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Abstract—Threshold ECDSA recently regained popularity due
to decentralized applications such as DNSSEC and cryptocur-
rency asset custody. Latest (communication-optimizing) schemes
often assume all n or at least n′ ≥ t participating users remain
honest throughout the pre-signing phase, essentially degenerating
to n′-out-of-n′ multiparty signing instead of t-out-of-n threshold
signing. When anyone misbehaves, all signers must restart from
scratch, rendering prior computation and communication in vain.
This hampers the adoption of threshold ECDSA in time-critical
situations and confines its use to a small signing committee.

To mitigate such denial-of-service vulnerabilities prevalent in
state-of-the-art, we propose a robust threshold ECDSA scheme
that achieves the t-out-of-n threshold flexibility “for real”
throughout the whole pre-signing and signing phases without
assuming an honest majority. Our scheme is desirable when
computational resources are scarce and in a decentralized setting
where faults are easier to be induced. Our design features 4-
round pre-signing, O(n) cheating identification, and self-healing
machinery over distributive shares. Prior arts mandate abort
after an O(n2)-cost identification, albeit with 3-round pre-signing
(Canetti et al., CCS ’20), orO(n) using 6 rounds (Castagnos et al.,
TCS ’23). Empirically, our scheme saves up to ∼30% of the com-
munication cost, depending on at which stage the fault occurred.

I. INTRODUCTION

Signature is mission-critical for ensuring the authenticity of
disseminated information and authorization, such as records
from a domain name system (DNS) or transactions. Mean-
while, availability is no less important. Combining both secu-
rity features requires a t-out-of-n threshold signature scheme,
which (t, n)-secret-shares private signing key to n parties – any
t out of n signers can sign without reconstructing the private
key to ensure availability, while forgery would be impossible
even if a (t− 1)-adversary [3] compromised (t− 1) signers.

Cryptocurrencies, blockchain, or distributed systems often
employ (n, n) multisignatures [22] or (t, n) threshold signa-
tures. Elliptic curve digital signature algorithm (ECDSA) [20]
is a popular choice for its small signature size. It also features
very efficient online signing, given a pre-signature prepared
by a pre-signing protocol in an “offline” phase before knowing
the message to sign. Threshold ECDSA is welcomed by high-
stake decentralized applications like decentralized autonomous
organization, exchange, and mixing services. A flurry of new
results in threshold signatures appeared in recent years.
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A. A Neglected Problem

A robust protocol requires an honest majority (n ≥ 2t−1),
where any (t−1)-adversary cannot prevent share holders from
signing. Optimizing for performance, most threshold ECDSA
schemes [13], [21], [6], [11], [4], [7] assume an ideal case
with barely sufficient (t) signers participating honestly in the
pre-signing phase (or earlier steps in signing for schemes with
no online/offline signing explicated [14], [3]) and remaining
available until the online signing phase concludes. Starting the
(pre-)signing protocol with n′ ≥ t signers does not help these
schemes since the results can only be used by exactly the same
set of parties who generated them, not even tolerating one
signer less, degenerating to n′-out-of-n′ non-threshold signing.

Assuming all or at least n′ ≥ t signers faithfully computed
the pre-signatures, Gągol et al. [18], Damgård et al. [10],
and Pettit [24] consider robustness for online signing, while
only Gągol et al. [18] consider a dishonest majority setting,
i.e., n < 2t − 1. (No protocol can achieve robustness in the
dishonest-majority case.) These form a step forward, but the
core problem still exists in pre-signing and remains unsolved.

Buying time through such a seemingly-benign vulnerability
against denial-of-service (DoS) attacks can have avalanche
consequences. In a decentralized setting, secret-share holders
(e.g., servers of DNS security extensions, stakeholders of an
organization, or shareholders of a cryptocurrency asset) can be
geographically distributed; their timely responses are often not
guaranteed. Unfortunately, the authorization power attached to
the signature (e.g., strategic/investment decisions) can be time-
critical. Any delay gives a golden time window to be exploited
(e.g., DNS poisoning). Also, faulty behavior is easier to be
induced in a decentralized setting but may not be identifiable in
existing schemes. An honest signer may become faulty due to
low connectivity, running an older version of the software/pro-
tocol, processing a slightly out-of-sync version of the data, or
refusing to sign a controversial message but being cooperative
otherwise. Assuming all contributions are faithfully delivered,
even in the pre-signing phase, may not be realistic.

To alleviate DoS attacks, identifiable abort (IA) is recently
considered [18], [4], [7]. Honest signers can identify misbehav-
ing parties and restart the signing process from scratch without
them. The latter two results [4], [7] work under the dishonest
majority setting and serve as our competitors for comparison,
particularly Castagnos et al. [7] for the lower communication
cost (than [4]). While IA seems useful, we desire more in
practice. We want a “real” threshold system that minimizes
DoS disturbances induced by a (t − 1)-adversary and allows
continuation as long as a threshold number of honest parties
remains. We call such a robustness notion self-healing.
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B. Technical Challenges

This paper shows that self-healing and cheater identifica-
tion are achievable throughout the key generation, offline pre-
signing, and online signing. A core idea is to use distributed
randomness generation (DRG) for both the signing key and
the random nonce in pre-signing. Realizing this idea securely
and efficiently is a dedicated task even though secure mul-
tiparty computation (SMC) techniques are widely available.
Concretely, t-out-of-n signing adds much more complexity to
the prevailing n′-out-of-n′ designs. At least redundancy has to
be introduced, resulting in a higher communication overhead.

We aim at a minimal addition of communication rounds
and costs for fault identification, such that recovering from
faulty behavior and resuming the signing process will outper-
form restarting existing schemes from scratch. We remark that
the availability of correct pre-signature shares from all signers,
as assumed by Gągol et al. [18], simplifies the challenge of
designing a robust online protocol. Intuitively, they provide the
“ground truth” for checking and completing the online signing.

For self-healing, a naïve approach is to ask all signers to
reveal their private inputs to prove their innocence when failure
is reported, but it is insecure to continue the protocol. We can
use zero-knowledge proof (ZKP) to ensure that all contribu-
tions are consistent. This requires tackling the technicalities for
providing a faithful simulation and extraction of adversarial
inputs in the security proof, particularly when cheaters are
dismissed, followed by a recovery with security maintained.

C. Related Works

Threshold DSA can be traced back to Gennaro et al. [15].
Two decades later [14], with homomorphic encryption (HE)
and independent commitment, threshold optimality (n= t) was
achieved. Boneh et al. [3] proposed a tighter 4-round-signing
version using level-1 HE and non-malleable commitment.

Recent works can be roughly classified into two paradigms
from Lindell et al. [21] and Gennaro–Goldfeder [13]. The latter
takes fewer communication rounds. A core technique is the
multiplicative-to-additive share conversion protocol (MtA)
which converts the product of secret values held by different
signers into additive shares. Following [13], Canetti et al. [4]
proposed schemes with IA, proactive security, and universally
composable (UC) security, with MtA from Paillier additive HE.
Castagnos et al. [6] used Castagnos–Laguillaumie encryp-
tion [8] for bandwidth efficiency, and later [7] considered IA
and proactive security. Doerner et al. [11] use correlated
oblivious transfer for MtA. Damgård et al. [10] considered
the honest majority setting using MtA without ZKP.

Gagol et al. [18] followed Lindell et al. [21] and considered
robustness in online signing, assuming everyone performs pre-
signing honestly. Very recently, Abram et al. [1] proposed a
non-robust scheme from a pseudorandom correlation generator.

In short, optimizing for communication rounds is a com-
mon goal, albeit with different tricks. Most existing works
assume that sufficiently many (even all) signers honestly par-
ticipated in pre-signing or in all stages to save communication
rounds. However, there is no redundancy to ensure recovery.

D. Our Contributions

We propose a robust (t, n) threshold ECDSA scheme with
4-round pre-signing and “non-interactive” online signing. It
achieves self-healing without restarting if at least t honest
parties are involved; otherwise, in the face of a dishonest
majority, we gracefully fall back to the best case: identifiable
abort. Table I summarizes major constructions of (n, n) or
(t, n) threshold ECDSA with fault identification. Our scheme
is desirable when computational resources are scarce and in
a decentralized setting where faults are easier to be induced.
Given a pre-signature, a signature share can be produced with-
out interacting with others, which is desirable in cold storage.

Our novelty lies in the identification mechanism and the
simulation strategy of shares of two secrets’ product. The latter
allows us to use MtA for (t, n) secret sharing, in contrast to
the prior (n, n) usage. Our identification mechanism allows
the protocol to continue securely with a small overhead in
communication and computation as the components from MtA
remain relevant. We remark that our security proof extracts
secret values via decryption instead of rewinding. This reduces
the communication rounds and issues in the security proof1.

II. TECHNICAL OVERVIEW

A. Background on Threshold ECDSA

Let G = ⟨g⟩ be a group of prime order q and Fq be a
finite field with q elements2. ECDSA (Keygen,Sign,Verify)
is a variant of DSA instantiated over a group of points on an
elliptic curve as defined by (G, q, g) in the public parameter pp.

• Keygen(pp)→ (vk, sk): Randomly sample x←$ Fq and set
X := gx, output (vk, sk) := (X,x).

• Sign(sk,msg) → σ: Set m := H(msg), randomly sample3

k ←$ Fq set R := g1/k and output σ := (r, s := k(m+rx)),
where r is the x-projection of point R on Fq .

• Verify(vk, σ,msg)→ 0/1: Parse σ = (r, s), accept if r is the
x-projection of R′ := (gmXr)1/s ∈ G where m := H(msg).

In the distributed setting, k and x are both secret-shared.
For g1/k, which we call the signature nonce, one can use
the inversion trick by Beaver with the help of another secret-
shared random factor γ. We call kγ a “pseudo-nonce” since
it composes of the (signature) nonce. Similarly, we call kx the
“pseudo-key.” With gγ , we can compute g1/k by (gγ)

1
kγ .

MtA is used to derive kγ. (kx can be derived similarly.)
Signers first generate random (additive) shares of (k, γ). Each
party i then locally converts the (Shamir) share of the signing
key xi into additive shares by multiplying the Lagrange
coefficient. To compute kγ = (

∑
i ki)(

∑
j γj) =

∑
i,j kiγj

without leaking the shares ki and γj , the multiplied term
kiγj is converted into additive shares via a 2-party MtA run
by parties i and j. After that, each party reveals the sum
of all the received shares and reconstructs the pseudo-nonce
accordingly. To defend against malicious adversaries on top
of MtA, Gennaro and Goldfeder [13] built an MtA with check

1Non-interactive ZKP from Fiat–Shamir heuristic may cause an exponential
number of rewinding under a multiparty setting [26].

2The lower case letters (x, γ, k, . . .) are usually secret elements in Fq , and
their public values in G are denoted by capital letters (X = gx,Γ,K, . . .).

3Resample if x, k, r or s is 0. Likewise, Verify should reject (r, s) = (0, 0).

2



TABLE I: Comparison of (n, n) or (t, n) Threshold ECDSA Schemes with Fault Identification

Schemes Communication Rounds Protection Cost Proof of Security Threshold Type

Paillier-based [4] Offline: 3 Online: 1 Identifiable Abort O(n2) UC framework Fixed size-n group
Offline: 6 Online: 1 Identifiable Abort O(n) UC framework Fixed size-n group

CL-based [7] Offline: 6 Online: 1 Identifiable Abort O(n) Game-based Fixed size-n group

SMC-based [18] Offline:10 Online: 3 Abort O(n) Simulation-based Fixed size-n group in Pre-Sign
Robust Online Signing Any size-≥t subgroup in Sign

Ours Offline: 4(6) Online: 1 Self-healing & Cheater Id. O(n) Game-based Any size-≥t subgroup

If the identification does not require an additional communication round, the size of verification materials is counted as its cost. In the worst case (culprit detected in
every stage), our scheme requires a 6-round pre-signing.

(MtAwc) protocol. Secret values (e.g., a) are checked against
public terms by “exposing” them in exponent (e.g., ga).

After knowing the hashed message m, each party i reveals
its signature share kim + r[kx]i, where [kx]i is the party i’s
additive share of kx. They are (n′, n′) shares of the desired
ECDSA signature, where n′ is the number of participants.

B. Three Components of Our Construction

Our construction works in a truly (t, n′) setting. The
number of participants n′ can decrease. The first ingredient
is the distributed randomness generation (DRG), inspired by
robust distributed key generation (DKG) [16], followed by
share revelation for multiplying threshold shares using 2-party
MtA. We also propose new verification machinery to verify the
product of shares from the 2-party MtA protocol for achieving
self-healing (robustness) via removing problematic shares.

1) Distributed Randomness Generation: Our DRG works
in the dishonest majority setting and only requires 3 communi-
cation rounds in the worst case. In Phase 1, each party i in the
participating party set P acts as the dealer and uses Pedersen
verifiable secret sharing (Pedersen VSS) to distribute shares
{χij}j of an initial secret χi and its verification materials
over authenticated channels (as in [7]). The receiver j locally
verifies χij for each i, and, if the verification fails, broadcasts
it as the complaint. Other parties can verify the complaint and
disqualify the problematic dealer i locally. This phase would
then conclude with correct shares of χi distributed.

In Phase 2, each party i homomorphically combines the
(initial) shares {χji}j to generate a new share xi =

∑
j∈Q χji

for a qualified set Q of all parties who passed Phase 1.
The parties broadcast share in exponent gxi with ZKP of
well-formedness with respect to the committed polynomial
coefficients (formed by homomorphically combining the VSS
materials in Phase 1). This step identifies any cheaters, which
can then be kicked out such that the protocol continues with
only correct shares, finally contributing to the recovery/con-
struction of the public key gx. With the two modifications,
cheater identification in the first phase requires one round of
interaction, and no interaction is needed for the second phase.

On top of the complaint mechanism, the parties also send
the ciphertext of its secret and the combined share in Phases 1
and 2. The encrypted shares can be used in the MtA protocol
for homomorphic evaluation over shares for offline signing.
They allow simple knowledge extraction in the security proof.

2) Share Revelation: The existing usage of 2-party MtA
(Section II-A) (for pseudo-nonce) outputs additive shares
αij , βij of kiγj = αij + βij to party i and j, respectively.
Reconstruction of kγ does not tolerate even a single fault since
it requires all of {kiγj}i,j and hence {αij , βij}i,j terms.

We use DRG to generate (t, n′) shares of k and γ, i.e.,
k =

∑
i Liki and γ =

∑
i Liγi for Lagrange coefficients Li.

Reconstructing kγ from a set of parties is tricky as the
Lagrange coefficient varies with the set. Simply revealing party
i’s shares (αij , βji) leaks the share ki via ki = (αij +βij)/γj
since party j knows (βij , γj), where αij + βij = kiγj .

To avoid direct revelation, party i could locally sum up
the shares before releasing them [7], [4]. However, it does not
work if k and γ are threshold-shared. If we multiply the shares
by the Lagrange coefficient before broadcasting, i.e., sending
L2
i kiγi +

∑
j ̸=i LiLj(αij + βij), they degenerate into (n′, n′)

shares with the set of n′ participants fixed.

A crucial observation we made is that the terms kiγj and
kjγi are multiplied by the same Lagrange coefficient for the
reconstruction equation of kγ arranged as below:∑

i

Liki
∑
i

Liγi =
∑
i,j<i

LiLj(kiγj+kjγi)+
∑
i

L2
i kiγi. (1)

Hence, we can combine party i’s additive shares of these two
terms (i.e., αij + βji) without affecting the reconstruction.
In this approach, we group the terms by their Lagrange
coefficient, which extends the size of each party’s share to n′.

For security, each party i masks the additive share αij+βji
for each j by Shamir secret-shares {θij}j∈[n′] of 0 [10], [24]
and publishes the size-n′ set of masked shares {δij}j∈[n′] :=
{kiγi + θii} ∪ {αij + βji + θij}j ̸=i (with an abused notation,
while the assignment order is identified by their subscripts).
The parties can then compute kγ =

∑
i,j(LiLjδij).

The above tackles the reconstruction issue and appears to
be intuitively secure. Yet, it introduces a technical hurdle in our
security proof – given a set of shares, a simulator needs to mold
the remaining shares such that the reconstruction from any t-
subset of shares always gives a particular result. If we shoot for
an (n′, n′) sharing, the reconstruction is merely the sum of all
shares; one can easily simulate a consistent transcript (share)
by subtracting all others’ shares from a particular result.

For (t, n′) threshold sharing, one can simulate a share by
plugging (t−1) shares and the reconstruction result into the re-
construction equation. For our Equation (1), simulating shares
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{δij}j∈[n′] of a single party i (controlled by the simulator)
involves at least t shares (among {δij}j∈[n′]). There are two
rounds of Lagrange interpolations, i.e., kγ =

∑
i Liδi and

δi =
∑

j Ljδij . Picking different subsets of parties for the
reconstruction equation can generate a system of equations
to simulate all shares. Unfortunately, this strategy generates∑n

i=t

(
n
i

)
equations, forming an over-determined system of

equations4 with (n− (t− 1))n unknowns. How to efficiently
solve such an over-determined system remains unknown.

Our trick is to write the targeted result kγ as a product of
two arbitrary values a, b and then simulate with respect to their
shares. More concretely, ab =

∑
i∈[n′],j<i LiLj(aibj+ajbi)+∑

i∈[n′] L
2
i aibi, where ai, bj are shares of a, b respectively

such that aibj + ajbi is a share of kγ. From the share δji of
the adversary, we simulate the share δij as aibj+ajbi−δji such
that the share aibj + ajbi is generated during reconstruction.
We can then simulate each share one by one.

3) Cheater Identification: The parties need to backtrack the
error source when the pre-signature (e.g., the pseudo-nonce) or
the final signature is invalid. Existing IA schemes [4], [7] just
reveal the constitutes (including the shares of randomness k, γ,
and the MtA additive shares) of all pre-signatures. However,
leaking randomness mandates an abort.

Another approach is to prove the well-formedness of the
ciphertexts (used by the MtA protocol) by ZKP. This approach
is not ideal in the Paillier-based regime, incurring O(n2)
communication cost for identification that works over a fixed
size-n group [4], albeit the offline signing only takes 3 rounds.
The cost comes from a verifier-specific ZKP for showing a
correct operation in the MtA protocol. Each pair of parties
needs to prove every message between them individually.

We propose a cheater identification machinery verifying the
(reconstructed) pseudo-nonce and signature without leaking
any secret share (e.g., from DRG). Its non-triviality lies in the
“unstructured” threshold shares {δij}j due to the conversion
during MtA and randomization before share revelation. Our
trick is to use additive shares in exponent {gβij}j broadcasted
by party i during MtAwc to verify {δij}j (cf., SectionV-B3)
against gkiγ . Notice that

∑
j Ljδij +

∑
j Lj(βij − βji) =

Likiγi +
∑

j ̸=i Lj(αij + βji + βij − βji) = Likiγi +∑
j ̸=i Lj(αij+βij) = Likiγi+

∑
j ̸=i Lj(kiγj) = kiγ. Lifting

it to exponent allows us to utilize5 gβji , gβij to compute gkiγ .
As this partial reconstruction only involves contribution from
party i, any fault on the computed gkiγ is imputed to this party.

C. (In)extensibility to Security against Adaptive Corruption

Achieving (t, n) threshold signing also makes adaptive
security more challenging. The Paillier-based work with UC
security [4] provides an adaptively-secure n-out-of-n construc-
tion and refers to the base work [13] for a t-out-of-n extension,
but without specifying whether the extension is still adaptively-
secure. Meanwhile, the CL-based work [6] provides an
adaptively-secure construction for t = n− 1 by the following

4For a participant set P of size n′, the simulator controls H (size n′ −
t + 1) and simulates n′(n′ − t + 1) shares in total. Robustness requires∑

i∈P′ Li,P′
∑

j∈P′ Lj,P′δij = δ to hold for any P ′ ⊆ P . The simulator
computes the shares {δij}i∈H,j∈P with respect to the above equation.

5{δij} = {kiγi+[0]i}∪{αij +βji+[0]j}j ̸=i, with [0]i as a share of 0.

strategy, which explains the (in)extensibility to adaptive secu-
rity. In short, one “special player”/signer helps the game-based
simulation. If this signer is corrupted, the simulation fails, and
hence the simulator rewinds to make this signer uncorrupted
throughout the simulation. The probability of success is 1/n.
For t-out-of-n, the probability becomes 1/

(
n
t

)
.

III. PRELIMINARY

A. Online/Offline (t, n) Threshold ECDSA

Let P be the participant set. When each party i ∈ [1, n]
inputs ini to a probabilistic polynomial-time (PPT) proto-
col P and obtains outi, it is denoted by P⟨in1; . . . ; inn⟩ →
⟨out1; . . . ; outn⟩. Alg(ini)→ outi denotes party i running Alg.

Assuming the use of public key encryption, a (t, n) thresh-
old ECDSA scheme features an ideally decentralized setup that
outputs pp when given a security parameter λ, a threshold key
generation protocol TKeygen, and a threshold signing proto-
col. TKeygen⟨pp; . . . ; pp⟩ → ⟨(vk, pk, sk1); . . . ; (vk, pk, skn)⟩
outputs to each party i an ECDSA verification key vk, a public
key pk (which contains a set of public encryption keys of all
parties), and a threshold signing key ski (including party i’s
threshold ECDSA key share xi and decryption key).

The threshold signing protocol outputs a signature σ on
an agreed message msg if a subset of n′ ≥ t signers par-
ticipate honestly with their threshold signing keys {ski}i∈[n′],
assuming w.l.o.g. the first n′ signers form the subset. In the
preprocessing model, the threshold signing protocol is split
into the (threshold) offline pre-signing protocol and threshold
online signing protocol (PreSign,TSign):

• PreSign⟨(pp, pk, sk1); . . . ; (pp, pk, skn′)⟩ → ⟨ψ1; . . . ;ψn′⟩
• TSign⟨(pp, pk, vk,msg, sk1, ψ1); . . .)⟩ → σ

The online signing protocol uses the (message-independent)
pre-signature (shares) {ψi} from offline PreSign to generate a
signature σ. Looking ahead, our formulation of ψi consists of
the actual pre-signature φi and its verification materials Vi.

B. Security Models and Communication Channels

Following prior works [4], [7] with IA, we use authen-
ticated and synchronized broadcast channels. Synchronized
broadcast ensures bounded communication delay to hold ir-
responsive signers accountable. Private messages (e.g., secret
shares) can be encrypted before broadcasting. We consider a
PPT adversary A that corrupts at most (t−1) parties at the very
beginning. It can ask any corrupted party to deviate from the
protocol specification at any time (malicious adversary) and
submit the message after viewing others (rushing adversary).

Definition 3.1 (Enhanced Existential Unforgeability [4]):
Consider A that is PPT and given the public output (with vk)
of TKeygen(pp) and adaptive accesses to the oracles below:

• ORand: Return a uniformly random point R = (rx, ry) ∈ G;

• OSign(sk,msg;R): On input nonce R and message msg,
return signature (r, s) on msg with r := rx mod q if R is
generated by ORand and is never used; return ⊥ otherwise.

Let Q be the set of queried messages. ECDSA is existentially
unforgeable under chosen message attack if the probability that
A outputs a valid signature σ∗ on msg∗ /∈ Q is negligible in λ.
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Groth and Shoup [19] show that adaptively choosing mes-
sages after knowing nonces enables a new attack, motivating
the ratio-resistance assumption on the function H6.

Definition 3.2 (Threshold Signature Unforgeability [7]):
An online/offline threshold signature scheme is unforgeable
if, for any PPT adversary A that corrupted at most t − 1
parties and is given the views of TKeygen and PreSign, and
the output of TSign on inputs of messages from an adaptively
chosen set Q and outputs of PreSign, the probability that A
outputs a valid signature σ∗ for m∗ /∈ Q is negligible in λ.

Protocol continuation depends on the majority setting. Un-
der the dishonest majority setting, only identifiable abort can
be achieved, whereas the honest parties can identify corrupted
parties when the protocol aborts. If there are a sufficient
number t of honest parties (i.e., an honest majority), robustness
could be achieved, which ensures the protocols, including
TKeygen, PreSign, and TSign, will complete successfully.

At a high level, a (t, n) threshold ECDSA scheme is robust
if for n participating parties P = {1, . . . , n} and any set of
corrupted parties C ⊂ P of size t − 1, and for keys obtained
from TKeygen run by P , it holds that PreSign returns the pre-
signature such that the remaining honest parties can output a
valid ECDSA signature on any message m (via TSign) under
the public key from TKeygen.

C. Verifiable Secret Sharing

Verifiable secret sharing VSS allows share verification.
Pedersen VSS [23] uses two instances of Shamir secret sharing
SS over polynomials f(z), f ′(z). Pedersen commitments of the
coefficients of f(z), with f(0) being the secret to share, are
given using coefficients of f ′(z) as the randomness. This set of
commitments serves as a committed polynomial. One can ver-
ify the received shares by evaluating the committed polynomial
via the homomorphic property of Pedersen commitments. We
recall the algorithms7 of Pedersen VSS for the set of parties P .

• VSS.Share(χ,P)→ ({χj , χ
′
j}j∈P , F ):

1) Sample ad, a′d ←$ Fq , ∀d ∈ [0, t−1]. Reassign a0 := χ.
2) Define f(z) :=

∑t−1
d=0 adz

d and f ′(z) :=
∑t−1

d=0 a
′
dz

d.
3) Set F := {Fd}d∈[0,t−1] = {gadha

′
d}d∈[0,t−1].

4) Output {χj , χ
′
j}j∈P := {f(j), f ′(j)}j∈P and F .

• VSS.Verify((χj , χ
′
j), F ): Parse F = {Fd}d∈[0,t−1]. Output

1 if
∏t−1

d=0 F
jd

d = gχjhχ
′
j ; 0 otherwise.

Lemma 1 ([17]): Pedersen VSS satisfies the following
properties under the discrete logarithm assumption.

• Correctness: Given any subset P ′ ⊆ P with more than t
shares {χi, χ

′
i}i∈P′ , all of them passed VSS.Verify, the

reconstruction algorithm uniquely reconstructs the secret χ.

• Robustness: In the presence of malicious parties, if there
are more than t honest parties (shares that pass Verify), the
reconstruction algorithm always reconstructs the secret χ.

• Unconditional secrecy: The view of any adversary A, who
corrupts up to (t−1) parties, is independent of the secret χ.

6Informally, it is hard to find two values such that the ratio of the hashes of
these two values satisfies the challenger-chosen value; see [19, Theorem 3].

7We omit the simple definition of SS.Share, and the reconstruction algo-
rithm (a simple polynomial interpolation) because our scheme never calls it.

User ua(g
b, a, (dkua)) User ub(g

b, b)

ca ← Enc(ekua , a)
ca β ← Zq

α← Dec(dkua , cα)
cα, g

β
cα := b⊗ ca ⊕ Enc(ekua ,−β)

check gα · gβ ?
= (gb)a

Fig. 1: Mult.-to-Add. Share Conversion with Check (MtAwc)

D. Class-Group-based Encryption

Our scheme employs linearly-homomorphic Castagnos–
Laguillaumie (CL) encryption [8] that works in the composite-
order group F × Gq , where F is a group of known order q
generated by f and Gq is an unknown order-s group generated
by gq . A message m ∈ Fq is encoded as fm ∈ F, where the
discrete logarithm problem is easy. Its prime order q frees
us from range proof needed (e.g., in MtAwc) by other HE
schemes. It is secure under the hard subgroup membership
assumption (Gq vs. F × Gq). We assume Dq = [0, 2λdqŝ],
where ŝ is a bound of s provided by the class group.

Definition 3.3: CL encryption (CLE) is defined by:

• KGen(pp)→ (ek, dk): Output dk←$ Dq and ek := gdkq .

• Enc(ek,m; r)→ cm: Pick r ←$ Dq , output (grq, f
mekr).

• Dec(dk, (c1, c2)) → m: Output the discrete logarithm of
c2/c

dk
1 to the base f.

• Eval(cm, cm′ ,+)→ cm+m′ : Parse cm = (c1, c2) and cm′ =
(c′1, c

′
2), output (c1 · c′1, c2 · c′2), denoted by cm ⊕ cm′ .

• Eval(a, cm,×)→ cam: Parse cm = (c1, c2), output cam :=
(ac1, ac2), also denoted by a⊗ cm.

E. Multiplicative-to-Additive Share Conversion (with Check)

MtA converts the multiplicative shares ab into additive
shares α + β securely, where (a, α) and (b, β) are owned
by two different parties. Assume that ua is the receiver who
publishes its public key of a linearly-homomorphic encryption
scheme8, and the sender ub publishes its secret in exponent gb.
We employ the MtA with check (MtAwc) protocol [13]
MtAwc⟨(gb, a, (ekua , dkua)); (g

b, b, ekua)⟩ → ⟨(gβ , α); (β)⟩
in Figure 1. The additive share in exponent gβ allows homo-
morphic operations for checking and verification in later steps.

F. Zero-Knowledge Proof

Let x be a statement of an NP language L and w be its
witness. A non-interactive zero-knowledge (NIZK) proof NIZK
allows a prover to convince the verifier that (x,w) is in relation
R without revealing w. With Fiat–Shamir heuristic, a NIZK
proof system (Prove,Verify) over the standard Σ-protocol can
be built using a hash function HNIZK : {0, 1}∗ → C, where C
is the challenge space depending on the relation, e.g., Fq .

• Via NIZKR.Prove(x;w)→ π, the prover generates proof π
with respect to the committed message A.

• Via NIZKR.Verify(x, π)→ 0/1, anyone can verify proof π.

8In our case, ciphertexts of a, b are made public before running MtAwc.

5



Our scheme needs NIZK for the below NP-relations. We
start with the underlying Σ-protocol, which we review the def-
inition in Appendix A-A and instantiations in Appendix A-B.

1) Committed Exponent: For a commitment PC and a
group element Q, the following relation verifies that m com-
mitted in PC is the exponent of Q to the base element g0.

RDL-PC = {((PC, g0, Q), (m, r)) : Q = g0
m ∧ PC = gmhr}

2) Equality of Committed Values and One Randomness:
For commitments PC,N , and a group elementM, the follow-
ing relation verifies that k is committed in both PC and N with
bases (g, h) and (X, 1/g), respectively, and µ is the exponent
of M to the base R and also the commitment opening of N .

RDL-2PC = {((PC,N ,M, X,R), (k, k′, µ)) :

PC = gkhk
′
∧ gµN = Xk ∧M = Rµ}

3) CL Key Pair: Rkey = {(ek, dk) : dk ∈ [0, S]∧ek = gdkq }
4) CL Encryption of a Committed Value:

REnc-PC = {((PC, ek, c), (m, r, ρ)) :
ρ ∈ [0, S] ∧ c = Enc(ek,m; ρ) ∧ PC = gmhr}

5) CL Decryption: The proof is simplified by revealing m
from decrypting (c1, c2), and proving about c′2 = c2/f

m.

RDec = {((ek, (c1, c′2)), dk) : dk ∈ [0, S]∧c′2 = cdk1 ∧ek = gdkq }

IV. DISTRIBUTED RANDOMNESS GENERATION

To support self-healing in multiparty protocols, we define a
distributed randomness generation DRG protocol, generalizing
the existing DKG protocol for different forms of randomness,
e.g., committed shares for verification or encrypted shares for
further computation. We use DRG as a major building block.

A. Definition

DRG = (Gen,GenVf,Comb,CombVf,RevealExp,ExpVf)
aims to generate shares {xj}j of a secret x with “public”
shares {pubxj

} for verification against a certain relation R.
For example, pubxj

may contain commitment or encryption
of xj . RevealExp and ExpVf are optional, which reveal shares
in exponent Xi of shares xi verifiably, e.g., Xi := gxi for
Pedersen VSS share (xi, x

′
i). The shares in exponent {Xj}j

allow reconstruction of the secret in exponent gx =
∏

j X
Lj

j ,
which is useful when gx serves as a public key with shares
{xj}j of the secret key x distributed. We define (Pedersen
VSS-based) DRG as follows, assuming they are run by party i.

• Gen(pp) → ({χij , χ
′
ij}j , Cχi

), πχi
: On input the public

parameter9 pp, Gen outputs initial secret shares {χij , χ
′
ij}j ,

verifying materials Cχi
of initial secret χi, and proof πχi

.
• GenVf(χij , χ

′
ij , Cχi

, πχi
) → 0/1: On input the shares

(χij , χ
′
ij), verifying material Cχi , and proof πχi , GenVf

outputs a bit indicating the validity of inputs.
• Comb({χji, χ

′
ji}j)→ (wi, pubxi

, πxi): On input the shares
{χji, χ

′
ji}j of the secrets {χj}j , Comb outputs private

output wi (containing xi), public share pubxi
, and proof πxi .

9Our construction puts public encryption keys {eki} of participants in pp.

• CombVf({Cχj
}j , pubxi

, πxi
) → 0/1: On input the set of

verifying materials {Cχj}j , the public share pubxi
, and

proof πxi , it outputs a bit indicating the validity of inputs.
• RevealExp(wi, pubxi

) → (Xi, πXi) On input the private
output wi (containing xi) and the public share pubxi

, it
outputs the private share in exponent Xi and proof πXi .

• ExpVf(pubxi
, Xi, πXi

) → 0/1: It verifies the public share
pubxi

, the share in exponent Xi, and proof πXi
.

DRG starts by having every party run Gen(pp). They then
send the resulting initial shares {χij , χ

′
ij}j to each party j and

broadcast the public outputs (proof and verification materials).
Next, all parties j run Comb({χji, χ

′
ji}j) on all shares verified

by GenVf to output secret share wj . DRG concludes after
CombVf verified all outputs so far. DRG is correct if:

1) x defined by {wi} output by Comb is uniformly distributed.
2) All subsets of secret output wi provided by more than t

honest parties define the same established secret x.
3) All subsets of public-secret output pairs (pubxi

, wi) pro-
vided by more than t honest players satisfy the relation R.
Also, Xi is (one of) the secret output wi in exponent.

We say DRG is self-healing if the protocol involves at least t
honest parties, the protocol always completes successfully. Se-
crecy requires that, for any PPT adversary A having corrupted
at most t−1 parties, there exists a simulator on input X = gx

simulating an indistinguishable view of the protocol for A that
outputs (pub, X), i.e., A learns nothing about x, except pub,
where pub = {pubxj

} is the set of all parties’ public output.

B. Distributed Randomness Generation Construction

Figure 2 presents our DRG protocol with the generation,
combination, and output phases. For brevity, all algorithms
implicitly take in encryption keys {ekj} of all parties.

The protocol is run by an updating set of parties P
that keeps removing identified cheaters. At the end of the
generation phase, the distributively-generated secret is fixed
by the contribution from the honest parties. We call them the
qualified set Qx, which is a fixed set that defined a fixed
secret x. P may update to remove cheaters detected in GenVf,
and Qx := P is fixed afterward. CombVf may remove more
cheaters from P but will not affect Qx.

1) Generation phase (Gen ↔ GenVf): Assume |P| = n;
we aim to distribute (t, n) verifiable shares of initial secret χi

sampled by party i ∈ P to all other parties in this phase.

(Gen.) Party i randomly picks and encrypts10 its initial
secret χi under its public key eki. Party i (t, n)-shares χi using
VSS.Share, which outputs two sets of shares {χij , χ

′
ij}j∈P

and committed polynomial coefficients {Fχi,d}d∈[0,t−1] (cf.,
Section III-C). The share (χij , χ

′
ij) is sent to party j ∈ P \{i}

via a private authenticated channel. Party i sets and broadcasts
the verification material Cχi

= (cχi
, {Fχi,d}d∈[0,t−1]) and

proof πχi
for Enc-PC that cχi

encrypts χi committed in Fχi,0

as the evaluation of the committed polynomial at 0.

(GenVf.) Party j verifies shares (χij , χ
′
ij) from party i by

running VSS.Verify((χij , χ
′
ij), Fχi

) and checking proof πχi
.

10It allows extracting secret χi using decryption key dki without rewinding.
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DRG Algorithms

Gen(pp)→ ({χij , χ
′
ij}j∈P , Cχi

, πχi
)

1 : χi ←$ Fq, cχi ← Enc(eki, χi; ρχi)

2 : ({χij , χ
′
ij}j∈P , Fχi)← VSS.Share(χi,P)

3 : parse Fχi as {Fχi,d}d∈[0,t−1]

4 : πχi ← NIZKEnc-PC.Prove((Fχi,0, eki, cχi); (χi, χ
′
i, ρχi))

5 : return ({χij , χ
′
ij}j∈P , Cχi := (cχi , Fχi), πχi)

GenVf(χij , χ
′
ij , Cχi

, πχi
)→ 0/1

1 : parse Fχi as {Fχi,d}d∈[0,t−1], Cχi as (cχi , Fχi)

2 : b← NIZKEnc-PC.Verify((Fχi,0, eki, cχi), πχi)

3 : if b = 1 ∧ VSS.Verify((χij , χ
′
ij), Fχi) return 1

4 : else return 0

Comb({χji, χ
′
ji}j∈Qx)→ (wi, pubxi

, πxi)

1 : xi :=
∑

j∈Qx
χji, x′

i :=
∑

j∈Qx
χ′
ji

2 : PCxi := gxihx′
i , cxi ← Enc(eki, xi; ρxi)

3 : wi := (xi, x
′
i, ρxi); pubxi

:= (PCxi , eki, cxi)

4 : πxi ← NIZKEnc-PC.Prove(pubxi
;wi)

5 : return (wi, pubxi
, πxi)

CombVf({Cχj
}j∈Qx

, pubxi
, πxi

)→ 0/1

1 : parse {Cχj}j∈P as {cχj , {Fχj ,d}d∈[0,t−1]}j∈P

2 : Fx :=
{
Fx,d :=

∏
j∈P Fχj ,d

}
d∈[0,t−1]

3 : parse pubxi
as (PCxi , eki, cxi)

4 : if PCxi =
∏t−1

d=0 Fx,d
id

5 : return NIZKEnc-PC.Verify(pubxi
, πxi)

6 : else return 0

RevealExp(wi, pubxi
)→ (Xi, πXi

)

1 : parse wi as (xi, x
′
i, ρxi), pubxi

as (PCxi , eki, cxi)

2 : πXi ← NIZKDL-PC.Prove((PCxi , g, g
xi); (xi, x

′
i))

3 : return (Xi := gxi , πXi)

ExpVf(pubxi
, Xi, πXi

)→ 0/1

1 : parse pubxi
as (PCxi , eki, cxi)

2 : return NIZKDL-PC.Verify((PCxi , g,Xi), πXi)

Fig. 2: (Threshold) Distributed Randomness Generation

If it fails, party j broadcasts the received share (χij , χ
′
ij)

from party i as the complaint. All parties exclude i from P11

as πχi
is publicly verifiable. We can safely discard any cheater

contribution χi because the combined secret x is not fixed yet.
At the end of this phase, the combined secret x is fixed for
the qualified set Qx := P , i.e., x :=

∑
j∈Qx

χj . Notice that
{χj}j∈Qx have been correctly shared via (t, n) secret sharing.

2) Combination phase (Comb ↔ CombVf): We aim to
generate (t, n) secret shares {xi}i∈P of the final secret x =∑

j∈Qx
χj via the linear homomorphism of VSS (cf., Sec-

tion III-C). This phase also outputs committed shares {PCxi =

11Private shares are encrypted before transmitting via the broadcast channel,
so encrypted shares from party i are either received by all or none (if party i
is absent). Slandering can be prevented by proving decryption correctness.

gxihx
′
i}i∈P and encrypted shares {cxi

= Enc(eki, xi)}i∈P .

(Comb.) Party i homomorphically combines {χji}j∈Qx
to

generate a share (xi, x
′
i) = (

∑
j∈Qx

χji,
∑

j∈Qx
χ′
ji) of x. It

then computes a Pedersen commitment PCxi
= gxihx

′
i and an

encrypted share cxi
= Enc(eki, xi; ρxi

) using randomness ρxi
.

The public share pubxi
= (PCxi

, eki, cxi
) is broadcasted with

proof πxi
(for REnc-PC) that xi is committed and encrypted.

(CombVf.) Upon receiving the public output pubxi
and

ZKP πxi
from party i, party j computes the commitment PCxi

of the share using the VSS verification materials {Fχj
}j∈Qx

(sent after Gen and verified by GenVf). Party j verifies ZKP
πxi

against PCxi
. If it fails, all parties set P := P \ {i} to

exclude party i, as all the inputs for verification are public.

3) Revealing secret in exponent (RevealExp ↔ ExpVf):
(RevealExp.) After the combination phase, party i runs
RevealExp to generate gxi and proof πXi

for RDL-PC that it is
committed inPCxi

. Both will be broadcasted.

(ExpVf.) If proof πXi
fails, everyone excludes i from P .

4) Output: DRG returns the collected {pubxj
}j∈P as pub-

lic output; the combined share (xi, x
′
i) and the randomness ρxi

as the party’s secret output. The public share pubxi
includes

ciphertext cxi
encrypting xi using randomness ρxi

, encryption
key eki, and Pedersen commitment PCxi

using opening x′i.
For wi := (xi, x

′
i, ρxi

) and the public-secret key pair (X :=
gx, x), we require Xi = gxi and (wi, pubxi

) ∈ REnc-PC. If
(RevealExp,ExpVf) are called such that {Xj}j∈P are given,
Any one can verifiably reconstruct X =

∏
j∈P X

Lj,P
j .

Appendix B will show the correctness, self-healing prop-
erty, and secrecy of our DRG construction.

C. Key Refreshment

Our construction can be extended to support key refresh-
ment as below. Notice that we have

∑
i∈U Li,Uxi = x, the key

(share) xi now takes the role of the random secret χi.

(Gen ↔ GenVf.) Party i first distributes shares {ωij}j
of xi, i.e., xi =

∑
j∈U Lj,Uωij .

(Comb ↔ CombVf.) With respect to the change of
reconstruction equation for x from {xi}i∈U (interpolation
versus summation of {χi}i∈U ), we change the secret output
to wi := (ωi :=

∑
j∈Q Lj,Qωji, ω

′
i :=

∑
j∈Q Lj,Qω

′
ji, ρωi).

Changes are also made to the committed polynomial F , and Q
is fixed (after removing cheaters) after the generation phase.

By linearity, for any set U ′ ⊆ U with |U ′| ≥ t,∑
i∈U ′ Li,U ′ωi =

∑
i∈U ′ Li,U ′(

∑
j∈Q Lj,Qωji) =∑

j∈Q Lj,Q(
∑

i∈U ′ Li,U ′ωji) =
∑

j∈Q Lj,Qxj = x, so
x can be correctly reconstructed from the refreshed shares ωi.

V. OUR PROPOSED CONSTRUCTION

For DRG, we first set up public parameters of Pedersen
VSS, including h ∈ G, by a commit-then-reveal procedure12,
and of CL encryption, which features a decentralized setup [6].
We denote the respective set of parties invoking the threshold

12Each party first broadcasts a hash of random hi, then broadcasts hi in
the second round and sets h =

∏
i hi without exposing its exponent.
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TKeygen

Pi(pp) All parties Pj ̸=i(pp)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 1: CLE Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLE.KGen(pp)→ (eki, dki)
Run ΣRkey⟨eki, dki⟩;Broadcast eki

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 2a: Share Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gen(pp)→ ({χij , χ
′
ij}j∈U , Cχi , πχi)

Broadcast (πχi , Cχi)

Send (χij , χ
′
ij) to Pj ̸=i

GenVf(χij , χ
′
ij , Cχi , πχi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 2b: Share Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comb({χji, χ
′
ji}j∈Qx)→ (wxi , pubxi

, πxi) CombVf({Cχj}j∈Qx , pubxi
, πxi)

RevealExp(wi, pubxi
)→ (Xi, πXi)

Broadcast (pubxi
, πxi , Xi, πXi) ExpVf(pubxi

, Xi, πXi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Phase (See Fig. 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 3: Threshold Key Generation Protocol

TKeygen (Output Phase)
parse wxi as (xi, x

′
i, ρxi)

vk :=
∏

j∈U X
Lj,U
j ; pk := {ekj , Xj}j∈U ; ski := (dki, xi)

return (vk, pk, ski) and erase memory

Fig. 4: Output Phase of Threshold Key Generation Protocol

key generation protocol (Figure 3), pre-signing protocol (Fig-
ure 5), and threshold signing protocol (Figures 7-9) by U , P ,
and P∗. We use the notation Q in Section IV-B to denote
the qualified parties who behaved honestly during the DRG
generation phase, e.g., at the end of Phase 2a of TKeygen
(Qx) and Phase 1a of PreSign (Qk,γ , which fixed k and γ).

Dotted lines in the figures separate a protocol into different
phases. Within a phase, the codes on the left-hand side are first
executed by party Pi (or party i). The messages above (and
below, if any) the arrow will then be sent. Upon receiving Pi’s
messages, all the other parties execute the (verification) steps
on the right-hand side (to verify Pi’s messages). Any cheater
(irresponsive party included), if identified, is excluded from the
participant set. All cheater-related components are discarded.
If the participant set remains at least t, the protocol proceeds.

We defer details of cheater identification steps to Sec-
tion V-D. Table II lists all the variables to be verified.

A. Threshold ECDSA Key Generation

Figure 3 presents our key generation protocol TKeygen.
Each party i first generates a CL encryption key-pair (eki, dki)
and shows its correctness via an interactive Σ-protocol13. If the
proof fails to verify, parties exclude the cheater from U .

13ΣRkey
is for showing the correctness of the encryption key by generating

the challenge collaboratively [9]. We keep it interactive due to our need
for the knowledge extractor, which might not be available after the Fiat–
Shamir transformation in the multiparty setting [26]. One might use the more
(computation and communication) costly NIZK with online extractors [12].

In Phase 2a, each party i runs DRG.Gen to distribute share
(χij , χ

′
ij) of an initial secret χi to party j, and broadcasts its

output cχi
:= (cχi

, Fχi
) with a proof πχi

. Each party j runs
DRG.GenVf to verify the shares from each party i. If it fails,
party j broadcasts (χij , χ

′
ij) as a complaint against party i. The

cheater is excluded from U after the complaint is accepted. We
mark the qualified set Qx := U for this protocol.

In Phase 2b, parties run DRG.Comb to obtain (t, n) secret
share {xi}i∈Qx

of the final secret x :=
∑

i∈Qx
χi. It also

outputs public share pubxi
. For later reconstruction of gx, each

party i runs DRG.RevealExp to reveal Xi := gxi , and finally
broadcasts pubxi

, Xi, and ZKPs (πxi , πXi) over them. Each
party j then runs DRG.CombVf and DRG.ExpVf to verify
pubxi

and Xi, respectively, and excludes any cheater from U .
At this point, correct shares of the initial secret χi′ of any
cheater i′ have been sent, so that the protocol can continue.

As in Figure 4, the output to each party i is a threshold-
shared ECDSA signing key ski := (dki, xi) such that∑

i∈U ′ Li,U ′xi = x for any U ′ ⊆ U with |U ′| ≥ t. It also
outputs pk containing CL encryption keys {ekj = g

dkj
q }j∈U ,

and {Xj = gxj}j∈U that defines vk :=
∏

j∈U X
Lj,U
j = gx.

Using the key refreshment of DRG, we can achieve proac-
tive security [4] by refreshing xi underlying the ECDSA key.
The only other part is the CL encryption key, which is internal
to the signers but not a part of the ECDSA verification key.
Each signer can just pick a new key pair as in TKeygen.

B. Offline Pre-signing Protocol

Figure 5 presents our pre-signing protocol PreSign with
three phases: 1) threshold-shared randomness generation using
our DRG, 2) share conversion using MtAwc, and 3) share
revelation. It aims to generate the following items.

• Pre-signature φi for party i including:
◦ Share ki of k; and Protocol nonce R = g1/k;
◦ Additive shares {µij , νji}j∈P\{i} of kixj = µij + νij .

• Verification material Vi including:
◦ Opening k′i to commitment PCki

;
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PreSign

Pi(pp, pk = {ekj , Xj}j∈P , ski = (dki, xi)) All parties Pj ̸=i(pp, pk, skj)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 1a: Share Generation using DRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gen(pp)→ ({κij , κ
′
ij}j∈P , Cκi , πκi) GenVf(κij , κ

′
ij , Cκi , πκi)

Gen(pp)→ ({yij , y′
ij}j∈P , Cyi , πyi)

Broadcast (πκi , Cκi , πyi , Cyi)

Send (κij , κ
′
ij , yij , y

′
ij) to Pj ̸=i

GenVf(yij , y
′
ij , Cyi , πyi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 1b: Share Combination using DRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comb({κji, κ
′
ji}j∈Qk,γ )→ (wki , pubki

, πki) CombVf({Cκj}j∈Qk,γ , pubki
, πki)

Comb({yji, y′
ji}j∈Qk,γ )→ (wγi , pubγi

, πγi)
Broadcast (pubki

, πki , pubγi
, πγi) CombVf({Cyj}j∈Qk,γ , pubγi

, πγi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase 2: Share Conversion using MtAwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parse wγi as (γi, γ
′
i, ργi)

RevealExp(wγi , pubγi
)→ (Γi, πΓi)

Broadcast (Γi, πΓi)

Broadcast {cαji ,Bji, cµji ,Nji}j
ExpVf(pubγi

,Γi, πΓi)

foreach j ∈ P \ {i} do
parse pubkj

as (PCkj , ckj )

βji, νji ←$ Fq; Bji := gβji ; Nji := gνji

cαji ← γi ⊗ ckj ⊕ Enc(ekj ,−βji) αji := Dec(dkj , cαji); check gαjiBji
?
= Γ

kj

i

cµji ← xi ⊗ ckj ⊕ Enc(ekj ,−νji) µji := Dec(dkj , cµji); check gµjiNji
?
= X

kj

i

endforeach

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phase 3: Share Revelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parse wki as (ki, k
′
i, ρki)

Γ :=
∏

j∈P Γ
Lj,P
j ; Di := Γki

πDi ← NIZKDL-PC.Prove((PCki ,Γ, Di); (ki, k
′
i))

Broadcast (πDi , Di, {δij}j) NIZKDL-PC.Verify((PCki ,Γ, Di), πDj )

{θij}j∈P ← SS.Share(0); δii := kiγi + θii δi,P :=
∑

ℓ∈P Lℓ,Pδjℓ

for (j ∈ P \ {i}) do {δij := αij + βji + θij} check gδi,P
∏

ℓ∈P\{i}(Biℓ/Bℓi)
Lℓ,P ?

= Di

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Phase: Nonce Reconstruction (See Fig. 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 5: Pre-signing Protocol

PreSign (Output Phase)
{δj,P}j∈P := {

∑
ℓ∈P Lℓ,Pδjℓ}j∈P

δ :=
∑

j∈P Lj,Pδj,P

R := Γ1/δ; {Rj}j∈P := {D1/δ
j }j∈P

φi := (R, ki, {µij , νji}j∈P\{i})

Vi := (k′
i, {PCkj}j∈P{Rj}j∈P , {{Njℓ}ℓ∈P\{j}}j∈P)

return (φi, Vi) and erase memory

Fig. 6: Output Phase of Pre-signing for Nonce Reconstruction

◦ Commitments {PCkj}j∈P of shares {kj}j∈P ;
◦ Shares {Rj = Rkj}j∈P of k; and Additive shares
{{Njℓ}ℓ∈P\{j} = {gνjℓ}ℓ∈P\{j}}j∈P , both in exponent.

1) Phase 1: Party i runs DRG.Gen(pp) to generate its ini-
tial secrets κi, yi and sends their verifiable shares to each party
via private channels. Party i broadcasts Cκi

, Cyi
containing

ciphertexts cκi
, cyi

of κi, yi and their proofs πκi
, πyi

.

Party j verifies shares (κij , yij) from party i against the
broadcasted verification materials (Cκi , Cyi) by party i, If it
fails, party j broadcasts a complaint to exclude party i from P .
At the end of Phase 1a, each party i holds the correct shares
{κji, yji}j∈P of initial secrets {κj , yj}j∈P . We define the
qualified set Qk,γ := P at this point.

Phase 1b runs the combination phase of DRG to generate
threshold secret shares {ki, γi}i∈P of secrets k :=

∑
i∈Qk,γ

ki
and γ :=

∑
i∈Qk,γ

γi. Party i runs DRG.Comb to combine the
verified and received shares {κji, yji}i∈Qk,γ

, into ki, γi, and
their public shares pubki

, pubγi
, which contains commitments

PCki ,PCγi . and ciphertexts cki , cγi . Party i broadcasts them
with proofs (πki , πγi) for REnc-PC that the commitments
and ciphertexts are either committing to or encrypting the
same (ki, γi). Party j verifies the proof (πki

, πγi
) about

(pubki
, pubγi

). If it fails, party j excludes party i from P .

At the end, secret output wγi for party i consists of secret
share γi, encryption randomness ργi

, and similar items for wki
.

Each party i also holds commitments {PCkj
,PCγj

}j∈P and
ciphertexts {ckj

, cγj
}j∈P of {kj , γj}j∈P .
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2) Phase 2: For shares {ki, γi, xi}i∈P of secrets (k, γ, x),
we aim to convert kjγi and kjxi such that kjγi =
αji + βji and kjxi = µji + νji, where party i holds
(γi, xi, βji, νji) and party j holds (kj , αji, µji). Furthermore,
we generate the shares in exponent {{Bjℓ,Njℓ}j∈P\{ℓ}}ℓ∈P =
{{gβjℓ , gνjℓ}j∈P\{ℓ}}ℓ∈P and {Γj}j∈P = {gγj}j∈P .

When Phase 2 starts, party i computes and broadcasts
Γi = gγi with proof that it is bound to the commit-
ment (in pubγi

) broadcasted during Phase 1b. Phase 2 runs
MtAwc, where party i (acting as a sender) and j com-
putes the additive share of kjxi, kjγi with the broadcasted
ciphertext ckj

from party j in Phase 1b, i.e., parties j
and i engage in MtAwc⟨(Γi, kj , (ekj , dkj)); (Γi, γi, ekj)⟩ →
⟨(gβji , αji); (βji)⟩ to convert kjγi into αji + βji.

Party i ∈ P owning private shares xi, γi can homomorphi-
cally compute the ciphertext of αji = γi · kj − βji and µji =
xi · kj − νji for randomly sampled βji, νji. The ciphertexts
cαji , cµji and the shares in exponent Bji = gβji ,Nji = gνji

are broadcasted alongside the proof on Γi.

Party j decrypts and checks the received shares αji, µji

with Γi,Bji, ki, e.g., gαjiBji
?
= Γ

kj

i . To complain about an
incorrect share, e.g., αji, party j broadcasts proof of decryption
of cαji and proof that the exponent in Γ

kj

i is bound to PCkj .
Party i will be removed from P if the complaint is valid. The
complaint for µji works similarly.

At the end of Phase 2, each party j stores additive shares
{αji, βij , µji, νij}i∈P . Every party also stores the public val-
ues {Biℓ,Niℓ}(i,ℓ)∈P2,i̸=ℓ and {Γi = gγi}i∈P .

3) Phase 3: We aim to broadcast shares δij of δ = kγ
securely. Since {Γj = gγj}j∈P are published and verified
in Phase 2, the parties compute Γ by Lagrange interpolation
in exponent, i.e., Γ =

∏
j∈P Γ

Lj,P
j . Thus, party i holding

ki can also compute Di = Γki = gkiγ . This Di will be
broadcasted with proof of committed exponent (RDL-PC) of
Γ with ki committed in PCki from Phase 1b. Note that
Di = gki·

∑
j∈P(Lj,Pγj) can be used to verify the correctness

of ki ·
∑

j∈P(Lj,Pγj) in exponent. We aim to use Di and
{Bji}i,j to verify the shares {δij}j∈P of pseudo-nonce.

In Phase 3, party i releases their threshold shares {δij}j∈P
of the pseudo-nonce kγ, where

δij =

{
αij + βji + θij , if i ̸= j

kiγi + θii, if i = j

and {θij}j∈P is Shamir sharing of 0. To illustrate, assume
P = {1, . . . , n} and consider the following n× n matrix S:

S =


k1γ1 α12 + β21 · · · α1n + βn1

α21 + β12 k2γ2 · · · α2n + βn2
...

...
. . .

...
αn1 + β1n · · · · · · knγn


where row i is the “unmasked version” of {δij}j∈P . Each
δij is the sum of party i’s share of (kiγj , kjγi) obtained in
the previous phase after interacting with parties j ∈ P \ {i}.
Multiplying masked row i with ℓ⃗ = (L1,n, L2,n, . . . , Ln,n)

⊺

gives δi,P = (L1,n(αi1+β1i)+· · ·+Li,nkiγi+· · ·+Ln,n(αin+
βni)) where the 0 mask is canceled.

To verify the broadcasted share, consider matrix T below:

T =


0 β12 − β21 · · · β1n − βn1

β21 − β12 0 · · · β2n − βn2
...

...
. . .

...
βn1 − β1n · · · · · · 0

 .

We have S · ℓ⃗+T · ℓ⃗ = (k1γ, k2γ, . . . , knγ)
⊺.

The above check can be performed over the exponent
by linear homomorphism since the Lagrange coefficients and
masked shares S are known. Lifting T to group generator g:

gT =


g0 gβ12−β21 · · · gβ1n−βn1

gβ21−β12 g0 · · · gβ2n−βn2

...
...

. . .
...

gβn1−β1n · · · · · · g0

 ,

we have gβij−βji = Bij/Bji, which can be computed using
{Bji}i,j from Phase 2. Thus, the parties can compute gkiγ

in exponent, using the outputs from MtAwc and broadcasted
shares {δij}j∈P by party i to check against Di = Γki :

gδi,P
∏

j∈P\{i}

(Bij/Bji)Lj,P ?
= Di.

4) Nonce Reconstruction: Given {{δjℓ}ℓ∈P}j∈P , party i
first reconstructs δ = kγ by performing two (iterations of)
Lagrange interpolations on the shares14 as in Figure 6. Finally,
our pre-signing protocol outputs two types of values:

1) The pre-signature (share) φi for online signing, includ-
ing the nonce of signature R = g1/k, computed by
Γ1/δ = gγ/δ , the partial randomness ki, and additive shares
{(µij , νji)}j∈P\{i};

2) The verification materials Vi for cheater identification in
online signing, which contain the party’s commitment ran-
domness k′i, commitments {PCkj}j∈P to shares kj from
others, share kj in exponent (to base R) {Rj}j∈P computed
by D1/δ

j and all MtA shares of the pseudo-key Nij = gνij .

C. Online Signing Protocol

TSign aims to generate (r, s) such that s = km+ rkx or
equivalently Rs = gmXr, where m = H(msg), X = gx is the
verification key, and r is the x-projection of R = g1/k. Each
party i ∈ P∗ builds upon party i’s pre-signature (φi, Vi):

1) Party i runs Phase 1a in Figure 7 to broadcast threshold
signature shares {sij}j∈P∗ and verification material Vi:
• Computing sij is similar to δij in Phase 3 of PreSign,

with ki times the j-th share of m as the “mask.” Shares
of m created by party i are different from those by others.

• Verification materials Vi are essentially the additive
shares in exponent to the base element R, with ZKP.

2) Upon receiving {sij}j∈P∗ from party i, party j runs
Phase 1b in Figure 8 to verify its correctness. Party j first
verifies the additive share in exponent to base R via ZKP,
then verifies the threshold signature {sij}j∈P∗ using the

14Recall that kγ =
∑

i,j∈[n] LiLjkiγj =
∑

i∈[n],j<i LiLj(kiγj +

kjγi) +
∑

i∈[n] L
2
i kiγi, with δij + δji = kiγj + kjγi, the interpolation

is essentially multiplying the matching Lagrange coefficients. With the matrix
notation, we have S[i, j] + S[j, i] = kiγj + kjγi and kγ = (ℓ⃗)⊺ · S · ℓ⃗.
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TSign (Phase 1a)

Pi(pp, {ekj , Xj}j∈P∗ , (dki, xi), (φi, Vi),msg)

parse φi as (R, ki, {µij , νji}j∈P∗\{i})

parse Vi as
(
k′
i, {PCkj}j∈P∗ , {Rj}j∈P∗ ,

{{Njℓ}ℓ∈P∗\{j}}j∈P∗
)

foreach j ∈ P∗ \ {i} do
Mij := Rµij

πMij ← NIZKDL-2PC.Prove(

(PCki , Xj , 1/g,Nij , R,Mij); (ki, k
′
i, µij))

endforeach

m := H(msg); {mij}j∈P∗ ← SS.Share(m)

Let r be the x-projection of EC-point R; sii := rkixi + kimii

foreach (j ∈ P∗ \ {i}) do {sij := r(µij + νji) + kimij}
Broadcast {sij}j∈P∗ ,Vi := {Mij , πMij}j∈P∗\{i}

Fig. 7: Threshold Signature Shares Revelation

TSign (Phase 1b)

All parties Pj ̸=i(pp, pk, skj , (φj , Vj),msg)

foreach ℓ ∈ P∗ \ {i} do
NIZKDL-2PC.Vf((PCki , Xℓ, 1/g,Niℓ, R,Miℓ), πMiℓ)

si,P∗ :=
∑

ℓ∈P∗ Lℓ,P∗siℓ

check Rsi,P∗ ∏
ℓ∈P∗\{i}(Mℓi/Miℓ)

rLi,P∗ ?
= Rm

i Xr
i

Fig. 8: Threshold Signature Shares Combination

TSign (Phase 2)

Pi({sjℓ}j,ℓ∈P∗)

{sj,P∗}j∈P∗ := {
∑

ℓ∈P∗ Lℓ,P∗sjℓ}j∈P∗

return (r, s :=
∑

j∈P∗ Lj,P∗sj,P∗)

Fig. 9: Threshold Signature Reconstruction

additive share in exponent. The verification logic is similar
to the one in Phase 3 of PreSign (cf. Section V-B3) for
{δij}j , e.g., S[i, j] = µij + νji (kixi) for i ̸= j (i = j)
with ki · SS.Share(m) as the (row i) “mask,” and Di is
replaced by Rm

i X
r
i . If any verification fails against party i’s

broadcasted shares, party j excludes the cheater from P∗.
3) After completing the verification, party i runs Phase 2 in

Figure 9 to reconstruct s := km+rkx of the ECDSA signa-
ture σ := (r, s) by Lagrange interpolation. We emphasize
that {si,P∗}i∈P∗ computed during Phases 1b and 2 may
differ because the value depends on the updating set P∗

(some parties may kick out after Phase 1b).

Unforgeability will be analyzed in Appendix C-B.

D. Cheater Identification

We describe the cheater identification for each phase, which
shows that our scheme achieves identifiable abort under the
dishonest majority setting. The robustness under the honest
majority setting is deferred to Appendix C-A.

TABLE II: Data Verified by Party i in Chronological Order

Variable Meaning/Origin Verified by

ekj CLE encryption key of party j NIZKkey

χj , κj , yj Contribution by party j for x and kγ DRG.GenVf
χji, χ

′
ji, (Fχj

, cχj
) VSS share of (χj , κj , yj) by party j

VSS
(resp. κji, yji) for party i (and verification material)
PCxj

, cxj
VSS commitment or

DRG.CombVf
(resp. kj , γj ) ciphertext of xj from party j
Xj = gxj ,Γj = gγj Combined share in exponent from party j DRG.ExpVf

αji, µji Pi’s decrypted MtAwc shares for kjγi, kjxi MtAwc
Bji,N ji Pj ’s MtAwc share-in-exponent for kjγi, kjxi MtAwc

Dj = Γkj Broadcasted share ki in exponent NIZKDL-PC
{δjℓ}ℓ∈P Unstructured shares of kγ Equation (2)

Mji Pi’s MtAwc shares for kjxi in exponent NIZKDL-2PC
{sjℓ}ℓ∈P Unstructured shares of s = km + rkx Equation (3)

1) Identification in TKeygen: Let U be the set of partic-
ipants in TKeygen. In Phase 1, each party verifies ZKP for
Rkey, asserting that the CLE key pair satisfies eki = gdkiq . If it
is invalid, party i is deemed a cheater by updating U to U\{i}.

In Phase 2, the remaining honest parties in U engage in
the DRG protocol to generate the shares of the threshold
ECDSA key ({xj}j∈U ) and the public shares {pubxj

}j∈U
({Xj = gxj}j∈U ). The cheater identification for invalid keys
and public shares largely follows DRG (cf., Section IV-B).

2) Identification in PreSign: Let P be the set of partici-
pants in PreSign. Phase 1 runs DRG to share k, γ. Similar to
TKeygen, the parties can identify and remove cheating parties.

For MtAwc (Phase 2 in Figure 5), only party j can decrypt
the ciphertexts (cαij

, cµij
) and verify the decrypted shares

(αij , µij) with (Bij ,Nij) broadcasted by party i. To complain
about a cheating party i, party j broadcasts αij with proof
RDec of decryption of cαij and Γ

kj

i (resp. Xkj

i ) with proof
RDL-PC of kj in Γ

kj

i committed in PCkj
to the base Γi. If the

proofs and components (Γ
kj

i ,Bij , αij) (resp. (Xkj

i ,Nij , µij))
broadcasted by party j are valid, others can verify αij (resp.
µij) by checking gαijBij

?
= Γ

kj

i (resp. gµijNij
?
= X

kj

i ).

In Phase 3, parties verify the share in exponent Di = Γki =
gγki to the base element Γ and the shares {δij}j∈P of pseudo-
nonce δ = kγ. While ZKP directly ensures the correctness of
Di, verifying {δij}j∈P is more complicated.

The verification equation verifies the shares {δij}j∈P from
party i as δi,P = Li,Pkiγi +

∑
j∈P\{i} Lj,P(αij + βji) in ex-

ponent (cf., Section V-B3 for the correctness of Equation (2)):

gδi,P
∏

j∈P\{i}

(Bij/Bji)Lj,P ?
= Di. (2)

All parties exclude party i from P if the broadcast share
{δij}j∈P fail to satisfy Equation (2). Since {Bij ,Bji} have
been verified in Phase 2 and the well-formedness of Di is
ensured by ZKP, the party can verify the shares {δij}j∈P
from party i. Although the verification involves {Bji}j∈P\{i}
that party j generates, party i has verified {Bij}j∈P\{i} and
reported the fault. Thus, any fault identified in δi,P can always
be imputed to party i. Even if the fault stems from incorrect
Bji broadcasted by party j during MtAwc, party i is still held
responsible for the unreported culprit of Bji in Phase 2.
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TABLE III: Costs of Zero-Knowledge Proofs: G,F,QF de-
notes the communication and computation costs for the EC
group G, field Fq and the binary quadratic form QF , resp.

ZKP Relation Comm. Prover Comp. Verifier Comp.

PC 3F + 1G 2G 3G
DL-PC 3F + 2G 3G 5G
DL-2PC 4F + 3G 5G 8G
Enc-PC 4F + 1G + 6QF 2G + 5QF 3G + 15QF

(185 ms) (89.7 ms)
Dec 4F + 6QF 6QF 12QF

(206 ms) (87.5 ms)

TABLE IV: Communication Costs of the Protocols/Primi-
tives of Our (t, n) Threshold ECDSA Scheme: DRG∗ runs
(RevealExp,ExpVf), and DRG does not.

Protocol/ Comm. Costs Comp. CostPrimitives P2P Broadcast

DRG∗ 2F 10F + (t + 3)G + 16QF (4t + 34n)G + (30n)QF
DRG 2F 8F + (t + 2)G + 16QF (4t + 30n)G + (30n)QF

TKeygen 2F 13F + (t + 5)G + 16QF (4t + 35n)G + (32n)QF
PreSign

4F
(16 + t)F + (6t + 9)G

(8t + 18n)G + (32n)QF
+(2n + 32)QF

TSign - 4(n − 1)F + (6n − 5)G (8n2 + 6n)G

TABLE V: Local Computation Time and Total Incoming Com-
munication Cost (n = 5, t = 4), excluding extra identification
costs; DRG, MtA, Reveal corresponds to Phase 1, 2-3, and 4-6
of the CL-based scheme, respectively.

Steps RunTime Comm. Costs CL-based [7] Paillier-based [4]
(ms) (Bytes) Comm. Comm.

Pre-sign (DRG) 2503 26536 11920 18496
Pre-sign (MtA) 1365 7584 7804 80464
Pre-sign (Reveal) 6 2992 6164 14568
Online 10 9236 240 285

3) Identification in TSign: With the correct additive share
in exponent Mij = Rµij (ensured by ZKP), we follow the
verification steps for δij to verify the threshold signatures
{sij}j∈P∗ from party i as si,P∗ = kim + r(Li,P∗kixi +∑

j∈P∗\{i} Lj,P∗(µij + νji)):

Rsi,P∗
∏

j∈P∗\{i}

(Mji/Mij)
rLj,P∗ ?

= Rm
i X

r
i . (3)

For any fault due to {Nij ,Nji} when verifying ZKP of
{Mij ,Mji}, we can safely impute the fault to party i, by
the similar argument for {Bij ,Bji}. Notice that (Ri, Xi) are
guaranteed to be correct in TKeygen and PreSign, respectively,
so the party can verify the shares {sij}j∈P∗ from party i.

VI. EFFICIENCY ANALYSIS AND IMPLEMENTATION

A. Efficiency Analysis

Our protocol employs CL encryption and ZKPs listed in
Section III-F (instantiated in Appendix A-B). The elements
of the class group are represented in binary quadratic forms,
and we denote by QF the group element size and the group
operation. The letter G represents the element size and the
group operation cost in the EC group; F represents the element

size in Fq (computational cost is neglected). Table III lists
the proof size and verification cost, and Table IV lists the
communication and computational costs of sub-protocols.

B. Implementation

We benchmark our protocol using the ZenGo-X libraries15

with class-group and elliptic-curve libraries16. We use the
Secp256k1 curve and set λ = 128 (|∆q| = 1860). We use
a desktop computer equipped with AMD Ryzen 7 3700X
(at 4GHz) running Windows Subsystem for Linux (Ubuntu
20.04) allocated with 75GB RAM. Table V lists the timings
for subprotocols and the total inbound communication cost per
party, including the JSON-serialization overhead.

We also provide the communication cost for two IA
schemes: the 6-round CL-based “CCLST23” [7] and the 3-
round Paillier-based “CGGMP20” [4] under the same set of
parameters and with compact ZKPs for the CL encryption [27].
We do not include a benchmark with SMC-based protocol [18]
for not achieving IA in the pre-signing phase. Besides, we also
do not compare to Damgård et al. [10] and Pettit [24] since
they require ≥ 2t+ 1 participants in the pre-signing phase.

CGGMP20 [4] has a faster running time since it only
requires EC operations and exponentiation in rings ZN ,ZN2 ,
but with 3× communication costs of CCLST23 and ours.

If no one cheats, ours has higher communication costs
(36.2KB vs. 25.3KB vs. 110KB) in the pre-signing protocol for
(t, n) = (4, 5). If an error occurs during MtA or share revela-
tion, ours allows continuation after identifying the cheaters and
thus saves ∼21%−32% of total communication cost compared
to CCLST23 (cf. Figures 10a-10b). Similarly, our total runtime
is∼30% higher than CCLST23 for (n−1, n), and∼10%−30%
lower in case of an error in Phase 3 (cf. Figure 11).

The higher cost comes from verifably encrypting the secret
input in our DRG. In our online signing protocol, the parties
can identify and discard malformed shares at the cost of
O(n) group elements. To compute the threshold signature after
identifying cheaters, the remaining (honest) parties do not need
to run the pre-signing protocol again. For schemes that do not
self-heal, the performed computation and communication are
the costs to deal with cheaters. For CCLST23, any abort occurs
at the pre-signing during MtA will waste ∼50% of the work.

VII. CONCLUSION

Many threshold ECDSA proposals focus on minimizing
communication costs but neglect to ensure that a protocol run
will not abort in the presence of faulty signers. In practice, such
weakness wastes the communication and computation efforts
of the remaining honest signers, effectively diminishing the
purported high efficiency. Recent attempts, at best, assume all
signers have generated many pre-signatures in an offline stage,
which might not be realistic and makes the problems easier.
Our robust threshold ECDSA scheme achieves the threshold
functionality “for real” – if some participating signers cheated
in any stage, the rest can continue as long as any t of them
remain. We hope our pursuit of threshold flexibility throughout
all protocol phases brings a new perspective to future research.
We share some future research directions in Appendix D.

15https://github.com/ZenGo-X/multi-party-ecdsa
16https://github.com/ZenGo-X/curv, https://github.com/ZenGo-X/class
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(a) An error detected during MtA
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(b) An error detected during the share revelation phase
Fig. 10: Total Incoming Communication Cost of A Party for An Error Detected during Pre-sign, with n ∈ {5, 10, 15, 20, 30}
Parties and Corruption Threshold n− 1 for a “Worst-Case” Comparison
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Fig. 11: Total Pre-sign Runtime of A Party with n ∈
{5, 10, 15, 20, 30} and Threshold n − 1: The dashed lines
indicate the total runtime for correcting an error in Phase 3.
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APPENDIX A
ZERO-KNOWLEDGE PROOF

A. Σ-Protocols and Fiat–Shamir Transform

A Σ-protocol for a statement-witness pair (x,w) in a
binary relation R is a 3-round protocol with PPT algorithms
(P1,V1,P2,V2) run sequentially.

1) P1 takes the state τ , outputs the first-round message A.
2) V1 outputs a random challenge e.
3) P2 takes (x,w, τ, e) as input and outputs a response z.
4) V2 takes (x,A, e, z) as input and outputs a bit b.

• Completeness. If (x,w) ∈ R, an honest prover with witness
w can always convince an honest verifier that x is true.
• Special soundness. There exists a PPT extractor Ext that can

extract a witness w′ for (x,w′) ∈ R from two accepting
transcripts (x,A, e, z), (x,A, e′ ̸= e, z′) from the prover.
• Honest-verifier zero-knowledge. There exists a PPT simula-

tor Sim that takes the statement x and random challenge e
as input, and outputs an accepting transcript (x,A, e, z)
indistinguishable from a real one to the verifier.

Via Fiat–Shamir heuristic, a Σ-protocol can be compiled
into a NIZK proof (Prove,Verify). In Prove, the prover invokes
P1 that outputs A, and queries (x,A) to the random oracle
HNIZK to obtain a random challenge e. The prover then invokes
P2 with (x,w, τ, e) to compute z. Verify checks if e equals
HNIZK(x,A) and invokes V2 to check the proof (x,A, e, z).

Following Canetti et al. [4], we transform a Σ-protocol
into NIZK by having the prover first commit to the first-round
message via a Com algorithm. The prover with the fixed first-
round message can then be rewinded for knowledge extraction.

• ZKPR(τ).Com→ A: Output A← P1(τ).
• ZKPR.Prove(x;w, τ)→ π: If τ is an empty string, sample
τ ←$ D. Run A ← P1(τ), compute e := HNIZK(A, x), run
z ← P2(x,w, τ, e), and output π := (A, e, z).
• ZKPR.Verify(x, π)→ 0/1: Parse π = (A, e, z), output 1 if
V2(x,A, e, z) = 1 and e = HNIZK(A, x); 0, otherwise.

We also consider an extended 5-round variant
(P1,V1,P2,V2,P3,V3) of the Σ-protocol. V2 not only verifies
the response from P2, but also picks another challenge for P3.
P3 then generates a response for V3 to verify.

• V2 takes in (x,A, e, z) and outputs a random challenge e∗.
• P3 takes (x,w, τ, e∗) as input and outputs a response z∗.
• V3 takes (x,A, e∗, z∗) as input and outputs a bit b.

We transform the 5-round protocol into NIZK in the same
vein; the first and second challenges are obtained by querying
the random oracle on the input of the entire transcript at that
point, i.e., (A, x) and (A, x, e, z), respectively. The soundness
argument of this 5-round transformation follows from the ex-
isting argument [25], which shows that if a constant-round Σ-
protocol is sound, then NIZK from Fiat–Shamir transformation
is sound. Furthermore, a hash-to-prime function [2] can be
used when a prime challenge is required.

B. Σ-Protocols for some NP-Relations

Our scheme involves two types of relations categorized by
the mathematical structure involved: EC-group-based (RDL-PC

Prover((PC, g0, Q), (m, r)) Verifier(PC, g0, Q)

r1, r2 ←$ Fq, T1 := gr1hr2

T2 := gr10
T1, T2

k k ←$ Fq

u1 := r1 + km, u2 := r2 + kr u1, u2 check gu1hu2 ?
= T1PC

k,

gu1
0

?
= T2Q

k

Fig. 12: Σ-Protocol for RDL-PC

Prover((PC, . . . , R), (k, k′, µ)) Verifier(PC, . . . , R)

r1, r2, r3 ←$ Zq, T1 := gr1hr2

T2 := Xr1(1/g)r3 , T3 := Rr3 T1, T2, T3

u1 := r1 + ck, u2 := r2 + ck′ c c←$ Zq

u3 := r3 + cµ u1, u2, u3 check gu1hu2 ?
= T1PC

c,

Xu1(1/g)u3 ?
= T2N c,

Ru3 ?
= T3R

c

Fig. 13: Σ-Protocol for RDL-2PC

and RDL-2PC) and class-group-based (Rkey, REnc-PC, and
RDec). Their instantiations are given in Figures 12, 13, 14.

The EC-group-based relations can be proved by the com-
bined use of Schnorr protocol and Okamoto protocol. The
constructions are standard, so we omit the security analysis.

For class-group-based relations, we adapt the 5-round Σ-
protocol [27] by Yuen et al. More concretely, we use the pro-
tocol [27, Algorithm 2] for Rkey and modify [27, Algorithm 6]
for REnc-PC and RDec, respectively. The special soundness
property relies on the adaptive root subgroup assumption17 in
the generic group model. We follow the parameter [27] such
that the soundness error and statistical distance are 2−80.

The security analysis of Σ-protocol for REnc-PC follows
the 5-round protocol [27, Algorithm 6] with some minor
changes for the newly added term r ∈ Zq . To argue special
soundness, we construct a new extractor from the old extractor
of the 5-round protocol. Given two accepted transcripts, the
new extractor extracts the whole witness (m, r, ρ). In more
detail, (m, ρ) is extracted via the old extractor; given the
transcripts including terms (k, u3, k

′, u′3), the new term r is
computed as (u3 − u′3)/(k − k′) ∈ Zq . We argue it is zero-
knowledge via a similar method. We construct a new simulator
that simulates the whole transcript (T, T3, k, u, u3, p, u′)18. The
term (T, k, u, p, u′) of the original protocol is simulated via the
old simulator; the new term u3 is randomly sampled, and T3
is computed as gu2hu3/PCk ∈ G.

The proof for CL decryption is simplified by revealing m

17Informally, for an adversary-chosen element w and a prime challenge ℓ,
it is hard to compute the root u, i.e., uℓ = w. See [27] for more detail.

18We write the commitment, first response, and second response of the
original protocol as T := (T1, T2), u := (u1, Dq,1, Dq,2, eq), and u′ :=
(Dp,1, Dp,2, ep), respectively.
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Prover((PC, ek, (c1, c2)), (m, r, ρ)) Verifier(PC, ek, (c1, c2))

r1 ←$ Zq, r2 ←$ [−B,B], r3 ←$ Zq

T1 := gr2q , T2 := fr1ekr2 , T3 := gr1hr3 T1, T2, T3

u1 := r1 + km, u2 := r2 + kρ, u3 := r3 + kr k k ←$ Zq

pick dq ∈ Z, eq ∈ Zq s.t. u2 = dqq + eq

Dq,1 := g
dq
q , Dq,2 := ekdq u1, u3, Dq,1, Dq,2, eq check eq ∈ Zq, D

q
q,1g

eq
q

?
= T1c

k
1 ,

fu1Dq
q,2ek

eq ?
= T2c

k
2 , g

u1hu3 ?
= T3PC

k

pick dp ∈ Z, ep ∈ Zp s.t. u2 = dpp+ ep p p←$ Primes(λ)

Dp,1 := g
dp
q , Dp,2 := ekdp Dp,1, Dp,2, ep check ep ∈ Zp, D

p
p,1g

ep
q

?
= T1c

k
1 , f

u1Dp
p,2ek

ep ?
= T2c

k
2

Fig. 14: Σ-Protocol for REnc-PC

from decrypting (c1, c2), and proving about c′2 = c2/f
m:

RDec = {((ek, (c1, c′2)), dk) : dk ∈ [0, S]∧c′2 = cdk1 ∧ek = gdkq }.

Recall that a well-formed ciphertext satisfies the following:

REnc = {((ek, c), (m, ρ)) : ρ ∈ [0, S]∧c1 = gρq∧c2 = fmekρ}.

When we set m = 0 and ρ = dk, RDec becomes REnc.
ZKP for REnc-PC can be used to prove RDec by remov-
ing m from the witness, i.e., ZKPDec((ek, (c1, c

′
2)); dk) =

ZKPEnc-PC((ek, (c1, c
′
2)); (0, dk)) and setting (PC, r) = (1, 0).

APPENDIX B
ANALYSIS OF DISTRIBUTED RANDOMNESS GENERATION

A. Correctness and Self-healing

Theorem 1: If NIZK is sound and zero-knowledge, VSS
satisfies correctness, robustness, and unconditional secrecy,
and CLE is indistinguishable against adaptive chosen-plaintext
attacks (IND-CPA-secure), then our DRG is correct and self-
healing (with <t corrupted parties and an honest majority).

Proof: Uniform Distribution. After the generation phase,
x is fixed as

∑
j∈Qx

χj . Its distribution can only be influenced
during the generation phase. The view of the adversary (taking
the role of party j) regarding the output of party i includes:

1) (Fχi
, χij , χ

′
ij), which is independent of the secret χi of the

honest party i due to the secrecy of VSS;
2) πχi

and cχi
leak negligible information about χi since

NIZK is zero-knowledge and CLE is IND-CPA-secure.

The adversary can only corrupt less than t parties. It cannot
learn any partial information about the secret χi or cancel
the random contributions of honest parties. So, x = χi +
(
∑

j∈Qx\{i} χj) is uniformly distributed.

Correct Public Shares. Gen and GenVf run VSS to (thresh-
old) share and verify each party’s contribution χi. Any incon-
sistent shares/outputs of verification materials, commitments,
and ciphertexts would be detected (by the soundness of ZKP
and security of VSS) and removed. Thus, the verification
materials Fχi

and shares {χij}i,j are correct.

In CombVf and CombVf, REnc-PC ensures that xi satisfies
the combined Pedersen commitment (which implies x =∑

j∈Qx
χj and xi =

∑
j∈Qx

χji) and is correctly encrypted.
(RevealExp,ExpVf) proves the above share xi in exponent is
also committed, which is ensured by RDL-PC.

Robust Reconstruction. For correct contribution {xj}j∈P ,
any subset P ′ ⊆ P (|P ′| ≥ t) of the remaining parties can
robustly reconstruct x :=

∑
j∈Qx

χj as follows:

∑
i∈P′

Li,P′xi =
∑
i∈P′

Li,P′

∑
j∈Qx

χji


=
∑
j∈Qx

(∑
i∈P′

Li,P′χji

)
=
∑
j∈Qx

χj .

By the robust reconstruction, we know that a sufficient
number of (≥ t) parties can guarantee protocol output.

B. Secrecy

In the real protocol, each party generates a CLE key pair for
committing to the secret values. Our security analysis expects
the simulator obtains the decryption keys of corrupted parties
for an (online) extractor, which reduces rewinding and to avoid
common issues [26] in the multiparty or concurrent setting.

Theorem 2: If NIZK is zero-knowledge, VSS has uncondi-
tional secrecy, and CLE is IND-CPA-secure, DRG has secrecy
over discrete-logarithm groups assuming random oracle.

Proof: Let H and P be the set of honest and all parties,
respectively. We outline a simulator SDRG taking input X and
decryption keys {dkj}j∈C to simulate the view for a PPT
adversary A corrupting, w.l.o.g., the parties C = {1, . . . , t−1}
Gen gives shares {χij , χ

′
ij}j∈P , a ciphertext cχi , Pedersen

commitments Fχi , and ZKP πχi of party i. Comb gives Peder-
sen commitments PCxi

, ciphertext cxi
, and ZKP πxi

of party i.
By the secrecy of VSS, perfect hiding of Pedersen commit-
ments, IND-CPA-security of CLE, and zero-knowledgeness
of NIZK, the indistinguishable views of (Gen,Comb) can be
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simulated. (GenVf, CombVf and ExpVf are omitted as they
only verify.) It remains to show that the simulated view of
RevealExp is indistinguishable from a real one.

At a high level, we simulate the share in exponent {Xi}i∈H
for a given X as follows. In the real protocol (generation
phase), each party i ∈ H (controlled by the simulator) picks
an initial secret χi and sends the VSS shares χij of χi to other
party j ∈ P \ {i}. The simulator receives from the adversary
their contribution (encryption of χj and shares of χj from
party j ∈ C). Let YC = g

∑
j∈C χj be the lifted product of

all contributions from the corrupted parties (with χj extract-
ed/decrypted from the CLE ciphertext). Write YH = X/YC .
The simulator can compute the adversary’s view in RevealExp
({Xi, πXi}i∈H) by “sharing” YH using shares received from
(and sent to) the adversary in the generation phase and by
invoking the zero-knowledge simulator to simulate proof for
RDL-PC on a random CLE ciphertext.

APPENDIX C
SECURITY ANALYSIS OF THRESHOLD ECDSA

A. Correctness and Self-healing

Like prior threshold ECDSA schemes with optimal thresh-
old [14], [24], we consider security against static corruption.

We say an online/offline (t, n) threshold ECDSA pro-
tocol is correct (against (t − 1) corrupted parties) if, for
TKeygen⟨pp; . . . ; pp⟩ → ⟨(vk, pk, sk1); . . . ; (vk, pk, skn)⟩,
PreSign⟨(pp, pk, sk1); . . . ; (pp, pk, skn′)⟩ → ⟨ψ1; . . . ;ψn′⟩,
and TSign⟨(pp, pk, vk,msg, sk1, ψ1); . . .)⟩ → σ,

Pr[Verify(vk, σ,msg) = 1] ≥ 1− negl(λ).

To show the correctness, we show that the (shares of) the
ingredient of the signature σ can be verified, and cheaters can
be identified (and removed). Since our protocol works over
(t, n) sharing back-to-back, self-healing can be achieved by
removing cheaters’ contributions.

1) TKeygen: TKeygen is correct if the output (vk, pk :=
{ekj , Xj}j∈U , ski := (dki, xi)) of an honest party satisfies the
following requirements for a secret x (that can be reconstructed
by some subset of size ≥ t of U):

1) {ekj}j∈U contains the CLE public key of each party j;
2) vk = gx, {Xj = gxj}j∈U , xi where xj is party j’s share

of x (from DRG).

Lemma 2: If DRG is correct (self-healing) and Σkey is
sound, the TKeygen protocol in Figures 3 and 4 outputs a valid
tuple (vk, pk, {skj}j∈U ) for the set U of honest participants.

Proof: TKeygen invokes DRG to generate vk = gx and
shares of x: {xj , Xj = gxj}j∈U . By the robustness of DRG,
the honest parties can detect and remove inconsistent values.
Moreover, ZKP ensures CLE key-pair (ekj , dkj) ∈ Rkey.

2) PreSign: PreSign is correct if the outputs to an honest
party i, Vi = (k′i, {PCkj

}j∈P , {Rj}j∈P , {{Njℓ}ℓ∈P\{j}}j∈P)
and φi = (R, ki, {(µij , νji)}j∈P\{i}), satisfy:

1) R = g1/k, {Rj = gki/k}j∈P ;
2) ki is party i’s (threshold) share of k;
3) {(µij , νji)}j∈P\{i} satisfies µij + νij = kixj ;
4) {{Njℓ = gνjℓ}ℓ∈P\{j}}j∈P ;

5) {PCkj
= gkjhk

′
j}j∈P ;

Lemma 3: If DRG and CLE are correct, and NIZKDL-PC is
sound, the PreSign protocol in Figures 5 and 6 outputs a valid
pre-signature {φi, Vi} for the set of honest participants.

Proof: We show that relations are built in each phase to
make the requirements listed above hold.

Phase 1: Parties run two instances of DRG for k and γ.
By DRG correctness (and robustness), the following relations
hold, and thus items (2) and (5) are satisfied.

• {kj , γj}j∈P are shares of k, γ; RevealExp is invoked for γ,
e.g., outputting {Γj}j∈P
• {ckj

,PCkj
}j∈P in pubkj

are encrypting and committing kj .

Phase 2: We have correct shares of γ in exponent {Γj =
gγj}j∈P by the robustness of DRG. Each party i runs MtAwc
with party j ∈ P\{i} to compute additive shares of kjγi, kjxi.
By the MtAwc protocol, {αij , βij , µij , νij}i̸=j are additive
shares of kiγj , kixj , i.e. αij+βij = kiγj and µij+νij = kixj ;
{Bji,Nji}i̸=j

are correct additive shares in exponent such
that Bji = gβji and Nji = gνji . The decrypted shares
can be checked by gαjiBji

?
= Γ

kj

i and gµjiNji
?
= X

kj

i ,
where the variables in capital letters are broadcasted. A party
can complain the sender by broadcasting proof of decryption
against the broadcasted ciphertext from MtAwc, and remove
the cheater. Thus, conditions (3) and (4) are satisfied.

Phase 3: Each party i reveals shares {δij}j∈P . Recall the
matrix notation in Section V-B3, gT can be computed using
{Bij}i,j broadcasted in Phase 2 (all values are “trusted” if there
is no complaint); S[i, j] is the unmasked shares broadcasted in
Phase 3, i.e. S[i, j] = δij − θij . Also note that {Γi} revealed
in RevealExp during Phase 2 is used to compute Γ = gγ

(ensured by the robustness of DRG), and Di = Γki (ensured
by the soundness of NIZK for RDL-PC), which correspond to
exponents in gS·ℓ⃗+T·ℓ⃗. Hence, any party can check:

gδi,P
∏

j∈P\{i}

(Bij/Bji)Lj,P ?
= Di,

where δi,P = (L1,n(αi1 + β1i) + · · · + Li,nkiγi + · · · +
Ln,n(αin+βni)), and mark party i as a cheater if the equation
does not hold. Thus, the following conditions hold:

• {Dj}j∈P are correct shares in exponent to the base element
gγ , i.e., {Dj = (gγ)kj}j∈P , ensured by NIZK for RDL-PC.

• {δij}i,j∈P can robustly reconstruct kγ, i.e., for any subset
P ′ ⊆ P of size ≥ t, we have

∑
i∈P′ Li,P′δi,P′ = kγ, where

δi,P′ =
∑

j∈P′ Lj,P′δij . If the “first-layer” reconstruction
δi,P′ of broadcasted shares {δij}j∈P for i ∈ P ′ satisfies
Equation (2), we have

∑
i∈P′ Li,P′δi,P′ = kγ:

∏
i∈P′

gδi,P′
∏

j∈P′\{i}

(Bij/Bji)Lj,P′

Li,P′

=
∏
i∈P′

D
Li,P′

i∏
i∈P′

(gδi,P′ )Li,P′ = (gγ)
∑

j∈P′ Lj,P′kj

g
∑

i∈P′ Li,P′δi,P′ = gkγ .

Thus, condition (1) is achieved. In the output phase, each
party computes R := Γ1/δ = g1/k and {Rj := D

1/δ
j =
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gki/k}j∈P , and outputs φi := (R, ki, {µij , νji}j∈P\{i}) and
Vi := (k′i, {PCkj

}j∈P , {Rj}j∈P , {{Njℓ}ℓ∈P\{j}}j∈P), which
satisfy conditions (1) to (5).

3) TSign: We say TSign is correct if it outputs σ := (r, s)
such that gmXr = Rs, where m = H(msg), r is the x-
projection of the EC-point R, and X is the verification key.

Lemma 4: For any honestly generated pre-signature from
PreSign, the TSign protocol in Figures 7, 8, and 9 outputs a
valid signature for the set of honest participants.

Proof: Each party i generates threshold signature
{sij}j∈P∗ and verification material Vi, including {Mij}j∈P∗ .

• {Mij}j∈P∗ are correct additive shares in exponent, i.e.,
{Mij = Rµij}j∈P∗ . This relation is ensured by the sound-
ness of NIZKDL-2PC against the commitment PCki .

• {sij}i,j∈P∗ can robustly reconstruct km + rkx, i.e., for
any subset P∗′ ⊆ P∗ (|P∗′| ≥ t), we have km + rkx =∑

i∈P∗′ Li,P∗′si,P∗′ , where si,P∗′ =
∑

j∈P∗′ Lj,P∗′sij .
In a similar vein to the argument for {δij}i,j of PreSign
Phase 3: if the “first-layer” reconstruction si,P∗′ of the
threshold signature {sij}j∈P∗ satisfies Equation 3:

Rsi,P∗′
∏

j∈P∗′\{i}

(Mji/Mij)
rLj,P∗′ = Rm

i X
r
i ,

we have:∏
i∈P∗′

(Rm
i X

r
i )

Li,P∗′

=
∏

i∈P∗′

Rsi,P∗′
∏

j∈P∗′\{i}

(Mji/Mij)
rLj,P∗′

Li,P∗′

=
∏

i∈P∗′

(Rsi,P∗′ )Li,P∗′

=R
∑

i∈P∗′ Li,P∗′si,P∗′ .

Note that
∏

i∈P∗′(Rm
i X

r
i )

Li,P∗′ = RLi,P∗′ (kim+rkxi) =
Rkm+rkx. Therefore, we have

∑
i∈P∗′ Li,P∗′si,P∗′ = km+

rkx, and {si,P′}i∈P∗′ can reconstruct s = km+ rkx.
In more detail, shares {sij}j∈P∗ defined by {kimii +
r(kixi)} ∪ {kimij + r(µij + νji)}j∈P∗\{i}} pass the above
verification. To see, for any subset P∗′ ⊆ P∗, kim =∑

j∈P∗′ Lj,P∗′kimij and m =
∑

j∈P∗′ Lj,P∗′mij , si,P∗′ =
kim+ r(Li,P∗′kixi +

∑
j∈P∗′\{i} Lj,P∗′(µij + νji)).

This gives us the following evaluation:

Rsi,P∗′
∏

j∈P∗′\{i}( Mji / Mij )rLj,P∗′

=RkimRLi,P∗′kixi
∏

j∈P∗′\{i}( Rνji · Rµij )rLj,P∗′∏
j∈P∗′\{i}( Mji / Mij )rLj,P∗′

=Rm
i R

Li,P∗′kixi
∏

j∈P∗′\{i}(R
νjiMji · Rµij/Mij )

rLj,P∗′

=Rm
i R

Li,P∗′kixi
∏

j∈P∗′\{i}( Rkjxi · 1 )rLj,P∗′

=Rm
i X

r
i .

The above holds for any subset P∗′ of size ≥t for recon-
structing s = km+rkx, so TSign is self-healing and correct.

B. Unforgeability of Threshold ECDSA

If an adversary A breaks the unforgeability of our protocol
with non-negligible probability, we show how to build a

forger F that breaks the enhanced unforgeability of ECDSA
with non-negligible probability. F comprises three simulators
(STKeygen,SPreSign,STSign). These simulators generate views
indistinguishable from (TKeygen,PreSign,TSign) when inter-
acting with A in the real execution of the unforgeability game.

Let C,H be the corrupted set and the honest set, respec-
tively. Let U , P , P∗ be the set of parties who participate and
are not recognized as a cheater in TKeygen,PreSign,TSign,
respectively. The set U , P , P∗ are updated whenever a
cheater is identified. F handles all honest parties to maintain
consistency. We assume w.l.o.g. that F takes the role of party i.

1) Simulation of Key Generation Protocol: F aims to mold
the verification key vk in STKeygen as X , which is received from
the enhanced existential unforgability game of ECDSA. Recall
that TKeygen consists of KGen of CL encryption (Phase 1) and
DRG protocol (Phase 2). F first uses the knowledge extractor
to extract decryption keys {dkj}j∈C . With {dkj}j∈C , F then
invokes the simulator SDRG of DRG, which simulates an
indistinguishable view of DRG such that the protocol uses X
as the public signing key. For the simulated view from SDRG,
by Lemma 2, the view of SDRG and DRG are indistinguishable.
Thus, STKeygen and TKeygen are indistinguishable.

2) Simulation of Pre-signing Protocol: F aims to mold
the nonce in SPreSign as R, which is received from ORand.
SPreSign is separated into four phases as PreSign protocol. The
output phase only involves local computation using existing
ingredients, and no simulation is required. It follows the output
phase of SPreSign and is omitted here. For brevity, we also
omitted the ZKP that can be simulated by the ZKP simulator.

In Phase 1, F extracts {kj , γj}j∈P by decrypting the
encrypted shares in (pubki

, pubγj
). From {kj , γj}j∈P , F com-

putes k :=
∑

i∈P Li,Pki, γ :=
∑

i∈P Li,Pγi, and δ := kγ.

In Phase 2, with R from ORand, F simulates Γ := Rδ and
shares Γi of Γ (note that R ̸= g1/k, Γ ̸= gγ in the simulation).

F plays as initiator i for respondent j (in MtAwc). Without
knowing the discrete logarithm of simulated values Γi (Xi),
F randomly samples the additive shares αji (µji) for respon-
dent j. F then simulates Bji := Γi

kj/gαji (Nji := Xi
kj/gµji )

and ciphertext cαji ← Enc(ekj , αji) (cµji ← Enc(ekj , µji)).

F plays as respondent i for initiator j and decrypts the
ciphertext cαij (cµij ) with decryption key dki to obtain αij

(µij). In addition, since F knows ki, it can compute shares
βij := kiγj − αij (νij := kixj − µij) of party j.

Following the existing proof strategy of [6], [7] for MtAwc,
the simulated view is indistinguishable from the view of the
real protocol in Phase 2 of PreSign by the indistinguisha-
bility argument. Let k′ be the randomness used to generate
the nonce R received from ORand, and we define k′i as
the shares of the randomness k′. Γi is simulated as shares
of Γ = Rδ . Let the discrete logarithm of Γi be γ′i, and
γ′ := Li,Pγ

′
i +

∑
j∈C Lj,Pγj . Revealing Γi (while requiring

δ = k′γ′) implicitly uses k′i in the ciphertext cki . It has been
shown that in the presence of materials from MtAwc, no PPT
adversary can distinguish k′i from ki with an advantage greater
than 2ϵHSM+3/q+4ϵs, where CL encryption is ϵs-smooth, and
the hard subgroup membership problem is ϵHSM-hard. We refer
the readers to arguments in the literature [6], [7] for detail.
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In Phase 3, F computes {δij}j∈P , i.e., δii := kiγi + θii
and δij := αij + βji + θij for j ̸= i as normal, where αij is
obtained by decrypting the ciphertext cαij and βji := γikj −
αji (note that Bji ̸= gβji in the simulation). After that, F
computes Di according to the verification equation, i.e., Di :=
gδi,P

∏
j∈P\{i}(Bij/Bji)Lj,P , so it must pass the verification.

3) Simulation of Online Signing Protocol: F aims to mold
signature σ in STSign as (r, s) received from OSign. F will
simulate the threshold signatures {sij}j∈P∗ with respect to
(r, s), and then the verification material {Mij}j∈P∗ according
to the verification equation (Equation (3)) with respect to the
simulated threshold signatures via STSign as below.

Simulation of the threshold signature involves two steps.
F first simulates shares with respect to {kj}j∈C and {xj}j∈C .
F then computes the additive shares µij + νji and constructs
the threshold signature using the simulated additive shares.

Since no one knows the actual values of k′, the exponent of
R and x′ in signature s = k′(m+rx′) from OSign, F can pick
a←$ Fq and set b := (s/a−m)/r. F then simulates random-
ness k′i (simulated value with respect to the exponent of R)
and key x′i such that a =

∑
j∈C Lj,P∗kj +

∑
j∈H Lj,P∗k′j and

b =
∑

j∈C Lj,P∗xj +
∑

j∈H Lj,P∗x′j as if (k, x) = (a, b).

F computes µij + νji, which forms the threshold sig-
nature. According to the evaluation (equation of signature’s
reconstruction), correct reconstruction requires (µij + νji) +
(µji+νij) = kixj +kjxi (we omit ′ in {k′i, x′i}i∈H for neater
presentation). Note that µji is sampled by party i and νij is
inversely computed (after decryption) during Phase 2, so F
can compute µij + νji := (kixj + kjxi)− (µji + νij).

F computes the threshold signature {sij}j∈P∗ := {kimii+
rkixi, {kimij + r(µij + νji)}j∈P∗\{i}} as normal, where
{mij}j∈P∗ are Shamir secret sharing of m.

After the computation of the threshold signature, F sim-
ulates the verification material {Mij}j∈C and {Mil}l∈H for
the threshold signature sequentially. F computes:

• {Mij}j∈C : Evaluating verification equation with set E =
C ∪ {i}, which gives Xj/(

∏
ℓ∈C R

Lℓ,Ekℓxj ) = RLi,Ekixj to
simulate Rkixj , then compute Mij via MijR

νij = Rkixj .
• {Mil}l∈H: By {Mij}j∈C obtained above, evaluating verifi-

cation equation with set E = C∪{i, l} outputs two equations
with two unknowns Mli and Mil.
◦ Evaluating the equation with respect to Rm

i X
r
i gives an

equation in term of Mli/Mil: (RsilMr
li/Mr

il)
Ll,E =

Rm
i X

r
i /(R

Li,Esii
∏

j∈C(R
sijMr

ji/Mr
ij)

Lj,E ).
◦ Evaluating the equation with respect to Rm

l X
r
l gives an

equation in terms of Mli/Mil: (RsliMr
il/Mr

li)
Li,E =

Rm
l X

r
l /(R

Ll,Esll
∏

j∈C(R
sljMr

jl/Mr
lj)

Lj,E ).
F solves for Miℓ and Mℓi simultaneously.

The unknowns are uniquely determined by the following
values; the first two kinds are simulated, and the last is given:

• Threshold signature of honest party i {siℓ}ℓ∈P∗ ;
• Verification material of party i for corrupted party j
{Mij}i∈H,j∈C ;

• Verification material of corrupted party j: {Mjℓ}ℓ∈P∗ .

Lemma 5: STSign is indistinguishable from TSign.

Proof: The simulation differs from the real one in
how threshold signature {sij}j∈P∗ and verification material
{Mij}j∈P∗ are simulated. {sij}j∈P∗ is simulated using the
received signature s from OSign. Our simulation writes s := ab
(for simplicity) and then simulates shares ki, xi with respect
to a, b, which are identically distributed as the real ones. Thus,
the (simplified) threshold signature {kixi, (kixj + kjxi) −
(µji + νij)} has the same distribution as the real one. The
verification material {Mij}j∈P∗ is simulated using the ver-
ification equation, so it naturally passes the verification. The
indistinguishability of the simulated ZKP {πMiℓ

}ℓ∈P∗ follows
the zero-knowledge property of ZKP.

APPENDIX D
OPEN PROBLEMS

Our work leaves a few research problems that still need to
be solved. Our DRG protocol and the MtAwc protocol require
an additional communication round to issue complaint. Is there
any more efficient approach? In particular, the possibility of
a two-round distributed randomness generation protocol that
features cheater identification and self-healing remains open.

ZKP is a vital ingredient in our threshold ECDSA scheme
or generally secure multi-party computation. ZKP techniques
could be made better in supporting witness extraction for the
class groups. For example, Castagnos et al. [6], [7] rely on the
low-order assumption and strong root assumption to extract the
witness in the order-q group, but not the exponent in the hidden
order group, usually storing the randomness or decryption key.
Extracting witnesses in the hidden order group either requires
a new assumption in the generic group model [27] or a binary
challenge space [5]. The former asks for a closer inspection of
the assumption in an idealized model, while the latter requires
a parallel repetition of ZKP to reduce the soundness error.
It is an open problem to devise an efficient ZKP protocol
with special soundness for the hidden order group without
additional assumptions in an idealized model.

18


	Introduction
	A Neglected Problem
	Technical Challenges
	Related Works
	Our Contributions

	Technical Overview
	Background on Threshold ECDSA
	Three Components of Our Construction
	Distributed Randomness Generation
	Share Revelation
	Cheater Identification

	(In)extensibility to Security against Adaptive Corruption

	Preliminary
	Online/Offline (t, n) Threshold ECDSA
	Security Models and Communication Channels
	Verifiable Secret Sharing
	Class-Group-based Encryption
	Multiplicative-to-Additive Share Conversion (with Check)
	Zero-Knowledge Proof
	Committed Exponent
	Equality of Committed Values and One Randomness
	CL Key Pair
	CL Encryption of a Committed Value
	CL Decryption


	Distributed Randomness Generation
	Definition
	Distributed Randomness Generation Construction
	Generation phase (GenGenVf)
	Combination phase (CombCombVf)
	Revealing secret in exponent (RevealExpExpVf)
	Output

	Key Refreshment

	Our Proposed Construction
	Threshold ECDSA Key Generation
	Offline Pre-signing Protocol
	Phase 1
	Phase 2
	Phase 3
	Nonce Reconstruction

	Online Signing Protocol
	Cheater Identification
	Identification in TKeygen
	Identification in PreSign
	Identification in TSign


	Efficiency Analysis and Implementation
	Efficiency Analysis
	Implementation

	Conclusion
	References
	Appendix A: Zero-Knowledge Proof
	-Protocols and Fiat–Shamir Transform
	-Protocols for some NP-Relations

	Appendix B: Analysis of Distributed Randomness Generation
	Correctness and Self-healing
	Secrecy

	Appendix C: Security Analysis of Threshold ECDSA
	Correctness and Self-healing
	TKeygen
	PreSign
	TSign

	Unforgeability of Threshold ECDSA
	Simulation of Key Generation Protocol
	Simulation of Pre-signing Protocol
	Simulation of Online Signing Protocol


	Appendix D: Open Problems

