
Anomaly Detection in the Open World: Normality
Shift Detection, Explanation, and Adaptation

Dongqi Han∗†, Zhiliang Wang ∗†‡, Wenqi Chen∗†, Kai Wang∗†, Rui Yu§, Su Wang†¶, Han Zhang∗†‡,
Zhihua Wang∥, Minghui Jin∥, Jiahai Yang∗†‡, Xingang Shi∗† and Xia Yin†¶

∗Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University, Beijing, China
†Zhongguancun Laboratory, Beijing, China

‡Quan Cheng Laboratory, Jinan, Shandong, China
§Tsinghua Shenzhen International Graduate School, Tsinghua University, Beijing, China

¶Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
∥State Grid Shanghai Municipal Electric Power Company, Shanghai, China

{handq19, chenwq19, k-wang20, yur20, wangsu17}@mails.tsinghua.edu.cn, {wzl, yang, shixg}@cernet.edu.cn

Abstract—Concept drift is one of the most frustrating chal-
lenges for learning-based security applications built on the close-
world assumption of identical distribution between training and
deployment. Anomaly detection, one of the most important tasks
in security domains, is instead immune to the drift of abnormal
behavior due to the training without any abnormal data (known
as zero-positive), which however comes at the cost of more severe
impacts when normality shifts. However, existing studies mainly
focus on concept drift of abnormal behaviour and/or supervised
learning, leaving the normality shift for zero-positive anomaly
detection largely unexplored.

In this work, we are the first to explore the normality shift for
deep learning-based anomaly detection in security applications,
and propose OWAD, a general framework to detect, explain,
and adapt to normality shift in practice. In particular, OWAD
outperforms prior work by detecting shift in an unsupervised
fashion, reducing the overhead of manual labeling, and pro-
viding better adaptation performance through distribution-level
tackling. We demonstrate the effectiveness of OWAD through
several realistic experiments on three security-related anomaly
detection applications with long-term practical data. Results
show that OWAD can provide better adaptation performance
of normality shift with less labeling overhead. We provide case
studies to analyze the normality shift and provide operational
recommendations for security applications. We also conduct an
initial real-world deployment on a SCADA security system.

I. INTRODUCTION

Anomaly detection is one of the most important tasks in
security domains [13], trained with normal data and detecting
anomalies that deviates from the distribution of normality.
Recently, the adoption of Deep Learning (DL) enables anomaly
detection to extract more complex features from massive data
[12], [76], as well as detect unforeseen threats such as zero-day
attacks through learning with only normal data, known as zero-
positive learning [20]. Heretofore, researchers have applied
DL-based anomaly detection for various security applications,

TABLE I: Comparison of representative related works.

Features CADE[81] TRANSCENDENT[37], [5] UNLEARN[20] OWAD
Support Timeseries

Unsupervised∗

Label-efficient†

Distribution-level‡

(= true, = partially true, = false);
∗ TRANSCENDENT can be used but requires non-trivial adjustments for
unsupervised (zero-positive) cases; † Measured in §V-B;
‡ TRANSCENDENT statistically considers distributional information, but
tackles drift in a sample-level fashion (i.e., rejection).

such as detecting network intrusions [54], [72], finding threats
from system logs [21], [53], tracing advanced persistent threats
(APT) [9], [77], which all achieved satisfactory performance.

Unfortunately, the superior performance of learning-based
applications is built on the close-world assumption of indepen-
dent and identically distributed (i.i.d.) between training and
test samples [68]. Such assumption often does not hold in
open-world settings due to the divergence of incoming test
distribution from the original one, known as concept drift. In
security domains, concept drift is pervasive as the malicious
patterns are switched suddenly and dramatically over time in
the hostile environment [4].

In this context, anomaly detection is instead immune to
the drift of malicious/abnormal behavior due to zero-positive
learning, which however comes at the price of more severe
impact when the distribution of normality shifts. In real-
world deployment, the way users interact with systems under
monitoring can differ and evolve over time, so do the systems
themselves. For example, the involvement of new patches,
devices, and protocols all have the potential to shift the normal
pattern. Such normality shift1, if not detected and adapted,
will induce a large number of false positives (FP) and false
negatives (FN), suggested by anecdotal evidence in practice.

In recent years, several studies have been proposed to
tackle concept drift for learning-based security applications in
the community, which can be divided into two approaches:
The first is to periodically retrain the models in the dynamic
environment [14], [15], [38], [61], [36], [30], [57], regard-

1Normality shift intuitively refers to the change of distribution of normal
data (detailed definition is in §II-C). In this paper, we interchangeably use
terms “drift” and “shift”. We tend to use “normality shift” as a whole term.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24830
www.ndss-symposium.org

less of whether, when, and how drift occurs. However, this
approach is inappropriate in security domains as continuous
training is labor-intensive for labeling, as demonstrated in
related security applications [78], [52], [81]. It is also hard to
determine when to update the model. Late update will expose
the model to new threats or overwhelming false positives.
Moreover, security practitioners need to obtain evidence and
explanation of drifting behind the black-box model [81].

The second solution is to determine and then adapt to
the drift. However, as listed in Table I, most studies explore
concept drift under the setting of supervised learning [37], [81],
[3], [5], instead of normality shift in zero-positive anomaly
detection. Moreover, most of them focus on the detection
instead of adaptation, resulting in high labeling overhead when
preparing samples used for adaptation. Besides, prior studies
[20], [81], [3] prefer a sample-level approach by detecting
whether a certain sample is out of distribution. Such approach
fails to understand the drift in distribution level. This leads
to poor generalization ability for drift after adaptation, as
validated by our experiments in §V-B.

Challenges. In a nutshell, there are three major challenges for
tackling normality shift for anomaly detection in security appli-
cations: (1) The first is how to detect shift in an unsupervised
manner (i.e., without any prior knowledge of anomaly)? (2)
As shown in Fig. 1a, different from supervised classification,
we have to label drifting samples since a normal drift and
real anomaly is not distinguishable for anomaly detection.
Therefore, the second challenge is how to effectively select
samples to reduce labeling overhead? (3) Since only a part
of samples are labeled and used to update the model, the
last challenge, as illustrated in Fig. 1b, is how to prevent the
adapted model from forgetting the valid knowledge in the old
distribution while can generalize to the new distribution.

Our Work. In light of the above challenges, we develop
OWAD, a general distribution-level framework to tackle nor-
mality shift for security-related anomaly detection in practice,
which consists of shift detection, explanation, and adaptation.
(1) To solve the first challenge, we transform model outputs
in an unsupervised way to better represent the distribution of
normality, and then detect shift statistically through hypothesis
testing on the distribution of model outputs. (2) To solve the
second challenge, we construct an optimization problem that
finds as few drifting samples as possible. By doing so, we
only label the most influential samples inducing the shift to
reduce labeling overhead. (3) To solve the last challenge, we
assign different importance weights to model parameters to
represent whether they contains valid distribution (left dashed
region of Fig. 1b). During shift adaptation, we restrict updating
important model parameters to avoid forgetting old valid
distribution, while favor updating non-important parameters to
generalize to new distribution (right dashed region of Fig. 1b).

Evaluation and Deployment. We conduct several experiments
using practical long-term datasets (including a benchmark)
on three security-related applications with two representative
anomaly detection models. We compare OWAD with state-of-
the-art lifelong learning [20] and drift detection approaches
[37], [5], [81] w.r.t end-to-end adaptation performance, and
conduct ablation experiments of each step in OWAD. We
provide case studies to analyze the normality shift and pro-
vide operational recommendations for security applications.

Generalize
Fail to

new distrib.

Supervised

Anomaly or Dri�?

Normality
Class 1 Class 2

Dri� Sample！

Forgetting

(a) Difference between supervised
classification and anomaly detection. (b) Two challenges of adaptation.

adapted normality
selected samples for adapta�on

Forget
old distrib.

In-distribu�on Samples
Out-of-distribu�on Samples

Anomaly Detection

old/new normality /

Generalizing

Fig. 1: Illustration of challenges in this study.

We also conduct an initial real-world deployment of OWAD
on electric power supervisory and control system (SCADA)
logs. Results show that OWAD can provide better adaptation
performance of normality shift with extremely fewer labels.

Contributions. This study makes the following contributions:

• We are the first to examine the problem of normality
shift (defined in §II-C) for deep learning-based anomaly
detection. To this aim, we propose OWAD, a general frame-
work to tackle normality shift for security-related anomaly
detection in practice, which can be applied to any DL-
based zero-positive anomaly detection models. We provide
the prototype implementation2 of OWAD over two types of
DL-based anomaly detection used in time-insensitive and
time-series applications (introduced in §II).

• We propose novel techniques in OWAD (§IV) to solve
three challenges unique to anomaly detection in security
applications, including a Calibrator dedicated for anomaly
detection models to solve the challenge of unsupervised shift
detection (§IV-A, §IV-B), a well-formalized Explainer to
solve the challenge of reducing labeling cost (§IV-C), and
a distributional-level adaptation to solve the challenge of
ensuring not forgetting and generalization (§IV-D).

• We conduct several experiments on three security appli-
cations to demonstrate the performance and reveal several
guiding insights (in §V). Besides, our initial deployment
of OWAD on a real-world SCADA log anomaly detection
system corroborates the effectiveness of our method (§VI).

II. BACKGROUND AND PROBLEM SCOPE

This section introduces the background of DL-based
anomaly detection (§II-A) and its representative security appli-
cations (§II-B), as well as the preliminary of concept drift and
the definition of our problem scope—normality shift (§II-C).

A. Deep Learning Approaches for Anomaly Detection

As widely introduced in prior works [20], [29], DL-based
anomaly detection, also called “zero-positive” learning, is
trained with purely normal data (i.e., without any anomaly).
Existing learning approaches can be generally divided into
the two categories according to the model output probabilities
(whether indicating normal or abnormal). Henceforth, let f(x)
denote the anomaly detection model’s outputs of sample x.

Abnormal-confidence Models—the larger the f(x), the more
abnormal x is. The first category, also called reconstruction-
based learning, is to learn by minimize the reconstruction

2The implementation of OWAD: https://github.com/dongtsi/OWAD

2

https://github.com/dongtsi/OWAD

error of normal data during training. In this case, generative
DL models, such as Autoencoder [54], [79] and Generative
Adversarial Networks (GAN) [82] are widely used. In the
detection/testing phase, the output of abnormal-confidence
models (i.e., f(x)) is the reconstruction error between inputs
and outputs. An anomaly is reported if the output is larger than
a pre-defined detection threshold denoted with T .

Normal-confidence Models—the larger the f(x), the more
normal x is. The second one, also called prediction-based
learning, is to learn by maximizing the probability of pre-
dicting the point next to the input (purely normal) sequence.
In this case, sequential DL models, such as RNNs or Long
short-term memory (LSTM) [21], [20] are widely used. In the
detection/testing phase, normal-confidence models output the
predictive probabilities of next-to-appear points and report an
anomaly if the probability of actual next point is lower than
the pre-defined detection threshold T .

B. Representative Security Applications

We introduce three representative security applications us-
ing the aforementioned DL-based anomaly detection (in §II-A)
and respective systems evaluated in this study (in §V).

Network Intrusion Detection. DL-based anomaly detection
empowers Network intrusion detection systems (NIDS) to
detect unforeseen attacks and advanced variants [1]. An impor-
tant step before anomaly detection is to extract features from
traffic in two ways generally. Packet-based ones such as [54]
extract informative features from each network packet, which
however is difficult to handle high-volume traffic in practice.
Flow-based methods such as [19] aggregate traffic with the
same source and destination and then retrieve features from
each “flow”, which is widely used in practice [71]. As for DL
anomaly detectors, KitNET[54] is a state-of-the-art DL-based
NIDS detector, which consists of ensemble Autoencoders to
conduct abnormal-confidence detection (§II-A).

Log Anomaly Detection. Logs are important for ensuring
the reliability and availability of software-intensive systems.
DL-based models have been widely proposed to automatically
detect anomalies in system logs [21], [53], [30], [45]. These
studies follow the general pipeline that firstly parses raw
unstructured logs into a sequence of structured events [85],
and then leverages normal-confidence methods for anomaly
detection (§II-A). For example, DeepLog [21] maps each
type of logs into a discrete value (named “log key”) and thus
parses logs into sequences of log keys. Subsequently, LSTM
is leveraged for learning the distribution of normal log keys.

Advanced Persistent Threat Detection. The adoption of
anomaly detection for detecting and tracing APT is an emerg-
ing research direction [9], [31], [27]. For example, GLGV [9]
is developed to detect lateral movements within enterprise
networks. The training data is collected by first construct-
ing graphs from purely benign authentication logs and then
leveraging Deepwalk [62] to generate embedding vectors.
Then, reconstruction-based learning is used to detect abnormal
authentications (i.e., links in the constructed graph).

C. Problem Scope and Definition

Preliminary – Concept Drift. In machine learning com-
munity, concept drift has been widely studied mainly in the

TABLE II: Important notations in this study.

Notation Description

xc,xt control (old) and treatment (new) features/samples (DEFINITION 2)
{X c

A,X c
N} Abnormal or Normal feature space of control (old) samples

{X t
A,X t

N} Abnormal or Normal feature space of treatment (new) samples
f(·), T abnormal-/normal-confidence anomaly detection models; detection threshold
C(·) Calibrator of model outputs (§IV-A)

Nc, Nt # control and treatment features (in each shift measurement)
K,M # bins of frequency histogram for shift detection and explanation
Hi(·) transform · into i-bin vectors with relative frequencies (for histogram)

mc,mt mask vectors corresponding to xc and xt (for shift explanation&adaptation)

setting of supervised learning [25]. Specifically, concept drift
is defined as the change of joint probability of samples x (from
feature space X) and labels y (from label space Y), denoted
as P(x ∈ X , y ∈ Y) = P(x, y). As P(x, y) = P(x)× P(y|x),
there can be three sources of concept drift: (1) change of P(x),
known as virtual shift; (2) change of P(y|x), know as actual
shift; (3) a mixture of the above two changes.

Our Problem Scope — Normality Shift. Unlike general
concept drift in supervised learning, for zero-positive anomaly
detection, we focus on the shift of normal data as the models
are trained with purely normal data and without any knowledge
of anomaly. We refer to such shift as “normality shift”.
Formally, let X = {XA,XN} (Abnormal and Normal feature
space), then we define normality shift as:

DEFINITION 1 (NORMALITY SHIFT). Normality shift is
the change of P(x ∈ XN , y) = P(x)× P(y|x ∈ XN).

Note that, we do not specifically distinguish between
normality and abnormality drift as abnormality is exactly the
opposite of normality for zero-positive anomaly detection. In
other words, if normality shift is well captured and handled,
then abnormality drift is also solved, theoretically.

Since virtual shift of P(x) does not decrease model per-
formance, we mainly focus on the actual shift, the key reason
for model aging. However, the observation of actual shift
for normality distribution, i.e., P(y|x ∈ XN), is intractable
as we cannot obtain the actual prior distribution P(x) or
P(x ∈ XN , y) in practice. Besides, it is worth noticing that
there is an inevitable deviation between the normality learned
by the anomaly detection model and the ground-truth one.
Therefore, in this study we detect the shift of normality learned
by the anomaly detection model. Specifically, we detect the
change of P(f(x)|x ∈ XN). Note that, such method is
high-fidelity for models as the ultimate purpose of tackling
normality shift is to avoid the aging of model performance. To
detect the shift of probabilistic distribution, we need to collect
samples from the old and new distribution, which are named
control and treatment in this paper, as the following definition:

DEFINITION 2 (CONTROL AND TREATMENT FEATURE
SPACES). Control feature space denoted by X c represents the
old feature space that has been learnt/adapted by the anomaly
detection model, while Treatment feature space denoted by X t

the new feature space.

Therefore, the shift detection in this study is to determine
whether normality of treatment features xt ∈ X t

N is the
same as control features xc ∈ X c

N . Further, the detection
problem is transformed into compare P(f(xc)|xc ∈ X c

N) and
P(f(xt)|xt ∈ X t

N).

3

III. OVERVIEW AND MOTIVATION

In this paper, we propose a general distribution-level frame-
work OWAD (short for Open-World Anomaly Detection)
to tackle normality shift for anomaly detection in security
domains, which consists of four sub-modules. In this section,
We provide the overview of OWAD workflow with a simplified
example and introduce the motivation of each sub-module.

A. Overview and Simplified Example

In Fig. 2, we provide a simplified example to explain the
workflow of OWAD. The whole procedure works in an online
fashion to continuously detect normality shift by collecting
new samples and examining the normality shift. In practice,
the timing of detecting shift requires a case-by-case analysis
according to the tolerance of shift and overhead budget. A
common approach is to periodically collect data, while can
also detect at any suspicious time (such as after system update
and known faults). In this motivation example, suppose that at
the very beginning, we collect samples {xc

1,x
c
2,x

c
3,x

c
4,x

c
5}

from the same distribution as the training data. After some
time, another samples {xt

1,x
t
2,x

t
3,x

t
4,x

t
5} are collected from

the new distribution to check whether normality shift occurs.

Then, OWAD works with four key steps. In step 1 , we
propose a novel unsupervised calibration method to enforce
the calibrated outputs to provide information of predictive
confidence. As shown in the figure (red probabilities), the
distributions of calibrated f(xc

i) and f(xt
i) become more

distinguishable. In step 2 , we leverage hypothesis testing
to statistically determine whether calibrated outputs of xc

and xt follow similar distributions. Obviously, they are dif-
ferent in this example. Therefore, in step 3 , we propose
an optimization-based Explainer to track the most influential
samples for explaining the normality shift. Explainer assigns
and optimizes weights (denoted with mc and mt) for each xc

i
and xt

i indicating the importance w.r.t the shift. The intuition
is to “reconstruct” the shifted (new) distribution with as many
xc
i and as few xt

i as possible since xc have already been
checked as normal while xt are newly collected and requires
manual labeling to filter anomalies (since we only focus on the
shift of normality). As shown in Fig. 2, we keep the samples
with high weights, including xc

1,x
c
2,x

c
4 and xt

4,x
t
5. xt

4,x
t
5 are

manually labeled and filter out anomalies (i.e., not included for
the following step, no one is filtered in this example). Subse-
quently, security analysts can obtain insights from two aspects
of explanation with representative samples, including samples
{xc

3,x
c
5} that are no longer normal and samples {xt

4,x
t
5} that

newly become normal. Then in step 4 , for each parameter
in the anomaly detection model, we estimate its importance
w.r.t. adapting to the new normality while preventing forgetting
important knowledge not included in the updated samples.
Then, the anomaly detection model is updated by the newly
normal samples (xt

4,x
t
5) with a regularization term penalizing

the update of parameters according to their importance. Finally,
as the procedure works continuously, the remaining samples
(xc

1,x
c
2,x

c
4 and xt

4,x
t
5) become a new xc for the next round.

B. Motivation of OWAD Design

Why Calibration before Detection? As mentioned in §II-C,
the idea to detect shift is to compare the distribution of model

outputs (i.e., f(xc
i) with f(xt

i)). However, a key observation
of this study is the outputs of anomaly detectors in security
applications are highly under-calibrated, that is, the model
outputs fail to provide probabilistic information. For example,
f(xc

1) = 0.99 and f(xc
5) = 0.92 only provide the relationship

of normal confidence xc
1 > xc

5 instead of exact meaning of
0.99 or 0.92. In this context, uncalibrated outputs will hamper
statistical detection of shift and especially identifying the drift
samples. In Fig. 2, the original outputs of anomaly detection
models are over-confidence and indiscriminately concentrated
within 0.9-1.0 for both xc and xt. Therefore, the model
outputs need to be calibrated to provide meaningful proba-
bilistic information. We provides more empirical evidence of
(un)calibrated distributions in security applications in Fig. 6.

Why Shift Explanation? A further purpose of detecting
normality shift is to make the model adaptable to normality
changes and avoid performance degradation. However, security
practitioners will not easily update models unless there is
sufficient evidence or motivation due to the high concentration
on reliability. Therefore, we need to first explain how normality
shift happens between control and treatment spaces, which is
exactly why we introduced the shift explanation module.

Why not Sample-level Explanation? Existing studies [81],
[3] detect and explain concept drift in a sample-level way,
which essentially solve whether and why a certain sample
is out of distribution. Specifically, CADE [81] finds important
dimensions that drive a certain sample away from existing dis-
tributions for explanation. Although such approaches provide
finer-grained insights but are unfortunately failed to understand
the shift of distribution holistically and unsuitable for selecting
samples of adaptation. By contrast, OWAD is built in a
distribution-level way. Our goal of explanation is to explain
how the entire normality distribution changes. Specifically,
the explanation result is the most important samples that
result in normality shift. These selected samples can help
security practitioners explain and understand normality shift by
answering two questions: (1) which part (in treatment space)
is the newly emerging normality? (2) which part (in control
space) is no longer normality?

Why not existing Adaptation? Existing approaches to adapt
to concept drift can be divided into two types: (1) The first is to
retrain the model with old training samples together with newly
detected drift samples [81], [37], [5]. However, this approach
is memory-intensive and time-consuming as maintaining and
retraining with an increasing number of samples. More impor-
tantly, it fails to capture the distributional shift as the medley
samples cannot represent the new distribution. (2) The second
is to incrementally learn new samples. Despite with no need of
old samples, knowledge learned before is erased when learning
new samples. This problem is called catastrophic forgetting
[40]. To solve this problem, UNLEARN [20] leverages weight
consolidation [40] to compute the importance of the parameters
in deep learning models and add an regularization term to
restrict the update of parameters. However, UNLEARN cannot
distinguish valid and out-of-date knowledge in the old dis-
tribution, or pick out representative samples for generalizing
to the new distribution. In light of the above concerns, we
need to propose an adaptation approach to prevent catastrophic
forgetting valid knowledge in old distribution while ensuring
generalization to the new distribution.

4

Data Collec�on

Autoencoder

......

Anomaly Detec�on

DL Models

RNN/LSTM

Ouputs

0.99

0.96

0.95

0.93

0.92

0.99

0.97

0.96

0.91

0.90

Output Calibra�on Shi� Detec�on Shi� Explana�on

“0.9X” -- Normal Probabili�es

Calibrator

Actual Outputs

1.00

0.80

0.60

0.40

0.20

0.01

0.60

0.75

0.90

0.02

Ouputs*

Distribu�on Test

-- Frequency Histograms /

Before Shi� (Old) Histogram

Feature Space

Mapping

Analyzing Labeling

-- Remain/Become/No Longer Normal //

Explainer
{0.9 0.8 0.1 0.9 0.3}

 Shi�
Adapta�on

Weight
Consolida�on

{ } { }Model Training
Model Tes�ng

Parameter Esima�on
Using Calibrator

{0.2 0.3 0.1 0.9 0.8}

Keep

Discard

Before Shi� (Old)

Feature Space

A�er Shi� (New)

Feature Space

-- Normality /

A�er Shi� (New)
reconstruct

Expected Outputs

Fig. 2: The overview and example of OWAD.

IV. METHODOLOGY OF OWAD

This section presents the technical details of four sub-
modules in OWAD. Table II lists some important notations.

A. Calibration of Model Outputs

Challenge of Calibrating Anomaly Detectors. Confidence
calibration is a well-studied technique in machine learning
and deep learning community [56], [55], [28], which enables
the calibrated model outputs to represent the true probability.
For example, if we have some predictions all with output
0.8 after calibration, then 80% of them are expected to be
correctly classified. Intuitively, calibration is to find a function
(denoted with C(·) : R → R) mapping original outputs to
expect confidence. However, existing studies are calibrated
for supervised classifiers as fully-labeled two-class samples
are required to calculate the true probability such as accuracy
(ACC), which is not computable for anomaly detection with
only normal samples. Therefore, we need an unsupervised
calibration method without any prior knowledge of anomaly.
Besides, there are three requirements for the calibration:

1) Non-linearity: linear transformation is meaningless as it
cannot change the density distribution of original outputs.

2) Legality: calibrated outputs must within the range of [0, 1]
to represent probability; formally, ∀x, C(f(x)) ∈ [0, 1].

3) Monotonicity: calibrated outputs cannot change the origi-
nal order, otherwise will change the performance; formally,
∀x1,x2, if f(x1) < f(x2), then C(f(x1)) < C(f(x2)).

Anomaly Detection Calibrator. In light of the above consider-
ations, we propose a novel Calibrator which can transform the
model output into expected confidence with only normal data.
Without loss of generality, we primarily use normal-confidence
anomaly detection models (recall §II-A) for illustrating our
method (also the example in Fig. 2). The abnormal-confidence
case is exactly the opposite and is discussed in Appendix
A. For normal-confidence models, we leverage false positive
rate (FPR) to define the expected normal confidence after
calibration. As FPR is the ratio of false positives (FP) to
negatives (TN+FP), not any anomaly is required. Recall §II-A,

the anomaly is determined by comparing model outputs and
detection threshold T . Therefore, T need to be determined to
compute TN and FP. With a slight abuse of XN to be all normal
data used for calibration, we set T as f(x) when calibrating
f(x). For example, if the calibrated output of a certain normal
sample is 0.8, then ideally 80% of normal samples are FPs
when the detection threshold T = 0.8. In other words, 80%
of calibrated normal-confidence outputs are lower than this
sample (i.e., with high confidence to be normal). Formally, we
give the following definition:

DEFINITION 3 (PERFECT CALIBRATION OF NORMAL-
CONFIDENCE ANOMALY DETECTION MODELS). The perfect
calibration for a normal-confidence output is defined as FPR
among normal samples after setting itself as the detection
threshold. Namely,

C(f(x)) = FPRT=f(x)(XN), ∀x ∈ XN . (1)

After defining the expected confidence, we need to select
a parameterized function and perform parameter estimation to
reduce the error between calibrated outputs with the expected
confidences. In prior works [56], [28], exponential functions
such as Sigmoid are preferred based on the assumption of long-
tailed distribution of original outputs. However, we empirically
find that the distribution of normality in security applications
are more complicated. Therefore, we relax this assumption and
leverage piece-wise linear function (PWLF) as a more general
base function for security applications. PWLF has been widely
studied in machine learning applications [22], which simply
consists of several conterminous linear functions to together
describe a complex function.

To satisfy the three requirements of calibration, we leverage
isotonic regression [6] to fit the piecewise function. It is the
technique of fitting a monotonic free-form line (i.e., piecewise
function) given a sequence of observations. Therefore, the
fitted function satisfies the requirements of non-linearity and
monotonicity. To satisfy legality, we set the lower and upper
bound of the fitted function as 0 and 1. In other words, predic-
tions will be clipped to the nearest fitting interval endpoint. In
a nutshell, isotonic regression solves the following quadratic

5

program given a sequence of observations {ai, bi}:

min
C

n∑
i=1

(
C(ai)− bi

)2
, s.t. C(ai) < C(aj) if ai < aj . (2)

According to DEFINITION 2, the observations to fit the
calibrator are as follows. We sort the uncalibrated output f(xc

i)
in increasing order for each control feature xc

i ∈ X c
N , and treat

them as ai. Here {xc} means the set of xc, as a representation
of X c

N . The corresponding bi is computed as the expected
confidence FPRf(xc

i)
({xc}). As isotonic regression is not our

contribution, we refer readers to [17] for solution of (2).

B. Shift Detection

As mentioned in §II-C, the detection of normality shift in
this work is to compare P(f(x)|x ∈ XN) between control
(x = xc) and treatment (x = xt) features. With Calibrator,
model outputs intrinsically contain probabilistic information to
facilitate statistical detection of distribution shift. Therefore,
we further transform the shift detection problem into compar-
ing P(C(f(x))) between x = xc ∈ X c

N and x = xt ∈ X t
N .

Below, we introduce how to determine the normality shift
based on the Calibrator.

Design Considerations. To compare the distributions, Nc

control samples xc and Nt treatment samples xt are collected
as discussed in §III. Generally, Nc is set to be the same size
as the training data of the anomaly detection model in this
study and Nt ≤ Nc, considering the overhead of collection
and labeling. Note that, xc are supposed to be normal as they
has been labeled in previous round of tackling shift. However,
we cannot ensure that xt are all normal as they are newly
sampled from the current environment. In fact, our method
initially detects shift with xt ∈ X t (not X t

N). That is, it is
allowed that there may be some anomalies in xt as the further
process will involve human investigation to filter anomalies.

To represent the distributions, discrete distributions of
C(f(xc)) and C(f(xt)) are computed through frequency
histogram with K bins (denoted with HK). K is a hyper-
parameter and will be discussed and evaluated later. Subse-
quently, we statistically compare the two discrete distributions
through hypothetical testing. We leverage permutation tests,
a well-known and powerful methodology in statistics [32].
Compared with traditional tests (such as t-tests), permutation
tests is distribution-free and support any test statistic without
unverifiable assumptions about data, which is practical for
security scenarios. Besides, permutation tests perform more
exact results facing small sample sets through testing with
resampling, compared with other non-parametric approaches
(such as chi-square tests). This property is important especially
considering that Nt is small for limited labeling overhead.

The null hypothesis (H0) is that C(f(xc)) and C(f(xt))
are from the same distribution (not shift) while the alternative
hypothesis (H1) is the opposite (shift). The test statistic is the
Kullback–Leibler (KL) divergence between two distributions,
which is a common practice to measure the difference between
probability distributions. For two discrete probability distribu-
tions P and Q defined on the same probability space, KL di-
vergence is defined as DKL(P ||Q) =

∑
p∈P P (p) log

(P (p)
Q(p)

)
.

We leave the detailed algorithm procedure of shift detection
in Appendix B.

C. Shift Explanation

As introduced in §III, we propose a distribution-level
shift explanation method (called Explainer) in OWAD to find
important samples inducing the normality shift to help security
practitioners understand and adapt to shift. Specifically, we for-
mulate an optimization problem of finding important samples
for the normality shift. To provide better explanation results,
the optimization needs to consider three aspects:

1) Explanation Accuracy: the selected samples for explana-
tion should accurately represent the shifted distribution.

2) Labeling Overhead: samples selected from treatment
space are expected to be few as manual labeling is required.

3) Explanation Determinism: the explanation is expected to
be deterministic (i.e., not to be ambiguous for selection).

Formulation of Explainer. Note that the above three require-
ments must be considered at the same time. And the first two
are contradictory (e.g., introducing more treatment samples
will increase explanation accuracy but also increase labeling
overhead). Therefore, we simultaneously consider them in the
objective function to find the best trade-off. We introduce two
mask vectors mc and mt corresponding to xc and xt. The i-th
of mc/mt denoted with mc

i /mt
i is the indicator of whether or

not (1 or 0) to select xc
i /xt

i. For ease of optimization, we relax
the value of mc/mt to be within [0, 1], and binarize them to
0/1 for sample selection. Thus, we formulate the problem as:

min
mc⊕mt

Lacc +λ1Llab +λ2Ldet, s.t. mc
i ,m

t
i ∈ [0, 1], (3)

where:

Lacc = DKL

{
HM

(
pt
) ∣∣∣∣ HM

(
(mc⊙pc)⊕(mt⊙pt)

)}
, (4)

Llab =
1

Nc +Nt

∥∥(1−mc)⊕mt
∥∥ , (5)

Ldet = E
m∈mc⊕mt

[m logm+ (1−m) log(1−m)]. (6)

Note that ⊕ is the (row-by-row) concatenation of two (row)
vectors and ⊙ is Hadamard (element-wise) product.

As shown in (3), the optimization objective contains the
aforementioned three terms, weighted by two customizable hy-
per parameters λ1 and λ2 for security operators with different
requirements in various applications. For example, operator
can increase λ1 when the labeling ability is limited, while can
decrease it for error-sensitive applications.

Accuracy Term—Lacc in (4). Here pc = C(f(xc)) and
pt = C(f(xt)). The intuition is to “reconstructs” the new
distribution after shift with selected xc and xt, as shown in
the motivation example of Fig. 2. Like shift detection, we
still use DKL to measure the distance between real treatment
distribution and reconstructed distribution. In (4), the number
of bins for computing relative frequencies is M , and HM (·)
transforms calibrate outputs into M -bin vectors of relative
frequencies in histogram. Compared with K used for shift
detection, we need to ensure M >> K to better explain and
reconstruct the distribution at a fine-grained level.

6

Overhead Term—Llab in (5). Note that xc have already
been labeled as normal previously while xt

i require human
investigation to filter anomalies. Therefore, we select as many
xc
i and as few xt

i as possible to reduce labeling overhead.
Specifically, we measure the L2-norm of 1−mc together with
mt, and divide it by the number of samples (i.e., Nc +Nt).

Determinism Term—Ldet in (6). To avoid ambiguity for
selecting samples after optimization, we expect mc and mt

to be deterministic (i.e., either close to 0 or close to 1). In (6),
we measure the entropy (known as uncertainty) of mc or mt.

We use gradient descent approach to solve the above
optimization and randomly initialize mc/mt in [0, 1]. Note
that, although HM (·) in (4) is non-differentiable, we only use
this operation once before optimization since the binning of pc

or pt (computed from xc or xt) is fixed during optimization.
In other words, elements in pc or pt can only be selected or
not (decided by mc or mt) but cannot appear in other bins.

We manually involve out-of-bound samples (compared
with the control set) into the final explanation. That is, we
pick out samples in the treatment set whose model output
probability is lower or higher than the minimum and maximum
values of the control set (the output of such samples is 0 or
1 after calibration, as mentioned in §IV-A), and add these
samples to the final explanation if not in the solution of (3).

D. Shift Adaptation

After filtering anomalies via human investigation and pro-
viding important samples, operators can obtain insights from
our explanation. If normality shift is confirmed, we need to
update anomaly detection models for adapting to normality
changes, in order to avoid performance degradation.

We propose an adaptation approach to prevent catastrophic
forgetting valid knowledge while ensuring generalization to the
new distribution. Motivated by existing incremental adaptation
methods such as UNLEARN, we add a special regularization
term on the original loss function during model updating
Different from L2-norm regularization, we assign different
importance weight denoted with Ωi for each model parameter
denoted with θi before updating. The intuition of Ωi is to
assess how important each parameter is to knowledge in the old
distribution. By doing so, we restrict the updating of important
parameters to prevent catastrophic forgetting, while relax the
regularization of unimportant parameters to allow the model
adapt to new distribution. Specifically, the new loss function
of model adaptation L′

θ∗ is:

L
′

θ∗ = Lθ + λ3

∑
i

Ωi (θ
∗
i − θi)

2
, (7)

where Lθ is the original loss function of anomaly detection.
The regularization term is weighted by a hyper-parameter λ3.

The core of (7) is how to assign Ωi. In UNLEARN [20], Ωi

is the non-negative gradients ∂Lθ/∂θi assessed with labeled
samples from the old distribution. In such methods, old sam-
ples are randomly selected and equally considered to assess
Ωi. However, some old samples are out-of-date in the new
distribution. Considering such samples will hinder the model
from forgetting out-of-date knowledge in the old distribution,
thus cannot effectively adapt to the new distribution. In this

study, we assign different weights to different samples for
assign Ωi. Here the importance weights are exactly the mask
mc (before binarization) obtained from OWAD Explainer.
Recall that lower mask value in control set indicates that the
sample is not selected for representing the new distribution.
Therefore, the intuition is that model will forget such out-of-
date samples with lower weights/masks but memorize those
with higher weights/masks. Specifically, Ωi is assessed with
control features xc weighted by mc from Explainer. Formally,

Ωi = E
x∈xc

m∈mc

m ·
(∂lθ(x)

∂θi

)2

, (8)

where lθ(x) represents the squared L2-norm of model output
logits [2]. Here we do not use the original loss function Lθ to
compute gradients like UNLEARN as it requires labels.

According to (7), we update the model with xc and xt

selected after shift explanation and human investigation.

V. EVALUATION

In this section, we first provide the experimental design
considering the concerns in prior work and introduce several
setups in §V-A. We compare OWAD with several baselines
w.r.t. end-to-end performance after adaptation in §V-B. We
conduct ablation experiments to demonstrate the effectiveness
of sub-modules in OWAD in §V-C. We perform use-case
analysis and conclude the experimental results and insights
with operational recommendations in §V-D.

A. Experimental Design and Setups

1) Datasets in Three Security Applications: Our work aims
to tackle normality shift for security-related anomaly detection
in the open world. Therefore, our experiments are conducted in
more practical settings. We find two flaws in prior studies: (1)
The time span of evaluation data is too short to sufficiently
observe and evaluate normality shift. For example, only 1.5
days of log data for evaluation in UNLEARN [20] and one
week traffic flows in [3]. (2) Evaluation data is simulated
in small testbeds which cannot represent the real-world shift
(e.g., traffic is collected in several devices and simulated in
[3]). In light of this, our experiments are evaluated on long-
term real-world datasets. To demonstrate the universality, we
evaluate OWAD under three security applications (introduced
in §II-B), including two learning paradigms (§II-A) and three
types of source data (tabular, time-series, and graph). We refer
to Anoshift [18], a recent distribution shift benchmark for
anomaly detection in NIDS to design our experiments. We
primarily use public datasets to evaluate OWAD and baselines
as they have ground truth and can be easily accessed by future
work. However, the reason of shift is unavailable in public
datasets. Therefore, we also conduct real-world deployment
and analysis in §VI. Below, we introduce the respective
datasets in three applications.

NID (Network Intrusion Detection). Here KitNET [54]
is used as the anomaly detection model. We use the Kyoto
2006+ dataset [69] introduced by Anoshift benchmark [18].
It archives daily traffic from various honeypots inside and
outside of Kyoto university network in 10 years from 2006
to 2015. It collects flow-level statistics and feedback from
security products (e.g., IDS, Antivirus) as the feature set. Here

7

Training Test Test

Time 0 (@T0) Time 1 (@T1) Time 2 (@T2)

...

... Time N (@TN)

Test TestValid. Valid. Valid.

Fig. 3: Split of training, test and validation data.

we use the original experiment setting and pre-processed data
in Anoshift benchmark to conduct fair evaluation.

LogAD (Log Anomaly Detection). DeepLog [21] is used as
the log parser and anomaly detection model. We use a well-
known dataset BGL [59] as the dataset, which is collected
from a BlueGene/L supercomputer group in 214 days with
fully-labeled ground truth.

APT (Advanced Persistent Threat Detection). GLGV [9] is
used as the graph embedding and the anomaly detection model.
We use the same dataset LANL-CMSCSE [39] evaluated in
GLGV, which consists of login events of 58 days from internal
computer network of LANL’s Corporate with tens of thousands
users and devices.

2) Data Selection and Split: Similar to the data split
approach in Anoshift, our split of data is illustrated in Fig.
3. At the very beginning (at Time 0, abbreviated as @T0), we
train anomaly detection models (mentioned in §II-B) with the
training set (filtering out anomalies for zero-positive training,
and the size of training set refer to their original works), and
evaluate the original performance on the test set @T0. To
measure the performance of different approaches facing with
normality shift, we periodically collect samples N times (@T1,
@T2, ..., @TN) and randomly split the collected data at each
time point into validation and test sets according to the ratio
of 1:1. The validation set is used by OWAD and other baseline
approaches to determine drift and adapt anomaly detection
models, while the corresponding test set is used to evaluate the
model performance against drift after adaptation. For OWAD,
the initial control set is the training set @T0 and the treatment
set at each time is exactly the corresponding validation set.

Concretely, in NID case, we refer to the original setting in
Anoshift. That is, we set N=5 (i.e., collect once a year from
2011 to 2015 for shifting evaluation). In LogAD and APT case,
we set N=10 (collect 10 times in total) and the collection time
interval is based on the overall span of each dataset. We set the
ratio of the number of samples in control set to treatment set
(i.e., Nc/Nt) as 1:1 by default. The intuition is that we collect
the same number of samples as the training phase, while the
difference is that the treatment set does not need to be fully
labeled. Appendix C-1 provides more details of data split and
experiment setup.

3) Baseline Approaches: We compare OWAD with several
baselines (some of them are listed in Table I): (1) No-Update
refers to original anomaly detection model without any remedy
for shift; (2) Retrain refers to retraining models with old and
new samples together; (3) UNLEARN in [20] is not originally
designed to detect concept drift, but is selected for sharing
the similar goal of updating zero-positive anomaly detection
models. Note that, there is no mechanism of selecting im-
portant samples for labeling and adaptation in Retrain and
UNLEARN. For fair comparison with same labeling overhead,
we leverage uncertainty sampling for both of them to select

important samples. Uncertainty sampling is to preferentially
select samples with low-confidence model outputs (close to the
detection threshold), which is widely-used in related works [3],
[80] and proved to be more effective than random sampling.

As there is little work investigating concept drift for zero-
positive setting, two SOTA approaches in security domains
originally under supervised settings are adjusted and evaluated:
(4) CADE [81] is designed for supervised classification models.
As CADE inevitably requires all-class data to build its con-
trastive model, we additionally use anomalies in the training
set (@T0), thus converting it to the binary classification
drift detection. As the contrastive model can measure the
distance of drifting samples and give anomaly (drift) scores, we
preferentially select samples with far distances (high scores)
for labeling and adaptation. (5) TRANS (abbreviated from
TRANSCENDENT) [37], [5] requires non-trivial adjustments
for zero-positive setting: the non-conformity measures (NCM)
are the same as the metrics used for anomaly detection;
as for types of conformal evaluator (CE), we use Inductive
Conformal Evaluator (ICE) due to less runtime overhead. As
for NCM threshold, we use quartile and credibility only (as the
confidence is unavailable for the one-class case). The searching
(random/grid) method is not used as the threshold optimization
metrics require two-class labeled data (e.g., TPR). As for
selecting the drifting samples (for labeling and adaptation), we
preferentially choose/label the ones lower P-values. Detailed
setting of hyper-parameters of baselines are in Appendix C-3.

4) Metrics: The metrics for evaluating adaptation per-
formance are similar to those used for evaluating anomaly
detection models in their works as our work is to recover
the original performance after adapting to shift. We use the
same metrics as the original works of three anomaly detection
applications to evaluate the end-to-end adaptation performance.
Specifically, TPR/FPR is used in original papers of NID and
APT (i.e., KitNET [54] and GLGV [9]). However, such single-
threshold metrics (i.e., computed with a pre-defined detection
threshold, as introduced in §II-A) like TPR/FPR is sensitive
to the selection of detection threshold. Thus, they cannot fully
reflect the adaptation to the change of the entire normality
distribution, but only for samples near the detection threshold.
Therefore, we introduce AUC (the entire area underneath the
ROC curve, derived from TPR and FPR of multiple thresholds)
as a more reasonable metric for NID and APT. As for LogAD,
DeepLog is a little different from normal-confidence models
introduced in §II-A. It determines anomalies by observing
whether the actual next point is in top g predictive ones. The
original work [21] specifies g = 9 and measures F-Score for
evaluation. Thus, we also measure F-Score in LogAD case.

B. End-to-end Performance

In this section, we measure the end-to-end performance—
the performance of anomaly detection models after adaptation
to the normality shift, which is a common practice of evalua-
tion in related works [37], [81], [20] as ultimate goal of han-
dling concept drift is to prevent performance degradation. To
compare the end-to-end performance of OWAD with several
baselines, we conduct various types of adaptation experiments
under three applications. The results are shown in Fig. 4.

1) Performance of Single Adaptation: Here we conduct
the comparison of OWAD with baselines by performing drift

8

Test @T1 @T2 @T3 @T4
0.5

0.6

0.7

0.8

0.9

A
U

C
Adapt @T1

Test @T2 @T3 @T4
0.5

0.6

0.7

0.8

0.9

Adapt @T2

(a) NID (Single Adaptation)
Test @T1 @T2 @T3 @T4
0.4

0.5

0.6

0.7

0.8

0.9

F-
S

co
re

Adapt @T1

Test @T2 @T3 @T4
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Adapt @T2

(b) LogAD (Single Adaptation)
Test @T1 @T2 @T3 @T4

0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82

A
U

C

Adapt @T1

Test @T2 @T3 @T4

0.73
0.74
0.75
0.76
0.77
0.78

Adapt @T2

(c) APT (Single Adaptation)

1% 5% 10% 20% 30% 40% 50% 100%
% Labels

0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

A
U

C

Adapt @T1, Test @T1

(d) NID (Single Adaptation)
1% 5% 10% 20% 30% 40% 50% 100%

% Labels

0.75
0.78
0.81
0.84
0.87
0.90

F-
S

co
re

Adapt @T1, Test @T1

(e) LogAD (Single Adaptation)
1% 5% 10% 20% 30% 40% 50% 100%

% Labels

0.74

0.75

0.76

0.77

0.78

0.79

A
U

C

Adapt @T1, Test @T1

(f) APT (Single Adaptation)

Test @T1 @T2 @T3 @T4 @T5 @T6 @T7 @T8 @T9 @T10

0.2

0.4

0.6

0.8

F-
S

co
re

 (l
in

es
)

0%

20%

40%

60%

80%

100%

%
 L

ab
el

s
(b

ar
s)

(g) LogAD (Multiple Adaptations)
Test @T1 @T2 @T3 @T4 @T5 @T6 @T7 @T8 @T9 @T100.70

0.72

0.74

0.76

0.78

0.80

A
U

C
 (l

in
es

)

0%

20%

40%

60%

80%

100%

%
 L

ab
el

s
(b

ar
s)

(h) APT (Multiple Adaptations)

No-Update
Retrain
UNLEARN
CADE
TRANSCENDENT
OWAD (Ours.)

Fig. 4: End-to-end performance comparison under three security applications. Approaches are evaluated with 30% labels in
(a)-(c). Higher is better for all line metrics in (a)-(h), Lower is better for bar metrics (right axis) in (g) and (h).

adaptation once on a specified time (e.g., Adapt @T1) for all
approaches, referred to as “Single Adaptation”. To perform
a fair comparison, the budget of labeling overhead (i.e., the
amount of available labels) for all approaches is set to be
the same. To label prioritized samples, each baseline has
own methods to select important samples, as introduced in
§V-A3. As for OWAD, we preferentially select samples with
higher mask values of mt to label. We conduct two parts of
experiments under “Single Adaptation”. In Fig. 4a-4c, we fix
the labeling ratio to be (at most) 30% of the validation set for
all approaches, to evaluate the adaptation performance over
time. In Fig. 4d-4f, we compare them under different labeling
overhead budgets to measure the trade-off between labeling
overhead and adaptation performance.

Adaptation Performance Over Time under the same La-
beling Overhead. In Fig. 4a-4c, by performing adaptation for
all approaches with fixed 30% labeling overhead, we update
the the anomaly detection models only once and test the
performance on current/subsequent time points (i.e., Adapt
@Ti and Test @Ti, @Ti+1, @Ti+2, ...). We can observe that
OWAD outperforms other approaches at the adaptation time
(e.g., 10% more than other methods Adapt @T1 w.r.t. F-Score
for LogAD in Fig. 4b). More importantly, OWAD can mitigate
the performance degradation in subsequent shifts over time. As
shown in the results, the advantage of OWAD becomes most
apparent when testing at Time 4 (@T4). This indicates OWAD
is the most robust method against shift over time.

An interesting finding is that the earlier the shift is adapted,
the more robust is against subsequent shifts. As shown in Fig.
4b, the performance of Adapt @T1 at the corresponding time
point is generally better than that of Adapt @T2 (e.g., in Test
@T3 of LogAD, F-Score is ∼0.65 Adapt @T1 while <0.45
Adapt @T2 for OWAD). The probable reason is that the degree
of shift increases over time, so it is more difficult to recover
model performance for Adapt @T2 than @T1. This inspires

us to detect drift as early and accurately as possible.

Trade-off between Labeling Overhead and Adaptation
Performance. In Fig. 4d-4f, we evaluate the impact of the ratio
of available labels to the validation set (i.e., budget of labeling
overhead) and compare the adaptation performance of different
approaches. As shown in the results, OWAD enables to better
balance the trade-off between labeling overhead and adaptation
performance. Compared to baselines, OWAD achieves bet-
ter performance with less required labels. However, baseline
methods mostly require large amount of labels to achieve a
satisfactory performance and may perform unfortunately worse
than No-Update with few labels (e.g., 5%/20%/40% labels
for UNLEARN in Fig. 4d, 10% labels for CADE in Fig. 4d, and
5% labels for TRANS in Fig. 4e). Although some baselines
can surpass OWAD with nearly 100% labels, we deem this is
impractical and labor-intensive for security applications.

Security practitioners may care about the specific overhead
for certain applications. As shown in Fig. 4d-4f, 10%, 30%,
and 5% is enough for NID, LogAD, and APT. Specifically,
10% for NID is 5,000 flows only need to be labeled once
a year. For LogAD, 30% seems like a lot, but we find that
there are many identical logs, which significantly reduced the
workload (e.g., less than a thousand logs need to be labeled
for @T1). Moreover, we provide more specific overhead in the
real-world deployment in §VI.

Analyzing Superiority to Baselines. We briefly analyze
the superiority of OWAD compared with baselines from the
above results here and perform more reasonable comparative
experiments of each step in OWAD in the sub-component
evaluation (§V-C). Retrain is widely used in practice as
a benchmark method. However, we surprisingly find OWAD
outperforms Retrain in most cases of limited labeling
overhead (See Adapt @T1 in Fig. 4a and 4b). This indicates
that OWAD can effectively select important samples w.r.t.
the new normality distribution (through our shift explanation).

9

TABLE III: # FPs and # FNs of single adaptation in LogAD case.

Methods
FPs

(Lower is Better)
FNs

(Lower is Better)
F-Score

(Higher is Better)
@T1 @T2 @T3 @T1 @T2 @T3 @T1 @T2 @T3

No-Update 2404 903 6585 135 34 39 0.74 0.66 0.42
Retrain 2238 933 6213 233 32 28 0.74 0.66 0.43
UNLEARN 3350 1293 7369 105 27 26 0.68 0.59 0.39
TRANS. 1508 849 3237 552 197 106 0.76 0.59 0.58
OWAD 1491 701 2519 120 34 35 0.82 0.72 0.65

Before Adapt (Train @T0, Test @T1) After Adapt (Adapt @T1, Test @T1)

0.0 1.0Normal Confidence of DeepLog

True Negative (TN)

True Positive (TP)

False Positive (FP)

False Negative (FN)

7 FPs, 5 FNs 0 FPs, 2 FNs
threshold (white region is detected as anomaly)

Fig. 5: Case study of FP/FNs before and after OWAD adaptation.

Ans our shift adaptation ensures not forgetting old valid
normality while generalizing to new normality. By contrast,
Retrain cannot remove out-of-date samples in old normality
and focus on learning samples representing new normality. As
for UNLEARN, we find FP/FNs tends to solve similar errors
but is not suitable to deal with distributional shift as FP/FNs
cannot represent the entire new normality distribution. For
example, in Adapt @T1 of Fig. 4a, UNLEARN>No-Update
when Test @T1 but <No-Update when Test @T3. Besides,
the uncertainty sampling used by Retrain and UNLEARN can
only capture samples close to the boundary (anomaly detection
threshold), but not the shift of overall normality distribution.
Like UNLEARN, CADE also uses sample-level adaptation. Their
performance with limited labeling overhead can be unstable
due to not well capturing overall distribution changes (e.g.,
see Fig. 4a-4c, their performance is sometimes better than
No-Update, sometimes worse). CADE and TRANS have their
own drift detection methods to select important samples to
be labeled. However, their performance under less labeling
overhead is unsatisfactory in Fig. 4d-4f. This is because their
detected drifting samples may be significant relative to the old
distribution but can not cover the entire drifted distribution. In
other words, they are good at detecting drifting samples, but
not suitable for directly adapting to these samples.

Case study of FPs and FNs. We present the analysis of
FP/FNs in LogAD case. Firstly, we evaluate the number of
FP/FNs before (No-Update) and after adaptation of baseline
approaches and OWAD, and the results are listed in Table
III. The experiment setting is the same as that in Fig. 4b. We
conclude that OWAD is the only approach that is able to reduce
both FPs and FNs (compared with No-Update) at the same
time. Although UNLEARN has lower FNs, the number of FPs is
significantly increased. We also provide an intuitive case study
of how OWAD reduce FPs and FNs in Fig. 5. Here we depict
the normal confidence of detection model (i.e., DeepLog) with
its decision on some representative samples before (left) and

after (right) OWAD adaptation. As the ground-truth normality
of model is unavailable, we simulate and depict the 2-D
contour with samples and outputs from @T0 to @T10. The
samples in LogAD cases are time series. For depicting, we use
LSTM hidden states and reduce them to 2 dimensions through
PCA. Samples (green/red circles) in two sub-figures are the
same and equally selected from the test set of @T1. As shown
in Fig. 5, OWAD explanation can pick out important samples
in the new normality distribution to update model (this is why
FP is eliminated), and OWAD can remember important regions
(this is why previous TN/TP remains) while forget unimportant
areas (this is why FN is eliminated) by assigning importance
weights for model parameters (§IV-D).

2) Performance of Multiple Adaptations: Apart from “Sin-
gle Adaptation”, here we also introduce “Multiple Adapta-
tions”, a more practical evaluation: In each time from @T1
to @T10, all approaches adapt to the shift with the validation
sets and are evaluated with the corresponding test sets. Here
we do not restrict the labeling overhead for all approaches and
treat labeling overhead as another evaluation metric in addition
to adaptation performance. For Retrain and UNLEARN, we
label all the validation set (i.e. 100% labeling overhead). More
specifically, Retrain retrains the anomaly detection model
with control set together the entire validation set (after filtering
anomalies) at each time point. UNLEARN incrementally trains
the model with all FP/FNs in the validation set. For CADE and
TRANS, we label all the drifting samples derived from their
detection methods and use them (after filtering anomalies) for
adaptation. For OWAD, different from that in Single Adapt,
we binarize the mask mc/mt to 0/1 with a threshold of 0.5
and then label treatment samples with mt = 1. The results are
shown in Fig. 4g and 4h. We measure the adaptive performance
(lines) and required labels (bars) at each time point. The
performance of baselines is significantly better compared to
the previous results (with limited overhead) when satisfying
labeling all requires samples, while mostly not as good as
OWAD. Retrain is sightly better than OWAD in some cases
of APT case but at the cost of dozens of times the required
labels. In summary, OWAD can achieve better results with
significantly less required labels.

C. Sub-components Evaluation

In this section, we conduct ablation experiments to illus-
trate the effectiveness of each of four steps in OWAD.

Calibration and Shift Detection (1 2). We evaluate the ef-
fectiveness of OWAD Calibrator (§IV-A) by comparing the de-
tection and adaptation performance between uncalibrated and
calibrated outputs. We also compare PWLF used by OWAD
Calibrator with other calibration functions. We compare PWLF
with other typical interpolation/approximation methods that
satisfy the three requirements (especially for monotonicity) in
§IV-A. Thus, we use Sigmoid functions [56], [28] mentioned in
§IV-A as an approximation method. As for interpolations, we
use Linear spline interpolation and Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) [23].

We evaluate NID and logAD as two representative cases
(normal-confidence and abnormal-confidence in §II-A). For
uncalibrated outputs in NID, we normalize the reconstruction
errors to [0, 1]. The results are listed in Table IV. (1) As for

10

TABLE IV: Comparison of Calibration Methods.
(a) NID

Methods P-value∗ ∆AUC ↑
Shift ↓ Unshift ↑ @T1 @T3

Uncalibrated ✕(0.13) ✓(0.21) 0.02 0.10
Sigmoid ✓(0.02) ✓(0.15) 0.08 0.19
PCHIP ✓(0.00) ✓(0.34) 0.07 0.15
Linear ✓(0.00) ✓(0.36) 0.09 0.21
PWLF ✓(0.00) ✓(0.49) 0.09 0.22

(b) LogAD
P-value∗ ∆F-Score ↑

Shift ↓ Unshift ↑ @T1 @T3
✕(0.06) ✓(0.23) 0.05 0.13
✕(0.76) ✓(0.73) 0.04 0.12
✕(0.74) ✓(0.36) 0.05 0.14
✕(0.69) ✓(0.78) 0.08 0.14
✓(0.00) ✓(0.93) 0.09 0.17

∗ P-value should close to 0 for “Shift” and close to 1 for “Unshift”. ✓means
test result is correct and ✕ is wrong (the cutoff threshold of p-value is 0.05).

TABLE V: Comparison of retraining-based adaptations.

Methods NID (AUC) LogAD (F1) APT (AUC)
@T1 @T3 @T1 @T3 @T1 @T3

Retrain 0.85 0.72 0.82 0.40 0.78 0.77
TRANS (+Retraining) 0.83 0.74 0.75 0.43 0.78 0.77
CADE (+Retraining) 0.82 0.73 N/A. N/A. 0.78 0.77
1 2 3 + Retraining 0.87 0.74 0.83 0.50 0.79 0.78

TABLE VI: Comparison of lifelong-based adaptations.

Methods NID (AUC) LogAD (F1) APT (AUC)
@T1 @T3 @T1 @T3 @T1 @T3

(FP/FNs+) UNLEARN 0.82 0.52 0.76 0.58 0.75 0.79
1 2 3 + UNLEARN 0.84 0.52 0.83 0.60 0.76 0.80

1 2 3 + 4 (OWAD) 0.88 0.75 0.89 0.65 0.79 0.81

detection, we respectively treat @T1 with @T2 and @T1
with its down-sampling set as shift and unshift cases. A
higher P-value means more likely to be unshift after detection
(generally 0.05 as the threshold in statistics). As shown in
the results, uncalibrated outputs fail to distinguish shift and
unshift especially in two cases. OWAD is the only one can
correctly detect shift/unshift with higher confidences for both
cases. In NID case, Sigmoid, PCHIP, Linear all correctly
detect shift/unshift but with lower confidence. In LogAD
case, all three baselines fail to detect shift. Compared with
PWLF, Sigmoid is only suitable for long-tail distribution, and
interpolations may suffer “overfitting” and are unable to handle
a large number of identical/similar dependent variables. This is
why they fail on logAD. (2) As for adaptation, we evaluate the
increase of AUC (for NID) or F-Score (for LogAD) compared
to the original model (No-Update). Results corroborate that
our calibration can effectively help to explain and adapt to
shift compared with uncalibrated outputs and three interpola-
tion/approximation methods.

Shift Explanation (3). We evaluate the effectiveness of
OWAD Explainer (§IV-C) by answering two questions:

• RQ1: Whether samples selected by OWAD Explainer are
more effective than those by baselines (CADE and TRANS)?

• RQ2: Whether selected samples are more effective than
FN/FPs (UNLEARN) and uncertainty sampling (Retrain)?

To answer RQ1, we force OWAD, CADE, and TRANS to
all use the retraining method after selecting their respective
shift samples (CADE and TRANS originally use retraining in
their works), under the same setting as in “Single Adapt” with
30% labeling budget. We intuitively express our method as
“ 1 2 3 + Retraining”. We also evaluate Retrain and the
results are shown in Table V. The superior performance in all
cases demonstrates the effectiveness of our shift explanation
method. As for RQ2, we compare adaptation approach in
UNLEARN using our explained samples (denoted with “ 1 2 3
+ UNLEARN”) and the original UNLEARN using FP/FNs. As
listed in the first two lines of Table VI, our selected samples

outperforms FP/FNs w.r.t adaptation performance, thanks to
the overall understanding of shifted normality provided by
our distribution-level explanation. Results also demonstrate the
superiority of OWAD compared with uncertainty sampling.

Shift Adaptation (4). We compare our adaptation method
with UNLEARN to demonstrate the effectiveness of introducing
sample explanation (mc) into the regularization term (§IV-D).
The results in the last two lines of Table VI demonstrate the
effectiveness of our adaptation method and better performance
compared with retaining in the last line of Table V. In
Appendix E, we also evaluate the impact of regularization term
in (7) by comparing λ3 = 0 and λ3 > 0. The conclusion is
that the regularization term improves F-Score by ∼ 2 %.

D. Analysis and Recommendations

In this section, we provide case studies and investigate
how normality changes in three applications with the help
of OWAD. We also provide operational recommendations for
real-world applications based on our analysis and experiments.

1) Case Studies: We analyze normality shift in three ap-
plications with the explanation results provided by OWAD
Explainer (§IV-C). As mentioned before, we only analyze the
feature-space changes here as the reason of shift is unavailable
public datasets (as they are not collected by us) and raw
information is sanitized (e.g., IPs in NID). The root-cause
analysis of normality shift is analyzed in §VI. Fig. 6 (Appendix
D) provides intuitive visualization of normality shift.

Normality Shift in NID. For Kyoto 2006+ dataset, we find
that there are two sharp normality shifts happened in 2011 and
2014, while the shift is relatively slow between other years
(in line with Anoshift). With the help of OWAD Explainer,
a representative example is IDS alert (as a feature in dataset)
“9-124-1”: none in 2006-2010 and appeared in 2011 (about
15%), while disappeared in 2014 and 2015. Another example
is the ratio of UDP flows: ∼1% in 2006-10 and became less
(<0.2%) in 2011-13, while >85% in 2014-15.

Normality Shift in LogAD. We find that BGL dataset [59]
used in LogAD is extremely irregular, which may be caused by
the uncertainty of tasks running on the monitored supercom-
puter systems. After explanation and analysis based on OWAD,
we find the main reason for normality shift in LogAD is the
change of order of logs in time series. Besides, normality shift
is also reflected in two other aspects: One is due to the emer-
gence of new types of logs (e.g. “iar<*>dear<*>” only
appears after the sixth month), and another is the disappearance
of (normal) logs (e.g., “generating core<*>” appears
abundantly in the first two months but disappears completely
in the last six months).

Normality Shift in APT. We find the dataset in APT case
is the most stable relatively, thanks to its robust feature
extraction method (extracting the connection relationship in
the authentication graph of user logins via graph embedding).
After explanation, we find the normality shift is mostly due
to the emergence of a new subgraph pattern indicating new
users’ normal login behavior. For example, User U482@DOM1
is authorized to login with 45 destinations in the first week
and the number becomes 362 in the third week, while then
back to 42 in the fifth week.

11

TABLE VII: Real-world deployment and test of OWAD.

Week 1 Week 9 (@T1) Week 18 (@T2) Test @T2 (Adapt@T1)
#FP #FP P-value #FP P-value #FP

Device A 14 25 0.999 79 0.257 Unshift
Device B 45 1,027 0.000 1,678 0.000 154
Device C 68 3,071 0.000 3,103 0.000 98

2) Operational Recommendations: Based on our empirical
evaluation and analysis, we provide the following recommen-
dations for the deployment of practical security applications:

• Normality shift in practical security applications is common
and complicated (case-by-case). Therefore, timely and effi-
cient adaptation is imperative. Besides, it is not appropriate
to provide a binary result (yes or no) of shift but to explain
and understand the complicated shift.

• Model outputs in security applications are highly under-
calibrated. OWAD Calibrator can help analysts understand
outputs of anomaly detection models and facilitate the
selection of detection threshold by assigning a probabilistic
meaning to the calibrated outputs.

• The labeling overhead and adaptation performance is a
trade-off. Compared with baselines, OWAD can achieve
similar or better performance with extremely lower labels.

• In practice, the timing of detecting shift requires case-by-
case analysis. A common approach is to periodically collect
data, while more recommended to detect at suspicious times
or involve other intelligence/domain knowledge. Besides,
empirical results demonstrate that the earlier the shift is
adapted, the more robust is against subsequent shifts.

• OWAD is shown to effectively reduce both False Positives
and False Negatives. Admittedly, OWAD is better at resolv-
ing FPs as it designed to directly tackle normality shift.
Although zero-positive anomaly detection is theoretically
independent of the anomaly distribution, the model perfor-
mance indeed relies on the detection of anomalies.

VI. REAL-WORLD TEST ON SCADA

Task Description. We have worked with a large company
responsible for supplying electricity transmission and unified
control of power grid in China and performed an initial test
of OWAD on their security monitoring device of electric
power supervisory and control system (SCADA). Specifically,
their security systems monitor logs of periodic and trigger
events in critical devices (e.g., servers, workstations) in the
grid, and then perform anomaly detection of these logs. We
collect tens of millions logs in total from over 20 devices of
diverse business or management platforms in four months (18
weeks) from October 19, 2021 to February 20, 2022. Similar to
LogAD case in §V, we use DeepLog [21] as the base model
to conduct per-device log anomaly detection. To evaluate the
performance, we let the analyst label the alerts outputted by
anomaly detection models (to determine FP/TPs). We choose
three representative devices (others share similar results with
one of the three devices due to the same role) and the results
are shown in Table VII. Results of “Week 1” corroborate a
good performance of anomaly detection without shift.

Effectiveness of OWAD. We only evaluate normality (#FPs)
here as ground-truth anomalies are not available in practice. As

for the detection interval, we choose 9-week as SCADA envi-
ronment is relatively stable. We determine whether normality
shift occurs in Week 9 and 18 via OWAD and validate with
performance degradation. P-values show that shift happens
in device B and C. We conduct shift adaptation in Week 9
and test the performance again in Week 18. Results show
extraordinary adaptation performance of OWAD in reducing
FPs. Visualization of normality shift in three devices is also
depicted in Fig. 6 for reference.

Case Studies and Shift Analysis. As for the specific labeling
overhead, OWAD Explainer locates about 200 logs (some of
them are identical) for Device A and takes an operator about
half an hour for labeling and explaining, which is totally
acceptable. We analyze the root cause of normality shift with
the help of OWAD. As for device B, we find the distributional
change is similar to gradual drift. OWAD Explainer locates the
periodic logs of received/sent network volume. After analysis,
we find the shift reason of device B, as the business platform, is
due to dramatic change of user number and the usage of FTP
service. As for device C, Explainer locates the trigger logs
of process/service sequence. Based on the track of OWAD
shift detection, we find the shift suddenly happens in about
week 9. The reason is that there was a system update at that
time and the order of service execution of device C changed
after reboot. Besides, we also find that other reasons including
(legal) actions by operators such as starting certain services
but forgetting to close. The analysis of normality shift can help
build more robust models (training with more shifted normal
data) and filter FPs caused by normality shift.

VII. DISCUSSIONS

Complexity Analysis. For memory footprint, lifelong
learning-based methods (OWAD and UNLEARN) are memory-
efficient as they only maintain a constant number (Nc) of
samples. For time complexity, as methods depend on their own
parameters, we empirically evaluate the runtime of end-to-end
adaptation. UNLEARN is omitted here as it does not have the
process of detecting and finding drift samples. The average
run time of default configured OWAD, CADE and TRANS with
105 validation samples are 116s, 975s, and 1,449s. OWAD is
efficient as it does not build extra learning models (compared
to CADE) or repeatedly traverse all samples (compared to
TRANS). Note that, this excludes the labeling time, otherwise
CADE/TRANS is more expensive.

Hyper-parameter sensitivity. We evaluate the sensitivity of
hyper-parameters and provide the default configuration of
OWAD in Appendix E. The conclusion is hyper-parameters
are insensitive in individual ranges. Future work could focus
on more systematic and general configuration method and/or
in other security applications

Limitations and Future Work. First, the explanation of
shift indeed requires domain knowledge. Future work can
relax the requirements and provide analysis for more security
applications. How to automatically mine the in-depth root
causes (not only feature-space samples) of shifting is also
worthy of future work research. Second, the real-world test
in §VI is initiatory in this study. Future work will provide
more in-depth analysis and long-term deployment. Third, the
robustness of OWAD itself (e.g., against adversarial attacks

12

or noisy labels) will be studied in future work. Fourth, we
periodically collect data for evaluating shift in this study and
future work will investigate more advanced methods regarding
shift detection timing and treatment data collection.

VIII. RELATED WORK

Concept Drift in Security Applications. In security domains,
prior works on tackling concept drift can be generally divided
into two types. The first is to detect and then adapt to the new
concept. However, existing studies are mostly in supervised
settings, which are ill-suited for unsupervised (zero-positive)
anomaly detection. In malware detection, CADE [81] is mainly
designed for detecting unseen attack classes in the supervised
classification, while Transcend [37] and TRANSCENDENT
[5] can be transferred for zero-positive setting after non-trivial
adjustments, but focus more on handling drift by rejection
instead of adaptation. In network intrusion detection, INSOM-
NIA [3] detects uncertain model outputs as drifting samples
with another classifier. However, we deem that uncertain
predictions cannot reflect distributional change. Besides, the
underlying DL model is also supervised binary classification.

Another promising direction is to design features with
strong robustness against concept drift, which has been studied
for malware detection [51], [83], [73], [10], network intru-
sion detection [24], and log anomaly detection [84], [47].
However, this approach requires a lot of domain knowledge
in designing features and is difficult to generalize to other
domains. Moreover, robust features can only mitigate aging
but not essentially trickle the drift (especially for label drift).
Nevertheless, this approach is orthogonal to our work and can
be used to strengthen the base anomaly detection model.

Concept Drift in Streaming Data. There have been lots of
studies on concept drift of time-insensitive streaming data over
the past decade [7]. Data steams are continuously monitored
with fixed or adaptive sliding windows [8], and the statistics
between windows are compared to detect drift based on error
rate [26], [58] and statistical likelihood [43], [32]. As for
adaptation, self-adaptive learners are extensively studied for
decision trees [34]. Ensemble learning is also leveraged via
training multiple weak classifiers with time windows [70],
[42] A recent study on network intrusion detection used the
above methods to detect drift for SVM-based NIDS [35].
However, detection based on error rate is delayed after model
aging and needs a lot of manual labeling, and statistical
testing based on strong assumptions on testing data, which is
infeasible for complicated practical data in security domains.
Moreover, prior approaches in this domain focus on the data
itself with statistical learning models. By contrast, our work
aims to improve existing DL-based anomaly detection systems.
A few works for time-series streaming data focus on drift
on univariate time series which can be typically defined as
a sudden spike, a jitter, or a dip in curves [50]. Obviously, the
underlying anomaly detection models and definition of drift
are thoroughly different from our scope.

Out of Distribution (OOD) Detection. Machine learning
community has widely studied OOD detection recently [33],
[46], [64]. The high-level idea is to identify test samples that
are not from distribution of training set (in-distribution). How-
ever, OOD detection studies are under supervised settings and

not directly applicable in our case. In zero-positive anomaly
detection, we cannot distinguish OOD normal samples from
real anomalies as they both deviate from normality (Fig. 1a).

Domain Adaptation. Domain adaptation (DA) is a important
field associated with transfer learning. Great progress has been
made in both statistical learning [16], [63] and deep learning
community [49], [74], [75]. DA aims to adapt a model trained
on a label-sufficient source domain (i.e., data distribution) to
a label-scarce target domain. By contrast, OWAD focuses
more on shift detection and explanation before adaptation.
As mentioned in §I, direct and continuous adaptation is inap-
propriate for security applications for lack of interpretability
and expensive. Besides, DA studies mostly focus on super-
vised classification and end-to-end learning in the domain of
computer vision or nature language processing. Their insights
and assumptions such as preserving high-level visual/linguistic
patterns across domains may not hold in security tasks.

Benchmarks on Distribution Shift. There is a growing
popularity for building benchmarks to evaluate distribution
shift [41], [11], [48], [44], [67]. However, most of them
are built with in non-security datasets (texts/images) and/or
supervised tasks. Anoshift [18] is a recent benchmark for
anomaly detection in NIDS. We have evaluated NID case on
Anoshift and extend similar setting to LogAD and APT cases.

Lifelong Learning. Lifelong learning (also known as continu-
ous/incremental learning) has been widely studied in the deep
learning community to train the same model over multiple
datasets and tasks [40], [2], [60], [66], [65]. UNLEARN [20]
has applied related techniques to anomaly detection, which is
evaluated as a baseline of this study. However, in OWAD,
we focus more on the identification and understanding of
normality shift and then adapt to new normality with shifted
samples. Motivated by the unsupervised evaluation of param-
eter importance [2], we propose a similar method for shift
detection by leveraging the explained importance. Therefore,
we believe lifelong learning is orthogonal to our work, and
more advanced approaches can be used to devise stronger
adaptation approaches. Future work could focus on this.

IX. CONCLUSIONS

In this paper, we propose OWAD, a general framework
to detect, explain, and adapt to normality shift of DL-based
anomaly detection in security applications. We propose several
novel techniques including (1) an unsupervised Calibrator ded-
icated to anomaly detection to help models provide meaningful
probabilities and facilitate detection of distributional change,
(2) a well-formalized Explainer to help security operators
determine and understand shift with less labeling overhead,
and (3) a distributional-level adaptation approach to ensure
not forgetting old useful normality while generalizing to new
normality. We conduct more realistic experiments on three
representative security applications and anomaly detection
systems with practical long-term datasets as well as real-world
deployment on SCADA security monitoring systems. Results
demonstrate the wide applicability and great effectiveness of
OWAD for tackling normality shift of security applications
in practice, compared with prior studies. We also conduct
case studies to analyze normality shift in each application and
provide operational recommendations for the deployment of
OWAD on more security applications.

13

ACKNOWLEDGMENT

We are grateful to all the anonymous reviewers for their
insightful comments. We also thank for the help of all the
members from NMGroup and CNPT-Lab in Tsinghua Univer-
sity. This work is supported by the science and technology
project of State Grid Corporation of China “Research on
Vulnerability Analysis and Threat Detection Key Technology
of Power Monitoring System in Cyberspace” (Grand No.5108-
202117055A-0-0-00). Zhiliang Wang is the corresponding
author of this paper.

REFERENCES

[1] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network
anomaly detection techniques,” Journal of Network and Computer
Applications, vol. 60, pp. 19–31, 2016.

[2] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in European
Conference on Computer Vision (ECCV), vol. 11207. Springer, 2018,
pp. 144–161.

[3] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and
L. Cavallaro, “INSOMNIA: towards concept-drift robustness in network
intrusion detection,” in Proceedings of the 2013 ACM Workshop on
Artificial Intelligence and Security (AISec). ACM, 2021, pp. 111–122.

[4] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security.” USENIX Association, 2022.

[5] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Transcending
transcend: Revisiting malware classification with conformal evaluation,”
IEEE Symposium on Security and Privacy (S&P), 2022.

[6] R. E. Barlow and H. D. Brunk, “The isotonic regression problem and
its dual,” Journal of the American Statistical Association, vol. 67, no.
337, pp. 140–147, 1972.

[7] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of
concept drift detectors,” Information Sciences, vol. 451, pp. 348–370,
2018.

[8] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining. SIAM, 2007, pp. 443–448.

[9] B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph
ai,” in 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2020, pp. 257–268.

[10] H. Cai, “Assessing and improving malware detection sustainability
through app evolution studies,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–28, 2020.

[11] Z. Cai, O. Sener, and V. Koltun, “Online continual learning with natural
distribution shifts: An empirical study with visual data,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV),
2021, pp. 8281–8290.

[12] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” CoRR, vol. abs/1901.03407, 2019.

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58,
2009.

[14] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D.
Keromytis, “Casting out demons: Sanitizing training data for anomaly
sensors,” in IEEE Symposium on Security and Privacy (S&P). IEEE
Computer Society, 2008, pp. 81–95.

[15] G. F. Cretu-Ciocarlie, A. Stavrou, M. E. Locasto, and S. J. Stolfo,
“Adaptive anomaly detection via self-calibration and dynamic updat-
ing,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), vol. 5758. Springer, 2009, pp. 41–60.

[16] H. Daume III and D. Marcu, “Domain adaptation for statistical classi-
fiers,” Journal of artificial Intelligence research, vol. 26, pp. 101–126,
2006.

[17] J. De Leeuw, “Correctness of kruskal’s algorithms for monotone regres-
sion with ties,” Psychometrika, vol. 42, no. 1, pp. 141–144, 1977.

[18] M. Drăgoi, E. Burceanu, E. Haller, A. Manolache, and F. Brad,
“Anoshift: A distribution shift benchmark for unsupervised anomaly
detection,” Neural Information Processing Systems NeurIPS, Datasets
and Benchmarks Track, 2022.

[19] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related
features,” in Proceedings of the 2nd International Conference on
Information Systems Security and Privacy (ICISSP). SciTePress, 2016,
pp. 407–414.

[20] M. Du, Z. Chen, C. Liu, R. Oak, and D. Song, “Lifelong anomaly
detection through unlearning,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2019, pp. 1283–1297.

[21] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). ACM, 2017, pp. 1285–1298.

[22] J. G. Dunham, “Optimum uniform piecewise linear approximation of
planar curves,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. PAMI-8, no. 1, pp. 67–75, 1986.

[23] F. N. Fritsch and J. Butland, “A method for constructing local monotone
piecewise cubic interpolants,” SIAM journal on scientific and statistical
computing, vol. 5, no. 2, pp. 300–304, 1984.

[24] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2021, pp. 3431–3446.

[25] J. a. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM Computing
Survey, vol. 46, no. 4, 2014.

[26] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian symposium on artificial intelligence. Springer,
2004, pp. 286–295.

[27] P. Gao, X. Xiao, D. Li, K. Jee, H. Chen, S. R. Kulkarni, and
P. Mittal, “Querying streaming system monitoring data for enterprise
system anomaly detection,” in IEEE International Conference on Data
Engineering (ICDE). IEEE, 2020, pp. 1774–1777.

[28] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning (ICML). JMLR.org, 2017, p.
1321–1330.

[29] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang,
X. Shi, and X. Yin, “Deepaid: Interpreting and improving deep learning-
based anomaly detection in security applications,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2021, p. 3197–3217.

[30] S. Han, Q. Wu, H. Zhang, B. Qin, J. Hu, X. Shi, L. Liu, and X. Yin,
“Log-based anomaly detection with robust feature extraction and online
learning,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 2300–2311, 2021.

[31] X. Han, T. F. J. Pasquier, A. Bates, J. Mickens, and M. I. Seltzer,
“Unicorn: Runtime provenance-based detector for advanced persistent
threats,” in 27th Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2020.

[32] M. Harel, S. Mannor, R. El-Yaniv, and K. Crammer, “Concept drift
detection through resampling,” in Proceedings of the 31st International
Conference on Machine Learning (ICML), vol. 32. JMLR.org, 2014,
pp. 1009–1017.

[33] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in International
Conference on Learning Representations (ICLR), 2017.

[34] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), 2001, pp.
97–106.

[35] M. Jain, G. Kaur, and V. Saxena, “A k-means clustering and svm
based hybrid concept drift detection technique for network anomaly
detection,” Expert Systems with Applications, p. 116510, 2022.

[36] S. T. K. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using

14

neural data augmentation,” in IEEE Symposium on Security and Privacy
(S&P). IEEE, 2020, pp. 1190–1206.

[37] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in 26th USENIX Security Symposium (USENIX
Security). USENIX Association, 2017, pp. 625–642.

[38] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C.
Tschantz, R. Greenstadt, A. D. Joseph, and J. D. Tygar, “Approaches
to adversarial drift,” in Proceedings of the 2013 ACM Workshop on
Artificial Intelligence and Security (AISec). ACM, 2013, pp. 99–110.

[39] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events,” Los
Alamos National Laboratory, 2015.

[40] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[41] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsub-
ramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao et al., “Wilds: A
benchmark of in-the-wild distribution shifts,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 5637–5664.

[42] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” The Journal of Machine
Learning Research, vol. 8, pp. 2755–2790, 2007.

[43] L. I. Kuncheva, “Change detection in streaming multivariate data
using likelihood detectors,” IEEE transactions on knowledge and data
engineering, vol. 25, no. 5, pp. 1175–1180, 2011.

[44] A. Lazaridou, A. Kuncoro, E. Gribovskaya, D. Agrawal, A. Liska,
T. Terzi, M. Gimenez, C. de Masson d’Autume, T. Kocisky, S. Ruder
et al., “Mind the gap: Assessing temporal generalization in neural
language models,” Advances in Neural Information Processing Systems,
vol. 34, pp. 29 348–29 363, 2021.

[45] V. Le and H. Zhang, “Log-based anomaly detection with deep learning:
How far are we?” The 44th International Conference on Software
Engineering (ICSE), 2022.

[46] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in International
Conference on Learning Representations (ICLR), 2018.

[47] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified
deep learning based log anomaly detection for diverse faults,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 92–103.

[48] Z. Lin, J. Shi, D. Pathak, and D. Ramanan, “The clear benchmark:
Continual learning on real-world imagery,” in Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[49] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in International conference
on machine learning (ICML). PMLR, 2015, pp. 97–105.

[50] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 13–24.

[51] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristofaro, G. J. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS). The Internet
Society, 2017.

[52] W. Meng, Y. Liu, S. Zhang, F. Zaiter, Y. Zhang, Y. Huang, Z. Yu,
Y. Zhang, L. Song, M. Zhang et al., “Logclass: Anomalous log
identification and classification with partial labels,” IEEE Transactions
on Network and Service Management, vol. 18, no. 2, pp. 1870–1884,
2021.

[53] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection
of sequential and quantitative anomalies in unstructured logs,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI), 7 2019, pp. 4739–4745.

[54] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An

ensemble of autoencoders for online network intrusion detection,” in
Network and Distributed Systems Security (NDSS) Symposium, 2018.

[55] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well
calibrated probabilities using bayesian binning,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI). AAAI
Press, 2015, p. 2901–2907.

[56] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities
with supervised learning,” in Proceedings of the 22nd International
Conference on Machine Learning (ICML). ACM, 2005, p. 625–632.

[57] D. Nigenda, Z. Karnin, M. B. Zafar, R. Ramesha, A. Tan, M. Donini,
and K. Kenthapadi, “Amazon sagemaker model monitor: A system
for real-time insights into deployed machine learning models,” arXiv
preprint arXiv:2111.13657, 2021.

[58] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical
testing,” in International conference on discovery science. Springer,
2007, pp. 264–269.

[59] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, 2007, pp. 575–584.

[60] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks, vol.
113, pp. 54–71, 2019.

[61] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: eliminating experimental bias in malware classification
across space and time,” in 28th USENIX Security Symposium (USENIX
Security). USENIX Association, 2019, pp. 729–746.

[62] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD), 2014, pp. 701–710.

[63] J. Raghuram, D. J. Miller, and G. Kesidis, “Semisupervised domain
adaptation for mixture model based classifiers,” in 2012 46th Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2012,
pp. 1–6.

[64] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo,
J. Dillon, and B. Lakshminarayanan, “Likelihood ratios for out-of-
distribution detection,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 32, 2019.

[65] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Expe-
rience replay for continual learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[66] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming
catastrophic forgetting with hard attention to the task,” in International
Conference on Machine Learning (ICML). PMLR, 2018, pp. 4548–
4557.

[67] S. Smeu, E. Burceanu, A. L. Nicolicioiu, and E. Haller, “Env-aware
anomaly detection: Ignore style changes, stay true to content!” arXiv
preprint arXiv:2210.03103, 2022.

[68] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusio detection,” in IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, 2010, pp. 305–316.

[69] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao,
“Statistical analysis of honeypot data and building of kyoto 2006+
dataset for nids evaluation,” in Proceedings of the first workshop on
building analysis datasets and gathering experience returns for security,
2011, pp. 29–36.

[70] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD), 2001, pp. 377–382.

[71] C. Systems, “Cisco systems netflow services export version 9,” RFC
3954, 2004.

[72] R. Tang, Z. Yang, Z. Li, W. Meng, H. Wang, Q. Li, Y. Sun, D. Pei,
T. Wei, Y. Xu et al., “Zerowall: Detecting zero-day web attacks through
encoder-decoder recurrent neural networks,” in 39th IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2020, pp. 2479–
2488.

[73] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik,
“Improving robustness of ml classifiers against realizable evasion at-

15

tacks using conserved features,” in 28th USENIX Security Symposium
(USENIX Security), 2019, pp. 285–302.

[74] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2017, pp. 7167–7176.

[75] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, 2018.

[76] R. Wang, K. Nie, T. Wang, Y. Yang, and B. Long, “Deep learning for
anomaly detection,” in Proceedings of the 13th International Conference
on Web Search and Data Mining (WSDM), 2020, pp. 894–896.

[77] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[78] C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion
detection based on meta-learning framework,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3540–3552, 2020.

[79] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference (WWW), 2018, pp. 187–196.

[80] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “Bodmas:
An open dataset for learning based temporal analysis of pe malware,”
in 2021 IEEE Security and Privacy Workshops (SPW). IEEE, 2021,
pp. 78–84.

[81] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “Cade: Detecting and explaining concept drift samples for
security applications,” in 30th USENIX Security Symposium (USENIX
Security), 2021.

[82] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar,
“Adversarially learned anomaly detection,” in 2018 IEEE International
Conference on Data Mining (ICDM). IEEE, 2018, pp. 727–736.

[83] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api semantics
to detect evolved android malware,” in Proceedings of the 2020 ACM
SIGSAC conference on computer and communications security (CCS),
2020, pp. 757–770.

[84] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE/ESEC), 2019, pp. 807–817.

[85] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in The 41st International
Conference on Software Engineering (ICSE). IEEE / ACM, 2019, pp.
121–130.

APPENDIX A
SUPPLEMENT OF MODEL CALIBRATION

Calibrator for Abnormal-confidence Models. In §IV-A, we
use normal-confidence models to introduce our calibration
method and the related definition for the sake of illustration.
Without loss of generality, here we provide the supplementary
definition of DEFINITION 3 in the case of abnormal-confidence
models.

DEFINITION 4 (PERFECT CALIBRATION OF ABNORMAL-
CONFIDENCE ANOMALY DETECTION MODELS). The perfect
calibration for an abnormal-confidence output is defined as
TNR among normal samples after setting itself as the detection
threshold. Namely,

C(f(x)) = TNRT=f(x)(XN), ∀x ∈ XN . (9)

Note that, here the calibrated outputs also represent abnor-
mal probabilities to avoid violating monotonicity. For example,
if the calibrated output of a certain normal sample is 0.2, then
ideally 20% of normal samples are TNs when the threshold is

exactly the output. In other words, 20% of calibrated outputs
(anomaly scores) are less than this sample.

Transforming Abnormal Confidence into Normal. In the
abnormal-confidence (KitNET/NID/APT) case of Fig. 6, we
transform the abnormal outputs of original anomaly detection
models to normal confidence for better illustration. The ap-
proach is straightforward. We firstly normalize the anomaly
probabilities (reconstruction errors) into 0 to 1 using the min-
max method and then subtract them from 1 (to transform them
into normal probabilities).

APPENDIX B
DETAILED ALGORITHM OF SHIFT DETECTION

The procedure for shift detection introduced in §IV-B is
presented in Algorithm 1. First, the test statistic of two distri-
butions (calibrated outputs of xc and xt) are computed on lines
1-2. Then, tested samples are jointed and randomly shuffled,
followed by dividing them into two groups and obtaining two
distributions (on line 3). The core idea of permutation test
is that samples are exchangeable under H0. Therefore, we
compute the p-value as the proportion of permutations where
their test statistics are greater than the actual one (on line
4). Optimally, all possible permutations need to be tested but
is intractable due to combinatorial explosion. A much less
resampling number Np is set in practice. Finally, we return
the p-value p of permutation test indicating the confidence of
non-shift. Generally, p is compared with a statistical threshold
to determine whether shift or not. In this study, we set this
threshold as 0.05 (i.e., p < 0.05 indicates shift).

Algorithm 1: Procedure for shift detection
Input: xc ∈ X c

N , xt ∈ X t; K; permutation number Np

Output: P-value p indicating the probability of non-shift
▽ getting original discrete distributions (histograms)

1 Porg ← HK

(
C(f(xc))

)
; Qorg ← HK

(
C(f(xt))

)
;

2 sorg ← DKL(Porg||Qorg) ; ▷ original test statistics
3 {P ′

i, Q
′
i}

Np

i=1 ← Permutating/Resampling and recomputing
two histograms (HK) from {C(f(xc))} ∪ {C(f(xt))};

4 p← 1+
∑Np

i=1 1[sorg≤DKL(P
′
i ||Q

′
i)]

Np+1
; ▷ p-value of test

5 return p ▷ confidence of non-shift

APPENDIX C
DETAILS OF EXPERIMENTAL SETUP

This Appendix provides several details of the experimental
setup omitted in the main body of §V, including the pre-
processing, selection, and split of datasets (in C-1), as well
as anomaly detection models (in C-2) in three applications ,
detailed settings of the baseline approaches for zero-positive
anomaly detection (in C-3).

1) Data Selection and Preprocessing: As mentioned in
§V-A, we choose real-world long-term datasets1 to conduct
more realistic experiments compared with prior works. As
shown in Fig. 3, in addition to the training data collected at
the initial moment (@ Time 0), we collect samples N times

1Anoshift: https://github.com/bit-ml/AnoShift
BGL: https://doi.org/10.5281/zenodo.1144100
LANL-CMSCSE: https://csr.lanl.gov/data/cyber1/

16

https://github.com/bit-ml/AnoShift
https://doi.org/10.5281/zenodo.1144100
https://csr.lanl.gov/data/cyber1/

in chronological order and divide them into validation set and
test set. The number of training data (@ Time 0) refers to the
original papers of each anomaly detector and is set according
to our setup (only normal data here for training the zero-
positive anomaly detectors). For example, 50K normal samples
for training KitNET in NID case [54].

Split of Validation and Test Sets. The data split of Kyoto
2006+ dataset in NID case refers to Anoshift benchmark
[18]. That is, we use traffic in 2007 as Time 0 (@T0) to
train anomaly detection model (KitNET) and test the original
performance before any shift. For the following 5 years (2011-
2015), we treat each of them as a time point (i.e., 2011 data
is @T1, 2012 is @T2, so on and so force) and randomly split
them into validation and test set. For LogAD and APT cases,
we collect samples 10 times according to the data volume and
time span of different cases. Since there is no ground truth
or intelligence about normality shift in three public datasets,
we collect data at the same time interval and set the interval
considering the total time span. BGL dataset in LogAD case
has 7 months of logs, thus we collect data about every 2-3
weeks. LANL-CMSCSE in APT cases have only 58 days of
login logs, thus we collect data every week (5-6 days).

2) Anomaly Detection Models: We have introduced the
anomaly detectors used in three applications in §V-A and
their technical principles in §II-A. In NID case, we use the
original implementation of KitNET2 in Kitsune which is one
of the state-of-the-art DL-based network intrusion detectors.
KitNET consists of Autoencoders to conduct reconstruction-
based learning (§II-A). In LogAD case, we use the well-
known log anomaly detector DeepLog3. In APT case, we
use GLGV as the anomaly detector proposed in [9]. Similar to
[29], we tailor GLGV by replacing the anomaly detector with
an Autoencoder as the original work use a supervised classifier
in the last step which is not suitable for this study. And we
use their implementation4 which achieves similar performance
to the original work. The above anomaly detectors are trained
with samples collected @ Time 0 with original configurations
introduced in their papers or implementations.

3) Baseline Approaches: For UNLEARN, we obtain the
source code from the authors and primarily use the origi-
nal configurations in the paper [20]. The original work has
evaluated the performance of partial hyper-parameters and
provides a suggestion of range which is insensitive within
it. To conduct a fair comparison, we refer to the method of
parameter tuning in the paper (only for the hyper-parameters
with reference values provided in the paper, others use the
default values), that is, to evaluate the effect of their values
within the recommended range and select the best (in most
cases). case, we have also confirmed that these ranges are
indeed insensitive) Specfically, we set BND = 10 in the
bounding loss, regularization weight as 103. For CADE, we
use their public implementation5 and use additional anomalies
in the training set to construct the contrastive learning model
to detect samples that are far away from non-shift samples.
The tuning of hyper-parameters provided in CADE is similar
to that of UNLEARN, so we also use the same method to tun m
and λ, and set m = 10 and λ = 0.1 by default. For TRANS,

2KitNET: https://github.com/ymirsky/Kitsune-py
3DeepLog: https://github.com/wuyifan18/DeepLog
4GLGV: https://github.com/dongtsi/DeepAID

we obtain the source code from their project website6 and
tailor it for zero-positive learning as introduced in §V-A3. It
is worth noting that the configuration of TRANS is highly
customizable. We chose choice of non-conformity measure
(NCM), type of conformal evaluator (CE), and Transcendent
thresholds’ optimizations as described in the main body of
paper according to the characteristics of zero-positive learning.
There are also some hyper-parameters while we found that
there are not sensitive to the effectiveness, so we used the
default value (test rate=1/3 of ICE). TRANS provides an alpha
assessment method to evaluate the quality of the configuration,
and we also use this method to verify the effectiveness of our
configuration. We do not deny that other configurations may
have better results (but there is no existing research, we are
the first to adapt it to zero-positive anomaly detection, and
we leave other configurations and optimization of TRANS for
zero-positive learning as future work.

APPENDIX D
VISUALIZATION OF NORMALITY SHIFT

Here we provide the (relative) frequency histograms con-
structed with calibrated (and uncalibrated) model outputs in
three security applications and real-world deployment to help
intuitively observe shift. The histogram is depicted in Fig. 6,
where we represent the data @ Time 0 in blue (non-shift)
and all subsequent moments in green (possible shift). For
NID/LogAD/APT cases, we compare the calibrated (right blue)
with uncalibrated (left blue) output distributions @ Time 0. For
three public datasets, as analyzed in §V-D, LogAD has the
most severe shift, and NID has two significant shifts in 2011
and 2014. APT has the most slight shift relatively. Meanwhile,
the drift of APT occurs mostly in the middle of model outputs.
That is to say, the shift cannot be obviously reflected in the
model performance (since the performance is mainly related
to the small or large outputs), which validates the statement in
our paper that the normality shift cannot be fully understood
only with the model performance degradation. As for the data
in real-world deployment of SCADA security systems, We can
clearly verify the analysis in §VI from the histograms, that is,
Device A has no significant normality shift, Device B is similar
to gradual drift, while Device C may have a sudden drift at
@Time 1, and no significant drift after that.

APPENDIX E
HYPER-PARAMETER SENSITIVITY AND CONFIGURATION

In this section, we evaluate the sensitivity of hyper-
parameters and provide the guideline for hyper-parameter
configuration.

1) Hyper-parameter Sensitivity: In §V-C, we evaluate the
impact of the hyper-parameters and give recommendations on
the range of values. Below, we evaluate the sensitivity of hyper-
parameters in OWAD.

Shift Detection. Here we evaluate the resampling number Np

of permutation test in the shift detection. As Np can only affect
the performance of shift detection, we evaluate its impact on P-
value, as listed in the last row of Table VIII. The results show
that Np is insensitive to the shift detection in a considerable

5CADE: https://github.com/whyisyoung/CADE
6TRANS: https://s2lab.cs.ucl.ac.uk/projects/transcend/

17

https://github.com/ymirsky/Kitsune-py
https://github.com/wuyifan18/DeepLog
https://github.com/dongtsi/DeepAID
https://github.com/whyisyoung/CADE
https://s2lab.cs.ucl.ac.uk/projects/transcend/

Fig. 6: The histograms of normality shift in three datasets (the first three lines) and real-world deployment (the last line). For each case, the
control set (@T0) is shown with blue (the left is uncalibrated, the right is calibrated), while the treatment sets (@T1 to @TN) are shown with
green in chronological order from left to right. In NID case, we re-split data in 2006-2015 as @T1-@T10 for better illustration.

TABLE VIII: Sensitivity of hyper-parameters on detection.

Parameters Range P-value of Unshift (Range) P-value of Shift (Range)
Np [103, 105] [0.502, 0.593] [0.0000, 0.0000]

TABLE IX: Sensitivity of hyper-parameters on adaptation.

Parameters Range AUC of Test @T1 (Range)
λ1 [10−1, 10] [0.867, 0.872]
λ2 [10−1, 10] [0.870, 0.874]

range. We also evaluate the effect of K, the number of bins
of histograms in shift detection. The exact number of bins
is usually a judgment call in statistics. Intuitively, the larger
the K, the finer the description of the discrete distribution.
Fig. 7 shows the results of the impact of K on shift detection
performance. We can observe that a very small K (≤ 3) may
lead to inaccurate identification of shift, while a very large
K (> 30) may lead to the sensitivity to subtle distributional
changes. Nevertheless, results show that a wide range of K (4
to 30) suffices to provide robust and stable shift detection in
both cases. We omit the impact on adaptation performance as
we find K is extremely insensitive.

Shift Explanation. We evaluate λ1 (weight of labeling over-
head term) and λ2 (weight of determinism term) in (3). Note
that λ1 and λ2 here are the values after the three terms are
reconciled to the same magnitude. We evaluate their impact
on adaptation performance by each time changing one of them
while fixing other parameters. Results are shown in Table IX.
The results show that all the hyper-parameters are insensitive
to adaptation performance in a large range. As for bin number
M , we evaluate the ratio M/K in Fig. 8 as M is supposed

3 4 5 6 8 10 15 20 30
K (# bins of frequency histograms)

0.0
0.2
0.4
0.6
0.8
1.0

P
-v

al
ue

s

P-value (Shift)
P-value (Unshift)

(a) NID

3 4 5 6 8 10 15 20 30
K (# bins of frequency histograms)

0.0
0.2
0.4
0.6
0.8

P-
va

lu
es

P-value (Shift)
P-value (Unshift)

(b) LogAD

Fig. 7: The impact of K on shift detection (P-values).

5 10 20 30 50 100 500
M/K

0.79
0.80
0.81
0.82
0.83
0.84
0.85

F-
Sc

or
e

F-Score

0

500

1000

1500

2000

R
un

 T
im

e
(s

ec
)

Run Time

Fig. 8: The impact of M/K.

0 10 310 210 1 100 101 102

3 (weight consolidation)

0.76
0.78
0.80
0.82
0.84
0.86

F-
Sc

or
e

Test @T1
Test @T3

Fig. 9: The impact of λ3.

to refer to K and M>>K (see §IV-C). Results show that
adaptation performance tends to be stable after M/K increases
to a certain extent. Considering the linearly increasing run
time, M/K can be selected within a moderate interval (which
is large enough, 20-100 in this case).

Shift Adaptation We evaluate the impact of λ3, the weight
of parameter consolidation in (7). As shown in Fig. 9, a too
small λ3 may induce old knowledge to be forgotten, while a
too large λ3 will cause new knowledge to be hardly learned.
Nevertheless, results shows that a wide range of λ3 (10−3 to
101) suffices to improve adaptation performance.

2) Hyper-parameter Configuration: To facilitate deploy-
ment, we provide a default configuration of hyper-parameters
in OWAD for reference. As for shift detection, we set resam-
pling number Np = 103 of permutation test, and the number of
bins K = 5 in histograms and M = 100 for shift explanation.
We have verified the insensitivity of them within relatively
large ranges. Therefore, a convenient way is to select value
from these ranges or directly use the default value. However,
these ranges are empirically have not been verified in other
security applications. Future work will focus on this. As for
three weights λ1 and λ2 in (3) and λ3 in (7), we use an
automated method by forcing all weighted terms to be the
same for optimization. For example, the three terms Lacc,
Llab and Ldet are 5, 0.1 and 0.5 before optimization. Here
we set λ1 = 50 and λ2 = 10 to ensure three terms are all 5
before optimization. The intuition is we equally consider each
term for optimization. Note that, operators can also adjust the
weight ratio according to their requirements by multiple certain
constant after normalization. Practical experience also suggests
preferentially increasing the weight of accuracy and overhead
term. This is because the subsequent binarization operation
will weaken the effect of optimization of deterministic term.

18

