distance when the angle is 0◦.

number of transmitters. 2. To increase the effective jamming
angle, it is necessary to further design the distributions of the
transmitters for carrier signal and modulated noise signal.

B. Transmitter Array Design

To extend the coverage of the transmitter, we design a
transmitter as shown in Figure 12 (left). We install transmitters
in a hexagonal shape on the spherical foam and separate them
into two groups: one group sends the carrier signal and the
other sends the modulated noise signal. The curvature of the
spherical foam and the distribution of the two groups of trans-
mitter enable the large effective coverage of the transmitter
array. The energy distribution around the transmitter array is
shown in Figure 12 (right). It is obvious that the transmitter
array can cover a large span of angle up to about 90◦ and a
much longer distance compared to using a single transmitter.

C. Pre-compensation

Most acoustic sensors exhibit non-flat frequency response
due to the imperfection of manufacturing, which could cause
distortion of the transmitted noise thus decreasing the jam-
ming effectiveness. To address this, we analyze the frequency
response H2(f) of the recorder, and the equivalent frequency
response H1(f) between the transmitter and the recorder. Then
an inverse filter h−1

1 (t)⊛h2(t)
1 is applied on the noise signal

before modulation to compensate the unwanted distortion. We
analyze H1(f) and H2(f) using multiple recorders and then
use the average of them respectively. Figure 14 shows that
this process suppress the distortion evidently. Please note that
only the frequency blow 4kHz is considered for compensation
because the majority of energy in human speech falls in this
range. The drop below 1kHz in the ideal spectrum is caused
by the common recorders’ imperfection.

D. Lower-Sideband Noise Modulation

Modulating the noise signal onto high-frequency carri-
ers makes the jamming signal inaudible. However, the two
widely used modulation methods, double sideband amplitude
modulation (DSB-AM) [55], [28] and frequency modulation
(FM) [40], are not suitable here. The wide frequency range
of our noise results in a large bandwidth of the modulated
signal if DSB-AM is applied, which increases the audibility
of the jamming noise because of the self-demodulation in the

1h(t)
F←→ H(f) means Fourier transform and ⊛ means convolution.
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Laptop
(Signal Generator)

Transmitter 
Array

Power 
Amplifier

Fig. 13: Hardware implemen-
tation.

0 1000 2000 3000 4000
Frequency / Hz

0

0.5

1

M
ag

ni
tu

de
 (

N
or

m
al

iz
ed

)

0 1000 2000 3000 4000
Frequency / Hz

 Ideal  Without Pre-Compensation  With Pre-Compensation

Fig. 14: Spectrum of recorded sweep signals.

transmitter [40], [41]. As for FM, our phoneme-based noise
cannot be recovered by self-demodulation at the receiver end.

In this paper, we use single-sideband modulation (SSB-
AM) to reduce the noise audibility. Take the lower-sideband
amplitude modulation (LSB-AM) as an example, assume the
carrier signal is cos(2πfct) and the noise signal is n(t), the
LSB-AM can be represented by nL(t) = n(t)cos(2πfct) +
n̂(t)sin(2πfct), where n̂(t) is the Hilbert transform of n(t).
Theoretically, SSB-AM can reduce the power of the audible
sound generated at the transmitter to 0.5 times the original (see
proof in Appendix-A). Additionally, we choose lower-sideband
instead of higher-sideband because of its lower attenuation in
the air. The fc we used is 40 kHz, which has the maximum
resonance response in most microphones [40].

We conduct an experiment with 3 male and 3 female aging
from 22 to 31 1 to test the impact of modulation methods
on audibility. We gradually increase the transmission power
until volunteers perceive the noises. The normalized maximum
transmission energy is shown in Table II.

Noise Normalized Energy
DSB-AM LSB-AM USB-AM

White Noise 1.00 1.49 1.29
Phoneme-Based Noise 2.77 4.14 3.61

TABLE II: Normalized max transmission energy.

VII. EVALUATION

A. Experimental Setup

Evaluation Methodology. In this part we systematically
evaluate the performance and the robustness of our system

1All procedures performed in studies involving human in this paper are
validated through an institutional review (IRB)

under various variables. At last, a case study in a common
office is conducted to validate the practicality of our system.

Dataset. We use three datasets here. TIMIT [16] is used in
Section VII-D because it small size which cam make machine
learning models converge faster. Harvard Sentences [1] is
used for human perception test. The sentences included in the
dataset are short, which can reduce the difficulty for human to
recognize. LibriSpeech [35] is used in the remaining parts.

Hardware Implementation. The hardware implementa-
tion is shown in Figure 13, which includes a transmitter array,
two power amplifiers (one for the carrier and the other for
the modulated noise), and a signal generator (a laptop with
a soundcard sampling rate >80kHz). Without considering the
laptop, the hardware implementation costs about 70 dollars.

Please note that the inconsistency in the accuracy of
Tencent ASR across experiments is caused by differences in
test sets and test dates. But for each experiment, the test set
is consistent and is done within a short time period.

B. Baseline

Overall Performance. We first evaluate our noise in the
single-user scenario. We test the jamming performance of our
noise under different ASRs and use a [0, 8] kHz band-limited
gaussian white noise for comparison. A test set containing
27000 words is generated from LibriSpeech. Since built-in
noise reduction mechanism of recording devices may affect
the reception of white noise (proven in Fig 7b), we directly
mix noises with speech signal in digital domain and feed the
mixed signals to ASRs for a fair comparison.

We test four commercial ASR systems (Amazon Transcribe
[5], Tencent ASR [48], Xunfei ASR [22] and Google Speech-
to-Text [17]) and two commonly used open source ASR sys-
tems (DeepSpeech [19] and WeNet [53]). The results in Figure
15 show that our noise performs significantly better than white
noise when SNR ≤ 4, and the gap between them gradually
increases as the SNR decreases. Besides, the advantage of our
noise is more obvious on commercial ASRs than on open-
source ones. We suppose this is because commercial systems
have been enhanced for the interference of white noise.

Multi-User Scenario. We evaluate our system with dif-
ferent number of randomly chosen user. The results in Figure
16 show that when the number of users is smaller than 10,
the jamming effectiveness is lower than that of the single
user scenario where the noise is generated based on the
target person’s speech, but significantly higher than the noise
generated from the speech data of the other person with the
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Fig. 16: Recognition results for multi-user scenario. The num-
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same sex. When the number of users is greater than 10, the
noise’s jamming effectiveness gradually close to the noise
generated from the people with same sex.

Simulations of Real-World Scenario. Here we simulate
the real-world scenarios under different conditions. As there
are two main factors that affect the quality of recordings,
namely room impulse resonances (RIRs) and environmental
noises, we adopt the RIRs Noises dataset [25] which contains
various room impulse responses and point-source noises for the
simulation. Besides, we also use a tool to produce RIR param-
eters corresponding to different room sizes. We simulate the
scenarios where speech undergoes various reverberation con-
ditions during the propagation: real-world RIRs, small room
RIRs, medium room RIRs, and large room RIRs respectively,
and random point-source noises are included in each case of
them. We also consider the scenario where only the point-
source noise exists. The impact of reverberation on recognition
is acquired by feeding these audios to an ASR. For comparison,
We mix our noise and audio recordings incorporated with RIRs
and noises following a typical setting (i.e., SNR = 0) and test
what the recognition results will be. The results in Figure 21
show that RIRs and point-source noises have limited impact
on the WER of clear audios (< 12%). But when the audio
is jammed by our noise, a significant increase on WER is
obtained. Especially, compared with the origin situation (i.e.,
no RIR), the jamming sees an increase by 10% ∼ 35% while
RIRs and noises are considered. These results indicate that
RIRs and point-source noises in real-world scenarios could
benefit our noise for jamming eavesdroppers.

Real-World Scenario.To evaluate our system in real-world
scenario, we place several smartphones around the transmitter
array and adjust the transmitter’s energy to get different SNRs.
We use another smartphone to play speech signals around these
smartphones. As it is hard to get a stable and precise SNR in
real-world scenario, we test several times in each SNR interval
and then calculate the average WER and the minimum WER.
We collect more than 70 hours data in totally. The results
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Fig. 17: Results of the end-to-end scenario. Left: results in
different distances. Right: results in different SNR.

in Table III show that when SNR < 0, the WER in real-
world scenario is slightly lower than that in digital domain,
but significantly higher when SNR > 0.

SNR <-4 [-4,-2] [-2, 0] [0,2] [2,4] >4 Clear

Avg WER(%) 85.8 81.6 77.6 70.2 56.4 42.3 11.5
Min WER(%) 68.6 77.0 62.4 62.2 45.3 30.3 -

Digital WER(%) 88.6 85.4 68.8 48.67 28.9 17.0 4.1

TABLE III: Recognition result in real-world scenario.

Real-World End-to-End Scenario. We further evaluate
our system in a real-world end-to-end scenario with two
volunteers (one male and one female). Either of them reads
one sentence (about 5 seconds) randomly selected from [1]
for registration. We extract their voice embeddings and then
match the corresponding closest people in LibriSpeech for
noise generation. To simulate a realistic scenario, we place
the transmitter array on an office table and then place 5
smartphones acting as eavesdroppers with different distances
to the array. We have the volunteer sit at the table and read 50
sentences selected from [1]. As it is hard to control the SNR
precisely in a real-world scenario, we record the noise and
speech separately and then mix them under various SNRs. The
recognition results of the mixed audios (i.e., jammed speech)
are shown in Figure 17. The results show that our system
performs well in the real-world end-to-end scenario.

Human Perception. We recruit 15 testees including 5
females and 10 males aged from 22 to 31 to test the intel-
ligibility of jammed audios. To make testees put their effort
into the study, we adopt an accuracy-related reward to incent
them. Tested audios are either generated in digital domain
or recorded over-the-air. In the digital domain, in addition to
white noise and our noise generated with the target’s speech,
we also test our noise generated from audios of same &
different sex people (SNR=-1). In the over the air setting,
we test clean audios and jammed audios recorded in VII-J.
In addition to recognizing the audio, we also ask testees to
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score the intelligibility of each audio from 0 to 5, where 5
indicates easily understandable and 0 is the opposite. In total,
each testee needs to recognize 37 sentences selected from
Harvard Sentences. The results in Table IV show that our noise
performs better than white noise. Besides, audios jammed by
our noise also exhibit the worst intelligibility.

Clear White
Noise

Same
People

Same
Sex

Diff
Sex Clear Same

People

WER (%) 26.69 64.28 75.89 67.09 60.72 26.55 99.9
Score (0-5) 4.88 2.46 1.54 1.91 2.3 4.62 0.18

TABLE IV: Human perception result. Audios of the right two
types are recorded in the over-the-air scenario.

C. Robustness against Speech Enhancement Method

To test the robustness of our noise against speech enhance-
ment methods, we use a SOTA speech enhancement algorithm
[20] to enhance the speech signal obscured by different types
of noise before feeding them to ASRs. We test three ASR
systems: Tencent ASR, DeepSpeech, and Wenet. The results
in Figure 18 show that the Tencent recognition accuracy
decreases significantly after enhancement (for both our noise
and white noise cases). We speculate this is caused by the
conflict between Tencent inherent speech enhancement and the
SOTA algorithm we used. For DeepSpeech, the enhancement
has limited impact on the result. However, for Wenet, the
accuracy improves significantly for the white noise jamming
case, which even surpasses the accuracy of DeepSpeech. While
for our noise, the accuracy decreases after enhancement when
SNR < 5. We speculate this is due to the difference of
training data for DeepSpeech and WeNet. Pretrained models
of DeepSpeech are trained with more versatile data (e.g.,
Common Voice Corpus), which grants DeepSpeech certain
robustness against speech enhancement so there is almost no
difference before and after the processing. Overall, our noise
show robustness against the SOTA denoising method on both
commercial and advanced ASRs.

STOI Test. We also compare the intelligibility of the
disturbed audios before and after speech enhancement via
STOI. We compare our noise with white noise and the noise
proposed in [28]. As shown in Figure 19, for the other
two types of noise, the enhancement process improves their
intelligibility significantly at each SNR level. While for our
noise, the audio intelligibility only improves when SNR > 3.
We think the noise enhancement process may enhance the
phonemes in both the speech signal and our noise, which leads
to a bigger difference between the disturbed audio and the
original speech.
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Fig. 19: Change of intelligibility after speech enhancement.

Robustness in Real-World Scenario. We further evaluate
our noise’s robustness in real-world scenario. The same en-
hancement method as before is used here to process the data
collected in real-world scenario. The result is shown in Tab
V. Similar to the results in digital domain, the enhancement
process reduces the recognition accuracy at each SNR range.

SNR <-4 [-4,-2] [-2, 0] [0,2] [2,4] >4

Avg WER(%)
(with Enhancement) 87.1 87.6 82.9 79.1 65.3 53.7

Avg WER(%)
(without Enhancement) 85.8 81.6 77.6 70.2 56.4 42.3

TABLE V: Result of the real-world scenario w/ enhancement.

D. Robustness against A Specialized ASR

We consider a powerful attacker who can train a specialized
ASR to extract information from the jammed recordings. We
choose TIMIT [16] as the training data and take CRDNN [39]
as the network architecture for its SOTA performance in
speech recognition on TIMIT. The metric used here is PER
(Phoneme Error Rate). We compare the recognition accuracy
of specialized ASRs trained to recognize our noise and white
noise respectively. Specifically, we train multiple ASRs and
each one takes jammed speech signals with a specific SNR as
the training data. As last, we have 22 ASRs considering the
combinations of two types of noise and 11 SNRs.

The results are shown in Figure 20. For white noise, the
PER rises slowly with the decrease of SNR, which indicates
the network’s denoising ability for white noise. For our noise,
the PER is slightly higher than white noise when SNR ≥ 0,
but increases rapidly when SNR < 0. These results means that
even when the attacker can train a specialized ASR, it is hard
to recognize the audio jammed by our noise when SNR ≤ 1,
which is a reasonable value in real-world scenarios. We also
find that when SNR < 0, the training for the ASR targeting
our noise can not converge properly for many reasons (e.g.,
exploding gradients), and requires careful parameter tuning.

E. Comparisons with the Speech Noise

In this part, we compare our noise with speech noises
that contain 1, 2, and 3 speech series respectively. For a fair
comparison, the speech series making up the noise is from the
same people as the target. The results on the left of Figure 22
show that without considering noise reduction methods, our
noise performs better when SNR < −2.

We then test the robustness of the noises against noise
reduction methods. As all the tested noises are speech-like
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Fig. 22: Comparisons with speech-like noise. Left: WER
before noise reduction. Right: WER after noise reduction.

noises, we choose a SOTA model structure of speech separa-
tion [45] and trained three models targeting noises containing
1, 2, and 3 series respectively. The detailed training strategy
is presented in Appendix-B. During the experiment, we find
that although the separation process improves the intelligibility
of audio for human ear, the accuracy of the ASR recognition
is even worse than before. We think this is caused by the
noise residue. So we further process the separated results with
a speech enhancement method [9]. For our noise, we try to
separate it with all three models separately then apply the
enhancement. The result with the lowest WER is chosen for
comparison.

The result on the right of Figure 22 shows that when
SNR ≥ 0, the WERs of different tested noises are close;
when SNR < −1, the WERs of speech noises with all SNRs
are lower than 50% and our noise performs much better. The
result also reveals a phenomenon that higher noise energy for
the speech noise does not always mean higher WER, which
is different from our noise. Instead, the jamming performance
of the speech noise will decrease when its noise energy is
above certain threshold. The corresponding SNR thresholds
are about 1, -3, and -4.8 for the noise containing 1, 2, and
3 speech series respectively. This phenomenon indicates that
compared to our noise, the speech noise is less applicable in
the real-world scenario as it is hard to control the noise energy
to stay within a specific range.

F. Impact of the Number of Phoneme Series

Here we investigate the impact of the number of phoneme
series (S1, S2, and S3) in our noise under different SNRs. We
first test the effectiveness of different combinations of them
and the results are shown on the left of Figure 23 (More
results are presented in Appendix-C). The results show that the
gap between different combinations is narrow. Generally, less
series means better effectiveness (except for one series case).
We think this is because the less series, the more energy can
each phoneme series share.
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We then further test the robustness of speech noise and
our noise. We suppress the noises with speech separation and
enhancement models as stated in VII-E and the results are
presented on the right of Figure 23. We find that as opposed
to effectiveness test, more series indicates higher robustness,
which means there is a trade-off between effectiveness and
robustness. Our noise (S1 + S2 + S3) is relatively balanced
between these two factors. Others can choose the combination
arbitrarily according to application requirements.

G. Comparisons with Other Jamming Methods

Here we compare our noise with the counterparts in two
other related works, namely Backdoor [40] and Patronus [28],
and a commercial off-the-shelf device [3]. The noise in [28]
consists of dynamic frequencies and chirps. The range of
frequency is [50, 40k] Hz and the duration of signal in each
frequency is 0.2s. The noise in [40] is a band-limited (i.e.,
[0, 12k]) white noise modulated by a 40 kHz carrier. As for
the commercial device [3], we do not have the knowledge of its
internals, therefore we can only speculate that its noise is made
of variable multi-frequency tones based on the spectrogram.
We conduct this experiment in the real-world scenario. We play
audios with a smartphone and play noises with our transmitter
(except for [3]) with constant power in the meantime. Then
we record the audio with one smartphone placed at different
distances from the transmitter. The recordings are enhanced
with different methods before being fed into an ASR for better
recognition (the same process as VII-E for our noise and
FullSubNet+ [9] for others). The results in Figure 24 show
that our noise performs better than others significantly.

H. Impact of Data Augmentation Process

Here we evaluate the impact of the data augmentation pro-
cess on the effectiveness of our noise. In the noise generation
process, before concatenating a new selected phoneme data in
to the noise, for each augmentation method, the phoneme data
would be augmented with a probability p. Then we test the
jamming effectiveness of the noise generated with different p.
The results in Figure 25 show that as p increases, the jamming
effectiveness of our noise gradually decreases. However, the
impact is limited, with only a drop of 5% in WER when p
increase form 0 to 0.5.

I. Impact of Recording Devices

To test the generalizability of InfoMasker among differ-
ent recording devices, we use different appliances to record
demodulated signals and them calculate their energy. We
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Fig. 26: Nonlinearity in different recording devices

test a variety of recording devices, including nine models of
smartphones, an iPad, a smart watch, a smart home device
and a laptop. Besides, we also test the nonlinearity of twelve
smartphones of the same model (Samsung A51). The results
in Figure 26 shows the good generalizability of InfoMasker.

J. Case Study: A Common Office

Environment Setting. We further explore the possibility of
deploying our system in a real-world environment. We deploy
our system in a common office room, which is 6.2 meters
long and 3.4 meters wide, as shown in Figure 27a. We place a
transmitter array in each of the four corners of the room. We
first measure the ultrasound energy distribution in the room,
and the result is shown in Figure 27b.

Please note that except some areas within 10cm from the
transmitter array, where the ultrasound energy reaches about
105 dB SPL, the energy in all other areas is lower than 95 dB
SPL. This energy distribution meets the suggestion proposed
by World Health Organization (WHO) that when humans are
exposed to 40kHz ultrasound for more than 4 hours, the energy
of the ultrasound should not exceed 110 dB SPL [2].

Recognition Results. We place four devices in the po-
sitions highlighted in red in Figure 27b. The noise energy
in Point A and B is relatively high and the energy in Point
C and D is relatively low. The devices placed include two
smartphones (Samsung A51 and Huawei Mate30Pro), a laptop
(Lenovo IdeaPad7), and an iPad (iPad8). For each device we
record about 3 hours data and the result is shown in Table VI.
We use three commercial ASR systems to recognize each data
and choose the lowest WER as the result. For the reason that
the power amplifiers will generate audible noise when turned
on, we also test the scenario where the power amplifiers are
turn on but no noise is transmitted.

Blind Signal Separation. Considering the recording device
may have multiple microphones or there are multiple devices
recording at the same time, the attacker could use BSS methods
to denoise the recordings. In the case study, the recordings
from the Huawei Mate30Pro have two channels, so we test

(a) The office.
6.2 m

3.
4 

m

A
B

C

D

(b) Energy Distribution.

Fig. 27: Experiment Settings.

Types WER(%)
Phone A Phone B Laptop iPad

A 98.0 98.2 95.7 99.3
B 98.8 98.4 88.1 93.8
C 98.5 56.4 95.8 98.6
D 95.7 97.7 97.9 95.3

Amplifiers On 25.8 26.3 32.5 32.0
Clear 16.0 7.1 19.9 15.5

TABLE VI: Recognition results for the case study.

the effectiveness of BSS on these recordings. We test five BSS
algorithms: AuxIVA [43], ConsistentILRMA [24], FastMNMF
[44], LaplaceFDICA [42], and t-ILRMA [32]. The results are
shown in Table VII. It can be noticed that even at position C,
where the noise energy is the lowest, BSS still cannot improve
the recognition accuracy.

Position WER (%)

AuxIVA Consistent-
t-ILRMA FastMNMF FDICA ILRMA

A 98.6 98.6 98.5 98.8 98.5
B 98.4 98.4 98.8 98.8 98.4
C 67.8 67.4 72.0 69.2 67.4
D 97.9 97.9 99.6 97.9 97.9

TABLE VII: Recognition results after BSS.

VIII. DISCUSSION

A. Design of Registration-Free System

The current system requires user registration before usage
and the performance of multi-user scenario is about 7% worse
than the single-user scenario. Besides, the registration for
multi-user scenario is time-consuming. Therefore, We would
like to optimize this process to relieve users from registration
and to enable InfoMasker dynamically detect current speaker
and transmit corresponding noises. However, the optimization
process is challenging as when which speaker will start speak-
ing is unpredictable. Additionally, our system has to extract
speaker feature from a severely obscured speech signal as the
jamming noise is “always on”.

In our first step in addressing this challenge, we attempted
to use an auto-encoder to recover the target speaker’s voice
feature from disturbed signals. Via feeding the spectrogram of
the jammed speech recording and the ground-truth noise signal
in digital domain as two input to the auto-encoder, we tried to
obtain the spectrogram of the denoised signal that should be
the clean speech signal of current speaker. Figure 28 illustrates
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Fig. 28: Illustration of the Denoising Method.

the denoised spectrogram. Although the generated spectrogram
is similar to the ground truth of the current speaker, the voice
embedding extracted from the spectrogram output cannot be
accurately matched to the embedding of that of the speaker.

We conjecture the inaccuracy of embedding calculation is
caused by the voice feature extraction algorithm we use. When
it is used in our case, the input fed to the algorithm inevitably
contains residual. As a result, the performance of the algorithm
may suffer because it has never seen such data in its training
phase. We would like to verify this hypothesis and develop a
robust feature extraction model which can accurately calculate
the voice feature of target speakers under the interference from
various kinds of noises including common ones and even our
phoneme-based noise. By incorporating this component, Info-
Masker can accomplish real-time user detection and achieves
better jamming performance. Besides, according to the results
in Figure 28, it is possible to remove our noise with the
ground truth digital noise, which indicates the legitimate users
launching the jamming could recover the speech from the
jamming interference given the noise template. We leave this
part to future work.

B. Non-Line-of-Sight Devices

Although we do not consider the NLOS scenario as stated
in Section III, here we conduct an experiment to test the
energy attenuation of audible sound and ultrasound when they
travel through different types of material to simulate the NLOS
scenario. We place the recorder in a soundproof box and
replace one side of the box with different materials. The results
in Table VIII show that except for clothes, where there is
little attenuation for both audible sound and ultrasound, the
attenuation for ultrasound is much greater than audible sound.
This is a limitation for ultrasonic-based noise injection because
ultrasound will attenuate significantly when traveling through
different materials due to its high frequency. In contrast, human
audible sound can reach hidden devices easily by reflection,
diffraction, and even penetration.

C. Generality Across Devices

While our system is valid against all devices tested in
Section VII-I, there could be some devices that can possibly
bypass our system. For instance, the resonance frequency of
some devices could be shifted away from 40 kHz [55], [40],

Material Soundproof
Box Clothes A4

paper
Plastic

Bag
Plastic
Box

Rubber
Mat

Normal
Audio -76.9 -5.6 -28.7 0.89 -29.1 -92.6

Ultrasound -183.2 1.27 -89.5 -25.3 -61.46 -165.2

TABLE VIII: Energy attenuation in NLOS scenario (dB)

which makes the energy of the injected noise relatively low.
Besides, iPhone 6 Plus could resist ultrasound signals because
of the poor nonlinearity in its microphone [55]. For the former,
one possible solution is to adjust the carrier frequency of the
ultrasonic noise to different resonance frequencies accordingly,
but this would make the ultrasonic noise less effective across
devices. In this paper, we choose 40 kHz as the carrier
frequency because of its broad applicability [55], [40]. For
the latter, although it is difficult to jam the phone model with
ultrasonic noise. Some other methods, such as Electromagnetic
Interference (EMI), may be effective.

D. Deployment of Transmitter Arrays

In a practical application scenario, the deployment of the
transmitter array is relatively convenient as the probability of
destructive interference happening is neglectable. Our noise
in each location is a superposition of the ultrasounds from
different transmitters with various phases, the short wavelength
fact and over-complex phase of these noises result in a slim
chance of neutralization. So we only need to choose an
appropriate number of arrays and spread them in the target
room to satisfy the coverage requirement.

E. Portable Implementation

Currently, the implementation of our system is relatively
heavy-weight. However, it is possible for implementing a
portable version of the system. The laptop can be replaced by
a Raspberry Pi with a external soundcard; The power amplifier
can be replaced by a smaller-size one (the current one is
power excessive); the half-spherical foam can be replaced by a
smaller hollow sphere containing all parts including a battery
in it. This part is left for future work.

IX. RELATED WORK

Preventing Eavesdropping with Microphone’s Nonlin-
earity. Several existing works attempt to jam microphones
using ultrasound. Roy et al. inject white noise to microphones
using inaudible ultrasound [40]. Li et al. generate noise with
variable frequency according to a preset key to prevent the
unauthorized devices from recording audios, while enabling
the authorized users to recover speech signals from the noisy
recordings [28]. Sun et al. propose MicShield, which can
prevent the always-on microphones in smart home devices
from recording private speech while passing the preset voice
commands [46]. Chen et al. integrate ultrasonic transmitters
into a wearable bracelet to expand the effective jamming
coverage [10]. However, the noises used in these works are
either single tones with variable frequency or white noise,
which are not robust when facing speech enhancement methods
as demonstrated by the experiments in this paper.
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Other Applications with Microphone’s Nonlinearity.
Many works explore the microphone nonlinearity for other
purposes, such as inaudible voice commands injection [55],
[41], [52], defense of inaudible commands [21], [54], [41],
communication [40], and authentication [56]. Yan et al. trans-
mit the inaudible voice commands through solid medium to
improve the stealthiness of the attack [52]. Roy et al. expand
the attack range by striping different frequency bands to
different transmitters [41]. Zhang et all. exploit the difference
of propagation attenuation between ultrasound and human
voice to distinguish inaudible commands injection from normal
voice commands. Zhou et al. validate that the parameters of
the nonlinearity model in different microphones can be used
as features for device authentication [56].

X. CONCLUSION

In this paper, we propose InfoMasker, a highly effective
anti-jamming system. By exploring informational masking
effect, we achieve phoneme-based jamming noise design for
the first time. Our noise exhibits strong ability to interfere
with both ASRs and human auditory system, and it shows ro-
bustness against noise removal methods. Moreover, our system
optimizes the conventional ultrasonic transmission by using
lower-sideband modulation and integrating pre-compensation.
Digital-domain experiments show our noise can significantly
obstruct the recognition accuracy of SOTA ASRs to below
50% with an SNR of 0, which is far better than the jamming
performance of white noise. Our case study further validates
the effectiveness of our noise in real-world scenario. When the
noise energy is acceptable, the recognition accuracy of jammed
speech signals are all below 50% in every tested cases, even
less than 10% for certain situations.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program
of China (Grant No. 2020AAA0107700), National Natural
Science Foundation of China (No. 62172359, 62032021,
61972348, 62102354, 62227805, 62072398, 61772236), Fund-
ing for Postdoctoral Scientific Research Projects in Zhejiang
Province (ZJ2021139), Fundamental Research Funds for the
Central Universities (No. 2021FZZX001-27), Research Insti-
tute of Cyberspace Governance in Zhejiang University, Na-
tional Key Laboratory of Science and Technology on Informa-
tion System Security (6142111210301), and State Key Labora-
tory of Mathematical Engineering and Advanced Computing.

REFERENCES

[1] “IEEE recommended practice for speech quality measurements,” IEEE
Transactions on Audio and Electroacoustics, vol. 17, no. 3, pp. 225–
246, 1969.

[2] “Environmental health criteria – ultrasound,” https://apps.who.int/
iris/bitstream/handle/10665/37263/9241540826-eng.pdf?sequence=
1&isAllowed=y, 1982.

[3] “A typical commercial device,” https://detail.tmall.com/item.htm?spm=
a230r.1.14.1.323043c3LS6BEq&id=665020600411&ns=1&abbucket=
7&skuId=4793894240789, 2022.

[4] “Ultrasonic transducer (nu40c16t-1), jinci technology,”
http://www.jinci.cn/index.php?c=article&id=133, 2022.

[5] Amazon, “Amazon Transcribe,” https://aws.amazon.com/transcribe/,
2022.

[6] R. Baken and R. Orlikoff, Clinical Measurement of Speech and Voice,
ser. Speech Science. Singular Thomson Learning.

[7] D. S. Brungart, “Informational and energetic masking effects in the
perception of two simultaneous talkers,” The Journal of the Acoustical
Society of America, vol. 109, no. 3, pp. 1101–1109, Mar. 2001.

[8] G. K. C. Chen and J. J. Whalen, “Comparative rfi performance of
bipolar operational amplifiers,” in 1981 IEEE International Symposium
on Electromagnetic Compatibility, 1981, pp. 1–5.

[9] J. Chen, Z. Wang, D. Tuo, Z. Wu, S. Kang, and H. Meng, “Fullsubnet+:
Channel attention fullsubnet with complex spectrograms for speech
enhancement,” in ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 7857–7861.

[10] Y. Chen, H. Li, S.-Y. Teng, S. Nagels, Z. Li, P. Lopes, B. Y. Zhao,
and H. Zheng, “Wearable microphone jamming,” in Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 1–12.

[11] J. Cosentino, M. Pariente, S. Cornell, A. Deleforge, and E. Vincent,
“Librimix: An open-source dataset for generalizable speech separation,”
2020.

[12] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias,
W. Fellenz, and J. Taylor, “Emotion recognition in human-computer
interaction,” IEEE Signal Processing Magazine, vol. 18, no. 1, pp. 32–
80, 2001.

[13] F. Developers, “ffmpeg tool [software],” http://ffmpeg.org, 2016.

[14] J. M. Festen and R. Plomp, “Effects of fluctuating noise and interfering
speech on the speech-reception threshold for impaired and normal
hearing,” The Journal of the Acoustical Society of America, vol. 88,
no. 4, pp. 1725–1736, Oct. 1990.

[15] I. Fónagy, “A new method of investigating the perception of prosodic
features,” Language and Speech, vol. 21, no. 1, pp. 34–49, 1978.

[16] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
and N. L. Dahlgren, “Timit acoustic-phonetic continuous speech corpus
ldc93s1,” 1993.

[17] Google, “Google Speech-to-Text,” https://cloud.google.com/speech-to-
text/, 2022.

[18] T. Guardian, “Ukraine prime minister offers resignation after leaked
recording,” https://www.theguardian.com/world/2020/jan/17/ukraine-
prime-minister-oleksiy-goncharuk-offers-resignation-after-leaked-
recording, 17-Jan-2020.

[19] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep
speech: Scaling up end-to-end speech recognition,” 2014.

[20] X. Hao, X. Su, R. Horaud, and X. Li, “Fullsubnet: A full-band and sub-
band fusion model for real-time single-channel speech enhancement,”
in ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 6633–6637.

[21] Y. He, J. Bian, X. Tong, Z. Qian, W. Zhu, X. Tian, and X. Wang,
“Canceling inaudible voice commands against voice control systems,”
in The 25th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’19. Association for Computing Machinery,
pp. 1–15.

[22] IFLYTEK, “Xunfei ASR,” https://www.xfyun.cn/services/lfasr, 2022.

[23] B. Karmann and T. Knudsen, “Project Alias,” https://github.com/
bjoernkarmann/project alias, 30-Jun-2019.

[24] D. Kitamura and K. Yatabe, “Consistent independent low-rank matrix
analysis for determined blind source separation,” Research Square, Jul.
2020.

[25] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017, pp. 5220–5224.

[26] Z.-Q. Lang and S. Billings, “Evaluation of output frequency responses
of nonlinear systems under multiple inputs,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 47,
no. 1, pp. 28–38, Jan. 2000.

[27] M. R. Leek, M. E. Brown, and M. F. Dorman, “Informational masking

14



and auditory attention,” Perception & Psychophysics, vol. 50, no. 3, pp.
205–214, May 1991.

[28] L. Li, M. Liu, Y. Yao, F. Dang, Z. Cao, and Y. Liu, “Patronus:
Preventing unauthorized speech recordings with support for selective
unscrambling,” in Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, ser. SenSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 245–257.

[29] S. L. Mattys, L. M. Carroll, C. K. W. Li, and S. L. Y. Chan, “Effects of
energetic and informational masking on speech segmentation by native
and non-native speakers,” Speech Communication, vol. 52, no. 11, pp.
887–899, Nov. 2010.

[30] M. Moirise, F. Yokomori, and K. Ozawa, “World: A vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE
Transactions on Information and Systems, vol. E99.D, no. 7, pp. 1877–
1884, 2016.

[31] T. Moynihan, “Alexa and google home record what you say. but
what happens to that data?” https://www.wired.com/2016/12/alexa-and-
google-record-your-voice/, 2016.

[32] T. Nakashima, R. Scheibler, Y. Wakabayashi, and N. Ono, “Faster
independent low-rank matrix analysis with pairwise updates of demix-
ing vectors,” in 2020 28th European Signal Processing Conference
(EUSIPCO), 2021, pp. 301–305.

[33] B. News, “Gavin williamson interrupted by siri during commons
statement,” https://www.bbc.com/news/av/uk-politics-44701007, 03-
Jul-2018.

[34] T. G. News, “Nsa monitored calls of 35 world leaders after us official
handed over contacts,” https://www.theguardian.com/world/2013/oct/
24/nsa-surveillance-world-leaders-calls, 25-Oct-2013.

[35] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An asr corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[36] Paranoid, “Paranoid Home Devices - HomeWave.” https:
//paranoid.com/products, 2020.

[37] A. Police, “Google is permanently nerfing all home minis
because mine spied on everything i said 24/7 [update x2],”
https://www.androidpolice.com/2017/10/10/google-nerfing-home-
minis-mine-spied-everything-said-247/, 2017.

[38] I. Pollack, “Auditory informational masking,” J. Acoust. Soc. Am.,
vol. 57, no. S1, pp. S5–S5, Apr. 1975.

[39] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lu-
gosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong, J.-C. Chou,
S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Rastorgueva, F. Grondin, W. Aris,
H. Na, Y. Gao, R. D. Mori, and Y. Bengio, “SpeechBrain: A general-
purpose speech toolkit,” 2021.

[40] N. Roy, H. Hassanieh, and R. Roy Choudhury, “Backdoor: Making
microphones hear inaudible sounds,” in Proceedings of the 15th An-
nual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2–14.

[41] N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury, “Inaudible voice
commands: The Long-Range attack and defense,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). Renton, WA: USENIX Association, Apr. 2018, pp. 547–560.

[42] H. Sawada, S. Araki, and S. Makino, “Underdetermined convolutive
blind source separation via frequency bin-wise clustering and permu-
tation alignment,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 3, pp. 516–527, 2011.

[43] R. Scheibler and N. Ono, “Fast and stable blind source separation with
rank-1 updates,” in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 236–
240.

[44] K. Sekiguchi, A. A. Nugraha, Y. Bando, and K. Yoshii, “Fast multichan-
nel source separation based on jointly diagonalizable spatial covariance
matrices,” in 2019 27th European Signal Processing Conference (EU-
SIPCO). IEEE, Sep. 2019.

[45] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention is all you need in speech separation,” in ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, Jun. 2021.

[46] K. Sun, C. Chen, and X. Zhang, “”Alexa, stop spying on me!”: speech
privacy protection against voice assistants,” in Proceedings of the 18th
Conference on Embedded Networked Sensor Systems. New York, NY,
USA: Association for Computing Machinery, Nov. 2020, pp. 298–311.

[47] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted noisy
speech,” in 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2010, pp. 4214–4217.

[48] Tencent, “Tencent ASR,” https://cloud.tencent.com/product/asr, 2022.
[49] P. Walker and N. Saxena, “Evaluating the effectiveness of protection

jamming devices in mitigating smart speaker eavesdropping attacks
using gaussian white noise,” in Annual Computer Security Applications
Conference, ser. ACSAC. New York, NY, USA: Association for
Computing Machinery, 2021, p. 414–424.

[50] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-to-end
loss for speaker verification,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 4879–
4883.

[51] C. Wueest, “Everything you need to know about the security of voice-
activated smart speakers. symantec.” https://www.symantec.com/blogs/
threat-intelligence/security-voice-activated-smart-speakers, 2017.

[52] Q. Yan, K. Liu, Q. Zhou, H. Guo, and N. Zhang, “SurfingAttack:
Interactive hidden attack on voice assistants using ultrasonic guided
waves,” in Proceedings 2020 Network and Distributed System Security
Symposium (NDSS). Internet Society, pp. 1–18.

[53] Z. Yao, D. Wu, X. Wang, B. Zhang, F. Yu, C. Yang, Z. Peng, X. Chen,
L. Xie, and X. Lei, “Wenet: Production oriented streaming and non-
streaming end-to-end speech recognition toolkit,” in Proc. Interspeech.
Brno, Czech Republic: IEEE, 2021.

[54] G. Zhang, X. Ji, X. Li, G. Qu, and W. Xu, “Eararray: Defending against
dolphinattack via acoustic attenuation,” Proceedings 2021 Network and
Distributed System Security Symposium, 2021.

[55] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphi-
nattack: Inaudible voice commands,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 103–117.

[56] X. Zhou, X. Ji, C. Yan, J. Deng, and W. Xu, “NAuth: Secure face-to-
face device authentication via nonlinearity,” in IEEE INFOCOM 2019
- IEEE Conference on Computer Communications. IEEE, Apr. 2019.

APPENDIX

A. Proof of Single-Sideband Modulation

Assume the high-frequency carrier signal is c(t) =
cos(2πfct) and the noise signal is n(t), the DSB-AM and
LSB-AM can be represented by Equation 2 and 3:

nD(t) =
√
2n(t)cos(2πfct) (2)

nL(t) = n(t)cos(2πfct) + n̂(t)sin(2πfct) (3)

where fc is the carrier frequency, and n̂(t) is the Hilbert
transform of n(t). The coefficient

√
2 in Equation 2 is to ensure

the energy of the two modulated signals are same.

Similar to microphones, the nonlinearity in the ultrasonic
transmitter also generates high order components. Because
energy decays significantly as the order goes up, we only
consider the quadratic term here. With DSB-AM and LSB-
AM modulation, the quadratic terms of the modulated signal
can be represented by Equation 4 and 5. As shown in these two
equations, the human audible low-frequency components for
DSB-AM is n2(t), while for LSB-AM it is 1

2 (n
2(t) + n̂2(t)).

Because the Hilbert transform imparts a phase shift of ±π
2 to

each frequency components, the amplitude of each frequency
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components in the former is
√
2 times bigger than the latter.

That is, the former has twice the energy of the latter.

n2
D(t) =n2(t)(1 + cos(4πfct))

Lowpass Filter
==========⇒ n2(t)

(4)

n2
L(t) =0.5(n2(t) + n̂2(t)) + n(t)n̂(t)sin(4πfct)+

0.5(n2(t)cos(4πfct)− n̂2(t)sin(4πfct))
Lowpass Filter
==========⇒ 0.5(n2(t) + n̂2(t))

(5)

B. Training Strategies of Speech Separation Models

For each model, the training dataset is chosen from the
combination of LibriSpeech train-clean-100 and train-clean
360, and the test dataset in all the experiments involving speech
separation is chosen from LibriSpeech test-clean.

In this paper, we consider three speech separation models
targeting at audios containing 2, 3, and 4 sources respectively.
Use n to represent the number of sources, the model is first
pretrained on the n-source LibriMix dataset [11]. The model
is then fine-tuned on a modified n-source LibriMix dataset, in
which the training data is a combination of n audios from the
same speaker.

C. More Results of Different Number of Phoneme Series

The result of more types of phoneme series combination
is in Table IX and Table X.

SNR S1 S2 S1+S3 S2+S3 S1+S2+S3 S1+2S2+S3 2S1+S2+S3

-9 97.7400 95.8100 97.9000 96.8200 97.8800 97.3900 97.6500
-7 95.3400 91.2500 96.1300 93.7100 96.2200 95.7800 96.2400
-5 90.8100 82.8700 91.5700 87.5600 91.4300 90.1400 90.0000
-3 78.9300 68.0930 81.9700 75.4300 79.2100 77.7390 78.1500
-1 60.2400 52.3000 62.9800 57.9100 61.7100 57.2700 58.1720
1 41.9420 37.8900 44.0600 41.4300 41.9100 39.1800 39.3600
3 26.0800 24.7460 28.2200 28.5600 26.3120 24.1200 24.0500
5 15.9000 17.4000 17.7000 18.9400 17.0100 14.9400 14.9600

TABLE IX: WER (%) of the Recognition result of different
number of series w/o noise reduction.

SNR S1 S2 S1+S3 S2+S3 S1+S2+S3 S1+2S2+S3 2S1+S2+S3

-9 44.5600 17.6500 60.2400 39.8400 78.9800 81.7400 87.4700
-7 53.1900 21.2200 64.7500 38.8400 75.6900 79.9900 86.1800
-5 65.0700 31.2300 70.3000 45.0500 73.6400 76.8100 81.2300
-3 67.2800 42.7900 66.4500 47.8300 64.2200 64.6600 67.0580
-1 49.6000 41.3400 45.4400 43.7100 46.5000 45.9000 45.8100
1 28.2400 26.7900 26.7200 27.2500 26.4000 28.4500 28.0100
3 15.9700 16.2900 14.5400 15.9500 15.1700 16.5900 16.4500
5 8.9000 9.2700 11.2100 10.5200 11.0000 10.9100 11.6200

TABLE X: WER (%) of the Recognition result of different
number of series w/ noise reduction.
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