
Access Your Tesla without Your Awareness:
Compromising Keyless Entry System of Model 3

Xinyi Xie∗†, Kun Jiang∗†, Rui Dai†, Jun Lu†, Lihui Wang†, Qing Li†§B, Jun Yu†§
†Shanghai Fudan Microelectronics Group Co., Ltd.

§State Key Laboratory of ASIC & System, Fudan University
Email: {xiexinyi, jiangkun, dairui, lujun, wanglihui, liqing, yujun}@fmsh.com.cn

Abstract—Tesla Model 3 has equipped with Phone Keys and
Key Cards in addition to traditional key fobs for better driving
experiences. These new features allow a driver to enter and start
the vehicle without using a mechanical key through a wireless
authentication process between the vehicle and the key. Unlike
the requirements of swiping against the car for Key Cards, the
Tesla mobile app’s Phone Key feature can unlock a Model 3 while
your smartphone is still in a pocket or bag.

In this paper, we performed a detailed security analysis
aiming at Tesla keys, especially for Key Cards and Phone
Keys. Starting with reverse engineering the mobile application
and sniffing the communication data, we reestablished pairing
and authentication protocols and analyzed their potential issues.
Missing the certificate verification allows an unofficial Key Card
to work as an official one. Using these third-party products
may lead to serious security problems. Also, the weaknesses
of the current protocol lead to a man-in-the-middle (MitM)
attack through a Bluetooth channel. The MitM attack is an
improved relay attack breaking the security of the authentication
procedures for Phone Keys. We also developed an App named
TESmLA installed on customized Android devices to complete the
proof-of-concept. The attackers can break into Tesla Model 3 and
drive it away without the awareness of the car owner. Our results
bring into question the security of Passive Keyless Entry and
Start (PKES) and Bluetooth implementations in security-critical
applications. To mitigate the security problems, we discussed the
corresponding countermeasures and feasible secure scheme in the
future.

I. INTRODUCTION

Passive Keyless Entry and Start (PKES) is an intelligent
automotive system allowing drivers to pull the door directly to
enter and start the car. The traditional PKES requires a key fob
to provide the legitimacy and the vehicle to verify it. New car
models of Tesla, Volvo, Mercedes-Benz, and Lincoln enable
car owners to use their smartphones to unlock and activate
their cars automatically [81], [85]. To continuously enrich the
driving experiences, Tesla supports three types of keys: Phone
Keys, Key Cards and key fobs [52] for Model 3, Model X,
Model Y, and Model S.

∗ Both authors contributed equally.

Key fobs adopted in classical PKES contain a low-
frequency (LF) radio frequency identification (RFID) tag and
ultrahigh-frequency (UHF) transceiver, and the vehicle equips
with an LF receiver and UHF RFID tag [48]. The LF channel
is responsible for detecting whether the key fob is within an
allowed region, whereas the UHF channel is for challenge-
response verification. Relay attack is a widely known vulner-
ability against this technique used in key fobs [1], [2], [27],
[47]. It allows adversaries to open and start the car by distance
fraud. Distance bounding technique is commonly proposed
to prevent relay attacks [32], [45], [62], [70]. Karani et al.
[42] and Lin et al. [49] designed and implemented the PKES
based on BLE. This new PKES monitors the BLE received
signal strength indicator (RSSI) measurements from the key to
estimate users’ proximity. Some works insist that considering
other techniques or features should be a better solution. They
utilize multiple physical features, namely, RSSI, Round-Trip
time, Global Position System (GPS) coordinates, and Wi-Fi
access point lists, to precisely identify the proximity of a
vehicle to its corresponding key fob [20], [63], [83], [84].
A. Ansari et al. [5] transmits the cryptographically secure
combined bio-crypto data to enhance the authentication.

Focus on the security issues of Tesla key fobs, considering
the first version of the Tesla Model S key fob based on
DST40, the research [15] proves that it is susceptible to a
brute-force attack. Moreover, this first version misses mutual
authentication in the challenge-response protocol. It also has
no firmware read-out protection and security partitioning [87].
Further, Wouters et al. [88] target the second version of the key
fob based on DST80. Through reverse engineering immobilizer
firmware, they recover the key by downgrade attack leading
to a reduction of key entropy. They also describe a Denial-Of-
Service attack, which can render the key fob unusable. Also,
Tesla warned of theft risk through relay attacks [75]. To fix
bugs and add features, Tesla introduced over-the-air updates.
However, Wouters et al. [78], [86] declared that a hacker could
rewrite the firmware of a key fob via Bluetooth connection, lift
an unlock code from the fob, and use it to break a Model X
just in a few minutes.

Key Cards communicate with the vehicle using RFID
signals in standard ISO 14443. When you tap the Key Card on
the driver’s side pillar, doors can be opened. However, it does
not support automatic locking and unlocking. Tesla Model 3
vehicles allow attackers to open a door by leveraging access to
a legitimate Key Card and using a Near Field Communications
(NFC) relay attack [21]. When an owner enters the car, he
needs to swipe the Key Card on the console right by the cup

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24082
www.ndss-symposium.org

holder to drive the vehicle. Tesla issued several updates around
the Key Cards. These updates allow the owner to start a Model
3/Model Y after unlocking the doors with the digital Key Card,
as the key does not need to be placed in the center console
to shift out of parking and drive off. Security researchers
indicated that it allows a 130-second window between an
owner unlocking the door and driving the car. During this
time window, new Tesla Key Cards can be added without
any authentication required and with no in-car and in-app
notification [54].

The developments and widespread applications of Phone
Keys follow the trend. Phone Keys supporting PKES com-
municate with vehicles through Bluetooth Low Energy (BLE)
channel. The BLE protocols are specified in an open standard
maintained by Bluetooth Special Interest Group (SIG), and its
latest version is 5.3 [13]. Recently, the NCC group announced
that Tesla Model 3 and Model Y are vulnerable to link-layer
relay attacks on BLE [74]. The vehicle is fooled into believing
that an authorized driver owns a Key Card or registered
smartphone.

This paper demonstrates the detailed security analysis of
Tesla keys pairing and authentication processes, especially for
Key Cards and Phone Keys. Traditional key fobs susceptible to
relay attacks are out of the discussion here. Even though many
works have analyzed the security of RFID and BLE techniques,
our studies focus on the practical implementation of the Tesla
Model 3. We conduct a transparent view of the interactions
between keys and vehicles. By analyzing the vulnerabilities
of protocols, we find that third parties products that support
ISO 14443 and related cryptography can work as official ones.
We utilized a customized Java card to prove it. Besides, the
authentication procedure of a Phone Key is susceptible to
MitM attacks or relay attacks. We also performed an improved
relay attack on the authentication process of Phone Keys.
Compared to known attacks, it can be performed by only one
device and is not a real-time relay. This attack happens silently
in the background and does not generate in-car or in-phone
notifications to the owner. In summary, we make the following
contributions:

• With reverse engineering the Tesla mobile app, we
achieved many clues about the algorithm and mech-
anisms. We captured the communication packets by
sniffing pairing and authentication processes in ISO
14443 channel and the BLE channel. Finally, we
recovered the pairing and authentication protocols of
Key Cards and Phone Keys.

• The weakness in the Key Card pairing protocol allows
customized Key Cards to be available. We used a
programmable Java card to show that these third-party
products would jeopardize the security of the Tesla
ecosystem.

• We combined several flaws to craft a practical MitM
attack for Tesla Model 3 in the Phone Key authenti-
cation process. This attack can fool the vehicle into
believing that it has connected to a registered Phone
Key resulting in entering and driving a Tesla Model
3 away without any operations on the owner’s phone
and out of the owner’s awareness.

Fig. 1: BLE Architecture

• We demonstrated the feasibility of the MitM attack by
implementing it on Android devices. We proposed a
novel backdoor firmware and customized framework
to force Google Pixel 5A to broadcast by a specific
static MAC address. We also developed an Android
app named TESmLA to implement the attack.

The rest of the paper is organized as follows. In Section
2, we provide background on BLE and relevant cryptography.
In Section 3, we introduce the methodology of reverse engi-
neering. We detail the pairing and authentication protocols in
Section 4. The potential problems are described in Section 5.
Section 6 shows Key Card threats, while Section 7 reports the
MitM attack and its related works in detail. Finally, we discuss
mitigations and future works in Section 8 before concluding
in Section 9.

II. BACKGROUND

A. BLE

Bluetooth Low Energy (BLE) is designed for energy-
constrained low-cost scenarios that require an intermittent
transfer of small amounts of data at a lower speed compared
to Bluetooth Classic protocols. The BLE protocol enables a
device, acting as a server (e.g., a Tesla Model 3), to efficiently
communicate relevant data to another connected device, acting
as a client (e.g., a Phone Key). As shown in Figure 1, the
architecture of the BLE core system has two parts: a host
stack and a controller. The Host Controller Interface (HCI)
between them is responsible for transporting commands and
events between the host stack and the controller.

The GAP profile provides several procedures for device
discovery, connectivity, and related network topology. The
primary data exchange method of GAP is a broadcast ad-
vertising package. It may be followed by a scan response
if a peer device requests. The BLE advertisement header
contains the device role, the MAC address, and the message
type. Tesla mobile app as the Phone Key scans devices in
the BLE range by calling the interface of the GAP. The
advertisements from the vehicle can be captured and analyzed
to get necessary information by the Phone Key. The GATT

2

interfaces support discovering, reading, writing, and obtaining
indications of characteristics [13]. After the BLE connection
has been created, Tesla mobile app as a client can communicate
with the vehicle by calling the interfaces of the GATT layers
to do operations on characteristics.

B. Relevant Cryptography

ECDH. The Elliptic Curve Diffie Hellman (ECDH) is an
key agreement scheme defined in [19], [23]. It allows two
parties, each having an elliptic curve public-private key pair, to
establish a shared secret over an insecure channel. This scheme
prevents the third party who can eavesdrop on the negotiation
process from recovering the shared secret.

AES-GCM. AES with Galois/Counter Mode (AES-GCM)
specified in NIST 800-38D [25] provides both authenticated
encryption and the ability to check the integrity and au-
thentication of additional data. There are four inputs: secret
key, initialization vector(IV)/nonce, plaintext, and optional
additional authentication data (AAD). The output consists of
the ciphertext, which is the same length as the plaintext, and
an authentication tag for integrity check.

III. METHODOLOGY

In this section, we describe our work on reverse engineer-
ing. Our analysis required a comprehensive understanding of
the implemented protocols by Tesla. Unfortunately, no official
documentation from Tesla was available regarding the pairing
and authentication of keys. Therefore, we reversed the proto-
cols using open-source software and off-the-shelf commodity
hardware. We took the official mobile application named
Tesla as the entry point because it contains more information
compared to the communication data. For example, it may
include detailed algorithms and corresponding parameters. So
we start with reversing this official application on Android and
iOS. We further capture the BLE communication of Phone
Keys. The analysis helps us understand protocols of Phone
Keys and give clues to further analyze the Key Card. We
describe the details as follows.

Mobile App analysis. Nowadays, reverse technology with
related tools is widely used for mobile applications. We re-
versed the Tesla official Android application package (.apk) file
with the releases of 4.23 and the iPhone Application (.ipa) file
with version 15.4.1. We first made attempts to static analysis.
We used open-source JDAX [40] to get the Java Code for
Android and IDA Freeware [37] to analyze the iOS appli-
cation. Although methods and variable names are obfuscated
in reversed Java code, the code in reversed iOS gives hints
and compensation. The benefit of static analysis is to locate
a Java object, which completes many operations related to
cryptography, like the AES-GCM and SHA1. These operations
must be necessary for the process of pairing and authentication
processes. So we dynamically analyzed the app to observe
the calling of corresponding functions based on this object.
Utilizing the Frida [28], a dynamic instrumentation toolkit, we
hooked and observed three particular behavior: First, the login
process using a legitimate username and password. Second,
the first time for a Phone Key to pair with the vehicle. Third,
the authentication of a Phone Key. The dynamic analysis helps
us make sure of the role that the specific algorithm plays in
these processes.

Fig. 2: Key Card Sniffer Scene

BLE data capture and analysis. We also retrieved the
HCI Snoop log from Android. This method is stabler and
easier to implement. The HCI Snoop log shows the entire
interaction between the host and the controller, including the
communication data used in pairing and authentication. From
this log, we can understand some implementation details, like
the advertisement of the vehicle, GATT services, and connec-
tion parameters. We analyzed contiguous messages from the
advertisement capture to the connection establishment until the
end of the communication.

From the above process, we comprehend the pairing and
authentication protocols between the Phone Key and the vehi-
cle, including the cryptography and parameters used in these
processes. For example, when the first login, the application
calls the key generation function to create a key pair based
on the NIST P-256 curve. Then the private key is protected
by Android KeyStore in case of leakage. KeyStore can protect
sensitive materials from unauthorized use in the non-root envi-
ronment. The information, like algorithms and authentication
process, help further analyze the Key Card.

Key Card analysis. Tesla Key Card uses Java Card
manufactured by NXP that supports ISO 14443. This kind of
card with a high-security level has achieved Common Criteria
certification. Many off-the-shelf professional spy devices like
Microprocess MP300 [53] and NomadLAB [55] can sniff ISO
14443 signals. As shown in Figure 2, we placed an ISO
14443 spy device named NomadLAB parallel to the Key
Card against the card reader on Model 3. And the white
Printed Circuit Board (PCB) in the figure is an RFID coil.
This coil passes the captured RF signal to NomadLAB, and
NomadLAB is responsible for automatically recording APDU

3

data for further analysis. From these records, We noticed the
vehicle’s public key, which had already been achieved from the
previous analysis. This public key is in uncompressed format
with the prefix “0x04”. The following 64 byte is the x and y
coordinate of the point on the elliptic curve. As we clarified
the expression format of public keys, we also found the other
three public keys of different Key Cards in APDU data.

According to sniffer data, the authentication of Key Cards
is based on a 16-byte challenge and response. We conjectured
that it might use a similar method as Phone Keys. It may
use the ECDH to negotiate a shared secret and AES-ECB to
compute the response. However, the secret key of the Key
Card and the vehicle are both securely stored in a secure
element(SE). It is hard to verify our conjecture. In this case,
we used an Android Phone Key, which is already root and
paired with the car. We achieved the key pair of this device by
Frida. And we used a programmable Java card and developed
a Java applet to implement a challenge-response mechanism.
Fortunately, when we send the corresponding response to the
vehicle, the authentication success. Based on conjecture and
verification, we finally re-established the protocols of Key
Cards.

IV. PAIRING AND AUTHENTICATION PROTOCOLS

The pairing procedure is the process of adding a new Key
Card or a Phone Key. First, the vehicle has to confirm the
identification of the new key. This process needs a paired key
as a credential. Then the car records the information of the new
key locally for later authentication. Tesla Model 3 ideally can
authenticate and distinguish the legitimate key from malicious
signals or interference through identifications from the pairing
stage. The authentication requires that two parties are each pre-
provisioned with a unique asymmetric key pair. Through the
ECDH key agreement, the Phone Key or the Key Card shares a
symmetric secret with the vehicle. Key Cards and Phone Keys
protocols use different communication channels. Key Cards
uses ISO 14443 for data exchange. Phone Keys allow users
to use their smartphones as keys in the BLE channel. In the
following parts, we clearly illustrate the security mechanisms
for Key Cards and Phone Keys, including the pairing and
authentication protocols.

A. Key Cards

Pairing. To pair a new card, scan your new Key Card on the
card reader located on the top of the center console and follow
the on-screen instructions. We have recorded the exchanged
data during this process until the success notification shows
on the car’s screen. We analyzed the communication data and
reestablished the pairing procedure in Figure 3.

Before pairing, each Key Card and vehicle has been provi-
sioned its own 256-bit ECDH public-private key pair based on
the NIST P-256 curve. For the initial pairing phase, the owner
taps an unpaired Key Card against the vehicle card reader
on the center console. The connection establishes through the
RFID channel. Tesla Model 3 grabs the public key (PK) and
unique identifier (UID) (Step 2) of the card. After a paired Key
Card is presented to the card reader on the driver’s side door
pillar or the top of the center console, the car will get its public
key (Steps 4 - 6). Then it performs an ECDH key agreement

scheme to derive the shared secret with the own private key
and the public key of the paired Key Card. The car delivers
its public key with a 16 bytes salt as a challenge to the card
(Step 9). Once received, The Key Card also performs ECDH
key derivation, encrypts the challenge with the shared secret as
the key, and returns the encryption result (Steps 10 - 12). By
checking this response, Tesla Model 3 verifies whether this key
has already been paired. If a paired key passes the verification,
the vehicle will insist that the new Key Card belongs to the
owner, who has at least one legitimate key. For now, the vehicle
has confirmed the identification of the new Key Card.

If the vehicle want to authorize this new card, the car needs
to records related information for latter authentication. As a
result, Tesla Model 3 adds the public key of this new Key
Card into the whitelist. The pairing succeeds.

Authentication. A user can tap a paired Key Card against
the card reader on the driver’s side door pillar to initiate
authentication. Model 3 detects the Key Card and authenticates
its legitimacy, and the door unlocks if successful. We found
that the authentication protocol is identical to the steps of
verification of a paired key (Steps 4 - 13) in the pairing process.
Key Cards use a challenge-response authentication based on a
shared secret generated by ECDH.

B. Phone Keys

Tesla allows users to use their iPhones or Android phones
to unlock and start the car. To enable this function, smart-
phones must install an official Tesla mobile app, and Bluetooth
must be on all the time. The Tesla app running in the
background is responsible for managing the procedures of
pairing and authentication. By analyzing Bluetooth snoop log
and data parsing, we describe the mechanisms of Phone Keys
as follows, including pairing and authentication.

Pairing. The pairing procedure is illustrated in Figure 4.
The owner touches the “START” button on the phone screen
to trigger pairing. The phone scans surroundings in range. The
BLE names of Tesla Model 3 always start with the character
“S” and end up with the “C”. The middle sixteen characters
are the first eight bytes of the hash result with an operation on
the Vehicle Identification Number (VIN).

According to this specific name, the phone establishes
a BLE connection to the vehicle. The app will send a
GET EPHEMERAL PUBLIC KEY request to the car by
writing the characteristic value on the peer device (Step 7).
As a GATT server, the vehicle will respond with its public
key with indications of a characteristic (Step 8).

Next, to respond to the request for the whitelist, the vehicle
needs to send back a WHITELIST INFO data consisting of a
list of Paired Key IDs, which are equal to the first four bytes of
its Public Key’s SHA-1 hash result (Step 9). The phone sends
its public key and waits for the vehicle to authenticate a valid
Key Card. Once finished, Tesla Model 3 adds the smartphone’s
public key to the whitelist and transmits the relevant data back
to the phone. After pairing, the vehicle owns the public key of
the Phone Key, and the smartphone records the public key and
BLE MAC address of the car BD ADDR. Adding a Phone
Key can be treated as an exchange of public keys based on a
valid key authentication.

4

1. Connection

Tesla Model 3 Paired Keycard

Vehicle Key Pair: [V, v]

14. Recode Public Key: U

Unpaired Keycard

Key Pair: [U, u] Key Pair: [D, d]

2. Get Card UID and Public key U

3. Disconnection

4. Connection

7.Generate ECDH Share Secret：S

S = ECDH（D, v）

8.Generate 16 bytes Challenge T

9. Send public key V and T

10.Generate ECDH Share Secret：S

S = ECDH（V, d）

11. Encrypt T with S

R = AES(T, S)
12. Send R back

13. Verifier T and T’

T’= AES(R, S)

5. Request public key of the Key Card

6. Send public key D back

Fig. 3: Key Card Pairing and Authentication Protocols

Authentication. When a paired Phone Key approaches
Model 3 from a distance out of the BLE range, the vehicle
authenticates its legitimacy, and the door unlocks if successful.
We sniffed the BLE channel for this process and reestablished
the authentication protocol, as shown in Figure 5.

Phone Key attempts to establish a reconnection with a
specific BLE MAC address. It adds the recorded BLE MAC
address of Model 3 into the whitelist and sends a connection
request that only allows this device to establish the connection.
The BLE reconnection is established once the device is in the
allowed range. Once the reconnection is created, the Phone
Key receives the authentication level indication every second
to trigger the authentication. The phone may ask for car
status, for example, the lock state of the trunk(Steps 4 - 5).
After getting the vehicle’s status, the mobile app derives the

shared secret by ECDH and generates a serialized java object
defined in Appendix A. The app encrypts this Java object
by AES encryption in GCM mode using a 4 bytes counter
as GCM nonce and a share secret S generated by ECDH as
an encryption key (Steps 6 - 7). After encryption, the app
sends the first attestation, including the encrypted message (2
bytes ciphertext with 16 bytes GCM tag) and the counter to
the vehicle. The format of attestation is shown in Figure 6.
Vehicle decrypts and verifies message A with a shared secret
S generated by ECDH and responds counter immediately. If
verification successes, it continues to appends a 20 bytes token
G on the authentication level and responds to the phone.

Afterward, the app increments the counter by one and re-
fresh the Java object (details in Appendix A). After encrypting
serialized results in AES-GCM mode involving token G as

5

 2. Generate Phone Key Pair: [P, p]

1. Login with password

6. Establish BLE connection
7. Request EPHEMERAL_PUBLIC_KEY

8. Respond with vehicle public key: V

9. Request car key WHITELIST_INFO

10. Respond with car key WHITELIST_INFO：W

11. Send public key of the phone：P

12. Respond with WAIT Signal

14. Success !

17. Respond Key Card Whitelist ID: Wi

18. Respond updated WHITELIST_INFO W
19. Request Phone Key WHITELIST_ENTRY_INFO
20. Respond WHITELIST_ENTRY_INFO: P || metadata

Owner Phone Key Tesla Model 3 Key CardBluetooth Channel

Vehicle Key Pair: [V,v]
Broadcasting BLE Device Name: N

Indicate Authentication_Level: L

3.Get VIN From Tesla DataCenter

4. Trigger pairing Phase

5. Scan and find BLE device N ,
N equals first 16 bytes of SHA-1(VIN)

13. Owner use a paired key card to authentication

 15.Record public key of the phone: P

16.Update WHITELIST_INFO with P

22.Phone key has been paired

21.Record Vehicle BLE device address：
BD_ADDR

Fig. 4: The Pairing Protocol of a Phone Key

GCM additional authenticated data (Step 13), the app sends the
second attestation package, including this encrypted message
(4 bytes ciphertext with 16 bytes GCM tag) and the counter
to the vehicle.

Finally, the vehicle decrypts and verifies message B with
the shared secret S. If verification passes, the car will unlock
and can be started.

The core of authentication is two attestations generated by
AES-GCM. The shared secret derived from ECDH is directly
used as the key to encrypt the message that is known to both

sides. Tesla Model 3 uses this shared secret to check these two
attestations (Step 9 & 14). Once these two messages pass the
verification, the car asserts that the Phone Key is valid.

V. SECURITY ANALYSIS

In this section, we perform a security analysis of the Tesla
keys. First, Tesla realizes key secure storage. Key Cards use a
SE to manage the secret key. This highly-secure environment
protects sensitive information at the hardware level from many
known attacks, in particular side-channel attacks.

6

1. Establish BLE connection

7. Send message A and count

10. Respond the GCM counter of message A
11. Respond a token G

13. Send message B and count

15. Respond the GCM counter of message B

Phone Key Tesla Model 3Bluetooth Channel

Vehicle Key Pair: [V,v]
Broadcasting using address: BD_ADDR

Indicate Authentication_Level: L

8.Generate ECDH share secret：S
S = ECDH（P，v）

2.Try to start authentication phase

5.Generate ECDH share secret：S
S = ECDH（V，p）

6.Encrypt data a with AES-GCM mode
A = AES_GCM(a, S, count, null)

9.Decrypt and verify message A
with S，count

12.Encrypt data b with AES-GCM mode
count= count + 1

B = AES_GCM(b, S, count, G)

14.Decrypt and verify message B
with S，count

Authentication finish

Phone Key Pair: [P, p]
Trying to reconnect BLE device with

BD_ADDR

4.Respond vehicle status
3.Send an information request

Fig. 5: The Authentication Protocol of a Phone Key

payload length 0x0a 0x00 keyID counter ciphertext GCM tag

Fig. 6: Format of an attestation. The third byte “0x0a” marks
this message as the attestation. The ciphertext length indicates
this package belongs to the first or the second attestation.

Further, Tesla follows secure pairing and authentication
protocols. During the pairing phase, the new Phone Key and

the new card need a paired Key Card authentication process
to ensure the ownership of the new key. The exchanged
data contains the public key and related data without leaking
privacy. During the authentication phase, Tesla and its keys
perform an ECDH key exchange to derive a shared secret and
validate the legitimacy of the keys. The key pair is generated
based on the choice of the NIST P-256 curve and is securely
stored. Without the private key, attackers cannot calculate the
shared secret and generate proper attestations. Tesla pairing
and authentication protocols utilize the cryptographic tech-
niques of security algorithms to guarantee security. Further,

7

Phone Keys involve the counter by AES-GCM, which can
resist replay attacks. However, it still has some potential issues.

The vehicle does not verify Key Card certificates during
pairing. It might theoretically be possible to make an unofficial
product to unlock the Model 3. Customers can purchase new
Key Cards from third parties other than Tesla. They may record
the provisioned value of the secret key or leave a backdoor.
Once these unofficial Key Cards have paired, the authentication
protocols guarantee security based on whether you have the
private key used in pairing. In this case, you should always
assume that whoever sold you Key Cards might also be able
to access your car since they may keep or get the private key.

Tesla does not enable link layer encryption of the BLE.
According to the sniffing results, the BLE channel is used
to transfer data. Tesla leaves all cryptography in the upper
layer. It makes the sniffer easier. Also, it offers adversaries
opportunities to complete GATT-based BLE relay attacks.

Tesla vehicles use the static BLE MAC address. Anyone
receiving its advertisement can spoof the car and establish the
reconnection to the Phone Key at a different physical location
with the same MAC address.

The update of token value does not depend on the
change of connection states. The second attestation from the
Phone Key is an AES-GCM result involving the token G. The
token remains fixed even though the phone has been connected
and disconnected multiple times. In our experiment, it stays
fixed for hours.

VI. KEY CARD THREATS

A. Adversary Model

The vehicle adds the new Key Card without verifying its
certificates during pairing. It allows third parties products to
work, which may introduce several security issues. Any card,
which can generate a public-private key pair based on the
NIST P-256 and support ECDH and AES operations, can
be added as a new key. Indeed, any products that support
ISO 14443 could work, but they must be able to complete
related algorithms. Once these products have been paired,
they can open and drive the Tesla Model 3 as official Key
Cards. However, it could introduce serious security problems.
Products from third parties may implement the algorithm using
the software without a security coprocessor or processing unit.
The software implementation is vulnerable to many known
attacks. For example, side-channel attacks can easily crack the
secret key. Even if the third party uses securely implemented
Java cards, the applet may have a malicious backdoor allowing
the reading of the key. In this case, you cannot trust any third-
party product.

B. Proof-of-concept

We customized a Java card as shown in Figure 7. This card
can generate a public-private key pair based on the NIST P-256
curve and do related cryptography. Also, we developed a Java
applet to read the key through a non-public APDU command.
This customized card was added to the vehicle’s key list after
using a paired Key Card to complete the pairing process. We
found this card can use as an official Key Card to unlock and
start Model 3. Since the key is leakage, this card can be easily
duplicated.

Customized Card

Official Key Card

Use to add a new card

can open and drive

Fig. 7: Adversary model for the customized card.

C. Impact

This attack allows any unofficial product supporting ISO
14443 and corresponding cryptography operations to work as
the official Key Card. Even if it is not a strict vulnerability,
products from third parties will introduce serious problems.
For example, third-party software allows attackers to control
Tesla remotely[86]. Missing certificate verification gives op-
portunities to these unsecured third-party product developers.

VII. IMPROVED RELAY ATTACK

Although the current protocol is mature, it is still suscep-
tible to relay attacks or MitM attacks. The basic relay is to
retransmit the analog signal in real time. It needs complex
hardware and has distance limits. However, the current proto-
col does not enable BLE encryption in the link layer. It makes
it possible to relay the digital signals from the higher protocol
layer, like the GATT layer. The known flaw of the GATT-
relay attacks is that they introduce latency in communication.
So developers can impose strict GATT response time limits to
resist it. The delay of propagation between two devices may
lead to failure. The mobile App has no time bound according
to our reverse result. However, Tesla Model 3 may monitor
the delay time. So latency is the most important influencing
factor in GATT-relay attacks.

To eliminate the limitation of latency in relay attacks,
we introduced an improved relay attack on the authentication
process of Phone Keys. Since we reversed the protocol, we
do not need to forward each message immediately. We record
messages and transfer multiple messages once to avoid latency
detection. In the following sections, we demonstrate this attack
in detail.

A. Adversary Model

Suppose that the vehicle to be attacked is in a parking lot.
Then the owner locks and leaves the car, then enters another
open area out of the BLE range, like a library or a cafe. An
attacker uses two malicious devices connecting to the Phone
Key and Tesla Model 3 separately through the BLE channel.
These two attack devices communicate with each other through
another long-distance method like the internet, as shown in
Figure 8 upper part. Unlike the real-time relay, we record the
continuous messages during one connection period and only
forward necessary messages to peer devices. In this case, the
attack device will receive multiple data for one transfer. So it

8

WiFi etc.

round-trips
Attack scenario 2

Attack scenario 1

within 10m no ditance limitaion within 100m

Attack Device A Attack Device B

Attack Device A Attack Device A

Fig. 8: Attack scenario descriptions. The upper part demonstrates two attack devices scenario. The lower shows one attack device
case. In this case, the attacker has to go back and forth between the two parties.

1. BLE advertisement

2. Get BD_ADDR of Tesla

3. Establish the BLE
connection

4. Indicate
authentication level: L

5. BD_ADDR, L

6.Change to BD_ADDR,
start broadcasting

Tesla Model 3 Adversary A

 Vehicle Key Pair [V, v]
Broadcasting using

BD_ADDR
Attack device A Attack device B

Adversary B

Fig. 9: Adversary Model Phase 1: Setup

can respond immediately. Time-bound of responses are not a
defense against this improved type of relay attack.

The attack process can be divided into three phases: The
setup phase, the preparation phase, and the attack phase. The
setup phase is to complete BLE MAC spoofing. Then prepare
two valid attestations during the second phase. Finally, during
the attack phase, the attacker unlocks the car door and drives
Model 3 away.

Setup: MAC spoof. Figure 9 illustrates the setup phase
of the MitM attack. The setup phase is to capture the BLE
MAC address from the vehicle advertisements and initial
the BLE setting of attack devices. During an initial attack
phase, attack device A is close to Model 3 to be attacked.
Attack device A initiates a BLE scan to find its surroundings.
By parsing the advertisement, the attacker can get the BLE
MAC address, the BLE name, and additional data about the
car. Once the BLE connection is established, the vehicle
indicates the authentication level L every second to initiate

the authentication. It needs to send the MAC address and the
authentication level to attack device B. Then attack device B
changes its MAC address and starts broadcasting connectable
advertisements identical to the Model 3.

Preparation: attestations capture. Then the preparation
phase (Figure 10) begins. Once attack device B has set the
specific MAC address and approaches the Phone Key, an
automatic connection establishes between the two parties. An
authentication level indication is delivered from the attack
device to the Phone Key (Step 8). After receiving, Phone
Key will generate the shared secret using ECDH. Then the
Phone Key sends the first attestation package, including the
ciphertext, tag, and counter to the attack device B. So far, the
attacker does not own the token value. Attack device B needs
to transfer this first attestation to attack device A.

Then attack device A forwards this attestation. It waits
for the response involving a token G after the vehicle has
verified the first attestation successfully. This token G needs
to be forwarded to attack device B. Once received the token
G, attack device B retransmits the authentication level (Step
19) and replies with the first attestation with this token to the
Phone Key. Attack device B can receive the second attestation
from the Phone Key and transfer this pair of attestations to
complete the attack (Step 26). For now, the preparation phase
can be terminated if you want to open and start the Model 3
just once.

If you want to hijack multiple times, attack device B can get
serval pairs of attestations by sending another authentication
level and responding, as marked green in Figure 10. Then it
can transfer serval pairs to device A. These pairs can be used
to unlock the Model 3 multiple times later.

Attack: unlock and access. For the final attack phase
shown in Figure 11, attack device A sends the first attestation
in the first received pair. Once receiving the response with a
token, the attacker delivers the second attestation in this pair.
The Model 3 is hijacked now. According to our experiments,
the token value does not update frequently. During the token
fixed period, attack device A can unlocks doors and drive the
car several times using the following attestation pairs.

Furthermore, the token update does not depend on the
change of connection state. The token value remains the same

9

Tesla Model 3 Adversary A Adversary B Phone Key

Setup phase

8. Indicate L
7. Establish the BLE connection

11. First attestation A1

 9. Generate ECDH shared secret: S = ECDH(V, p)
10. Calculate the first attestation:count ++,

A1= AES_GCM (a, S, count, null)

13. First
attestation A1 12. Respond count of A1

16. Respond count of A1
17. Respond token G

5 21. First attestation A2
22. Respond count of A2

18. Token G

23. Respond token G

24. Calculate the second attestation: count++,
B2= AES_GCM (a, S, count, G)26. Attestations

pair: [A2, B2] 25. Second attestation B2

Calculate new first attestation: count++,
A3= AES_GCM (a, S, count, null)

First attestation A3
Respond count of A3, respond G

Second attestation B3
Attestations pair:

 [A3, B3]
<more pairs of attestations...>

Indicate L

19. Indicate L
20. Calculate new first attestation:count ++,

A2= AES_GCM (a, S, count, null)

Indicate L

Indicate L

Indicate L

Attack phase (attack again)

 Vehicle Key Pair [V, v]
Broadcasting using BD_ADDR Attack device A Attack device B

 Phone Key Pair [P, p]
Trying to reconnect BLE
device with BD_ADDR

Calculate new second attestation: count++,
B3= AES_GCM (a, S, count, G)

Attack phase

14.Generate shared secret: S = ECDH(P, v)

15. Decrypt and Verify A1

Fig. 10: Adversary Model Phase 2: Preparation

for hours. It gives a long enough attack window. So we
can complete this MitM attack with only one attack device,
as shown in Figure 8 scenario 2. The detailed process is
demonstrated in Appendix Figure 10. Instead of transferring
the messages between two attack devices, the attacker needs
go back and forth between the vehicle and the Phone Key to
connect and communicate to them alternately.

B. Proof-of-concept

In principle, it can be implemented with any off-the-shelf
devices that can be programmed to receive and transmit BLE
messages. In one attack device scenario, we chose an Android
device Google Pixel 5A as the attack device. For the two-
devices case, Google Pixel 5A as attack device B connected
to the Phone Key, while the Samsung Galaxy S9 played
the role of attack device A. This attack includes two key
points, physical proximity to the intended target and malicious
software on the attack device.

10

Tesla Model 3 Adversary A

Setup phase

27. First attestation An

Preparation phase

Attack success!

31. Second attestation Bn

28.Decrypt and Verify An

29. Respond count of An

32.Decrypt and Verify Bn

30. Respond token G

 Vehicle Key Pair [V, v]
Broadcasting using BD_ADDR Attack device A

Fig. 11: Adversary Model Phase 3: Attack

TABLE I: Experimental Models. In one attack device scenario,
we only used the Google Pixel 5A as the attack device.

Devices Model OS version Software Version

Attack
device
B

Google
Pixel
5A

customized
Android 11

TESmLA 2.0

Attack
device
A

Samsung
Galaxy
S9

Android 11 TESmLA 2.0

Phone
Key

Motorola
Edge S

Android 11 Tesla 4.23

iPhone
12 Pro

iOS 15.4.1 Tesla 4.14.1

Vehicle Model 3 v11.0(2022.4.5.1)

BLE MAC Spoof. For physical proximity, the identifica-
tion of BLE devices is the BLE MAC address. So we need
to spoof Model 3 by setting the attack device with the same
static MAC address. However, the Android device introduced
a new feature called BLE MAC address rotation. It forces
Android devices to broadcast with a resolvable address instead
of a static address. The resolvable address changes every 15
minutes and cannot be recognized by the Phone Key without
pairing.

We customized a specialized Android firmware for Google
Pixel 5A to solve this problem. Following the instructions
on Google Android source websites, we downloaded Android
source codes and modified the Bluedroid definition “BLE
LOCAL PRIVACY ENABLE” from True to False. This mod-
ification can disable the BLE device address rotation during

Normal process
backdoor framework

function

File system
First Stage

Second Stage

init drivers, partitions

& SELinux policies

init property

system

“property files”
ro.xxx

ro.boot.xxx

persist.xxxx

dalvik.vm.xxx

load

init process begins

Modify the setting and

value of the property

init process continues

Specific

properties?

B
o
o
t seq

u
e
n
ce

Fig. 12: The modified firmware of the attack device. It moni-
tors the properties loading and changes the settings and value
of the specific properties.

advertising.

To understand Bluetooth peripheral initialization operation,
we analyzed the log information of the boot process through
the Android Debug Bridge (ADB). We found that a dynamic
link library implemented by Google and compressed in the
vendor image file is responsible for initializing the MAC ad-
dress. We used the disassembly tool IDA Freeware to statically
reverse this dynamic link library. As a result, the smartphone
first loads a read-only attribute “ro.vendor.bt.bdaddr path”,
which refers to the virtual file named “bt addr” and uses the re-
sult as the Bluetooth MAC address. If the read fails, the phone
will try to read the Bluetooth MAC address from alternative
read-only Android attributes, “ro.vendor.bt.boot.macaddr” or
“persist.vendor.service.bdroid.bdaddr”. The BLE MAC address
has been specified if successful. Otherwise, the smartphone
will generate a random address as the Bluetooth MAC address.
According to the analysis, we found that the Bluetooth address
of the Pixel 5A is closely related to three read-only attributes
of Android.

We proposed a novel framework, which can let the ap-
plication layer software arbitrarily modify the specific MAC
address. This new framework monitors the Android init process
for the initialization of each Android attribute loading, as
illustrated in Figure 12. It hooks the entry of property loading
if the input attribute belongs to the three mentioned before.
It forces the smartphone to read these attributes as null and
change the property of “ro.vendor.bt.boot.macaddr” from a
read-only type to a read-write attribute type. Consequently,
the smartphone power on with a random MAC address, and
the application layer program can use an ADB shell command
to set a static specific address of Pixel 5A multiple times later.

Malicious Software In addition, We developed an app
called TESmLA, which implements functions as the Phone
Key using BluetoothGatt [3] and the Tesla Model 3 using
BluetoothGattServer [4]. By sending writing requests to char-
acteristic and receiving indications from the owner’s device,

11

Fig. 13: Attack Results. The owner device maintained screen locked. The attacker approached it about 5 meters away. The owner
device connected to the attack device automatically and transferred two attestations. Finally, attacker sends these two attestations
to Model 3 to unlock the car.

the app can communicate with the car as the owner’s device.
As the role of the Tesla Model 3, it also can inform the owner
device of indications and obtain the write request from the
peer device. The app can parse receiving data byte by byte
and respond automatically. By TESmLA, an adversary can
complete the attack mentioned before even though they do
not understand the cryptography and BLE schemes.

Experimental Evaluation Figure 13 shows the scene of
the practical attack to demonstrate the feasibility of our attack.
The owner is 500 meters away from The victim’s Model 3. The
owner’s smartphone maintained the screen locked during the
whole attack. The distance between the attacker and the owner
is about 5 meters. The details of all devices in the experiments
are demonstrated in Table I. When attack device A sent two
attestations to the vehicle, we heard the unlocked voice of
the vehicle. We pulled the car door and found it open. Also,
we can start and drive this Model 3. The whole attack can
complete within 15s. For one attack device scenario, we only
use the Google Pixel 5A as the attack device. Due to the delay
of multiple connections, BLE service requests, and operations
on TESmLA, the time of the attack extends to 46s without
the time of round-trips. The operation system of the Phone
Key does not influence the result. Android and iOS are both
attacked successfully.

Once the BLE connection is established between the attack
device and the trusted parties, the attack will be successful.
Due to locking off the car feature, the attack device has to be
close to the vehicle enough. The distance limitation between
the attack device and the Phone Key depends on many factors,
for example, the version of the BLE. We tested the distance
between Google Pixel 5A and Phone Key, including iPhone

and Motorola Edge S. It can transfer data stably within 100
meters in the underground parking lot. The distance may
reduced when you choose devices compatible below BLE 5.0.
Besides, this distance would be influenced by inference of
environment factors and other radio signals. However, there
is no limitation on the distance between two attack devices.
So the distance is not the limitation for our attack with two
attack devices, while it would extend the time for back and
forth in one attack device scenario. If the round-trip were time-
consuming even over the token fixed time, the attack would
not be successful.

C. Impact and Limitations

All test Tesla vehicles and devices are owned by the
authors and their institutions. Due to the limitation of cost
and other conditions, we only bought the Model 3 to conduct
the practical attack. Model Y should be the same as Model
3. Model S may involve earlier PKES solutions. So it may
not be affected by this attack. The presented attack is harmful
to car owners who enable their PKES feature and keep their
Bluetooth on all the time. The iOS and Android devices are
both susceptible. We tested on Android 11 and iOS 15.4.1 and
found no differences between these two operating systems.

This attack is easy to implement. The whole process is out
of the owner’s notice. The attack device, like a smartphone,
can blend into common life. The process is conducted in the
background, and the owner will not receive any notification
from the Tesla mobile app or car screen.

Attackers can access the vehicle’s interior and even drive it
away. However, there is a time limit on this access. During the

12

token fixed period, the adversaries can capture multiple pairs of
attestations in one connection. These pairs of attestations allow
the attacker to access and drive the victim’s vehicle serval
times. In the scenario of two attack devices, the token update
only influences the malicious control period. But in one attack
device scenario, due to the long latency of round-trips, the
attacker may need more back and forth to capture and transfer
the new pair of attestation when the token changes. It may
prolong the attack time but not affect the final result.

As a relay attack is a known technique, Tesla advises the
user to enable the “PIN to Drive” feature. It forces driver to
input four digital numbers into the PIN panel on the vehicle
screen to start the vehicle. This feature can protect vehicle from
driving but not entering. According to a vote from Tesla owners
[82], there are still about 20% of owners have not enabled this
feature. So this is still a significant security problem in the real
world.

D. Related Works

Relay attacks are a known limitation of the passive entry
system. People used two amplifiers close to the trust parties to
amplify analog signals. So adversaries can use simple hardware
to achieve ultra-low latency with unmodified commnication
patterns. For example, P. Staat, etc. [68] design and implement
an analog physical-layer relay to amplify the analog signal of
the entire 2.4GHz. However, it has a limited relay distance
of about 90m and is complicated to handle bi-direction com-
munications on the same frequency. Moreover, this attack can
be detected by RSSI. So it has been improved to retransmit
the analog signal by a more complex hardware instead of
simply amplification. It has the same drawbacks as the former
amplification but can circumvent the RSSI and arrival of angle
(AoA) triangulation defenses.

Rather than raw analog signals, it can forward data frames
at any higher layer of the protocol stack. The first GATT-relay
in 2016 [17], [41] forwards GATT requests and responses. The
attack is most effective against devices that do not implement
Bluetooth security features. However, researches [6], [7], [8],
[10] are working on the vulnerabilities of these security
features to make the impersonation attack available.

Mirage [18] can transmit HCI messages from standard
controllers bypassing standard Bluetooth stacks. It can perform
experimental Bluetooth Low Energy attacks using a ButteRFly
device (nRF52840 dongle). This new device allows to inject
packets into an established connection, hijack the slave role,
hijack the master role or perform a Man-in-the-Middle attack
[51].

The NCC Group [72] introduces Sniffle Relay, the first
link layer relay attack on BLE. They forward the response
and add the 8ms latency in the link layer. Since this relay
attack operates at the link layer, it can forward encrypted link
layer packet data unit (PDU). Neither link layer encryption
nor encrypted connection parameter changes (such as changes
to the channel map, connection interval, and transmit window
offset) are defenses against relay attacks from the link layer
[71].

Relay attacks from link layer-relay need to customize the
BLE stack. The attacker must be familiar with the details

of BLE protocols. Like NCC Group customizes the BLE
controller that responds an additional empty PDU to maintain
the connection and retransmit the PDU in the link layer. On
the contrary, relaying from the GATT layer is much easier. You
do not need to care about the timing sequence of data frames.
However, It can use time-bound to detect the GATT relay due
to long latency. Also, the GATT-relay attack does not support
link layer encryption. Our attack is from the GATT layer. Like
other GATT-relay, we do not need operations on the baseband
and do not need to modify the BLE stack. Also, our attack
cannot circumvent the link layer encryption.

However, our improved attack can break the latency detec-
tion. Unlike existing relay attacks, our attack is not a real-time
relay. It can operate on multiple messages to break the latency
bounding and distance limitations by spoofing the trusted party.
Besides, it can complete by using only one attack device. And
it is not a one-time hijack. Although it is temporary access,
the attacker can record multiple pairs of two attestations once.
As the token has not been updated, the attacker can access the
vehicle serval times by sending these pairs in the sequence of
the counter.

VIII. DISSCUSION

A. Countermeasures

PIN to drive. It allows owners to program a personal
identification number. This feature forces the owner to enter
these numbers into the screen to drive the car. This multi-
factor authentication countermeasure only forbids driving but
not entering, as discussed in the previous section. It is worth
noting that this feature disobeys the intention of PKES and is
not the default setting of Model 3.

Refresh the token frequently. Our results indicate the
token value remains fixed in hours. In one device scenario,
the attack device needs alternating connect to the vehicle
and the Phone Key. If the token changes after recording but
before reconnecting to the car, authentication of the second
encrypted command on the vehicle’s side will fail. If the token
updates every time Model 3 establishes a BLE connection, the
adversary has to use two attack devices. To a certain degree,
refreshing the token fast enough will reduce the attack window.

Enable BLE link layer encryption. BLE supports secure
communication according to Bluetooth standards. End devices
can negotiate a long-term key during the pairing process
and derive a session key for each reconnection. The BLE
encrypts the communication between devices by this session
key. Enabling BLE encryption will improve the difficulty of
analysis and device spoofing. However, it is circumvented by
NCC Group, as mentioned in previous related works.

TOF based secure ranging. The PKES system can employ
the Time of Flight (TOF) to avoid MitM attacks. Two trust
parties can record the timestamp when receiving the messages.
Timing is often implemented in the physical layer to eliminate
the delay of intra-transmission and increase accuracy. Many
vehicle manufacturers [14], [56] announced that UWB tech-
nique would be a new solution of PKES. UWB utilizes the
TOF technique to measure the distance. However, the spoof
messages of measurement or synchronization may modify
the propagation time. So the messages require encryption or

13

signature by a trusted module like SE. Tesla is in the process
of combining a new Ultra-Wideband (UWB) technique in its
key fobs[76]. Mobile phone manufacturers like Apple[9] and
Samsung [57] have already integrated UWB into their mobile
devices. It provides simplicity for Tesla to ensemble it directly
into a mobile app.

B. Future Directions

Many vehicle manufacturers have announced that UWB
technique defined in physical-level standard IEEE 802.15.4z
[38], [39] will be a new security solution in the PKES system.
UWB has many advantages, like high accuracy, low latency,
long distance and high security. The scrambled timestamp
sequence (STS) contains a pseudo-random bit sequence for
security purposes. Ranging devices can utilize the TOF on the
arrival time of the STS, thereby guaranteeing that no external
adversary reduces the measured distance by advancing the
received signal in time. However, propagation time responded
by the receiver should be protected because it determines the
distance. The up-level standard [16] recommends encrypting
the replied time with a symmetric secret. However, many
works [46], [60], [64], [65] have revealed the weaknesses of
UWB. The implementation security of UWB in the PKES
system will be explored in future works.

IX. CONCLUSION

Tesla Model 3 promotes new types of Key Cards and Phone
Keys for better driver experiences. With reverse-engineering
of the protocols and codes, we demonstrate pairing and au-
thentication procedures of these two keys in detail. We find
that communication channel like BLE does not employ any
security mechanisms. Tesla decides to leave security to up-
level cryptography. We demonstrate several design vulnerabil-
ities and implementation flaws. The current protocols allow
customized Key Cards to work. Besides, we introduced an
improved relay attack against authentication of the Phone
Key through the BLE channel. In addition, we developed
an app named TESmLA installed on a customized Android
device to implement the attack. The attack is performed in
the background without the awareness of the car owner and
can be extended with any other cheap off-the-shelf device.
Our results raise attentions of the insecure implementation of
BLE communication since it may be a considerable concern in
many other PEPS systems. Our findings have implications for
other vehicles supporting Phone Keys. The security analysis
of more vehicle manufacturers, even the new technique UWB,
leave for pending further investigation.

RESPONSIBLE DISCLOSURE

We submitted the correlated reverse-engineering results
and informed vulnerabilities to Tesla on March 15, 2022. We
also indicated the intention to publish research regarding the
protocols and BLE relay attacks. Tesla still has not responded
to us yet. After over half a year, we decided to disclose and
assign CVE-2022-37709.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
and helpful comments and feedback. We also thank Sultan

Qasim Khan from the NCC Group for sharing their contribu-
tions to BLE Sniffle Relay. We greatly appreciate Ivon, who
offers his vehicle for experiments.

REFERENCES

[1] A. I. Alrabady and S. M. Mahmud, “Analysis of Attacks Against the
Security of Keyless-Entry Systems for Vehicles and Suggestions for
Improved Designs”, IEEE Transactions on Vehicular Technology, 54(1),
2005, pp. 41 - 50.

[2] A. I. Alrabady and S. M. Mahmud, “Some attacks against vehicles’
passive entry security systems and their solutions”, IEEE Transactions
on Vehicular Technology, 52, 2003, pp. 431 - 439.

[3] Android Developers Reference: BluetoothGatt. [Online]. Available:
https://developer.android.google.cn/reference/kotlin/android/bluetooth/
BluetoothGatt

[4] Android Developers Reference: BluetoothGattServer. [Online].
Available: https://developer.android.google.cn/reference/kotlin/android/
bluetooth/BluetoothGattServer

[5] A. Ansari, P. C. Karthik, D. H. Sharath, M. Aziz, and S. Mukherjee,
“Mechanism to Identify Legitimate Vehicle User in Remote Keyless
Entry System”, WCX SAE World Congress Experience, 2022.

[6] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “BIAS: Bluetooth
Impersonation AttackS”, In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2020.

[7] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key Negotiation
Downgrade Attacks on Bluetooth and Bluetooth Low Energy”, Transac-
tions on Privacy and Security (TOPS), 2020.

[8] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “The KNOB is
Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of
Bluetooth BR/EDR”, In Proceedings of the USENIX Security Symposium
(USENIX Security), August 2019.

[9] Apple Inc. Ultra Wideband security in iOS. [Online]. Available:
https://support.apple.com/guide/security/ultra-widebandsecurity-
sec1e6108efd/web, accessed October 8, 2021.

[10] K. Arai and T. Kaneko, “Formal Verification of Improved Numeric
Comparison Protocol for Secure Simple Pairing in Bluetooth Using
ProVerif”, In Proceedings of the International Conference on Security
and Management (SAM). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2014.

[11] S. V. D. Beek and F. Leferink, “Vulnerability of Remote Keyless-
Entry Systems Against Pulsed Electromagnetic Interference and Possible
Improvements”, IEEE Transactions on Electromagnetic Compatibility,
58(4), 2016, pp. 1-7.

[12] E. Biham and L. Neumann, “Breaking the Bluetooth Pairing–The
Fixed Coordinate Invalid Curve Attack”, In International Conference on
Selected Areas in Cryptography. Springer, 2019.

[13] Bluetooth Special Interest Group. Core Specifications 5.3.
[Online]. Available: https://www.bluetooth.com/bluetooth-resources/
bluetooth-core-specification-version-5-3-feature-enhancements/,
accessed 2021.

[14] BMW announces BMW Digital Key Plus with Ultra-Wideband
technology coming to the BMW iX. [Online]. Available:
https://www.press.bmwgroup.com/global/article/detail/T0324128EN/bmw-
announces-bmw-digital-key-plus-withultra-wideband-technology-
coming-to-the-bmw-ix, accessed October 8, 2021.

[15] S.C. Bono, M. Green, A. Stubblefield, A. Juels, and M. Szydlo,
“Security Analysis of a Cryptographically-Enabled RFID Device”, In
USENIX Security Symposium, vol. 31, 2005, pp. 1–16.

[16] Car Connectivity Consortium. Digital Key Release. [Online]. Available:
https://carconnectivity.org/press-release/car-connectivityconsortium-
publishes-digital-key-release-3-0/, accessed October 11, 2021.

[17] D. Cauquil, “BtleJuice Framework”. [Online]. Available: https://github.
com/DigitalSecurity/btlejuice, accesssed 2016.

[18] R. Cayre, ”Mirage”, [Online]. Available: https://homepages.laas.fr/
rcayre/mirage-documentation/index.html, accessed 2019.

[19] C˘etin Kaya Ko˘c. Elliptic Curve Cryptography Fundamentals. [On-
line]. Available: https://cs.ucsb.edu/koc/ecc/docx/09ecc.pdf, accesed 21
October 2015.

14

https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothGatt
https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothGatt
https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothGattServer
https://developer.android.google.cn/reference/kotlin/android/bluetooth/BluetoothGattServer
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-version-5-3-feature-enhancements/
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-version-5-3-feature-enhancements/
https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://homepages.laas.fr/rcayre/mirage-documentation/index.html
https://homepages.laas.fr/rcayre/mirage-documentation/index.html
https://cs.ucsb.edu/koc/ecc/docx/09ecc.pdf

[20] W. Choi, M. Seo, and D.J. Lee, “Sound-Proximity: 2-factor Authenti-
cation against Relay Attack on Passive Keyless Entry and Start System”,
Journal of Advanced Transportation, 2018(PT.1), pp.1-13.

[21] CVE-2020-15912. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-15912

[22] Q. Dang, “Secure Hash Standard”, Federal Inf. Process. Stds. (NIST
FIPS), National Institute of Standards and Technology, Gaithersburg,
MD, 2015. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.180-4,
accessed June 30, 2022.

[23] Diffie–Hellman Key Exchange. [Online]. Available: https:
//en.wikipedia.org/wiki/Diffie, accessed 2015

[24] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced Encryption Standard (AES)”, Federal Inf.
Process. Stds. (NIST FIPS), National Institute of Standards and Tech-
nology, Gaithersburg, MD. [Online]. Available: https://doi.org/10.6028/
NIST.FIPS.197, accessed June 30, 2022.

[25] M. Dworkin. Recommendation for Block Cipher Modes of Opera-
tion: Galois/Counter Mode (GCM) for Confidentiality and Authenti-
cation. NIST. [Online]. Available: https://web.cs.ucdavis.edu/∼rogaway/
ocb/gcm.pdf, accessed April, 2006

[26] Elliptic Curve Diffie-Hellman. [Online]. Available: https://en.wikipedia.
org/wiki/EllipticcurveDiffie

[27] A. Francillon, B. Danev, and S. Capkun, “Relay Attacks on Passive
Keyless Entry and Start Systems in Modern Cars”, In Proceedings of
the Network and Distributed System Security Symposium (NDSS), San
Diego, CA, USA, 6–9 February 2011.

[28] Frida, Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. [Online]. https://frida.re/

[29] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock It and
Still Lose It - on the (In)Security of Automotive Remote Keyless Entry
Systems”, In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, pp. 929–944. USENIX Association, 2016.

[30] K. Greene, D. Rodgers, H. Dykhuizen, Q. Niyaz, and K. A. Shamaileh,
“A Defense Mechanism Against Replay Attack in Remote Keyless
Entry Systems Using Timestamping and XOR Logic”, IEEE Consumer
Electronics Magazine, 10. 1-1, 10.1109/MCE.2020.3012425.

[31] K. Haataja and P. Toivanen, “Two Practical Man-in-the-middle Attacks
on Bluetooth Secure Simple Pairing and Countermeasures”, Transactions
on Wireless Communications, 9(1), 2010, pp. 384–392.

[32] G.P. Hancke and M.G. Kuhn, “An RFID Distance Bounding Proto-
col”, In Proceedings of the First International Conference on Security
and Privacy for Emerging Areas in Communications Networks (SE-
CURECOMM’05), Athens, Greece, 5–9 September 2005; pp. 67–73.

[33] J. V. D. Herrewegen and F. D. Garcia, “Beneath the Bonnet: A
Breakdown of Diagnostic Security”, In Javier López, Jianying Zhou, and
Miguel Soriano, editors, Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September3-7, 2018, Proceedings, Part I, vol. 11098 of Lecture Notes in
Computer Science, pages 305–324. Springer, 2018.

[34] C. Hicks, F. Garcia, and D. Oswald, “Dismantling the AUT64 Au-
tomotive Cipher”, IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(2), May 2018, pp.46–69.

[35] K. Hypponen and K. M. Haataja, ”Nino: Man-in-the-middle Attack on
Bluetooth Secure Simple Pairing”, In Proceedings of the International
Conference in Central Asia on Internet, IEEE 2007, pp. 1–5.

[36] O. Ibrahim, A. M. Hussain, G. Oligeri and R. Pietro, “Key is in the Air:
Hacking Remote Keyless Entry Systems”, Security and Safety Interplay
of Intelligent Software Systems, 2019, pp. 125-132.

[37] IDA Freeware. [Online]. Available: https://hex-rays.com/ida-free/
[38] IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-

2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020.
[39] IEEE Standard for Low-Rate Wireless Networks–Amendment 1: En-

hanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated
Ranging Techniques. IEEE Std 802.15.4z-2020 (Amendment to IEEE
Std 802.15.4-2020), 2020, pp. 1–174.

[40] JADX. [Online]. Available: https://github.com/skylot/jadx
[41] S. Jasek, “GATTacker”, [Online]. Available: https://github.com/

securing/gattacker, accessed 2016.

[42] R. Karani, S. Dhote, N. Khanduri, A. Srinivasan, R. Sawant, G. Gore,
and J. Joshi, “Implementation and Design Issues for Using Bluetooth
Low Energy in Passive Keyless Entry Systems”, In Proceedings of
the 2016 IEEE Annual India Conference (INDICON), Bangalore, India,
16–18 December 2016; pp. 1–6.

[43] H. Khalid, S. J. Hashim, S. M. S. Ahmad, f. Hashim and M. A. Chaud-
hary, Muhammad, New and Simple Offline Authentication Approach
using Time-based One-time Password with Biometric for Car Sharing
Vehicles, 2020 IEEE Asia-Pacific Conference on Computer Science and
Data Engineering (CSDE), 2020.

[44] N. Khatri, “Amplification Attack-Resistant Authentication Scheme for
Remote Keyless Entry System”, 2020 Fall Conference of the Korean
Embedded Engineering Society, 2020.

[45] C. H. Kim and G. Avoine, “RFID Distance Bounding Protocol with
Mixed Challenges to Prevent Relay Attacks”, In Proceedings of the In-
ternational Conference on Cryptology and Network Security, Kanazawa,
Japan, 12–14 December 2009, pp. 119–133.

[46] P. Leu, G. Camurati, A. Heinrich, M. Roeschlin, C. Anliker, M. Hollock,
S. Capkun, J. Classen, “Ghost Peak: Practical Distance Reduction Attacks
Against HRP UWB Ranging”, In Proceedings of the USENIX Security
Symposium (USENIX Security), 2022.

[47] A. Levi, E. Çetinta¸s, M. Aydos, C. K. Koç, and M. U. Ça˘glayan, “Re-
lay Attacks on Bluetooth Authentication and Solutions”, In Proceedings
of the International Symposium on Computer and Information Sciences,
Kemer, Antalya, Turkey, 27–29 October 2004; pp. 278–288.

[48] J. Li, Y. Dong, S. Fang, H. Zhang, and D. Xu, “User Context Detection
for Relay Attack Resistance in Passive Keyless Entry and Start System”,
Sensors, 20(16): 4446 (2020).

[49] J.R. Lin, T. Talty, and O.K. Tonguz, “On the Potential of Bluetooth
Low Energy Technology for Vehicular Applications”, IEEE Commun.
Mag. 2015, 53, pp. 267–275.

[50] T. Melamed. “An active man-in-the-middle attack on Bluetooth smart
devices”. International Journal of Safety and Security Engineering, 8(2),
2018.

[51] MIRAGE -1.2 [Online]. Available: https://github.com/RCayre/mirage

[52] Model 3 Owner’s Manual. [Online]. Available:
https://www.tesla.com/ownersmanual/model3/en us/
GUID-E004FAB7-1C71-448F-9492-CACF301304D2.html, accessed 14
April 2022.

[53] MP300 ACL1 Contactless Spy Tool. Available: https://micropross.ni.
com/products/range/mp300-acl1/

[54] New Tesla Key Card Vulnerability Lets Hackers Silently Steal
Your Ride. [Online]. Available: https://www.reviewgeek.com/120570/
new-tesla-key-card-vulnerability-lets-hackers-silently-steal-your-ride/,
accessed 9 June 2022.

[55] NomadLAB. [Online]. Available: https://www.keolabs.com/products/
services-accessories/nomad-tester

[56] NXP Announces New Automotive Ultra-Wideband Chip Capable
of Turning Smartphones into Car Keys. [Online]. Available:
https://www.nxp.com/company/about-nxp/nxpannounces-new-
automotive-ultra-wideband-chip-capableof-turning-smartphones-into-
car-keys:NW-AUTOMOTIVEULTRA-WIDEBAND, accessed October
12, 2021.

[57] NXP Secure UWB deployed in Samsung Galaxy Note20 Ultra Bringing
the First UWB-Enabled Android Device to Market. [Online]. Available:
https://www.nxp.com/company/about-nxp/nxpsecure-uwb-deployed-in-
samsung-galaxy-note20-ultrabringing-the-first-uwb-enabled-android-
device-tomarket:NW-SECURE-UWB-SAMSUNG-GALAXY, accessed
October 5, 2021.

[58] J. Patel, M. L. Das, and S. Nandi, “On the Security of Remote Key Less
Entry for Vehicles”, 2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), 2018.

[59] M. Poturalski, M. Flury, P. Papadimitratos, J.Hubaux, and J. Le Boudec,
“Distance Bounding with IEEE802.15.4a: Attacks and Countermea-
sures”, IEEE Trans. Wirel. Commun., 10(4), 2011, pp.1334–1344.

[60] M. Poturalski, M. Flury, P. Papadimitratos, J.Hubaux, and J. Le Boudec,
“The Cicada Attack: Degradation and Denial of Service in IR Ranging”,
In 2010 IEEE International Conference on Ultra-Wideband, vol.2, 2010,
pp.1-4.

15

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15912
https://doi.org/10.6028/NIST.FIPS.180-4
https://en.wikipedia.org/wiki/Diffie
https://en.wikipedia.org/wiki/Diffie
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://web.cs.ucdavis.edu/~rogaway/ocb/gcm.pdf
https://web.cs.ucdavis.edu/~rogaway/ocb/gcm.pdf
https://en.wikipedia.org/wiki/EllipticcurveDiffie
https://en.wikipedia.org/wiki/EllipticcurveDiffie
https://frida.re/
https://hex-rays.com/ida-free/
https://github.com/skylot/jadx
https://github.com/securing/gattacker
https://github.com/securing/gattacker
https://www.tesla.com/ownersmanual/model3/en_us/GUID-E004FAB7-1C71-448F-9492-CACF301304D2.html
https://www.tesla.com/ownersmanual/model3/en_us/GUID-E004FAB7-1C71-448F-9492-CACF301304D2.html
https://micropross.ni.com/products/range/mp300-acl1/
https://micropross.ni.com/products/range/mp300-acl1/
https://www.reviewgeek.com/120570/new-tesla-key-card-vulnerability-lets-hackers-silently-steal-your-ride/
https://www.reviewgeek.com/120570/new-tesla-key-card-vulnerability-lets-hackers-silently-steal-your-ride/
https://www.keolabs.com/products/services-accessories/nomad-tester
https://www.keolabs.com/products/services-accessories/nomad-tester

[61] Protocol Buffers - Google’s data interchange format. [Online]. Avail-
able: https://github.com/protocolbuffers/protobuf

[62] J. Reid, J.M.G. Nieto, T. Tang, and B. Senadji, “Detecting Relay
Attacks with Timing-based Protocols”, In Proceedings of the 2nd ACM
Symposium on Information, Computer and Communications Security,
Singapore, 20–22 March 2007, pp. 204–213.

[63] S. Rizvi, J. Imler, L. Ritchey L, and M. Tokar, “Securing PKES
against Relay Attacks using Coordinate Tracing and Multi-Factor Au-
thentication”, 2019 53rd Annual Conference on Information Sciences and
Systems (CISS), 2019.

[64] M. Singh, P. Leu, and S. Capkun, “UWB with pulse reordering: Se-
curing ranging against relay and physical-layer attacks”, In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 2019, pp. 24-27.

[65] M. Singh, M. Roeschlin, E. Zalzala, P. Leu, and S. Capkun, “Security
analysis of IEEE 802.15.4z/HRP UWB time-offlight distance measure-
ment”. In WiSec ’21: 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, Abu Dhabi, The United Arab Emirates,
28 June - 2 July 2021, pp. 227–237.

[66] P. Sivakumaran and J. Blasco, “A Study of the Feasibility of Co-located
App Attacks against BLE and a Large-scale Analysis of the Current
Application-layer Security Landscape”, In Proceedings of the USENIX
Security Symposium (USENIX Security), August 2019.

[67] D. Spill and A. Bittau, “BlueSniff: Eve Meets Alice and Bluetooth”, In
Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
vol. 7, 2007, pp. 1–10.

[68] P. Staat, K. Jansen, C. Zenger, H. Elders-Boll and C. Paar, “Analog
Physical-Layer Relay Attacks with Application to Bluetooth and Phase-
Based Ranging”, 15th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2022.

[69] D. Sun, Y. Mu, and W. Susilo, “Man-in-the-middle Attacks on Secure
Simple Pairing in Bluetooth Standard v5. 0 and Its Countermeasure”,
Personal and Ubiquitous Computing, 22(1), 2018, pp. 55–67.

[70] Y. Tao, L. Kong, X. Wei, J. Hu, and C. Zhong, “Resisting Relay Attacks
on Vehicular Passive Keyless Entry and start systems”, International
Conference on Fuzzy Systems & Knowledge Discovery, IEEE 2012.

[71] Technical Advisory – Tesla BLE Phone-as-a-Key Passive
Entry Vulnerable to Relay Attacks. [Online]. Available:
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-
ble-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/, accessed
15 May 2022.

[72] Technical Advisory – BLE Proximity Authen-
tication Vulnerable to Relay Attacks. [Online].
Available: https://research.nccgroup.com/2022/05/15/
technical-advisory-ble-proximity-authentication-vulnerable-to-relay-attacks/,
accessed 15 May 2022.

[73] Teen hacker says he’s found way to remotely control 25 Tesla EVs
around the world. [Online]. Available: https://fortune.com/2022/01/12/
teen-hacker-david-colombo-took-control-25-tesla-ev/, accessed 12 Jan-
uary 2022.

[74] Tesla Bluetooth Hack Opens Doors and Start Cars:
NCC Group. [Online]. Available: https://researchsnipers.com/
tesla-bluetooth-hack-opens-doors-and-start-cars-ncc-group/, accessed
17 May 2022.

[75] Tesla warns of theft risk through relay attacks, and shares ‘tips’
to help prevent. [Online]. Available: https://electrek.co/2018/07/31/
tesla-thefttips-help-prevent-relay-attacks/amp/, accessed 9 October 2021.

[76] Tesla’s next car will seamlessly unlock with UWB, FCC leak suggests.
[Online]. Available: https://www.theverge.com/2021/2/2/22262996/
tesla-uwb-fcc-car-key-ultrawideband-tech, accessed 3 February 2022.

[77] TESmLA. [Online]. Available: https://github.com/fmsh-seclab/TesMla,
accessed September 2022

[78] This Bluetooth Attack Can Steal a Tesla Model X in Minutes. [Online].
Available: https://www.wired.com/story/tesla-model-x-hack-bluetooth/,
accessed 23 Nov. 2020.

[79] A. Valko, “Relay Attack Resistant Passive Keyless Entry: Securing PKE
Systems with Immobility Detection”, thesis for Bachelor of Science,
2020.

[80] R. Verdult, F. D. Garcia, and B. Ege, “Dismantling Megamos Crypto:
Wirelessly Lockpicking a Vehicle Immobilizer”, In Samuel T. King, edi-

tor, Proceedings of the 22nd USENIX Security Symposium, Washington,
DC, USA, August 14-16, 2013, pp. 703–718. USENIX Association,
2015.

[81] Volvo Cars Tests Replacing Keys with Smart
Phone App. [Online]. Available: https://www.media.
volvocars.com/us/en-us/media/pressreleases/173880/
volvo-cars-tests-replacing-keys-with-smart-phone-app, accessed 10
June 2020.

[82] Vote for “you using PIN to drive?” [Online]. Available: https://
teslamotorsclub.com/tmc/threads/pin-to-drive.182715/, accessed 22 Jan-
uary 2020.

[83] J. Wang, K. Lounis, and M. Zulkernine, “CSKES: A Context-based
Secure Keyless Entry System” In Proceedings of the 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
Milwaukee, WI, USA, 15–19 July 2019, vol. 1, pp. 817–822.

[84] J. Wang, K. Lounis and M. Zulkernine, “Security Features for Proximity
Verification”, In Proceedings of the 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), Milwaukee, WI,
USA, 15–19 July 2019, vol. 2, pp. 592–597.

[85] Will Your Smartphone Replace Your Car Key. [Online].
Available: https://www.consumerreports.org/automotivetechnology/
will-your-smartphone-replace-your-car-key-virtual-key/, , accessed 10
June 2020.

[86] L. Wouters, B. Gierlichs, B. Preneel, “My Other Car is Your Car:
Compromising the Tesla Model X Keyless Entry System”, IACR Trans.
Cryptographic Hardware and Embedded Systems- CHES 2021, vol. 2,
pp. 149-172.

[87] L. Wouters, E. Marin, T. Ashur, B. Gierlichs, and B. Preneel, “Fast,
Furious and Insecure: Passive Keyless Entry and Start Systems in Modern
Supercars”, IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3), 2019,
pp. 66–85.

[88] L. Wouters, J. Van den Herrewegen, F. D Garcia, D. Oswald, B. Gier-
lichs, and B. Preneel, “Dismantling DST80-based Immobiliser Systems”,
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(2), pp. 99–127.

[89] J. Wu, Y. Nan, V. Kumar, D. Tian, and A. Bianchi, “BLESA: Spoofing
Attacks against Reconnections in Bluetooth Low Energy”, USENIX
WOOT, 2020.

[90] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Breaking
Android Security Mechanisms via Malicious Bluetooth Peripherals”, In
Proceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS), 2019.

APPENDIX A
ATTESTATION CALCULATION

The first attestation calculates the encryption of an “Au-
thentication Response” Java object with its “Authentication-
Level” field set to null, as shown in Listing 1. Serialize this
Java object to a 2 bytes hex string with Google-Protobuf
framework [61]. Then use AES-GCM to get the encryption
result.

1 UnsignedMessage
2 {
3 A u t h e n t i c a t i o n R e s p o n s e : A u t h e n t i c a t i o n R e s p o n s e
4 {
5 a u t h e n t i c a t i o n L e v e l : AUTHENTICATION LEVEL NONE
6 }
7 }

Listing 1: Java object to be serialized for the first attestation

For the second attestation, “Authentication Response” Java
object with its “Authentication-Level” field is set to the value
received. Normally, if the car owner enables the PKES fea-
ture, the “Authentication-Level” field of the “Authentication
Response” object will be probably set to AUTHENTICA-
TION LEVEL DRIVE.

16

https://github.com/protocolbuffers/protobuf
https://research.nccgroup.com/2022/05/15/technical-advisory-ble-proximity-authentication-vulnerable-to-relay-attacks/
https://research.nccgroup.com/2022/05/15/technical-advisory-ble-proximity-authentication-vulnerable-to-relay-attacks/
https://fortune.com/2022/01/12/teen-hacker-david-colombo-took-control-25-tesla-ev/
https://fortune.com/2022/01/12/teen-hacker-david-colombo-took-control-25-tesla-ev/
https://researchsnipers.com/tesla-bluetooth-hack-opens-doors-and-start-cars-ncc-group/
https://researchsnipers.com/tesla-bluetooth-hack-opens-doors-and-start-cars-ncc-group/
 https://electrek.co/2018/07/31/tesla-thefttips-help-prevent-relay-attacks/amp/
 https://electrek.co/2018/07/31/tesla-thefttips-help-prevent-relay-attacks/amp/
https://www.theverge.com/2021/2/2/22262996/tesla-uwb-fcc-car-key-ultrawideband-tech
https://www.theverge.com/2021/2/2/22262996/tesla-uwb-fcc-car-key-ultrawideband-tech
https://github.com/fmsh-seclab/TesMla
https://www.wired.com/story/tesla-model-x-hack-bluetooth/
https://www.media.volvocars.com/us/en-us/media/pressreleases/173880/volvo-cars-tests-replacing-keys-with-smart-phone-app
https://www.media.volvocars.com/us/en-us/media/pressreleases/173880/volvo-cars-tests-replacing-keys-with-smart-phone-app
https://www.media.volvocars.com/us/en-us/media/pressreleases/173880/volvo-cars-tests-replacing-keys-with-smart-phone-app
 https://teslamotorsclub.com/tmc/threads/pin-to-drive.182715/
 https://teslamotorsclub.com/tmc/threads/pin-to-drive.182715/
https://www.consumerreports.org/automotivetechnology/will-your-smartphone-replace-your-car-key-virtual-key/
https://www.consumerreports.org/automotivetechnology/will-your-smartphone-replace-your-car-key-virtual-key/

1 UnsignedMessage
2 {
3 A u t h e n t i c a t i o n R e s p o n s e : A u t h e n t i c a t i o n R e s p o n s e
4 {
5 a u t h e n t i c a t i o n L e v e l : AUTHENTICATION LEVEL DRIVE
6 }
7 }

Listing 2: Java object to be serialized for the second attestation

3. Establish BLE connection (Optional)

Tesla Model 3

Vehicle Key Pair: [V,v]

Broadcasting using

BD_ADDR

Adversary

Attack Device A

2.Get BD_ADDR from advertisement

6.Change H BLE device address

to BD_ADDR

5. Disconnect

7. Start broadcasting

1. BLE Scan

4. Get status of the Model 3

Fig. 14: Attack Model Phase 1: Setup

APPENDIX B
IMPROVED RELAY ATTACK - ONE ATTACK DEVICE

This section describes the scenario of one attack device in
Figure 8. The attacker needs to go back and forth between the
Model 3 and the car owner to complete the attack. The whole
attack can also be divided into three phases as follow.

Setup: MAC spoof (Figure 14). First, the attack device
approaches Model 3 and initiates a BLE scan. The attacker can
get the BLE MAC address of the car from advertisements (Step
2). Connecting to Model 3 is optional depending on whether
the attacker needs to obtain other information, for example, the
public key of the vehicle. The adversary sets the attack device
with the same BLE MAC address as the car (Step 6). Then
the attack device starts to broadcast connectable advertisements
identical to the Model 3’s broadcasting.

Preparation: attestations capture (Figure 16). Once the
attack device with the specific MAC address approached the
Phone Key, an automatic connection establishes between the
two parties. An authentication level indication of driving is
delivered from the attack device to the Phone Key every second
(Step 9). After receiving, Phone Key generates the shared
secret using ECDH. After encrypting the known serialized java
object (Listing 1) in AES-GCM mode using the shared secret
as the key, the Phone Key sends the first attestation package

(Steps 12 - 14). The attack device records the first attestation
(Step 16).

Then the attacker goes back to the Model 3 and connects to
the vehicle. The attacker forwards the recorded first attestation
to the car and waits for the response involving a token G (Steps
19 - 24).

Next, the adversary approaches the owner again. Similarly,
the Phone Key transmits the first attestation for verification.
Besides recording this package, the attack device responds to
the phone with the counter and the token G recorded before
(Steps 30 - 32). Then the second attestation package sends
back. The attack device can collect two consecutive attestations
with the corresponding token G as a tuple.

43. Send message B and count

45. Respond the GCM counter of message B

44.Decrypt and verify

message B with S，count

Authentication finish. Attack success!

41. Respond the GCM counter of message A’

42. Respond a token G

40. Decrypt and verify

message A’ with S，count

37. Establish BLE connection

38. Request vehicle status (optional)

39. Send message A’ and count

Tesla Model 3

Vehicle Key Pair: [V,v]

Broadcasting using BD_ADDR

Adversary

Attack Device A

Setup Phase

Preparation Phase

Fig. 15: Attack Model Phase 3: Attack

Attack: unlock and steal (Figure 15). Finally, the attack
device reconnects to the car and sends the first attestation in
the tuple (Step 39). Once receiving the response with a token,
the attacker delivers the second attestation (Steps 42 - 43). If
this token is the same as the one in the tuple, the car verifies
both attestations successfully. For now, the Model 3 unlocks
doors and can be driven away.

17

14. Send message A and count

22. Respond the GCM counter of message A

23. Respond a token G

Phone Key Tesla Model 3

20. Generate ECDH share secret：

S = ECDH（P，v）

9. Indicate Authentication_Level: L

12. Generate ECDH share secret：S = ECDH（V，p）

13. Encrypt data a with AES-GCM mode

count= count + 1, A = AES_GCM(a, S, count, null)

21. Decrypt and verify message A with S，count

33. Encrypt data b with AES-GCM mode

count= count + 1, B = AES_GCM(b, S, count, G)

Phone Key Pair: [P, p]

Trying to reconnect BLE

device with BD_ADDR

11. Respond vehicle status

10. Send an information request：I

Adversary

Attack Device A

8. Establish BLE connection

15. Disconnect

16. Record message A

17. Establish BLE connection

18. Request vehicle status

24. Disconnect

19. Send message A and count

26. Advertised BLE device name: N

25. Record token G

27. Establish BLE connection

30. Send message A’and count

29. Encrypt data a with AES-GCM mode

count= count + 1, A’= AES_GCM(a, S, count, null)

28.Request vehicle status

31. Respond the GCM counter of A’

32. Respond a token G

34. Send message B and count

35. Disconnect

36.Record message A’and B

Setup Phase

Setup Phase

Vehicle Key Pair: [V,v]

Broadcasting using

BD_ADDR

Fig. 16: Attack Model Phase 2: Preparation

18

	Introduction
	Background
	BLE
	Relevant Cryptography

	Methodology
	Pairing and Authentication Protocols
	Key Cards
	Phone Keys

	Security Analysis
	Key Card Threats
	Adversary Model
	Proof-of-concept
	Impact

	Improved Relay Attack
	Adversary Model
	Proof-of-concept
	Impact and Limitations
	Related Works

	Disscusion
	Countermeasures
	Future Directions

	Conclusion
	References
	Appendix A: Attestation Calculation
	Appendix B: Improved Relay Attack - one attack device

