CHKPLUG: Checking GDPR Compliance of
WordPress Plugins via Cross-language Code
Property Graph

Faysal Hossain Shezan Zihao Su

University of Virginia

fsSve@virginia.edu zs3pv @virginia.edu

Michelangelo van Dam Yinzhi Cao

in2it

michelangelo@in2it.be yinzhi.cao@jhu.edu

Abstract—WordPress, a well-known content management sys-
tem (CMS), provides so-called plugins to augment default func-
tionalities. One challenging problem of deploying WordPress
plugins is that they may collect and process user data, such as
Personal Identifiable Information (PII), which is usually regulated
by laws such as General Data Protection Regulation (GDPR). To
the best of our knowledge, no prior works have studied GDPR
compliance in WordPress plugins, which often involve multiple
program languages, such as PHP, JavaScript, HTML, and SQL.

In this paper, we design CHKPLUG, the first automated
GDPR checker of WordPress plugins for their compliance with
GDPR articles related to PIL. The key to CHKPLUG is to match
WordPress plugin behavior with GDPR articles using graph
queries to a novel cross-language code property graph (CCPG).
Specifically, t he C CPG m odels b oth i nline 1 anguage integration
(such as PHP and HTML) and key-value-related connection (such
as HTML and JavaScript). CHKPLUG reports a GDPR violation
if certain patterns are found in the CCPG.

We evaluated CHKPLUG with human-annotated WordPress
plugins. Our evaluation shows that CHKPLUG achieves good
performance with 98.8% TNR (True Negative Rate) and 89.3%
TPR (True Positive Rate) in checking whether a certain Word-
Press plugin complies with GDPR. To investigate the current
surface of the marketplace, we perform a measurement analysis
which shows that 368 plugins violate data deletion regulations,
meaning plugins do not provide any functionalities to erase user
information from the website.

I. INTRODUCTION

WordPress, a well-known content management system
(CMS), provides so-called plugins and themes—usually de-
veloped by third parties —for website owners to augment
the default functionalities of the CMS. To date, WordPress
has around 60K plugins [39] and they generate over a billion
dollars of revenue each year [12]. One challenging problem of
using WordPress plugins is that they may collect and process

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24610
www.ndss-symposium.org

Mingqing Kang
University of Virginia Johns Hopkins University University of Virginia
mkang31@jhu.edu

Johns Hopkins University

Nicholas Phair Patrick William Thomas

University of Virginia
np4ay @virginia.edu pwtSca@virginia.edu

Yuan Tian
University of California, Los Angeles
yuant@ucla.edu

personally identifiable information (PII), which is regulated
by privacy laws such as the European Union-introduced Gen-
eral Data Protection Regulation (GDPR). These plugins are
published in the global App market and can be accessed or
integrated by anyone around the world using the WordPress
store. That is unless they specifically block EU traffic, it is
the default assumption that they will have potential European
Union traffic [32] and need to obey GDPR. An existing
article [32] shows that it is the site owner’s responsibility to
ensure all the plugins installed on their website follow GDPR.
Compliance with GDPR will help plugin developers to increase
possible installations of their plugins. Plugin developers often
are not familiar with privacy laws and therefore the need for
an automatic checker is increasing for both plugin developers
and website owners using these plugins.

To the best of our knowledge, there are no prior works that
check the compliance of WordPress plugins against different
GDPR articles related to private data. On one hand, researchers
are studying the compliance of websites against certain GDPR
articles, such as cookie and tracking opt-outs [[73]], [[74]. Simi-
larly, a multitude of free and paid services exist to evaluate the
GDPR compliance of given websites and vary in complexity,
ranging from consulting to cookie analyzers 5], [8], [16] to
do-it-yourself checklists [[7], [19]]. However, these only cover a
specific subset of GDPR requirements such as cookie consent
or involve slow or expensive manual review [6], [17].

On the other hand, prior works investigated GDPR compli-
ance in mobile app markets by checking the presence of user
consent [[67]], [68]], [83]], privacy policies [26], [27], [56], [81],
[89], [90], cookies [30], [37], and by analyzing network traffic
data [41]], [46]. While such works are important and successful
in checking client-side GDPR compliance, unfortunately, they
cannot be extended to WordPress plugins where PllIs are often
collected on the client side using HTML and JavaScript, but
processed at the server via PHP and SQL. That is, personally
identifiable information is flowing between the client and
server and is processed heterogeneously across the program
language boundaries.

Such cross-language dataflows are challenging to identify,
let alone be used for detecting GDPR violations because of

the variety and involvement of different program languages.
For example, JavaScript code is interacting with HTML using
Document Object Model (DOM) APIs, but with the server-side
PHP using asynchronous HTTP requests and responses. At the
same time, PHP is interacting with HTML and JavaScript using
statements, such as “echo”, but with JavaScript through HTTP
requests and responses as well. Such heterogeneous dataflows
make it challenging to extract PII and track its flow across
languages.

In this paper, we design and implement CHKPLUG, the first
automated GDPR checker of WordPress plugins. CHKPLUG
identifies compliance with GDPR articles related to PIIs and
processing of PIIs (i.e., data access, data deletion, data sharing,
and Security of PII) [ﬂ We select these GDPR articles based
on the following criterion: (1) common articles that are shared
by other privacy laws, e.g., California Consumer Privacy Act
(CCPA) [2], and (2) articles that are directly relevant to data
processing via computer programs. The key insight of CHK-
PLUG is to match WordPress plugin behaviors—represented
as data- and control-flows and extracted via cross-language
static analysis—against a set of predefined rules of GDPR
articles. CHKPLUG reports a violation if a match is not found
for a GDPR article. As an example, consider data deletion.
CHKPLUG checks the lack of data flow between PIIs and
deletion APIs as a violation of the data deletion article.
Similarly, consider data sharing. CHKPLUG looks for privacy
policy when PIIs are shared with a third-party via network
communication such as HTTP requests.

CHKPLUG tackles and advances the cross-language chal-
lenge by representing WordPress plugins involving four differ-
ent languages (JavaScript, HTML, PHP, and SQL) as a cross-
language code property graph structure. That is, CHKPLUG
first generates intra-language graphs (e.g., CPGs and DOM
trees) and then connects different graphs across language
boundaries into a CCPG. For example, CHKPLUG connects
HTML DOM nodes with JavaScript variables using key-value
analysis, i.e., if the HTML node ID matches the JavaScript
DOM function parameter. For another example, CHKPLUG
performs an inline analysis to generate placeholders for PHP
code embedded as part of HTML and creates dataflows. Once
CHKPLUG generates CCPG, it queries the CCPG starting from
PIIs and tracks the PIIs flows for GDPR violations.

Ground-truth evaluation on 200 plugins shows that our tool
achieves a 98.8% TNR (true negative rate) and a 89.3% TPR
(true positive rate) for detecting violations of Ppccess, Pyeietes
Pspare and Pseeyrity. To understand the current compliance
situation of plugins, we perform a measurement analysis
and run CHKPLUG on 2,722 plugins from the marketplace
(Section . CHKPLUG determined 381 plugins (14%) to be
non-compliant with GDPR regulations (Section [V-C). Among
them 368 plugins violate Pgejere, 19 plugins violate Pgpgre,
and 36 plugins violate Psccyrity. We find no violations for
P,ccess because most of the time the plugins store PII data
using WordPress core database, and the rest of the time they
provide export functionality.

Contribution. We make the following contributions in
designing and implementing CHKPLUG.

UIn this paper, we refer to data access as Pyccess, data deletion as Pyejeges
data sharing as Pspqre, and security of PII as Psecurity

e Cross-language analysis. We perform cross-language
analysis, including HTML, JavaScript, PHP, and SQL
platforms. This helps us to capture all of the dataflows
across different platforms.

e Measurement analysis. We perform a measurement anal-
ysis on the current WordPress plugin marketplace to
identify the total number of plugins violating GDPR.

e New tool. We are the first to propose a generic framework
called CHKPLUG, which automatically detects GDPR
violations on websites. We implement a prototype of
CHKPLUG that checks compliance with GDPR laws in
WordPress plugins. We share our tool at https://github.
com/faysalhossain2007/CHKPLUG.,

e Dataset. We manually label 200 plugins. We pub-
licly release our labeled dataset in https://github.com/
faysalhossain2007/CHKPLUG.

II. A MOTIVATING EXAMPLE

In this section we provide a motivating example which is
found by CHKPLUG to be in violation of GDPR article 17,
i.e., right to erase (a.k.a. right to be forgotten). The violation
is located in a popular WordPress plugin, called Username
Changelﬂ which has an active installation of 30,000+ users
and an average rating of 4.5 stars. The plugin provides an easy
way to change usernames via a nice interface. Note that we
have responsibly reported the GDPR violation to the plugin’s
developer, but have not received any feedback yet at the time
of our paper submission.

Figure [I] (a) shows how this WordPress plugin collects
and stores private data, but does not provide any deletion
methods. The collection has four steps and spans four different
programming languages. First, the plugin collects private user
inputs (e.g., username, display name, and nickname) via an
HTML form with an id “username-changer-form”. The col-
lected data is considered as Personal Identifiable Information
(PII) according to the literature [1]. Second, the JavaScript
code of the plugin reads the data using DOM operations and
sends the data via a ‘POST’ request to the server-side plugin.
Third, the server-side code, written in PHP, obtains the data
and prepares SQL statements. Lastly, the SQL statements store
the private data in the database. This collection and storage is
a violation of GDPR right to erase because the plugin does not
provide a means to delete the data. Instead, the data is stored
in the server database after being collected.

The major challenges in detecting this GDPR violation
are the detection of PII collection and the lack of deletion
of stored PII: The combination of these two conditions leads
to such a violation. The PII collection detection is challeng-
ing because the private data flows across different language
boundaries. That is, the dataflows between languages are
heterogeneous: For example, HTML—JavaScript is based on
a DOM operation, and JavaScript—PHP is based on HTTP
requests. Furthermore, there are others that are not shown in
the example, such as PHP—JavaScript via the echo statement.
Similarly, the detection of lack of deletion is challenging
because a deletion may exist across different languages and
be controlled by a user on the client side.

Zhttps://wordpress.org/plugins/username-changer/

https://github.com/faysalhossain2007/CHKPLUG
https://github.com/faysalhossain2007/CHKPLUG
https://github.com/faysalhossain2007/CHKPLUG
https://github.com/faysalhossain2007/CHKPLUG
https://wordpress.org/plugins/username-changer/

o onSubmit : function(e) {

newUsername =
document.getElementsByName(‘new_user|

(2

<form id = “username-changer-form”
method="POST">
Username: <input name =

“new_user_login” value="">

Sq = Swpdb->prepare("UPDATE
Swpdb->users SET user_login = %s
WHERE user_login = %s",
Snew_username, Sold_username);

(6 o

UPDATE wpdb_users SET

WHERE user_login = VALUE2"

_login’)[0].value
postData = { 9
action: 'change_username’,

old_username: currentUsername,
new_username: newUsername,

t (54 1

function username_changer_ajax_username_change() {
Sold_username = trim(wp_strip_all_tags(wp_unslash($_POST['old_username'])));
Snew_username= trim(wp_strip_all_tags(wp_unslash($_POST['new_username'])));
Ssuccess = username_changer_process($old_username, Snew_username);

Violation: No
Deletion for username

security:
username_changer_vars.nonce

t 0

9

$.ajax({ add_action('wp_ajax_change_username’,
type: 'POST’, 'username_changer_ajax_username_change');
I data: postData, I I
HTML I JavaScript I PHP I saL

(a) An illustration of the GDPR violation using code from different languages.

[newUsername}--»--»-----»-t{new_username]

~ A

action Jaeseee-

change_username

— .- —> Inter-edge
------------ » Intra-edge
—> ASTedge
== = => CFG edge
——— PDG edge

(b) Cross-language Code Property Graph (CCPG) Representation of the source code presented in Figure

Fig. 1: Motivating example for detecting data deletion violation in WordPress plugin.

O~

Input Field Pll Form Element

—O-0

Listener POST request DB Insert

User Violation: Missing Deletion Node \I

O-O-OKO——0-0r0) |

I Deletion Pl AjaxHandler request DB Deletion
| Request

Fig. 2: Queries used for identifying data deletion violation.

Solution Overview Succinctly, CHKPLUG models Word-
Press plugins as a cross-language code property graph and
violations of GDPR clauses as graph queries. Then, CHKPLUG
reports a GDPR violation if a match is found in the graph.

Figure [I] (b) shows the CCPG of our motivating example.
There are three different types of inter-language dataflows
that are represented in the graph. First, the data flow crosses
from the HTML form node (i.e., the value of the “input”
node with a name as “new_user_login”) to the return value
of a JavaScript function call, getElement sByName. Sec-
ond, the data flow crosses from JavaScript to PHP. Specifi-
cally, when JavaScript calls $.ajax with a key-value pair
new_username : newUsername, the PHP code receives the
data via $POST. CHKPLUG connects the JavaScript CPG node
with the corresponding PHP CPG node based on the key
“new_username”. Lastly, the data crosses from PHP to SQL.
CHKPLUG connects two nodes, one in the PHP CPG and the
other in the parsed SQL statement, via the prepare statement
in PHP.

Server

Once CHKPLUG creates a CCPG such as the one shown in
Figure [T] (b), the next step is to query it for GDPR violations.
Such a query might follow a pattern like the one shown in
Figure 2] Precisely, the query has two parts. The top shows
that CHKPLUG finds a PII coming from an HTML input field
and being stored at the server-side database. Then, the bottom
shows that CHKPLUG finds that the deletion request is not
connected with the database deletion, i.e., the PII is kept in the
server-side database, leading to a violation of GDPR’s right to
erase in its article 17. Note that the top is a prerequisite of
the bottom: If PII is not stored, CHKPLUG will not look for
deletion and possible GDPR violations.

III. SYSTEM DESIGN

We introduce the design of CHKPLUG in this section.

A. Overall System Architecture

Figure [3] shows the overall system architecture of CHK-
PLUG, which takes the source code of WordPress plugin
as input and outputs a list of GDPR violations. CHKPLUG
has three major components: (1) parser, (2) CCPG generator
including (2.1) intra-language edge connector and (2.2) cross-
language integrator, and (3) GDPR compliance checker.

Here are the detailed descriptions of the three components.
First, the parser is to detect and parse language-specific source
code. Since the parser is standard and we do not claim
any contributions, we leave the descriptions to Section
Second, CHKPLUG generates CCPG via two steps: (i) intra-
language CPG generation (especially event-related control-
and data-flows), and (ii) cross-language CCPG generation.

1
1
|
IntraJSEdge |
Connector |
1

|

1

|

\q) 1 HTML Parser

WordPress
Plugin

x
5
2
F

JORRG
PHPJoern 0 | IntraPHPEdge Connector

Connector

1

} !
@ S | Intra Language Edge Connector

1

I

—— o = - - ——]

| 1

Inter Language Edge

Cross Language Integrator

GDPR - Dataflow
Mapping

Report Generator Analysis Result

Y [e

GDPR Compliance Checker

Parser Fig. 3: System architecture of CHKPLUG.

Lastly, CHKPLUG traverses all paths involving PII operations
to identify the requirements according to GDPR policy. For
example, if a plugin stores data in the database, it must
provide data deletion functionality. Here, we map all of the
requirements for GDPR policies along with the generated
graph using our GDPR compliance checker module (Section
[MI-C). We conclude with the analysis result listing whether a
particular plugin violates GDPR.

B. CCPG Generation

In this subsection, we describe how CHKPLUG generates
CCPG via both inter- (i.e., cross-) and intra-language analysis.

1) Cross-language Analysis: CHKPLUG’s cross-language
analysis depends on different language pairs and adds cus-
tomized intra-language dataflow edges. From a high level,
cross-language analysis can be classified into two major cat-
egories: (i) inline analysis and (ii) key-value analysis. Let
us explain these two. First, inline analysis is based on the
fact that the statements of one language are embedded into
another language. For example, PHP can be embedded as part
of an HTML file and outputs HTML via the “echo” statement.
Similarly, PHP can prepare SQL statements and then execute
prepared SQL statements with customized values. CHKPLUG
performs inline analysis by first analyzing the embedded state-
ments (e.g., PHP in the PHP-HTML case). Then, CHKPLUG
replaces the outputs of the embedded language statements
with pseudo placeholders and then analyzes the latter language
(e.g., HTML in PHP-HTML case) to generate intra-language
dataflows.

Second, key-value analysis is for these program languages
that are connected via APIs (e.g., HTML and JavaScript)
or network protocols (e.g., JavaScript and PHP). For exam-
ple, when JavaScript sends an HTTP POST/GET request to
the server, the server-side PHP code receives the values in
either $POST or $GET variables. CHKPLUG performs key-
value analysis via first matching keys at both languages and
then connecting the corresponding values with inter-language
dataflows. For example, CHKPLUG looks for the keys in
$ajax calls at client-side JavaScript and matches the cor-
responding keys in $POST at PHP, and then creates dataflows
between both values.

Now, we illustrate several language pairs and describe
how CHKPLUG performs the aforementioned inline and key-

1 <p> a <?php echo 'dog' ?> </p>

Listing 1: PHP code embedded inside HTML.

value analysis to create cross-language dataflows using a few
examples under each pair.

HTML<+—PHP On one hand, PHP can be embedded as
part of HTML and output HTML code; on the other hand,
HTML can be used to send HTTP requests to PHP. CHKPLUG
adopts inline analysis for the former and key-value analysis for
the latter. We describe the details below:

e Inline PHP Traversal (PHP—HTML). CHKPLUG con-
nects dataflow edges from the AST of the inline PHP
to the corresponding placeholder that represents the PHP
output. For example, in Listing [T, CHKPLUG connects
the root node that corresponds to echo ‘dog’ to a corre-
sponding text node in HTML that represents < ? php echo
‘dog’ 7>.

e HTML Form Submission (HTML—PHP). A common
type of communication between HTML and PHP is via
form submission, in which the input data in a form is
submitted and is handled by a POST, GET, or REQUEST
variable in PHP. CHKPLUG connects dataflow edges be-
tween every input field (e.g., <input name = “foo” .../>)
in HTML and places the input field that is referenced in
PHP (e.g., $_POST[‘foo’]).

PHP+—SQL Data can be passed from PHP code to a SQL
query execution that stores data into a database (e.g., through
an INSERT statement); then, similar to SQL data storage, data
can also be retrieved from databases via SQL queries, and then
the data is received by PHP code (e.g., a variable). CHKPLUG
performs these two types of inline analysis.

e SQL Data Storage (PHP—SQL). CHKPLUG connects
dataflows from data supplied to SQL query function call
in PHP to the SQL AST for data storage SQL queries
(e.g., connect a dataflow edge from data that is passed to
the INSERT statement to the SQL AST for the INSERT
statement).

e SQL Data Retrieval (SQL—PHP). CHKPLUG connects
dataflows from the SQL AST to the PHP endpoint that
receives the query result for data retrieval queries (e.g.,
connect a dataflow edge from the SQL AST of a SELECT

1 <?php $pass='123"; ?>
2 <script>var jspass='<?=pass?>';</script>

Listing 2: Connecting PHP and JavaScript.

statement to the PHP variable that receives the queried
result).

PHP<—: JavaScript PHP can be interpreted to yield
JavaScript just as it can be interpreted to yield valid HTML.
This allows data contained in PHP code to propagate to
JavaScript expressions. At the same time, WordPress provides
an Ajax Handler that receives Ajax requests from JavaScript,
processes SPOST or SGET, and then fires a WordPress Action
along with the data sent from the Ajax requests. Then, plugins
can receive the data in PHP via hooking a PHP handler to the
fired Action.

e Inline JavaScript Traversal (PHP—JavaScript). CHK-
PLUG connects edges between the PHP nodes and a
placeholder that represents the resultant JavaScript. For
instance, given the code snippet listed in Listing [2] we
connect the PHP node for the variable to the node for its
usage in JavaScript.

e WordPress Ajax Handler (JavaScript—PHP). CHKPLUG
models this data transmission logic by first locating Ajax
requests that send data to the WordPress Ajax handler
endpoint, and then analyzing the actions that are going
to be fired by WordPress. Next, CHKPLUG analyzes the
PHP functions that are hooked as callback functions to
the fired actions. With these, CHKPLUG matches the data
being sent out by the Ajax requests and the data being
received in the PHP functions and connects data flow
edges between them.

HTML<+— JavaScript JavaScript and HTML are commu-
nicating with each other via different types of DOM APIs.
The connections are done via two types: DOM events and
HTML selectors (such as IDs, names, and class names). Once
JavaScript obtains a DOM element, it can either read its data or
write to it via properties like innerHTML. We now describe
these two types.

First, DOM events may trigger JavaScript callbacks and
interact with HTML. Let us use submit events as an example.
When the onsubmit event of HTML elements is registered
in JavaScript, CHKPLUG creates dataflow edges between the
form node in the HTML and the root node of the handler code.

Second, JavaScript may use selectors, e.g., jQuery or built-
in selectors, to obtain HTML elements. Take jQuery selectors
for example. CHKPLUG parses the selector statements, maps
the selector to the HTML AST, locates the selected HTML
elements, and next connects data flow from the located HTML
elements to the selectors with keys such as ID, names, and
class names. After query selecting, CHKPLUG also finds all
usages of dataset objects and connects the usage to the actual
data attributes in the HTML graph.

2) Intra-language Analysis: Our intra-language analysis
follows traditional static analysis in generating different
control- and data-flow edges. Prior research has shown this
and we do not claim any contributions [24], [28[]. Below,
we introduce two types of control- and data-flow edges that

1 $foo = esc_html ('<p>hello</p>");
2 S$bar = 'a' . 'b' . $foo;

Listing 3: Resolving value using value resolver.

are specific to WordPress or are traditionally challenging to
resolve.

e Hook-related call edges. WordPress provides an event
listening system called hooks, where plugins can either
trigger events and send out data (through do_action () or

apply_filter ()) or register callback functions that listen

to events and receive data sent out by the event trigger
(through add_action () or add_filter ()). CHKPLUG mod-
els hooks by connecting dataflows from the data sent out
by the event trigger to parameters of callback functions
that are registered to receive such data. In this way,
CHKPLUG determines the triggered functions, and thus
traces the personal data flow.

e Control- and data-flow edges related to object properties.
Method calls like $obj—>$foo()) and property accesses
like $obj—>$var or $this—>$var are challenging to re-
solve, because the host object’s types are usually unknown
due to the dynamic nature of PHP. CHKPLUG traces
back the constructions of such objects to find their types
and checks the official doc comments (e.g., PHPDoc) for
functions or class variable declarations.

There are two steps. First, CHKPLUG identifies the
parent-child relationship across all classes in the PHP
source code. That is after the CPG is constructed, CHK-
PLUG identifies all function calls using $self and $parent
variables (e.g., $self ::foo()) and connects call edges
based on overriding principles. In addition, CHKPLUG
connects dataflow edges from the definitions of class
constants or static variables (e.g., connect edge from
const CONSTANT =1 to $self :: CONSTANT.

Second, once the class hierarchy is constructed, CHK-
PLUG determines object types and builds edges for
method calls and class variables in an iterative process,
until results converge and no new edge can be constructed.

o Value resolver. We build our resolver component to de-
termine the values of variables that store URLs, HTML
scripts, or SQL queries inside PHP. It statically deter-
mines the values for variables in case they are assigned
values of basic data types (e.g., string, integer, float).
Specifically, for a given variable node, CHKPLUG first
backtracks dataflow edges to all places they are being
assigned. After tracing back to a variable’s assignment,
CHKPLUG traverses the AST to identify the data that
is being assigned to the variable, and their relationships
with each other (e.g., they are concatenated together). So
that CHKPLUG can resolve the complete value for that
variable. Furthermore, CHKPLUG captures the behaviors
of string filtering and sanitization functions provided
by WordPress (e.g., esc_html(), $wpdb—>S$prepare()) to
accurately resolve string values. However, if part of a
variable’s value does not have any resolvable value (e.g.,
the value comes from a database), CHKPLUG uses a
dummy value instead to complete the resolving process.
To better illustrate, let us consider the example in Listing
If the program tries to resolve the value for $bar,
it will trace back to its assignment, and find that the

value is the result of a concatenation among ‘a’, ‘b’,
and ‘<p>hello</p>’ (the value of $foo after filtered
through esc_html()). Therefore, the resolved value is
‘ab<p>hello></p>’.

e Object type determination. CHKPLUG statically deter-
mines the class/type of an object. CHKPLUG first pro-
duces a representation of all classes and their method calls
and class variables. Then it parses PHPDoc comments
and strict typing for method declarations and variable
declarations. While determining the type of an object,
CHKPLUG first backtracks to a node with types already
recorded, and then checks the recorded type. However, if
this process fails, CHKPLUG also attempts to backtrack
to where the object is being created (e.g., $0bj = new
Foo();) or initialized to determine its type. In this way,
it obtains the types for class variables, arguments, and
return values of methods.

C. GDPR Compliance Checker

Once CHKPLUG finishes constructing the CCPG, it starts to
gather information to identify GDPR compliance. Specifically,
we divide the GDPR compliance checker into three connected
sub-components: (i) detectors, (ii) graph query for GDPR
violation, and (iii) violation report generator.

1) Detector: The purpose of the detector is to find three
types of nodes: source, sink, and security. Source nodes
are those that include PII collection/retrieval functionalities.
SECURE nodes are those intermediate nodes that run se-
curity/hashing mechanisms on the inputted data. Sink node
are those related to the processing of PlIs, e.g., those points
where personal data is being stored, updated, deleted from
the database, or sent to a remote address. Let us describe the
detection of these three types of nodes below.

Source Detector =~ CHKPLUG identifies three different types
of source nodes from where personal data can be collected
or retrieved i.e., (1) HTML form inputs, (2) WordPress core
database, and (3) custom database.

e HTML Form Inputs. The most common way of collecting
user information is through a user interface written in
HTML. With such an interface, a plugin can collect
various personal information, including but not limited
to a user’s email, name, password, location, address,
and date of birth. CHKPLUG finds those entry points by
querying HTML form input nodes and identifying ones
with displayed field names that contain personal data
keywords using a manually crafted rule-based approach
(Appendix [B).

e WordPress core database. Plugins can retrieve personal
data from WordPress’s core database tables which con-
tain user data and are shared across plugins. For this,
CHKPLUG considers two cases: (1) the retrieval function
directly gets personal data (e.g., get_userdata ($user_id)
gets the user’s profile data such as email and name),
or (2) the retrieval function gets user data based on a
key that has a matching personal data keyword (e.g.,
get_user_meta($user_id, 'shipping_address ') gets the
user’s shipping address, which is previously stored as
the user’s metadata). CHKPLUG keeps a record of the
argument position of the key for each function based on

the WordPress documentation locally in a file for mapping
purposes.

e Custom database. Plugins can retrieve personal data from
database queries (e.g., SELECT query) on tables that
contain personal data. This database is specific to each
plugin and is not shared across other plugins. CHKPLUG
first scans for all database table creation queries and
labels tables with fields that have matching personal data
keywords (Appendix [B). Note that CHKPLUG will not be
able to detect storage where the table’s field name does
not contain any matching personal data keyword but is
used for storing personal data. Next, CHKPLUG scans for
all database queries that retrieve data from the tables that
record personal data.

Security Detector =~ GDPR laws require encrypting personal
data before sending it over the network (either to first- or third-
parties). To identify the existence of such functionalities in a
plugin’s code, CHKPLUG analyzes the presence of encryption
or hashing functions. We label nodes that perform security op-
erations (encryption or hashing) on personal data as SECURE.
We discuss the list of functions that CHKPLUG recognizes in

Appendix

Sink Detector CHKPLUG finds four types of sink nodes
that perform operations related to (1) WordPress core database,
(2) custom database, (3) remote request, and (4) file storage.
We discuss those in detail below.

e WordPress core database. Plugins can store, retrieve or
delete data from WordPress’s core database tables (e.g.,
add_user_meta() stores metadata for a user. Refer to
Appendix |G| for the list of WordPress data storage and
deletion functions). We identify and mark all WordPress-
provided function calls as sinks because they can poten-
tially process personal data depending on the inputs. In
addition, we label the argument inputs of these function
calls that are either the data or the key used in the database
operation.

e Custom database. Plugins can store or delete data through
queries (e.g., INSERT and DELETE statements) on tables
that contain personal data. We identify all such database
operations and record their operation type, table name,
and fields. Furthermore, we backtrack the dataflow edge
from SQL to PHP (as explained in Section [[II-BT) to
identify the PHP node that passes data to the SQL query
and executes the query, and then we mark it as a sink
node. For example, in Figure [T} username information is
passed to the SQL query to update the user information.

e Remote request. Plugins send personal data to third-
parties via remote requests (e.g., curl). There are three
ways to send such data in WordPress- (1) PHP native
functions, (2) WordPress functions in PHP and (3) jQuery
requests (e.g., jQuery.post()) in JavaScript. We list the
functions used for remote requests in Appendix [E} For
each such sink point, we identify the argument input
that corresponds to the URL. We then perform backward
dataflow traversal to resolve possible URLs (Section
111-B2)).

e File storage. In addition to storing data in the WordPress
core database or custom databases, plugins can also store
data in files. For this, it can use several PHP functions

(e.g., using fput()). CHKPLUG scans for the usage of
PHP native functions (Appendix [F) for detecting nodes
that store any data to files.

2) Graph Queries for GDPR Violations: The second sub-
component of the GDPR compliance checker is to conduct
graph queries for GDPR violations based on different GDPR
articles. Specifically, Table [I] listed the required dataflows that
should be present in WordPress to comply with the corre-
sponding GDPR policy. We now describe the details based
on different policies separately.

[Article 15] Data Access (P,ccess)- Article 15 mandates
user access to stored personal data. If the plugin utilizes
any custom database for storing personal data, the plugin
is required to provide data export functionality to comply
with Pj,.cess- Note that a plugin is not strictly required to
provide data access functions, as WordPress natively provides
an exporter tool that can access data from WordPress’s core
databases. Yet, WordPress still encourages plugins to imple-
ment a data access function as a best practice [23]]. In summary,
we devise the following rules integrated into CHKPLUG to
determine whether a plugin follows Pj,ccess:

e A plugin stores PII via a custom database and the plugin
provide the option to download all the stored PII —
COMPLY

e A plugin stores PII in WordPress core database —
COMPLY

e A plugin does not store PIl — COMPLY

e A plugin stores PII in a custom database but provides
partial/no set of PII to export — VIOLATION

While data can be exported in many ways, CHKPLUG
considers the sink nodes based on WordPress’s official pri-
vacy guidelines [23]]. WordPress provides website owners
with a privacy tool to manage data export and gives plu-
gins an interface to supply the exported data. CHKPLUG
specifically checks if each type of personal data stored is
supplied to the interface. To achieve this, for each type
of storage method, CHKPLUG searches for a counterpart
method that can retrieve the data from the storage method
as listed in Table m For a WordPress storage function, the
counterpart data retrieval function has a matching data type
and data key. For example, if a plugin stores email through
update_user_meta($id, 'email', $email), the corresponding
retrieval function would be get_user_meta($id ,' email '), as
it operates on the matching data type user_meta, and has
the same data key as ‘email’. For a database operation, the
counterpart deletion function has a matching table name. For
example, if a plugin stores personal data in table tabl through
an INSERT INTO statement, the corresponding retrieval func-
tion would be a SELECT statement operating on the same table
with the same personal data. In Table [we can observe that
P,ccess involves two types of actions, store, and export. Store
actions indicate the process of collecting PII either from the
user interface or database. The action inserts that particular PII
into the database. However, export actions refer to the presence
of retrieval functionalities. In this process, CHKPLUG seeks the
database retrieval for that PII.

More specifically, if a plugin complies with P,.ccss, for
each instance of data storage nodes, CHKPLUG searches for
instances of counterpart retrieval node that has a data flow

path to the exported data supplied to WordPress. This indicates
that the personal data is retrieved and supplied to WordPress’s
exporter tool. If there is at least one storage node that has no
counterpart retrieval node supplied to WordPress, CHKPLUG
marks the plugin as violating the P .ccss-

[Article 17] Data Deletion (Pj.jcic)- Pjeete 1s almost
similar to Ppecess, €xcept for Pgeete plugin needs to provide
deletion functionality even for the storage in WordPress core
database according to article 17. We list the following rules to
identify whether a plugin violates Pgyejete-

e A plugin stores PII and provides the option to delete all
the stored PII — COMPLY

e A plugin does not store any PII — COMPLY

e A plugin stores PII but only provides partial or no set of
PII to delete — VIOLATION

Similar to the analysis for P,...ss, for each type of
storage method, we define a counterpart method that can
delete the data from the storage method. Table [I| illus-
trates the required two flows, one for store and another
for delete. These are necessary for a plugin to comply
with Pjeete. For a WordPress storage function, the coun-
terpart deletion function has a matching data type and data
key. For example, if a plugin stores email data through
update_user_meta($id ,' email ', $email), the corresponding
deletion function would be delete_user_meta ($id ,' email), as
it operates on the matching data type user_meta, and has the
same data key email. For a database operation, the counterpart
deletion function has a matching table name. For example, if a
plugin stores personal data into table tabl through an INSERT
INTO statement, the corresponding deletion function would be
a DELETE statement operating on table tabl.

To be specific, if a plugin complies with Pg;c¢e, for each
instance of a data storage node, we search for instances of
counterpart deletion node. If there is at least one storage node
that has no counterpart deletion node, we determine the plugin
as violating Pejete-

[Article 28] Third-party Data Sharing (Pspgre). The
plugin is responsible for disclosing third-party data sharing to
users. If CHKPLUG finds any remote request sink that personal
data sources can traverse to, it implies that the plugin sends
certain personal data to a third party. In such a case, the plugin
is required to comply with Pgp4.. according to article 28. If
plugins do not send PII to a third party, then they do not
need to follow Pspgre, and thus are automatically compliant.
Whenever the plugin is sharing data with a third party it needs
to disclose it in its privacy policy. Failing to do so will result
in a GDPR violation. Moreover, Psp,re applies regardless
of the URL, because even if the receiving endpoint is the
plugin developer, such a case is still considered third-party
data sharing, as the plugin developer is considered a third-
party from the perspective of the website owner that deploys
the plugin in their website. In particular, we build the following
rules to check violation of Pgpgp. using CHKPLUG:

e A plugin does not collect any PII — COMPLY

e A plugin does not share any PII — COMPLY

e A plugin shares PII with a third party (including the
plugin developer website) and discloses it in the privacy
policy — COMPLY

TABLE I: GDPR policies covered by CHKPLUG.

ID | Action | Flow

P Store collect gy (PI1)||retrievep g (PII) — intermediateyode, ,nodes.....,nodeyy — Storagepp(PII)
access Export counteryetricve D B(P11) = intermediatenode, nodes,.....nodeyy — €LPOTtinter face (P11)

P Store collect gy (PI1)||retrievep g (PII) — intermediateyode, ,nodes.....,nodey — Storagepp(PII)
delete Delete counteryetrievedB (PII) — intermedialenode; ,nodes,....,nodey — d€leleinter face (P1T)

P Send collect gy (PI1)||retrievepp (PII) — intermediatenode, ,nodes.....,nodeyy — T€MOterequest(PII)
share Disclosure | doesEwxist(privacy — policy)&&disclose(sentprr, remoteyrr)

Psecurity Send collect grarr, (PII)||retrievepg(PII) — securepode — remoterequest (PI11)

e A plugin shares PII with a third party (including the
plugin developer website) but does not disclose it in the
privacy policy — VIOLATION

e A plugin shares PII and does not have any privacy policy
— VIOLATION

As a result, we search for all the remote request sink
points that send out PII and aggregate all personal data
types sent out via these sinks. Note that we mark all remote
requests as sending data to third parties, because a plugin
developer, itself, is considered a third party to the website that
deploys the plugin. That is why sending data to the plugin
developer is considered third-party data sharing. We search
for the flow of send and disclosure (Table [[) in the plugin
CCPG. Unique to analyzing Pkspgre, We consider privacy
policy to complete the flow for disclosure action. We extract
the privacy text the plugin provides to WordPress through
wp_add_privacy_policy_content() (WordPress’s recommended
way to provide privacy policy texts [22]). We then leverage
existing work on privacy policy, PolicyLint [26] to analyze
the privacy text and identify the list of personal data collected
by third parties. Next, we compare this list with CHKPLUG’s
output. If the plugin fails to disclose any data collected by a
third party (or does not have a privacy policy at all), we report
that plugin as in violation of Pspqre.

[Article 32] Security of PII (Psccyrity)- According to
article 32, plugins need to encrypt or perform hash operations
on personal data before sending it over the network. Even if
they use a secure channel for such communication, then it is
considered protected. Failure to do so will violate Piecurity-
We determine a plugin violating Psecurity by checking the
following rules-

e A plugin sends the encrypted PII to secure/insecure
channel — COMPLY

e A plugin sends PII to any remote URL a secure commu-
nication channel (e.g., HTTPS) — COMPLY

e A plugin sends PII to any remote URL an insecure
communication channel (e.g., HTTP) — VIOLATION

Both Pspare and Pgecurity Tequirements are related to
whether the plugin sends personal data to a remote URL. While
many security settings are out of plugin developers’ control,
we search for direct evidence that the plugin is transmitting
personal data via an insecure method.

Specifically, for each remote request sink point that per-
sonal data can traverse to, we parse the possible endpoint URLs
which are previously analyzed by our detector (Section [[II-CT])
and check whether the URLs use HTTP rather than HTTPS
protocol. Furthermore, for each such sink point, we check if
the node has a SECURE label, which would imply that the data

is hashed or encrypted. If a plugin uses an insecure method
to transmit personal data and does not secure the data in any
way, it violates Psecyrity-

3) Report Generator: After all analyses are done, CHK-
PLUG compiles a human-readable report that includes the final
compliance decision and, if applicable, all evidence that a
plugin violates GDPR. Moreover, to help developers comply
with GDPR, CHKPLUG produces a fix report that guides
plugin developers step by step to fix their violations. We have
uploaded an example report to [15]. In the following, we
illustrate how CHKPLUG generates compliance reports.

e Violation evidence. CHKPLUG outputs all evidence that
shows the plugin is required to comply with a GDPR
law, whereas the plugin lacks the actions to comply. Take
the example shown below, for a piece of evidence that
shows the plugin is not compliant with Pyejete, CHKPLUG
outputs the data storage sink of personal data that indi-
cates the plugin needs to comply with Pyjese, Whereas the
plugin has no corresponding deletion method. CHKPLUG
indicates the code location where the developer can find
this sink, as well as the personal data type that is being
stored. We have illustrated a case in which CHKPLUG
detects PII storage in a specific file of the plugin’s source
code. As a result, CHKPLUG is indicating the applicable
GDPR policies for such storage.

[Art.17, Right to erasure] WordPress storage
of PII through update_user_meta ($current_user
— ID, ‘last_name’, $asmember_register_name)
does not have a corresponding deletion method.
Storage method found in file templates/
single—asmember-memberships.php at
line 771. Storage method stores user data of type:
last name.

e Fix report. To help plugin developers comply with GDPR,
CHKPLUG refers to the plugin handbook provided by
WordPress [22]] and provides a breakdown of all specific
steps needed to comply with GDPR for all laws the
plugin violates, along with auto-generated template code
and TODOs inside the code based on the specific law
requirements of the plugin.

With that, CHKPLUG determines whether a plugin com-
plies with GDPR by analyzing the cross-language code prop-
erty graph.

IV. IMPLEMENTATION AND DATASET

In this section, we describe our open-source implementa-
tion and dataset.

A. Implementation

Our implementation is open-source with 24,251 lines
of code (LoC) excluding any third-party libraries or open-
source tools. The implementation is available at: https://github.
com/faysalhossain2007/CHKPLUG. We adopt an open-source
HTML parser [11] and make changes with 1,190 LoC in
Python. We also adopt an open-source SQL parser [18]] and
make changes with 436 LoC written in Python. Our imple-
mentation of JavaScript and PHP CPG is based on navex [24]
and we make the following modifications.

e A customized JavaScript parser. We use Esprima to build
a customized parser that converts JavaScript code to be
accepted by navex.

e Intra-procedural data-flow edges. For a given REACHES
edge (i.e., a traditional data flow edge that connects data
flows between two lines of code) between two lines of
code, CHKPLUG searches for the corresponding nodes
that represent the same data unit in the AST of the two
lines of code and connect them.

e Hierarchical edges. CHKPLUG traverse the hierarchy of
ASTs for each line of code and connect data units inside
the AST, capturing and connecting movements of data
units within a line of code.

e Function call and return edges. First, CHKPLUG finds
call edges between different nodes. They are constructed
between a function call and the function definition, and
it is difficult to track the individual arguments passed
to the function. As a result, CHKPLUG follows call
edges and connects dataflows between arguments within
a function call and the parameters inside the function
definition. Second, following the logic for function call
edges, CHKPLUG tracks how data is processed after it
is passed to a function and then returned. Therefore,
CHKPLUG follows call edges to locate all the return
statements inside the function definition and connects
dataflows for the returned data.

e Traversal of PII and Security Nodes. After con-
structing all dataflow edges and identifying all the
PII sources and all security nodes that hash or en-
crypt data, CHKPLUG performs dataflow traversal using
‘apoc.path.subgraphNodes’, a Neo4J procedure that tra-
verses all dataflow edge types we designate and outputs
all reachable nodes within the graph. CHKPLUG uses the
procedure to traverse from all the source nodes and get
all nodes reachable through the dataflow edges that it
generated. Therefore, CHKPLUG obtains all nodes that
can possibly be reached by any of the personal data source
or security nodes. Our tool labels all nodes that can be
reached by a personal data source as PERSONAL, and all
nodes that can be reached by a security node as SECURE,
and CHKPLUG records down the corresponding sources
that can reach to the node. Furthermore, CHKPLUG
combines the personal data type of the personal data
sources (e.g., an array node may be reachable by a node
with email data and another node with password data, and
we mark the array node as containing email and password
data). Similarly, for nodes reachable by security nodes,
our tool combines the encryption/hashing methods from
the sources. Next, CHKPLUG identifies all sinks among
the nodes that are reachable by personal data sources,
as these sinks conduct operations on the personal data

TABLE 1II: Ground truth labeled data of 200 plugins for
evaluation. v'= violation X = non-violation.

#Violation | #Poccess #Pdclete #Pshare #Psecurity | #Plugin

X 200 131 190 190 124
v 0 69 10 10 76

sources; among these sinks, it also identifies the ones that
are reachable by security nodes, as these sinks process
encrypted or hashed data.

Next, we also describe our manual efforts in identifying
these source/sink/security functions for our analysis. Specifi-
cally, we inspect the behavior of APIs in different languages
(e.g., DOM, PHP, and WordPress) manually. Let us use the
WordPress APIs as an example. The WordPress team maintains
a number of packages required for the proper operations
of WordPress. These packages live in the wp-include
directory of WordPress and can be used by plugin developers.
Similarly, wo—admin contains functions related to admin-
istrative actions. To begin, we gather all of the functions
defined in the wp—admin and wp-include directories of
WordPress using our Python crawler. In total, there are 2,885
functions [21]]. We then categorize these functions by behavior
as either sources, sinks, or neither. Again, each function sets,
deletes, or retrieves different user information. So, we label
both operations and the types of collected user information
manually. Before labeling, we read the complete descriptions
of the WordPress functions from the official website. In total,
we find 30 store, 65 retrieval, and 28 delete functions. We
include the complete list in Appendix |G} CHKPLUG uses these
labeled functions while building the detector.

B. Dataset Collection

We collect WordPress plugins from the official website [4]]
in May 2022. To that end, we build a Selenium-based Python
crawler that collects all the links of published plugins (so far)
from |https://plugins.svn.wordpress.org/. We visit each plugin’s
webpage (hosted in [4]). If a particular plugin is still active,
then the user will be able to download it. Using our crawler, we
are able to get the source code of all the plugins successfully.
For each plugin, we collect the active installation numbers,
last updated information, average ratings, current version, and
plugin’s code. We select 2,722 plugins from the marketplace.
Out of these 2,722 plugins, we manually analyzed 200 plugins
as ground truth for evaluating the performance of our tool.

1) Manual Labeling: Important to our evaluation is a
ground truth with which we can compare the results of our
system analysis. To establish this ground truth we manually
analyze the plugin behavior and source code. Three computer
science students read the GDPR extensively and consulted with
a domain expert—who has six years (2016-) of experience
in working with GDPR and privacy regulations—to learn the
labeling methods. Later, they manually label those plugins, and
whenever they have a conflict, they resolve it by discussing
it with the domain expert. Each manual analysis aims to
establish compliance or non-compliance concerning the same
properties that CHKPLUG does. Those properties are data
access, data deletion, data sharing, and security of PII. To
begin, an analyst will install the plugin into a local version
of WordPress. From there, they interact with the site and

https://github.com/faysalhossain2007/CHKPLUG
https://github.com/faysalhossain2007/CHKPLUG
https://plugins.svn.wordpress.org/

plugin operating as a regular user would. The analysts are
alert to all of the instances where the plugin would prompt for
information. For any case where PII is collected, they then seek
out the appropriate access and deletion endpoints. If no such
interfaces are found, the plugin is said to be non-compliant.
If found, a further analysis still must be done to validate the
implementation. This requires inspecting the database backing
the site. More particularly, the analyst will locate the records
in the database added by the plugin. Database management
tools with user-friendly front ends (e.g., Adminers) make this
process simple. An analyst can then confirm the plugin’s
compliance by ensuring the database is updated appropriately
when interfaces like those to remove PII are invoked.

Inspecting the local database will not help identify cases of
third-party information sharing. For these cases, the approach
is to inspect the source code. One area to pay close attention
to is including expressions. Third-party packages need to be
included in the source file so their presence is a possible
indication that user information may be shared externally.
To confirm, it is helpful to load the plugin source into an
IDE and navigate the call graph. Most IDEs have features to
find usages of particular methods which can help trace data
flow. Our analysis includes inspecting the source code in this
way to identify violations. Lastly, we complement this static
analysis with a more dynamic approach like using a debugger.
If there are functions whose behavior cannot be determined
or ambiguity in the code, we launch Xdebug, a popular PHP
debugger. The debugger is connected to the WordPress instance
and breakpoints are set in the areas of confusion. We could
then interact with the plugin through the web interface, trigger
the breakpoints, and gain access to data on the stack. This
approach is helpful to confirm the exact information being
transferred by the API calls. Ultimately, these methods are
used to establish compliance concerning information sharing
and information security.

While thorough, this process is very time-consuming. Often
an analysis of a single plugin could take between 4-6 hours
(approx.). In total, we manually inspect 200 plugins using
this approach. Of these 200, 76 plugins violate one or
many GDPR violations while 124 plugins comply with GDPR
policies. Table [[] provides a breakdown of compliance across
different GDPR policies. Note that we have not considered
WordPress themes because those are for polishing the User
Interface and website visual effects, which do not collect
user data in general [20], [44]. We also manually verified
30 randomly-selected WordPress themes and found that none
collect PIIL.

V. EVALUATION

In the following section, we run a series of experiments to
evaluate the performance of CHKPLUG. In the end, we evaluate
the end-to-end performance of CHKPLUG (Section [V-D)). We
run the experiments on AWS with 6 EC2 instances. These
machines are of the t3.medium variety. They feature Intel(R)
Xeon(R) Platinum 8259CL Processors, 2 vCPUs, 4 GBs of
RAM, and run Amazon Linux 2.

A. Evaluation Questions and Metrics

To evaluate the performance of CHKPLUG, we seek an-
swers to the following questions:

10

TABLE III: RQ1: Detailed performance of CHKPLUG on 200
plugins for identifying different GDPR violations. Here, TP=
True Positive, FP = False Positive, TN = True Negative, and
FN = False Negative.

Policy | TP TN FP FN | TPR TNR
Paccess 0 200 0 0 100% 100%
Paeiete 66 127 5 2 97% 96.2%
Pshare 7 189 1 3 70% 99.5%
Psecurity | 9 189 1 1 90% 99.5%
Total | 82 705 7 6 | 89.3% 98.8%

e RQI1. What is the performance of CHKPLUG in detecting
GDPR violations in plugins?

e RQ2. How many plugins violate GDPR as reported by
CHKPLUG?

e RQ3. What is the computation overhead of CHKPLUG?

The answer to the first question helps to show the effec-
tiveness of CHKPLUG, and the answer to the second question
helps to understand the current compliance situation of plugins.
Answering the third one will ensure the scalability of the tool.

B. RQI: Performance Evaluation of CHKPLUG

To evaluate the ability of CHKPLUG to identify plugin
violations, we compare the results of CHKPLUG with manual
analysis results. As mentioned in Section [[V-B] we manually
labeled 200 plugins as ground truth. In the following, we
report the accuracy of CHKPLUG by evaluating these 200
plugins.

We report the true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) rates of the analysis
in Table We consider violation as positive data and non-
violation as negative data. TP indicates plugins labeled by both
CHKPLUG and the human annotator to be in violation, FP
are labeled by CHKPLUG to be in violation whereas manual
analysis determines them to be compliant (non-violation),
TN denotes plugins labeled by both CHKPLUG and manual
analysis to be compliant, and FN are labeled by CHKPLUG to
be compliant but human labels them as in violation.

We observe that our tool achieves an average of 98.8%
TNR and 89.3% TPR in detecting four different GDPR viola-
tions. In the following, we discuss in detail about performance
in each of those categories-

1) Evaluation of P,cccss: CHKPLUG identified no plugins
as violating an access policy. It is consistent with our manual
analysis. CHKPLUG achieves TNR of 100% and TPR of
100%. The main reason for all the plugins not violating access
regulations is- whenever they store PII, they use WordPress
core database. As a result, it is not strictly required to provide
data export functionality to the user as WordPress will by
default handle that.

2) Evaluation of Pjgejete: Out of the 200 plugins with
ground truth from manual analysis, CHKPLUG marks 66
plugins as violating a deletion policy with a TPR of 97% (127
out of 131) and a TNR of 96.2% (66 out of 69). We notice
that a common source of false positives on the delete policy
has to do with identifying deletion endpoints. While we can
identify the static deletion endpoints made available to plugins

1 $request = wp_remote_get (
2

.$secret_key .
'&remoteip="' .

'&response="' .
$Sremote_ip

—
— $response .
—

3

7

Listing 4: Security violations identified by CHKPLUG.

with a process similar to the one described in Appendix [G] a
developer is free to write their own implementation to adhere
to the GDPR requirements. For these endpoints, CHKPLUG
must fall back to pattern matching. In the false positive cases,
the pattern matching is not exhaustive enough. For instance,
in the plugin ‘bp-featured-members’, we observe PII being
collected with a call to an add_user function. CHKPLUG
correctly flagged this as a case where a deletion endpoint must
be provided. However, the developer implemented deletion
endpoint was defined as remove_user. This definition was easy
to spot during a manual analysis, however, this form was not
part of the patterns the tool searched for.

3) Evaluation of Pspare: CHKPLUG marked 7 plugins as
violating a sharing policy with a TNR of 99.5% (189 out of
190) and a TPR of 70% (7 out of 10). Our tool predicted
one false positive. The ‘wp-user-avatar’ plugin, previously was
sending user information to ‘https://www.gravatar.com/avatar/’
inside the ‘class-wp-user-avatar-functions.php’ file. However,
while manually investigating this plugin, a human annotator
noticed that the plugin had saved the deprecated code files
inside a folder that is no longer used. Our tool is not able to
detect which files are active and which are not. It analyzes all
source files inside the plugin folder.

4) Evaluation of Psecyrity: CHKPLUG marked 9 plugins as
violating a security policy with a TNR of 99.5% (189 out of
190) and a TPR of 90% (9 out of 10). CHKPLUG analysis of
security violations is conservative. When CHKPLUG cannot
determine the endpoint receiving PII is using HTTPS, the
corresponding plugin will be flagged as a violation. We see
a case where this occurs in the ‘google-site-kit’ plugin. It tries
to send PII using the url: $url = $this— > url($uri);. In the
case of this plugin, the system was unable to resolve some of
the components of the URL argument due to missing patterns.
Even though manual analysis can identify the endpoint to
be secure, since the full URL could not be resolved, it was
marked as a violation. This is a case where CHKPLUG was
over-conservative and led to a false positive.

C. RQ2: Measurement Analysis

We run CHKPLUG on 2,722 plugins from the WordPress
store. Note that, these 2,722 plugins include the ones listed
in Table [l We find that 14% (381 out of 2,722) plugins do
not comply with GDPR.

Table [V| breaks down violations across particular policies.
We observe that the most common form of violation was a
delete violation, where users are not empowered to delete their
data. Around 13.52% (368 out of 2,722) plugins do not provide
data deletion functionalities. We observe the violations in other
categories as 0.7% in Pspare, 1.3% in Pgecyrity, and 0% in
P,ccess- For the 19 plugins that violate Pgpqre, we found that
16 of them do not have a privacy policy but share PIIs; the
remaining three have a privacy policy but fail to mention PII
sharing in that policy. Most of the plugins use the WordPress

'https://www.google.com/recaptcha/api/siteverify?secret="

11

TABLE 1IV: Breakdown PIIs into violations based on the
relations to the WP database. WP=wordpress core database,
non-WP=custom database.

PII #Pdelete #Pshare #Psecurity
WP non-WP | WP non-WP | WP non-WP
Username 310 11 15 1 11 3
Email 29 3 2 0 5 4
Password 18 1 0 0 0 0
Address 12 1 2 0 0 0
First Name 12 0 2 0 3 3
Last Name 12 1 2 0 3 3
1P 7 2 1 0 5 4
State 8 0 2 0 1 0
Country 7 0 1 0 1 0
Phone 6 0 0 0 0 1
Postcode 4 0 1 0 1 0
City 4 0 1 0 1 0
Birthday 1 0 0 0 0 0

1 public function init () {

2 if (!class_exists('\\GF_User_Registration')

— !function_exists('\\wlmapi_update_member')) {
3 // Gravity Forms User Registration Add-On
<+ and/or WishList Member not activated, so we do nothing
return;

}

}

RS IRCNR VNN

9 private function insert_wlm_data(S$user_id, $wlm_data) {

10 if (empty($wlm_data)) {

11 return;

12 }

13 \wlmapi_update_member ($user_id, Swlm_data);

14}

Listing 5: FP analysis of sending data to third-party.

TABLE V: RQ2: Measurement analysis results of 2,722 plu-
gins using CHKPLUG.

Policy #Violation Percentage
Paccess 0 O%

Pdelete 368 13.52%
Pshu.re 19 0.7%
Psecu'rity 36 1.3%

core database for storing data. Since WordPress provides the
export feature for such storage, we experience fewer violations
in PGCCESS‘

We also analyze the PIIs in GDPR violations. Examples
of such PIIs are- phone number, date of birth, and physical
address. We also break down PIIs in the GDPR violations
based on data categories, and the relations to the WP database
(called WP and non-WP). We show the details in Table

We provide a few case studies of violations in Section

D. RQ3: Computational Overhead

We benchmarked the runtime performance CHKPLUG on
2,722 plugins. The benchmarks ran on the same t3.medium
machines described at the start of section [V} No unnecessary
user programs were running during the benchmark. We observe
that the system can process an entire plugin in just a few
minutes. The average time taken for analyzing each of the
plugins is approximately 9.1 minutes. We run the benchmarks

1 — CDF

Percentage of plugins

o

©

o
L

o

)

©
|

0.86 -

60 80 100 120
mins

Fig. 4: RQ3: Cumulative distribution function (CDF) of Com-
putation overhead of CHKPLUG.

20 40

with a three-hour timeout but no plugin has taken that long to
be processed. The longest processing time is around two hours.
In addition, we show in Figure {4| the cumulative distribution
of plugins that take longer than the average time to analyze,
i.e., the CDF of around 14% of plugins. We observe that more
than 98% of plugins finish analysis within an hour.

We notice that the time it takes to process a plugin is
proportional to its size. The larger the plugin is, the more
processing time is needed. While we optimize the communi-
cation with the backing Neo4J] database, batching reads and
writes where possible, in profiling CHKPLUG, we discover
that a large portion of the runtime is consumed by network
overhead from these communications. This is a consequence
of using an external database.

VI. CASE STUDY

In this section, we illustrate several case studies for
the 381 plugins found by CHKPLUG, which violate GDPR
policies. Specifically, we describe one violation example in
each category. Note that we have responsibly reported all the
violations to plugin developers; so far, we have not received
any responses yet.

Violation of Py .t ‘Namaste! LMS’ (https://wordpress.
org/plugins/namaste-lms/) provides a learning management
system with an average rating of 4.5. Currently, it has 800+
active installations. It collects and stores user information in
the database in file ‘controllers/woocommerce.php’ at line 62.
It stores all PII in the WordPress core database. However,
CHKPLUG does not find any evidence of providing users the
option to delete those PII. It is in clear violation of Pjyejete-

Violation of Pgjq.e ‘Vindi WooCommerce 2’ (https:
/Iwordpress.org/plugins/vindi-payment-gateway/) provides a
one-time payment solutions using Woocommerce subscrip-
tions. It has been regularly maintained by Vindi (the developer
of this plugin) with an active installation of 200+ users. At the
time of writing this paper, it has an average rating of 3.7. Our
tool detects this plugin as sharing data with a third party. In the
‘controllers/CustomerController.php’ file, it creates customer
profile data. It also has the functionality to update customer
data. Later, it sends that private data to the third party via

12

API calls to https://sandbox-app.vindi.com.br/api/vl/ in file
src/services/Api.php at line 242. Unfortunately, it does not even
have a privacy policy. As a result, it violates GDPR by not
disclosing PII sharing in the privacy policy.

Violation of Pccyrity ‘Gallery Custom Links’ (https:
/Iwordpress.org/plugins/gallery-custom-links/) allows linking
images from galleries to a specified URL. It has 50,000+
active installations and an average rating of 4.5 stars. Our tool
detects this plugin as violating Pyecyrity because it is sending
PII over an HTTP channel (to http://meowapps.com) instead
of a secure channel. We find such problematic behavior in
‘common/premium/updater.php’ at line 418.

VII. DISCUSSION & LIMITATIONS

In this section, we summarize a few important discussions
related to our data selection and tool evaluation, the limitations
of our tool, adaptability to other CMS platforms, and future
research directions.

WordPress Plugin Selection in the Evaluation While
selecting the plugins for measurement analysis, we include the
most popular ones as violations in these plugins would have
the most impact on users. We use AWS for running all the
evaluations and measurement analysis. It is expensive. Only
around 1,000 plugins cost us $229.86 and it takes almost two
and half days to finish running the analysis.

Deployment Model Website owners, plugin developers,
and law professionals can use CHKPLUG to detect GDPR
compliance. CHKPLUG will help website owners to identify
plugins that violate GDPR laws. This will allow them to
make informed decisions before integrating a particular plugin
into their website. We have two mitigation suggestions for
the plugin developers. First, developers can follow WordPress
guidelines, which may help plugins to comply with many
GDPR articles, e.g., data access, automatically. Second, our
analysis report helps developers to make their plugins comply
with GDPR. A sample report is shown in [[I5] Finally, law
professionals can use our tool to help identify websites that
violate GDPR laws. Note that, currently the WordPress team
does not hold any responsibility for the GDPR compliance
of the plugins. So, the website owner must take extra steps to
ensure GDPR compliance with their website before integrating
any WordPress plugins.

False Negatives Like all static analysis tools, CHKPLUG
may suffer from lack of pattern coverage, leading to false
negatives. However, from Section we can observe that
our tool’s false negative cases are rare. It shows that we are
not missing many plugins which violate GDPR regulations.

False Positives Due to the inherent nature of static analysis,
CHKPLUG has false positives, e.g., due to imprecise modeling
of call edges. However, according to our evaluation results,
CHKPLUG’s TNR is very high.

CMS Platforms Other than WordPress We mainly
perform our analysis on WordPress plugins as it is the most
popular CMS powering over 32% of the World Wide Web
[71]. However, our tool is extendable to plugins from other
platforms (e.g., joomla [13]], drupal [10]) as long as those

https://wordpress.org/plugins/namaste-lms/
https://wordpress.org/plugins/namaste-lms/
https://wordpress.org/plugins/vindi-payment-gateway/
https://wordpress.org/plugins/vindi-payment-gateway/
https://sandbox-app.vindi.com.br/api/v1/
https://wordpress.org/plugins/gallery-custom-links/
https://wordpress.org/plugins/gallery-custom-links/
http://meowapps.com

are written using PHP, HTML, JavaScript. CHKPLUG will not
be able to detect GDPR compliance in CMS platforms (e.g.,
DotNetNuke [9], Kentico [[14]) that use other programming
languages (such as C# and ASP.net).

User Consents In our analysis, we have not considered
user consent. As a result, we may miss plugins that collect
and store PII without user permission. User consent involves
users’ interaction (via Ul elements) and reading the terms &
conditions document. It is context-dependent and there are
many ways to collect user consent. It is another interesting
research topic to analyze user consent in different contexts.
We leave it for future work.

VIII. RELATED WORK

In this related work section, we start by describing previous
works on GDPR analysis. Next, we present existing static
analysis tools, particularly those on PHP and JavaScript, and
how our tool is different from them. We end with discussing
prior works on website privacy analysis.

A. GDPR Analysis

Investigating GDPR violence in published applications is
a hot research topic. Researchers are performing experiments
to detect whether the application includes proper privacy
policy [27], whether they take user consent before storing
user personal information [83]]. To that end, they run several
measurement analyses to have a deep understanding of the
impact of GDPR across different regions [42] and how it
evolves the existing application market [56]]. A wide body of
research works [48]], [60], [75], [82] already discovered many
problematic ways of granting cookie consent. Nouwens et al.
[68] investigated 680 websites and found 90% of them do not
comply with GDPR requirements. They pointed out several
problems including — vague privacy policies [26], over-sharing
of information through third parties [65]. In sum, the existing
works are focusing more on making the usage of personal
information more transparent [57], [63], [79]I, [81], [83], [84],
which typically aim at generating GDPR compliant privacy
policies from application’s source codes [87]], [[89].

However, those works mainly focus on one platform while
doing analysis. In contrast, CHKPLUG can detect GDPR vi-
olations across different programming languages. Specifically,
we introduce an end-to-end detection tool which starts from
how the application is collecting data from user, sending those
data to the cloud, and how cloud process & stores those data.

B. Program Analysis

Program analysis, particularly either static or dynamic anal-
ysis, is a widely studied topic, and it likewise has been applied
to a variety of situations, including but not limited to— code
correctness, sanity checking, security, and privacy [28]. JFlow
is an early application of static analysis to perform security and
privacy for Java code [64]]. Kim et al. [51] developed ScanDal,
which statically analyzes Android apps for privacy leaks via
tracking data flows from sinks to sources. AndroRisk is a risk
quantifier for Android apps based on their requested device
permissions along with dependent libraries [76]. Shezan et al.
introduced TKPERM to transfer permission access knowledge

13

across mobile, web and IoT platforms [78]. Xiao et al. ap-
plied static analysis to TouchDevelop scripts for Android, and
these scripts were analyzed for private information sources
flowing to sinks to outside sources as well as the security
and privacy of such information flows [85]]. Similar to those
works, CHKPLUG can track personal information flow from
the source to the sink. However, the purpose of CHKPLUG is
to detect GDPR violations rather than direct privacy leaks or
vulnerabilities.

Security researchers use query languages to identify vul-
nerabilities and other security bugs [43]], [69]. They identified
SQL injections and cross-site scripting in Java programs [58]].
Martin et al. discovered functional flaws and security vulner-
abilities using the Program Query language [59]. These days,
researchers leverage graph-based program analysis to discover
defects in the artifacts and identify zero-day vulnerabilities
[25]], [47]. Yamaguchi et al. leveraged code property graphs to
discover vulnerabilities in the Linux kernel [86]. All of these
works are focused on one programming language. Whereas,
we create a cross-language code property graph to bridge the
connection among different web programming languages.

Jalangi [77] selectively records and replays front- and back-
end JavaScript programs. ODGen [55] design and proposes
object dependence graph to detect Node.js vulnerabilities based
on graph queries. DAPP [50] looks for AST and control-
flow patterns for prototype pollution vulnerability detection.
ObjLupAnsys [54] expands and maps two clusters during the
abstract interpretation for vulnerability detection. Nodest [66],
which is based on TAJS [45], detects command injection vul-
nerability via skipping unrelated packages. Black Widow [40]
crawl and scan web applications in a black-box manner. People
also proposed approaches to detect various client-side vulner-
abilities, such as DOM-based XSS [61]], [80] and CSRF [70]
As a comparison, CHKPLUG’s static analysis crosses language
boundaries, e.g., PHP, JavaScript, SQL, and HTML.

C. Website Privacy Analysis

There exist several privacy enforcement tools, including
— privacy preferences [36], privacy badger [29]. They are
investigating various ways to improve user protection [52]]. To
that end, they enforce users’ cookie policies on the visited
websites by interacting with a consent management system
[67], blocking first-party cookies (such as Google Analytics)
[30]. Compared to those works, we are analyzing the source
code of websites to find potential privacy leakages.

Most of the current work on WordPress plugin focus on
measuring the vulnerabilities [33]], [35]], [62], [[72], character-
izing vulnerability exploits [34], [38]], [S3], [[88]]. Kasturi et al.
investigate the impact of malicious plugins on CMS market-
places [49]. Whereas, in our work, we investigate WordPress
plugins to identify GDPR violations.

IX. CONCLUSION

WordPress plugins provide additional functionalities to
websites built with WordPress but also face a new problem
in the era of privacy, i.e., its compliance with privacy laws,
particularly GDPR. To the best of our knowledge, no prior

works have provided automated checks of various GDPR arti-
cles on WordPress plugins partially due to its cross-language
nature (the involvement of HTML, JavaScript, PHP, and SQL).

In this paper, we design a tool, called CHKPLUG, to
automatically check whether WordPress plugins comply with
GDPR. Ground truth evaluation shows that CHKPLUG per-
forms well, achieving an average of 98.8% TNR and 89.3%
TPR in checking GDPR compliance. We believe that website
owners as well as plugin developers will get benefit by using
CHKPLUG.

We hope that CHKPLUG can shed a light on the need
for future research on checking CMS plugins’ compliance
against GDPR articles. More importantly, we believe that as the
first step towards a more private, law-compliant community,
CHKPLUG will help future researchers as well as developers
to better understand GDPR and fill the gap between law
enforcement and software development.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers and shepherd
for their helpful comments and feedback. This work was
supported in part by National Science Foundation (NSF) grants
1920462, 1943100, 2114074, CNS-20-46361 and CNS-21-
54404. Dr. Tian is supported by the Google research scholar
award, Meta research award. Dr. Cao is also partially supported
by Amazon Research Award 2021 and DARPA Young Faculty
Award (YFA) 2022. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of NSF, Amazon, or DARPA.

REFERENCES
[1] Your introduction to personally identifiable informa-
tion: What is PII? https://matomo.org/blog/2020/01/

your-introduction-to-personally-identifiable-information- what-1is-pii/,
2020.

California consumer privacy act.
September 16 2021.

GDPR regulations. https://gdpr-info.eu/, 2021.

Wordpress plugin. https://wordpress.org/plugins/, 2021.

2GDPR. https://2gdpr.com/, 2022.

Calligo. https://www.calligo.i0/gdpr-services-eu-representatives/, 2022.

[2] https://oag.ca.gov/privacy/ccpal,

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
[12]

Codeinwp. https://www.codeinwp.com/blog/gdpr-compliance/, 2022.
Cookiebot. https://www.cookiebot.com/, 2022.

DotNetNuke. https://www.dnnsoftware.com/, 2022.

Drupal. https://www.drupal.org/, 2022.

HTML Parser. https://www.npmjs.com/package/htmlparser2, 2022.

Is wordpress really a 10 billion dollar economy? https://www.presstitan.
com/is-wordpress-really-a- 10-billion-dollar- \economy/, 2022.

(13]
[14]
[15]

Joomla. https://extensions.joomla.org/, 2022.
Kentico. https://www.kentico.com/, 2022.

Plugin analysis report generated by CHKPLUG. https://drive.google.
com/file/d/1191ZPOAx6HuvX8YiTHXjqtAllwkpXjlV/view, 2022.

Secure privacy. https://secureprivacy.ai/, 2022.
Silent breach. https://silentbreach.com/gdpr.php| 2022.
SQL Parser. https://www.npmjs.com/package/node-sql-parser, 2022.

[16]
[17]
(18]
[19]
[20]
[21]

Usercentrics. https://usercentrics.com/resources/gdpr-checklist/, 2022.
What is: Theme. https://www.wpbeginner.com/glossary/theme/, 2022.

Wordpress database functions.
reference/classes/wpdb/, 2022.

https://developer.wordpress.org/

14

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[40]

[41]

[42]

[43]

WordPress Plugin Handbook. https://developer.wordpress.org/plugins/
privacy/, 2022.

WordPress Handbook for Data Ex-
porter. https://developer.wordpress.org/plugins/privacy/
adding- the- personal-data-exporter-to-your- \ plugin/, 2022.

ALHUZALI, A., GJOMEMO, R., ESHETE, B., AND VENKATAKRISH-
NAN, V. {NAVEX}: Precise and scalable exploit generation for
dynamic web applications. In 27th USENIX Security Symposium
(USENIX Security 18) (2018), pp. 377-392.

ALRABAEE, S., SHIRANI, P., WANG, L., AND DEBBABI, M. Sigma:
A semantic integrated graph matching approach for identifying reused
functions in binary code. Digital Investigation 12 (2015), S61-S71.

ANDOW, B., MAHMUD, S. Y., WANG, W., WHITAKER, J., ENCK, W.,
REAVES, B., SINGH, K., AND XIE, T. {PolicyLint}: Investigating
internal privacy policy contradictions on google play. In 28th USENIX
security symposium (USENIX security 19) (2019), pp. 585-602.

ANDOW, B., MAHMUD, S. Y., WHITAKER, J., ENCK, W., REAVES,
B., SINGH, K., AND EGELMAN, S. Actions speak louder than
words:{Entity-Sensitive} privacy policy and data flow analysis with
{PoliCheck}. In 29th USENIX Security Symposium (USENIX Security
20) (2020), pp. 985-1002.

BACKES, M., RIECK, K., SKORUPPA, M., STOCK, B., AND YA-
MAGUCHI, F. Efficient and flexible discovery of php application
vulnerabilities. In 2017 IEEE european symposium on security and
privacy (EuroS&P) (2017), IEEE, pp. 334-349.

BADGER, P. Electronic frontier foundation, 2019.

BOLLINGER, D., KUBICEK, K., COTRINI, C., AND BASIN, D. Au-
tomating cookie consent and GDPR violation detection. In 31st
USENIX Security Symposium (USENIX Security 22) (2022), USENIX
Association.

Plugin

BoscH, J. From software product lines to software ecosystems. In
SPLC (2009), vol. 9, pp. 111-119.

BRIAN JACKSON. WordPress GDPR Compliance — Everything You
Need to Know. |https://kinsta.com/blog/wordpress-gdpr-compliance/
#who-does-gdpr-impact, September 20, 2022.

CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON, V. Mea-
suring {Pay-per-Install}: The commoditization of malware distribution.
In 20th USENIX Security Symposium (USENIX Security 11) (2011).

CANALI, D., BALZAROTTI, D., AND FRANCILLON, A. The role of web
hosting providers in detecting compromised websites. In Proceedings of
the 22nd international conference on World Wide Web (2013), pp. 177—
188.

CERNICA, I., POPESCU, N., ET AL. Security evaluation of wordpress
backup plugins. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS) (2019), IEEE, pp. 312-316.

CRANOR, L. F. P3p: Making privacy policies more useful. [EEE

Security & Privacy 1, 6 (2003), 50-55.

DEGELING, M., Utz, C., LENTZSCH, C., HOSSEINI, H., SCHAUB,
F., AND HoLz, T. We value your privacy... now take some cook-
ies: Measuring the GDPR’s impact on web privacy. arXiv preprint
arXiv:1808.05096 (2018).

DuAN, R., ALRAWI, O., KASTURI, R. P., ELDER, R., SALTAFOR-
MAGGIO, B., AND LEE, W. Towards measuring supply chain at-
tacks on package managers for interpreted languages. arXiv preprint
arXiv:2002.01139 (2020).

EDITORIAL STAFF. How Many WordPress Plugins Should You
Install? What’s too many? https://www.wpbeginner.com/opinion/
how-many- wordpress-plugins-should-you- \install-on-your-site/, Jan-
uary 19, 2022.

ERIKSSON, B., PELLEGRINO, G., AND SABELFELD, A. Black widow:
Blackbox data-driven web scanning. In 2021 [EEE Symposium on
Security and Privacy (SP) (2021), pp. 1125-1142.

FERRARA, P., AND SPOTO, F. Static analysis for GDPR compliance.
In ITASEC (2018).

GUAMAN, D. S., DEL ALAMO, J. M., AND CAlzA, J. C. GDPR
Compliance Assessment for Cross-Border Personal Data Transfers in
Android Apps. IEEE Access 9 (2021), 15961-15982.

HALLEM, S., CHELF, B., XIE, Y., AND ENGLER, D. A system and
language for building system-specific, static analyses. In Proceedings of

https://matomo.org/blog/2020/01/your-introduction-to-personally-identifiable-information-what-is-pii/
https://matomo.org/blog/2020/01/your-introduction-to-personally-identifiable-information-what-is-pii/
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/
https://wordpress.org/plugins/
https://2gdpr.com/
https://www.calligo.io/gdpr-services-eu-representatives/
https://www.codeinwp.com/blog/gdpr-compliance/
https://www.cookiebot.com/
https://www.dnnsoftware.com/
https://www.drupal.org/
https://www.npmjs.com/package/htmlparser2
https://www.presstitan.com/is-wordpress-really-a-10-billion-dollar-\economy/
https://www.presstitan.com/is-wordpress-really-a-10-billion-dollar-\economy/
https://extensions.joomla.org/
https://www.kentico.com/
https://drive.google.com/file/d/119iZP0Ax6HuvX8YiTHXjqtAl1wkpXj1V/view
https://drive.google.com/file/d/119iZP0Ax6HuvX8YiTHXjqtAl1wkpXj1V/view
https://secureprivacy.ai/
https://silentbreach.com/gdpr.php
https://www.npmjs.com/package/node-sql-parser
https://usercentrics.com/resources/gdpr-checklist/
https://www.wpbeginner.com/glossary/theme/
https://developer.wordpress.org/reference/classes/wpdb/
https://developer.wordpress.org/reference/classes/wpdb/
https://developer.wordpress.org/plugins/privacy/
https://developer.wordpress.org/plugins/privacy/
https://developer.wordpress.org/plugins/privacy/adding-the-personal-data-exporter-to-your-\plugin/
https://developer.wordpress.org/plugins/privacy/adding-the-personal-data-exporter-to-your-\plugin/
https://kinsta.com/blog/wordpress-gdpr-compliance/#who-does-gdpr-impact
https://kinsta.com/blog/wordpress-gdpr-compliance/#who-does-gdpr-impact
https://www.wpbeginner.com/opinion/how-many-wordpress-plugins-should-you-\install-on-your-site/
https://www.wpbeginner.com/opinion/how-many-wordpress-plugins-should-you-\install-on-your-site/

[44]

[45]

[40]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

the ACM SIGPLAN 2002 Conference on Programming language Design
and Implementation (2002), pp. 69-82.

JASON COSPER. WordPress Themes: Overview and Tips on
Finding the Perfect One. https://www.dreamhost.com/blog/
how-to-find- wp-themes/, September 14, 2022.

JENSEN, S. H., M@LLER, A., AND THIEMANN, P. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium (SAS)
(August 2009), vol. 5673 of LNCS, Springer-Verlag.

Jia, Q., ZHou, L., L1, H., YANG, R., DU, S., AND ZHU, H. Who
leaks my privacy: Towards automatic and association detection with
gdpr compliance. In International Conference on Wireless Algorithms,
Systems, and Applications (2019), Springer, pp. 137-148.

JOHNSON, A., WAYE, L., MOORE, S., AND CHONG, S. Exploring and
enforcing security guarantees via program dependence graphs. ACM
SIGPLAN Notices 50, 6 (2015), 291-302.

KAMPANOS, G., AND SHAHANDASHTI, S. F. Accept all: The land-
scape of cookie banners in greece and the uk. In IFIP International
Conference on ICT Systems Security and Privacy Protection (2021),
Springer, pp. 213-227.

KASTURL R. P., FULLER, J., SUN, Y., CHABKLO, O., RODRIGUEZ,
A., PARK, J., AND SALTAFORMAGGIO, B. Mistrust plugins you must:
A large-scale study of malicious plugins in wordpress marketplaces. In
31th USENIX security symposium (USENIX security 22) (2012).

Kim, H. Y., Kim, J. H., OH, H. K., LEE, B. J., MUN, S. W., SHIN,
J. H., AND KiM, K. DAPP: automatic detection and analysis of
prototype pollution vulnerability in node. js modules. International
Journal of Information Security (2021), 1-23.

Kim, J., YOON, Y., Y1, K., SHIN, J., AND CENTER, S. Scandal: Static
analyzer for detecting privacy leaks in android applications. MoST 12,
110 (2012), 1.

KoNTAXIS, G., AND CHEW, M. Tracking protection in firefox for
privacy and performance. arXiv preprint arXiv:1506.04104 (2015).

KOSKINEN, T., IHANTOLA, P., AND KARAVIRTA, V. Quality of
wordpress plug-ins: an overview of security and user ratings. In 20712
International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing (2012), IEEE, pp. 834—
837.

L1, S., KANG, M., Hou, J., AND CAO, Y. Detecting node.js prototype
pollution vulnerabilities via object lookup analysis. In ESEC/FSE
'21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2021).

L1, S., KANG, M., Hou, J., AND CAO, Y. Mining node.js vulnerabili-
ties via object dependence graph and query. In 31st USENIX Security
Symposium (USENIX Security 22) (Boston, MA, Aug. 2022), USENIX
Association.

LINDEN, T., KHANDELWAL, R., HARKOUS, H., AND FAwAzZ, K. The
privacy policy landscape after the GDPR. Proceedings on Privacy
Enhancing Technologies 2020, 1 (2020).

Liu, F., WILSON, S., STORY, P., ZIMMECK, S., AND SADEH, N.
Towards automatic classification of privacy policy text. School of
Computer Science Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-ISR-17-118R and CMULTI-17 10 (2018).

LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabilities in
java applications with static analysis. In USENIX security symposium
(2005), vol. 14, pp. 18-18.

MARTIN, M., LIVSHITS, B., AND LAM, M. S. Finding application
errors and security flaws using pql: a program query language. Acm
Sigplan Notices 40, 10 (2005), 365-383.

MATTE, C., BIELOVA, N., AND SANTOS, C. Do cookie banners respect
my choice?: Measuring legal compliance of banners from iab europe’s
transparency and consent framework. In 2020 IEEE Symposium on
Security and Privacy (SP) (2020), IEEE, pp. 791-809.

MELICHER, W., DAS, A., SHARIF, M., BAUER, L., AND JIA, L.
Riding out DOMsday: Towards Detecting and Preventing DOM Cross-
Site Scripting. In Network and Distributed System Security Symposium
(NDSS) (2018). https://doi.org/10.14722/ndss.2018.23309\

MESA, O., VIEIRA, R., VIANA, M., DURELLI, V. H., CIRILO, E.,
KALINOWSKI, M., AND LUCENA, C. Understanding vulnerabilities
in plugin-based web systems: an exploratory study of wordpress. In

15

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[75]

[76]

(771

(78]

[791

Proceedings of the 22nd International Systems and Software Product
Line Conference-Volume 1 (2018), pp. 149-159.

Miao, D. Y. Privacylnformer: An automated privacy description
generator for the mit app inventor. PhD thesis, Massachusetts Institute
of Technology, 2014.

MYERS, A. C. Jflow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (1999), pp. 228-241.

NAN, Y., YANG, Z., WANG, X., ZHANG, Y., ZHU, D., AND YANG,
M. Finding clues for your secrets: Semantics-driven, learning-based
privacy discovery in mobile apps. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2018).

NIELSEN, B. B., HASSANSHAHI, B., AND GAUTHIER, F. Nodest:
Feedback-driven static analysis of node.js applications. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) (2019), p. 455-465.

NOUWENS, M., BAGGE, R., KRISTENSEN, J. B., AND KLOKMOSE,
C. N. Consent-o-matic: Automatically answering consent pop-ups using
adversarial interoperability. In CHI Conference on Human Factors in
Computing Systems Extended Abstracts (2022), pp. 1-7.

NOUWENS, M., LICCARDI, 1., VEALE, M., KARGER, D., AND KA-
GAL, L. Dark patterns after the GDPR: Scraping consent pop-ups
and demonstrating their influence. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (2020), pp. 1-13.

PAUL, S., AND PRAKASH, A. A framework for source code search
using program patterns. [EEE Transactions on Software Engineering
20, 6 (1994), 463-475.

PELLEGRINO, G., JOHNS, M., KOCH, S., BACKES, M., AND ROSSOW,
C. Deemon: Detecting csrf with dynamic analysis and property graphs.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2017), CCS ’17,
Association for Computing Machinery, p. 1757-1771.

RANDY A. BROWN. WordPress vs Other CMS Platforms: How Does
WordPress Stack Up Against the Rest? https://www.elegantthemes.
com/blog/resources/wordpress- vs-other-cms-platforms-how-does- \
wordpress-stack-up-against-the-rest, September 05, 2018.

RUOHONEN, J. A demand-side viewpoint to software vulnerabilities in
wordpress plugins. In Proceedings of the Evaluation and Assessment
on Software Engineering. 2019, pp. 222-228.

SAKAMOTO, T., AND MATSUNAGA, M. After gdpr, still tracking
or not? understanding opt-out states for online behavioral advertising.
In 2019 IEEE Security and Privacy Workshops (SPW) (2019), IEEE,
pp. 92-99.

SANCHEZ-ROLA, 1., DELL’ AMICO, M., KOTZIAS, P., BALZAROTTI,
D., BILGE, L., VERVIER, P.-A., AND SANTOS, I. Can i opt out yet?
edpr and the global illusion of cookie control. In Proceedings of the
2019 ACM Asia conference on computer and communications security
(2019), pp. 340-351.

SANTOS, C., BIELOVA, N., AND MATTE, C. Are cookie banners
indeed compliant with the law? deciphering eu legal requirements on
consent and technical means to verify compliance of cookie banners.
arXiv preprint arXiv:1912.07144 (2019).

SARMA, B. P, L1, N., GATES, C., POTHARAJU, R., NITA-ROTARU,
C., AND MOLLOY, I. Android permissions: a perspective combining
risks and benefits. In Proceedings of the 17th ACM symposium on
Access Control Models and Technologies (2012), pp. 13-22.

SEN, K., KALASAPUR, S., BRUTCH, T., AND GIBBS, S. Jalangi: A
selective record-replay and dynamic analysis framework for javascript.
In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (New York, NY, USA, 2013), ESEC/FSE 2013,
Association for Computing Machinery, p. 488—498.

SHEZAN, F. H., CHENG, K., ZHANG, Z., CA0, Y., AND TIAN, Y.
Tkperm: cross-platform permission knowledge transfer to detect over-
privileged third-party applications. In Network and Distributed Systems
Security (NDSS) Symposium (2020).

SHEZAN, F. H., LAO, Y., PENG, M., WANG, X., SUN, M., AND LI, P.
NL2GDPR: Automatically Develop GDPR Compliant Android Applica-
tion Features from Natural Language. arXiv preprint arXiv:2208.13361
(2022).

https://www.dreamhost.com/blog/how-to-find-wp-themes/
https://www.dreamhost.com/blog/how-to-find-wp-themes/
https://doi.org/10.14722/ndss.2018.23309
https://www.elegantthemes.com/blog/resources/wordpress-vs-other-cms-platforms-how-does-\wordpress-stack-up-against-the-rest
https://www.elegantthemes.com/blog/resources/wordpress-vs-other-cms-platforms-how-does-\wordpress-stack-up-against-the-rest
https://www.elegantthemes.com/blog/resources/wordpress-vs-other-cms-platforms-how-does-\wordpress-stack-up-against-the-rest

[80] STEFFENS, M., Rossow, C., JOHNS, M., AND STOCK, B. Don’t Trust
The Locals: Investigating the Prevalence of Persistent Client-Side Cross-
Site Scripting in the Wild. In Network and Distributed System Security
Symposium (NDSS) (2019). https://publications.cispa.saarland/id/eprint/
2744!

[81] TESFAY, W. B., HOFMANN, P., NAKAMURA, T., KIYOMOTO, S., AND
SERNA, J. I read but don’t agree: Privacy policy benchmarking using
machine learning and the eu GDPR. In Proceedings of the The Web
Conference (2018), pp. 163-166.

[82] TREVISAN, M., TRAVERSO, S., BASSI, E., AND MELLIA, M. 4 years
of eu cookie law: Results and lessons learned. Proc. Priv. Enhancing
Technol. 2019, 2 (2019), 126-145.

[83] UTtz, C., DEGELING, M., FAHL, S., SCHAUB, F., AND HoLZ, T. (Un)
informed Consent: Studying GDPR Consent Notices in the Field. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (2019), pp. 973-990.

[84] WADDELL, T. F., AURIEMMA, J. R., AND SUNDAR, S. S. Make it sim-
ple, or force users to read? paraphrased design improves comprehension
of end user license agreements. In Proceedings of the CHI Conference
on Human Factors in Computing Systems (2016), pp. 5252-5256.

[85] Xi1a0, X., TILLMANN, N., FAHNDRICH, M., DE HALLEUX, .,
MOSKAL, M., AND XIE, T. User-aware privacy control via extended
static-information-flow analysis. Automated Software Engineering 22,
3 (2015), 333-366.

[86] YAMAGUCHI, F., GOLDE, N., ARP, D., AND RIECK, K. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE
Symposium on Security and Privacy (2014), IEEE, pp. 590-604.

[87] Yu, L., ZHANG, T., Luo, X., AND XUE, L. Autoppg: Towards
automatic generation of privacy policy for android applications. In
Proceedings of the ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices (2015), pp. 39-50.

[88] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets. In NDSS (2012), vol. 25, pp. 50-52.

[89] ZIMMECK, S., GOLDSTEIN, R., AND BARAKA, D. Privacyflash pro:
automating privacy policy generation for mobile apps. In Proceedings
of the Network and Distributed System Security Symposium (NDSS)
(2021).

[90] ZIMMECK, S., WANG, Z., Z0oU, L., IYENGAR, R., L1U, B., SCHAUB,
F., WILSON, S., SADEH, N., BELLOVIN, S., AND REIDENBERG, J.
Automated analysis of privacy requirements for mobile apps. In 2016
AAAI Fall Symposium Series (2016).

APPENDIX

We start with describing how WordPress plugin works.
Next, we discuss detailed process of retrieving PII, identi-
fication technique of different functions, including- generic
database operations, security functions used in security detec-
tor, remote request functions, PHP file opertation functions,
WordPress database functions.

A. WordPress Plugin

Rapid development in web technologies has given web
applications the opportunity to store, exchange and retrieve
a significant information, some of which may be sensitive.
This recent advance also made it possible to enhance software
product line engineering methodologies such as plugin-based
development [31]. The key idea is to offer developing addi-
tional features to extend the core capabilities. Generally, the
core is maintained by some longterm developers while third-
party developers build plugins around the core. To that end,
the core provides some API and guideline to build plugins
and themes. Later, people use those plugins in their website for
the added functionalities. These plugins provide functionalities
such as user registration, adding payment module, building

TABLE VI: Retrieving personal data using Regex.

PII Regex

email *(email).*

first name J¥(first.*name).*
last name #(last.*name).*
password ([Aa-zA-Z]pass).
address *(address).

country ¥(country).*

state F([Aa-zA-Z]state).
zipcode ¥(zipcode).
postcode ¥(postcode).*

city F([Na-zA-Z]city).*
birth ¥([Aa-zA-Z]birth).*
username “*(user.*name).

IP address ¥([Aa-zA-Zlip(.*address. *—[Aa-zA-Z]—.*addr.*)).*
phone *(phone).*

social networks etc. We refer to user who uses those plugins
as website owner (O).

Core offers several features (in the form of an API) that
plugin developers can use to store and retrieve data. In order
to accurately understand what data a WordPress function
processes, stores, and alters, we model WordPress interfaces in
this study. We scraped WordPress’ official documentation for
its functionalities in order to model its functions and methods.
Both argument types and return types are included in this data.
We manually labeled each function to indicate if it stores or
retrieves personal information as well as what specific informa-
tion is being stored (e.g., user, post metadata, etc.). We added
some additional set-based attributes to the function and method
information so that we could perform set arithmetic to see if
any data remained. Upon a trigger or manual activation, this
system dynamically runs functions by name, and those action
hooks return some data when manually invoked. Since this
functionality is dynamic (actions are called by its registered
name and thus is not static by nature), we modeled it as there
are well-documented interfaces to add these hooks and triggers.
This data is sometimes personal information and thus had to
be modeled to obtain a comprehensive understanding of how
a plugin handles personal information and whether it complies
with GDPR regulations.

B. Retrieval of PII

We list the PII according to the existing article [1]], [3].
We devise our rule-based approach for identifying PII in the
user interface. Our intuition is that developer will ask PII in
the form of an input field. We map the corresponding label
with our manually crafted rules. We build this rule set based
on investigating different website’s interface (e.g., registration
page, login interface) which ask for user input. We have listed
all the rules in Table [VIl

C. Generic database operation

To analyze database operations, we need to carefully ex-
tract the SQL statements first. SQL statements are embedded
inside the PHP code. By reading the PHP and WordPress
documentation, we list PHP functions which are related to the
SQL statements. Those functions are- dbDelta, exec, execute,
get_col, get_results, get_row, prepare, query. We use these
functions to search for database operations inside PHP code.

https://publications.cispa.saarland/id/eprint/2744
https://publications.cispa.saarland/id/eprint/2744

TABLE VII: Security Functions.

source function type is state of the art?

php crypt encrypt no

php md5 hash no

php shal hash no

php password_hash hash yes

php openssl_encrypt encrypt yes

php openssl_digest hash yes

php hash hash algorithm dependent

php hash_hmac hash algorithm dependent

defuse encrypt encrypt yes

phpseclib encrypt encrypt yes

wordpress wp_hash_password hash yes

TABLE VIII: Remote Request Functions.

function language
$.post / jQuery.post js
$.get / jQuery.get js
$.ajax / jQuery.ajax js
curl_exec php
wp_remote_post php
wp_remote_get php
wp_remote_head php
wp_remote_request php

D. Security Functions

To identify Pjccyrity violations, we need to investigate
security functionalities that an individual plugins adapt. During
pre-processing stage of building graph, we label all the nodes
which involves encryption or hashing functionalities. Table [VTI|
demonstrates list the characteristics of all the security functions
that we have considered in this study. According to GDPR,
one should use state-of-the-art encryption technique to comply
with Psccyrity. That’s why after listing all the encryption
algorithm/functions, we mark those which are already broken
by existing attacks. For example, at the time of writing this
paper, md5 is not considered to be a safe encryption algorithm.
So, during our traversal whenever we find nodes that perform
encryption operations on PII, we mark that plugin as Psecyrity
violation. Note that, the security of hash and hash_hmac
depends on how they are implemented. Further analyzing the
algorithm is out of scope of this work. For now, we only
consider those as safe.

E. Remote Request

For analyzing Pgccyrity and Pgpqre, we need to identify
whether the plugin is sending data to remote request or not.
Because if it sends PII to remote request then it needs to
follow security protocol to comply with Pyecyrity and disclose
such sharing in the privacy policy to avoid violating Pspgre-
We model the graph in a way to handle and investigate the
functions listed in Table [VIII}

F. PHP file operation

One of the task of the sink detector is to detect whether the
plugin store any PII in the file or not. On the other hand, our
source detector is responsible for identifying the nodes which
gets data from the database. To that end, we follow the PHP
documentation to collect all the functions that can be used to

17

TABLE IX: Storing data in file using PHP functions.

function action type

fwrite
file_put_contents
fputs

fputcsv

touch

fgetc

fgetcsv

fgets

fgetss
file_get_contents
file

fread

fscanf

readfile

set
set
set
set
set
retrieve
retrieve
retrieve
retrieve
retrieve
retrieve
retrieve
retrieve
retrieve

set or retrieve data from a file. We list all of those functions
and their types in Table We label the function used for
storing information as ‘set’. Whereas, the functions which can
be used to get data as ‘retrieve’.

G. Wordpress database operation

We collect list of all the WordPress functions from the
official website. In total, we list 2,885 functions. Out of
this functions we manually label the type of functionali-
ties of this functions. We find 30 storage functions, 65 re-
trieval functions and 28 deletion functions. We provide the
full list in the following link- https://drive.google.com/file/d/
1vy98kZGYI1IIDIMrEjkBgMBzed1LYene/view usp=sharing.

https://drive.google.com/file/d/1vy98kZGY91IIDlMrEjkBgMBzed1LYene/view?usp=sharing
https://drive.google.com/file/d/1vy98kZGY91IIDlMrEjkBgMBzed1LYene/view?usp=sharing

	Introduction
	A Motivating Example
	System Design
	Overall System Architecture
	CCPG Generation
	Cross-language Analysis
	Intra-language Analysis

	GDPR Compliance Checker
	Detector
	Graph Queries for GDPR Violations
	Report Generator

	Implementation and Dataset
	Implementation
	Dataset Collection
	Manual Labeling

	Evaluation
	Evaluation Questions and Metrics
	RQ1: Performance Evaluation of ChkPlug
	Evaluation of Paccess
	Evaluation of Pdelete
	Evaluation of Pshare
	Evaluation of Psecurity

	RQ2: Measurement Analysis
	RQ3: Computational Overhead

	Case Study
	Discussion & Limitations
	Related Work
	GDPR Analysis
	Program Analysis
	Website Privacy Analysis

	Conclusion
	References
	Appendix
	WordPress Plugin
	Retrieval of PII
	Generic database operation
	Security Functions
	Remote Request
	PHP file operation
	Wordpress database operation

