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Abstract—Cloud computing has emerged as a critical part of
commercial computing infrastructure due to its computing power,
data storage capabilities, scalability, software/API integration,
and convenient billing features. At the early stage of cloud
computing, the majority of clouds are homogeneous, i.e., most ma-
chines are identical. It has been proven that heterogeneity in the
cloud, where a variety of machine configurations exist, provides
higher performance and power efficiency for applications. This is
because heterogeneity enables applications to run in more suitable
hardware/software environments. In recent years, the adoption
of heterogeneous cloud has increased with the integration of a
variety of hardware into cloud systems to serve the requirements
of increasingly diversified user applications.

At the same time, the emergence of security threats, such
as micro-architectural attacks, is becoming a more critical prob-
lem for cloud users and providers. It has been demonstrated
(e.g., Repttack and Cloak & Co-locate) that the prerequisite of
micro-architectural attacks, the co-location of attack and victim
instances, is easier to achieve in the heterogeneous cloud. This
also means that the ease of attack is not just related to the
heterogeneity of the cloud but increases with the degree of
heterogeneity. However, there is a lack of numerical metrics to
define, quantify or compare the heterogeneity of one cloud envi-
ronment with another. In this paper, we propose a novel metric
called Heterogeneity Score (HeteroScore), which quantitatively
evaluates the heterogeneity of a cluster. We demonstrate that
HeteroScore is closely connected to security against co-location
attacks. Furthermore, we propose mitigation techniques to trade-
off heterogeneity offered with security. We believe this is the first
quantitative study that evaluates cloud heterogeneity and links
heterogeneity to infrastructure security.

I. INTRODUCTION

The last decade has seen a tremendous rise in cloud
computing deployment, usage, and interest from both industry
and academia. Powered by the availability of nearly unlimited
compute, massive storage capacity, software and, API inte-
gration, scalability, and attractive billing models, there are
an increasing number of workloads being offloaded to the
cloud. Public cloud providers like Amazon AWS [1], Microsoft

Azure [5] and Google Cloud [3] provide infrastructure as
a service (IaaS) where resources are provisioned and made
available in a pay-as-you-go manner. These services have
gained tremendous popularity as they increase the speed of
deployment and eliminate the need for users to purchase
and configure their own infrastructure, thus reducing upfront
capital expenditure and increasing the speed of deployments.

As more compute applications migrate to the cloud, there
is a rise in the diversity of user applications running within the
cloud infrastructure, leading to an increase in the diversity of
hardware resources to satisfy application needs [17]. Instead
of having similar machines in the cloud infrastructure, public
clouds now offer customized hardware/software environments
to meet user requirements, boost performance, and reduce
costs. This heterogeneity in hardware and execution environ-
ments is also exposed to the user where they can make specific
demands on the allocated hardware. For example, Google
Cloud [3] allows users to specify a variety of parameters
related to the hardware/execution environment when submit-
ting their instances, including CPU type, number of cores,
memory, availability of local SSDs and GPU resources, etc.
This has also led to the development of various heterogeneity-
aware scheduling algorithms to map application demands to
hardware [18], [19].

At the same time, the emergence of security threats is
becoming a critical problem for cloud users and providers.
Specifically, malicious users can deploy micro-architectural
attacks since applications from different users share resources
when assigned to the same node. Micro-architectural attacks
are a class of attacks that exploit hardware vulnerabilities in
shared resources, e.g., side-channel attacks [52], [53], [42],
rowhammer attacks [47], and transient execution attacks [34],
[37], [14], [34]. Previous research has shown the potential for
these attacks in a cloud environment [28].

The threat of micro-architectural attacks becomes more sig-
nificant in heterogeneous cloud environments. The prerequisite
of successful micro-architectural attacks is the co-location of
attack instances with the targeted victim instance. It is easier
to satisfy this prerequisite in heterogeneous clouds compared
to homogeneous clouds as each node type may have fewer
machines in a heterogeneous cloud environment. Considering
heterogeneity during the scheduling processes narrows down
the search space of nodes that application instances can be
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possibly assigned to and renders scheduling decisions more
predictable. This makes it easier for attackers to force the
scheduler to co-locate their attack applications with victim
applications [22].

Previous works [22], [39] have shown the susceptibility
of profiling-based schedulers [9], [18], [19] and policy-based
schedulers [4], [7] to such attacks. For profiling-based sched-
ulers where the scheduler samples the execution of target
program and go through a learning process to achieve a
near-optimal placement arrangement [19], by simply mim-
icking victim application traces [39], attackers can force
schedulers to generate the same node-assignment decision,
achieve co-location with victim applications and issue micro-
architectural attacks. Similarly, for policy-based schedulers
where heterogeneity-aware scheduling decisions are made
based on user submitted information, replicating scheduling
constraints [22] suffices to greatly increase the success rate an
attacker might achieve.

Unfortunately, with system integration, continuous devel-
opment of new architectural features, and increased costs
of testing hardware designs, new micro-architectural attacks
continue to be discovered. Since these attacks target design
flaws of hardware, protecting against them is a difficult process
requiring expensive and time-consuming hardware changes. In
addition, adding security solutions for each micro-architecture
attack may decrease the performance of running workloads
in the cloud [38]. Therefore, from a cost, performance, and
security perspective, there is a need to defend against micro-
architectural attacks using a variety of techniques. One easy
way to do so is to simply reduce the chances of co-location.

Since co-location of attack with target applications is the
prerequisite step of all micro-architectural attacks, reducing the
probability of co-location improves security. This is orthogonal
to other defenses and they can be deployed immediately as
hardware changes or patches are developed for each new
hardware vulnerability. Lastly, reducing the probability of co-
location can defend against unknown future micro-architectural
attacks that are yet to be discovered.

The mitigation strategy of reducing co-location is crucial to
heterogeneous clouds, where co-location is easier to achieve.
As heterogeneous cloud deployments continue to rise, it is
important to understand how heterogeneity impacts co-location
and the infrastructure’s security against micro-architectural
attacks. However, there is a lack of numerical metrics to define,
quantify or compare the heterogeneity of cloud environments.
In this paper, we propose a novel metric called Heterogene-
ity Score (HeteroScore). HeteroScore provides a numerical
measure of the heterogeneity of cloud infrastructure and helps
cloud managers guide the deployment of mitigation strategies.
We derive mitigation techniques based on HeteroScore to
help prevent co-location forced by attackers. We evaluate our
strategies in a real cloud to show the co-location success rate
an attacker can achieve and do not make assumptions regarding
the underlying virtualization methods. Moreover, we focus on
scheduler-level attacks [22], [39].

The following are the contributions of this paper:

1) We propose a novel metric called HeteroScore to
quantitatively measure the heterogeneity of cloud

infrastructure. Detailed algorithms to calculate Het-
eroScore are defined and presented.

2) Inspired by HeteroScore, we propose mitigation tech-
niques that trade-off heterogeneity and security, a
trade-off not considered earlier.

3) We evaluate HeteroScore, and the proposed miti-
gation techniques on a real cluster to establish the
relationship between HeteroScore and security and
show how these mitigation techniques enhance secu-
rity. Empirically, under the settings in this paper, by
keeping a HeteroScore to below 0.9, the co-location
rate can be reduced to a safe level.

The remainder of the paper is organized as follows. We
present related background knowledge and assumptions of
the study in Section II and Section III, respectively. We pro-
pose HeteroScore in Section IV and provide related mitigation
techniques in Section V. Section VI evaluates the HeteroScore
metric as well as the proposed mitigation technologies. We
provide additional discussion about our theory and findings
in Section VII. Finally, we review related literature in Sec-
tion VIII and conclude in Section IX.

II. BACKGROUND

A. Heterogeneous Cloud Infrastructure

Recently, heterogeneous clouds have gained adoption in
cloud computing environments. This is because heterogeneity
enables high performance as users can run their workloads on
suitable hardware/software configurations. Also, homogenous
cloud environments can become heterogeneous with the de-
ployment of new hardware within existing environments [17],
[13], [56]. Compared to homogeneous clouds, where all ma-
chines in the clusters are the same, heterogeneous clouds are
more diverse and flexible in terms of available hardware and
software environment configurations. Therefore, running the
same application with different configurations on a heteroge-
neous cloud can result in varying performances and costs [51].

The fundamental function of a cloud scheduler is to
orchestrate the cloud system and make appropriate instance
placement decisions, i.e., assign user instances to suitable
machines [46]. There have been designs of schedulers and
resource provisioning systems that consider heterogeneity [51],
[9], [50], [19], [18] and enable service providers to offer suit-
able resource types based on user application characteristics.
Users can also specify requirements and preferences of nodes
to run their applications by specifying “Affinity”, a widely
existing feature in the cloud and cluster schedulers [23], [40],
[4], [7], [6]. In our work, we will consider affinity scheduling
algorithms and show how different levels of heterogeneity can
affect the scheduling results. However, our work is generally
applicable to all schedulers and resource provisioning systems
that consider heterogeneity.

B. Co-location Attacks

Within the cloud, applications from different users can be
running simultaneously on the same node. To enhance security
and avoid interference between different user applications,
specific isolation techniques, e.g., virtual machine (VM) iso-
lation [7] and container isolation [4] are utilized. Applications
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from the same user are typically packaged in a VM or a
container and deployed on a node assigned by cloud scheduler.

However, even with VM or container isolation, there
are threats that exist for cloud applications. Prior research
works [45], [57] have shown that cross-VM side-channel
attacks can be used to extract information from a target VM
on the same machine. Emerging micro-architectural attacks im-
pose severe security risks for cloud users. Micro-architectural
side-channel attacks, such as FLUSH+RELOAD [53] use the
structure of shared caches to allow the initiation of attacks
across VMs. In recent years, there have been various forms
of other micro-architectural attacks targeting hardware design
flaws. Rowhammer attacks [33], [47] utilize circuit features in
DRAM chips, like electromagnetic coupling effects, to issue
attacks and stealthily cause bit-flips in DRAMs. Transient
execution attacks [37], [34] manage to execute instructions
that should not be executed by exploiting out-of-order ex-
ecution patterns or branch predictors in micro-architecture.
Fault attacks [41], [48] exploit frequency/voltage adjustment
features in modern computer systems and maliciously insert
faults during the execution of a program. As new hardware
micro-architectural vulnerabilities continue to be discovered,
there is a need for solutions to protect against known as well
and yet-to-be-discovered.

An important prerequisite to initiating a micro-architectural
attack is achieving co-location, i.e., managing to run on the
same nodes as the victims. It has been shown that cloud sched-
ulers can be exploited by attackers to achieve co-location [39],
[22]. Both policy-based schedulers [22] and machine learning-
based schedulers [39] can be exploited to achieve relatively
high co-location rates in the heterogeneous cloud. These attack
methods exploit the fact that schedulers in heterogeneous
clouds tend to place application instances on the most suitable
machines. Furthermore, because heterogeneity is considered
during the scheduling process, there is a higher chance that
schedulers can be tricked and place attack instances on the
same node as the victim.

III. THREAT MODEL

In this work, we quantitatively evaluate the security level of
a heterogeneous cloud against co-location attacks. The threat
model is similar to [22]. In this scenario, the attackers’ goal is
to achieve co-location with victim applications to issue micro-
architectural attacks.

We consider a neutral cloud setting, where service
providers are non-malicious and trusted. We do not consider
the situation in which service providers cooperate with ma-
licious users to attack other users. After all, offering help to
malicious users is against the profit goal of cloud or cluster
service providers. Victim applications, malicious applications,
and other unrelated applications on the cluster are considered
equivalent by the cluster service provider and the scheduling
algorithm. All scheduling decisions are determined by cluster
resource states and user requests. We assume that cloud sched-
ulers do not apply mitigation strategies against co-location
attacks [58] in the scheduling step as the idea of forcing co-
location is relatively novel [22], [39] and possible mitigation
strategies are not yet integrated into schedulers to the best of
our knowledge.

Regarding users of the system, we assume attackers do not
have any privileges over other users. Permissions available to
attackers are limited to: (1) requesting computing resources
in the cluster by submitting configuration scripts, and (2)
running their programs on assigned nodes and resources.
Attackers do not have access to resources that other users
cannot access, nor do they have access to special features of the
service infrastructure software system that other users cannot
access. In this study, all users can only access and operate
on nodes assigned to their applications and corresponding
assigned resources. Since our threat model does not assume
any privileges of the attackers on the system, the analysis
has wider applicability than a model that assumes privileges.
We assume without argument, justification, or experiment
that the attacker knows the execution specifics required to
target the victim. This is a reasonable assumption since these
specifications are usually provided to optimize the placement,
for example, forcing the scheduler to schedule an instance to
a node with higher I/O capacity or a specific platform. We
can safely assume that attackers know the execution features
of victims and victims always want to optimize performance
by selecting more suitable execution environments; hence the
assumption that attackers can infer the victim’s specifications
is reasonable.

Conforming to the general settings of cloud and cluster
service infrastructures [4], [6], [7], [54], [1], scheduling de-
cisions are made based on the user-submitted metadata. This
metadata contains resource requirements, e.g., number of CPU
cores required, amount of memory needed, etc. This metadata
also contains requirements and preferences that fine-tunes
scheduling processes e.g. requirements and preferences about
whether or not to schedule on a node with certain features.
Previous work [22] shows that by exploiting this scheduler
feature and replicating the second type of information, it
becomes easier for an attacker to co-locate with victims on a
heterogeneous cluster. In this study, we assume attackers use
a similar method to achieve co-location.

This study targets the co-location attack vulnerability
of heterogeneous clouds and is not a study of micro-
architectural hardware vulnerabilities. How specific types of
micro-architectural attacks are deployed and related low-level
mitigation techniques are beyond the scope of this paper.
We first evaluate the relationship between heterogeneity and
co-location attack vulnerability and then add and evaluate
mitigation techniques later in this paper.

IV. HETEROSCORE

In this section, we introduce a metric called HeteroScore
to quantitatively measure heterogeneity of a cloud computing
cluster. We first provide the intuition behind this metric, and
then we define related variables and details of the algorithm
to calculate HeteroScore. A mitigation technique based on
HeteroScore is provided in Section V.

A. Definition and Explanation of HeteroScore

To quantitatively measure heterogeneity, we will (1) define
a formal representation of the target cloud computing cluster,
and (2) define a mathematical metric and a calculation proce-
dure of the metric based on the representation.
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1) Cluster Representation: In this part, we introduce how a
single node of a cloud computing cluster can be represented.
Nodes in a cluster have metadata information in the format
of “label-value” pairs that record specific features of nodes.
This is consistent with cloud computing clusters that utilize
management frameworks such as OpenStack [7] and Kuber-
netes [4]. In this approach, “label” refers to a feature of the
node and “value” refers to a specific value that corresponds
to that feature. An example “label-value” description can be
“CPUType - Intel Xeon”, which indicates the model of
the CPU. The label-value pairs can be used to specify various
resources like memory, GPU, network bandwidth, disk space,
etc. There can be multiple labels attached to a node and
usually depict physical hardware properties. The “label-value”
description information is used by the cluster schedulers to
assign suitable machines to the user.

In our model, each node consists of multiple “label-value”
description items. We consider each label as one dimension. By
assigning each value in the “label-value” pairs a numerical in-
teger value, we craft a vector for node N(i) in a d-dimensional
space:

N(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
k , ..., x

(i)
d )T, (1)

where d is the total number of labels that have appeared in the
cluster and x

(i)
k corresponds to the assigned label value in the

k-th dimension.

By acquiring and gathering the representation for each node
in the cluster, the cluster can be represented as a set of N points
N(i) (1 ≤ i ≤ n) on a d-dimensional space:

C = {N(1),N(2), ...,N(i), ...,N(n)}, (2)

where n is the number of nodes in the cluster.

After mapping the cluster into a geometric space, we are
able to process cluster information according to the geometric
attributes of the representation. Our further processing will
be based on this representation. It is worth noting that the
actual meanings of certain labels/values are ignored in our
calculation process, i.e., we focus on a higher representation
level and ignore lower-level details in real-world configurations
after finishing the mapping.

2) Proposed Metric: Our goal is to use a quantitative metric
to depict the heterogeneity of a cluster. The “label-value”
pairs typically depict physical attributes of the node. It is
intuitive from the representation of the nodes that in the d-
dimensional space, longer distances between points correspond
to larger hardware differences between nodes. In a relatively
homogeneous cluster, nodes will be densely clustered in the
d-dimensional space as each node has similar hardware config-
urations, whereas in a relatively heterogeneous cluster, nodes
tend to sparsely scatter in the space.

To depict how sparse C is in the d-dimensional space, we
define the HeteroScore metric denoted Hc:

Hc = 1−
∑n

i=1

∑n
j=1 I{ρ(N(i),N(j)) ≤ th}

n2
. (3)

Here ρ(N(i),N(j)) refers to the Euclidean distance between
node N(i) and node N(j) in the d-dimensional space:

ρ(N(i),N(j)) =

√√√√ d∑
k=1

(x
(i)
k − x

(j)
k )2, (4)

th

Dimension 1

D
im

en
si

on
 2

Fig. 1: Cluster mapped to a d-dimensional space (d = 2)
and demonstration of Hc calculations. Nodes are assigned
coordinates in this space, which combine to represent cluster
information. To compute Hc, for every node N(i) we count
how many other nodes lie within distance th and perform the
mentioned operations.

and th is a predefined threshold value. We define I{∗} in
Eq. (3) as an indicator:

I{∗} =

{
1, Given condition ∗ is satisfied,
0, Otherwise.

(5)

The calculation process in Eq. (3) works as a two-step pro-
cess. First, it iterates through every node N(i) (1 ≤ i ≤ n) and
counts how many nodes (including itself) lie within a predeter-
mined distance th (calculated by

∑n
j=1 I{ρ(N(i),N(j)) ≤ th})

of the current node. Second, all counts are aggregated and
normalized to a value between 0 and 1. The normalized value
is subtracted from 1 to ensure that the higher heterogeneity
of a cluster produces a higher HeteroScore value. A similarity
threshold is applied to quantize the vector differences to be
either 1 or 0. The calculation process is depicted in Figure 1
for a 2-dimensional space.

There are a few notable features of HeteroScore (Hc).

Range. Due to the definition of I{} and the process of
summation, it is obvious that

0 <
n∑

i=1

n∑
j=1

I{ρ(N(i),N(j)) ≤ th} ≤
n∑

i=1

n∑
j=1

1 = n2. (6)

Hence:
0 ≤ Hc < 1. (7)

Generalizability. With the normalization step in Eq. (3),
we are able to derive the proportion of nodes similar to each
other of the exact number of nodes. Also, in the calculation
process, we do not consider specific hardware label-value pairs
or features. Therefore, the values of Hc can be compared
across clusters of different sizes and settings.

Determining factor. Since during the computation pro-
cess, we only consider cluster settings and ignore user-side
information and run-time states, the only factor that influences
Hc is how cluster managers configure and expose information
about their clusters to users. Hc is hence a suitable metric
to quantitatively measure the heterogeneity of a cluster as
exposed to an application by the cluster manager.
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B. Algorithm

Although the calculation in Eq. (3) is relatively straightfor-
ward, there are more practical considerations in its algorithmic
implementation in the real world. This subsection provides
details as to how HeteroScore can be calculated for a real-
world cloud computing cluster.

Please note that in this subsection, the use of notation N(i)

refers to the assigned coordinate vector of the corresponding
node in the d-dimensional space, as shown in Eq. (1).

1) Assigning Coordinates to Nodes: In a real-world cluster
setting, certain information in the metadata may be missing,
i.e., the values of some labels may be missing. Our previ-
ous discussion assumes that all label-value pairs are always
available. However, that is not always the case and this
scenario needs to be carefully handled to generate suitable
representations that are consistent with theory. A portion of
our algorithm will be dedicated to policies that properly define
and assign missing values to these nodes.

In our implementation, we:

1) gather and number labels that appeared in the meta-
data of the cluster nodes, define the values of all
labels that have appeared, and generate axes for the
d-dimensional space that represents the cluster;

2) generate corresponding coordinates according to the
description of each node.

The first step is done by iterating through the metadata
of all nodes and recording description labels and correspond-
ing values that have appeared. Once this is completed, the
dimension d is determined. The mapping between label values
and numbers is then defined. In this paper, we only assign
integer numbers to each value. We assume the corresponding
value-number mapping of the cluster is stored in V and can
be accessed by V(k, v), where k is the assigned dimension
number of a label, and v is the label value, i.e., V(k, v) returns
a number corresponding to the value for the k-th label. In the
process of constructing this mapping we let V(k, v) > 0 if k
is a valid label.

In the second step, we process coordinates according to
node metadata information. In the first step we parse every
node’s metadata and stored related “label-value” pairs in K(i)

(1 ≤ i ≤ n) as:

K(i) = {v(i)1 , v
(i)
2 , ..., v

(i)
k , ..., v

(i)
d }. (8)

Here, vk is the value matching the k-th label. vk can be
assigned a special value ϕ if the value of the label is missing in
the description of a node. We define V(k, ϕ) = 0. Coordinates
N(i) will be generated based on K(i).

There are two cases:

• Fully defined nodes: all d labels have a label;

• Partially defined nodes: values of 1 or more label fields
are missing.

For fully defined nodes, a simple assignment policy is enough
to generate coordinates based on K(i). We call this policy as
Trivial Assignment. For partially defined nodes, we consider

≻

N(a) N(b)

N(c)

Fig. 2: The diagram of constructed data structure. The rep-
resentation of a cluster can be parsed to multiple tree-like
data structures in the diagram. In this figure, N(a) ≻ N(c),
N(b) ≻ N(c), and N(c) is a leaf node.

relations with other nodes to assign coordinates. This policy
is called as Relation-based Assignment.

Trivial assignment. We apply a mechanical assignment
policy shown in Algorithm 1 to all nodes. After executing

Algorithm 1 Trivial assignment of N(i).

Require: C, K(i) (for 1 ≤ i ≤ n), V .
function TRIVIALASSIGNMENT(K(i), V)

for k in 1..d do
x
(i)
k = V(k, vk)

end for
return (x

(i)
1 , x

(i)
2 , ..., x

(i)
k , ..., x

(i)
d )T

end function
for N(i) in C do

N(i) = TRIVIALASSIGNMENT(K(i), V)
end for

TRIVIALASSIGNMENT for every node, (1) coordinates of fully
defined nodes will be non-zero values and the assignment
process is finalized; (2) partially defined nodes will contain
0s in their coordinates.

Relation-based assignment. To generate coordinates that
do not contain 0s, we will apply a predefined assignment
policy. Firstly, we define relations between nodes notated: =,
̸=, ≻ and ≺:

For indexes i, j (1 ≤ i, j ≤ n), let δ = {k | x(i)
k ̸= x

(j)
k }.

Definition 1: If δ is empty, we say N(i) = N(j).

Definition 2: If ∀k we have x
(i)
k = 0 and x

(j)
k ̸= 0, we say

N(i) ≻ N(j) or N(j) ≺ N(i).

Definition 3: If none of the following relations hold:
N(i) = N(j), N(i) ≻ N(j) or N(i) ≺ N(j), we say N(i) ̸= N(j)

In our definition of this type of relations, if N(i) ≻ N(j),
node N(j) is described with more details and hence contains
more label-value pairs in the description metadata. With this
definition, we are able to construct multiple tree-like data
structures from the coordinates obtained from step 1, as shown
in Figure 2. We define some features of such data structure:

1) If N(c) is the child of N(p), then N(c) ≺ N(p);
2) Overlapping of trees is allowed, and a node can

appear in multiple different trees.

We can prove the following Lemma:

Lemma 1: Fully defined nodes can only be leaf nodes.
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Proof: Assume there is a fully defined node N(a) which
is not a leaf node, i.e., ∃N(b) s.t. N(a) ≻ N(b). In this case,
according to Definition 2 ∃k s.t. x(a)

k = 0, which contradicts
our assumption that N(a) is fully defined.

Once constructed such data structures, for every partially
defined node N(i) we can recursively search for leaf nodes
in the same tree and store them in a set L(i). We define the
following policy:

Policy 1: We do the following to assign coordinates to
N(i):

1) For all partially defined nodes N(j) in L(i), for every

index k s.t. x(j)
k = 0, let x(j)

k =

∑n
l=1 x

(l)
k∑n

l=1 I{x
(l)
k ̸= 0}

.

2) For every index k s.t. x
(i)
k = 0, let x

(i)
k =∑

N(j)∈L(i) x
(j)
k

|L(i)|
.

Policy 1 does two things. (1) It first processes coordinates
of partially defined leaf nodes in L(i). For every dimension, it
iterates through the coordinates of all nodes in C and calculates
the average of non-zero entries for this dimension. Then it
uses these values to update zero entries in the coordinates
of leaf nodes. (2) Secondly, it uses the processed leaf node
coordinates to update N(i). It calculates average coordinates
in L(i) and uses the results to update zero entries in N(i).
The reason for using this policy is that during the scheduling
process if a user does not provide a specification for a certain
feature domain, all nodes that satisfy other requirements, either
with/without a description in that feature domain, will be
considered candidates. Policy 1 places all partially defined
nodes in balanced positions to consider this scheduling effect.

The algorithm to construct such data structures and assign
coordinates is shown in Algorithm 2. Here, we first use a
matrix R that is similar to an adjacency matrix to record all
relations between nodes and hence finish the construction of
the proposed data structure. Then we apply Policy 1 and finish
assigning coordinates to every node in C.

Algorithm 2 Constructing relation data structures and assign-
ing coordinates.
Require: C after executing TRIVIALASSIGNMENT on every node.

R = {rij}n×n = {≠}n×n

for i in 1..n do
for j in i..n do

rij , rji = Relation between N(i) and N(j) (=, ̸=,≻,≺)
end for

end for
for all partially defined N(i) do

Perform depth-first search for leaves in R and store them in L(i)

Apply Policy 1 to N(i)

end for
return C

After this step, the representations of all nodes will be
completed. For any N(i) (1 ≤ i ≤ n) there is no 0 component.

2) Calculating HeteroScore: Algorithm 3 calculates Hc

based on the acquired coordinates and the computation shown
in Eq. (3).

Algorithm 3 Calculation of Hc.
Require: Cluster representation C with coordinates fully assigned, number

of nodes in cluster n.
s = 0
for i in 1..n do

for j in 1..n do
s = s+ I{ρ(N(i),N(j)) ≤ th}

end for
end for
return Hc = 1−

s

n2

(x1, x2, x3, ..., xn)
(May include 0s)

Label-Value Metadata

Initial Coordinates

(x1, x2, x3, ..., xn)
(May include 0s)

(x1, x2, x3, ..., xn)
(Do not include 0s)

(x1, x2, x3, ..., xn)
(Do not include 0s)

Initial Coordinates

Final Coordinates

Final Coordinates

HeteroScore

Fig. 3: 3 stages of Hc calculation.

After executing Algorithm 3, HeteroScore Hc of a cluster
viewed from users is determined.

In summary, Algorithm 1 initializes all coordinates for
every node. Algorithm 2 processes the case that label-value
pairs are missing in some nodes and assigns proper coordinates
according to a set of predefined rules. Finally, with Algorithm 3
the computation in Eq. (3) is performed and Hc is determined.
The summary diagram is shown in Figure 3.

3) Elaboration: In this paper, the metric HeteroScore Hc

is an indicator of the heterogeneity of a cluster viewed from
a user. Cluster managers can make design choices based on
HeteroScore and control the level of heterogeneity information
exposed to users and take measures to defend against co-
location attacks.

Selection of th in the calculation process of HeteroScore
Hc. The value of th can be considered the threshold of sim-
ilarity. A smaller th value indicates more strict requirements
for nodes to be considered similar during scheduling, i.e., the
geometric representation of two nodes in the representation
space should be closer for them to be considered similar.
Choices of th affect the calculation results of HeteroScore Hc;
hence designers should make the trade-off in the selection of
th.

Dealing with Real-World Label-Value Pairs. In our
calculation process, we assign an integer value to each value
in the label-value pairs and generate coordinates accordingly.
However, in practice, since these values are usually categorical
and are not continuous, it may not be suitable to process node
information using this method. We suggest cluster managers
use one-hot encoding to split one such dimension into several
dimensions and continue using the proposed algorithm to
calculate HeteroScore.

V. MITIGATING CO-LOCATION ATTACKS

Based on the computation results of HeteroScore Hc, we
are able to derive mitigation strategies toward co-location steps
at the scheduler level.
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A mitigation strategy is discussed in [22]. In the authors’
strategy, during the scheduling process, some nodes are listed
as candidates without fully examining whether their features
can match users’ specifications. Therefore, the search space
is enlarged, resulting in increased difficulty in achieving co-
location. To relate this approach to HeteroScore, we consider
the calculating process of Hc. This approach is equivalent to
randomly selecting some nodes and manually setting the rep-
resentation of these nodes to the same position in the mapped
space that satisfies users’ requirements during the scheduling
process. With this step, part of the cluster’s heterogeneous
nodes are replaced by a set of homogeneous nodes; hence
HeteroScore Hc drops. Therefore, the discussed strategy in
[22] can be seen as a coarse-grained approach (node-level) to
reduce HeteroScore.

Inspired by the calculation process of HeteroScore, we
can have a more fine-grained mitigation strategy to reduce
the cost of mismatching users’ requirements. We propose a
strategy called Hiding-Label-defense (HLD). We assume that
cluster managers can dynamically change the parameters of the
scheduler. While maintaining a cluster, cluster managers can
randomly select a set of labels to hide from users for a period
of time, i.e., configure the scheduler to ignore information
related to these labels during scheduling. This label-hiding
process will be integrated to the scheduler by default; however,
performance-sensitive users still have the chance to specify
hard requirements to run on servers with certain features.
Users will not have knowledge regarding which labels are
hidden and non-performance-sensitive users will operate as if
the defense is not deployed. By doing this, from the users’
view, the cluster is described in fewer details; hence the
search space for the attacker to achieve co-location will be
larger. To relate this defense strategy with HeteroScore, we
observe that after applying this strategy, several of the d
dimensions are reduced, and the calculation of Hc is performed
in a lower-dimensional space. Qualitatively viewing Eq. (3),
reducing dimensions leads to an increased number of pairs
(i, j) satisfying ρ(N(i),N(j)) < th hence Hc will decrease. In
this way, HLD reduces HeteroScore and hide heterogeneity to
users.

To get a more balanced reduction instead of mechan-
ically hiding the same label, we propose another strategy
called Randomly-Hiding-Label-defense (R-HLD). R-HLD
randomly ignores label-values pairs in the scheduling con-
straints submitted by users with a specified probability phide.
Compared to HLD, which selects labels and hides the same
labels in each node, R-HLD hides different labels in nodes and
can achieve a more balanced sacrifice in performance. Same
as HLD, users still have the chance to select whether or not
and to what extent to involve in the defense by choosing the
parameter phide. To relate R-HLD with the calculation of Hc,
we observe that R-HLD is equivalent to randomly selecting
and setting coordinate components of N(i) (1 ≤ i ≤ n) to 0,
which adds more homogeneous points to the point set hence
making the d-dimensional space less sparse.

Compared to the coarse-grained approach [22], HLD and
R-HLD are more controllable regarding the sacrifice of mis-
matching users’ requirements. Also, the cluster managers can
have better control regarding the outcome of the scheduling
algorithm. Though the cost seems relatively high, we allow

users to flexibly select whether or not to involve in the defense
process and choose the level of protection. Also, in practice,
R-HLD and HLD do not necessarily need to be applied to
all labels – cloud managers can select relatively unimportant
features to perform these defense operations.

VI. EVALUATION

A. Calculation Results in Simulated Cluster

In this part of the evaluation, results are obtained via
behavioural simulation. Our goal in this part is conceptually
validating our theory with a focus on how HeteroScore is re-
lated to cluster heterogeneity as well as providing visualization
results of the previously proposed method.

1) Experiment Setup: Our simulator randomly constructs
information about a cluster based on user-provided number of
total nodes in the cluster, total number of labels in the cluster,
etc. In our experiment, we limit the number of nodes to 100. In
every experiment, we randomly re-generate a cluster according
to rules specified as follows. We repeat a node generation
process 100 times to generate label-value description metadata
of 100 nodes. Within each node, we randomly generate a list
of integers of length nl to represent the label values of the
corresponding nl labels. We define nc as the number of choice
values in each label-value pair. Every element in the integer
list has a value between 0 and nc (including 0 and nc), where
0 means the corresponding label value is missing.

2) HeteroScore Results and Visualization: We provide the
calculation results of a simulated cluster in this part. To
simplify the visualization, we limit the number of labels to 3
(i.e., nl = 3). According to our algorithm, we can derive that
d = 3 and the whole cluster will be mapped to a 3-dimensional
space.

We provide visualization results of our cluster represen-
tation in Figure 4. In this experiment, we vary nc, which is
the number of candidate values for each label-value pair and
provide the visualization results of the cluster and calculate
the corresponding HeteroScore of the generated cluster. The
probability that a label-value pair is missing in a node’s
description metadata is 20%. Figure 4 shows that:

1) As the number of candidate values for each label-
value pair nc increases, the possible number of label-
value pairs increases as well, resulting in a more
heterogeneous cluster. This change in heterogeneity
(diversity) in a cluster is reflected in the sparsity
of the corresponding visualization results. As nc

increases, the point set constructed by the represen-
tations of nodes becomes more and more sparse in
the 3-dimensional space.

2) This change in the sparsity of the point set of node
representations is captured and reflected in the calcu-
lation results of HeteroScore Hc. As nc increases, the
constructed cluster becomes more and more heteroge-
neous, and the quantitative metric Hc hence increases
from 0 (homogeneous cluster) to approximately 1
(very heterogeneous cluster).

Results shown in Figure 4 prove that our proposed method
of calculating HeteroScore is able to capture the sparsity in
the geometric representation of the cluster, hence reflecting
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the heterogeneity of a cluster. Also, as a byproduct, our repre-
sentation of a cluster can be easily visualized and presented,
which can work as a visualization step for cluster designers to
better understand the setting of a cluster.
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(f) nc = 6, Hc =
0.9704.

Fig. 4: Visualization results of a cluster representations and
calculation results of HeteroScore Hc under different nc set-
tings. As nc increases, the point set representation of the cluster
becomes more and more sparse, and HeteroScore Hc increases.
To clearly show the representations of a cluster, for each node,
we randomly add small perturbations to its coordinates to avoid
multiple points with the same coordinates crowding at the same
position when plotting these points.

In a real-world scenario, some settings may change: the
number of labels in the cluster nl will change and possibly
have a value larger than 3, the number of possible values can
vary, etc. However, since our calculation process relies on none
of these parameters, our metric can still be applied to measure
the heterogeneity of a cluster.

3) Parameter Choices: To evaluate how the design param-
eters may affect HeteroScore calculation, we change the value
of threshold th in Eq. (3) and compare the calculation results
of one-hot-encoding coordinate assignment and continuous
coordinate assignment, as discussed at the end of Section IV.
The results are shown in Figure 5.

From Figure 5, we can see that: (1) Different selection
of th result in different Hc values. While under th = 1
both categorical and continuous coordinate assignments show
similar results, higher th values cause Hc to be different. Also,
under a relatively high value (th = 3), one-hot-encoding as-
signment does not perform well in capturing the heterogeneity
of the cluster anymore. (2) Though under th = 1 the two
methods have similar results, the counter-intuitive continuous
coordinate assignment policy is more robust when th changes.

Based on the results, we conclude that continuous value
assignment is better: under lower th settings, it achieves similar
results as categorical value assignment and is more robust
under higher th values. In this paper, we will select th = 1
to make Hc more sensitive to heterogeneity changes and

show that even this trivial selection is sufficient to capture
heterogeneity in a cluster, though, as shown in Figure 5 higher
th values like th = 2 can be better choices in reality.

4) The Effects of Mitigation Strategy on HeteroScore:
This part showcases how our mitigation strategies affect Het-
eroScore. First, we construct random clusters using our previ-
ously mentioned simulator, then apply our proposed mitigation
strategies to see how HeteroScore Hc is affected. We follow
the settings of the previous experiment, where there are 3 labels
for nodes, and each label has 6 possible values. Corresponding
HeteroScore results, as well as visualization results, are shown
in Figure 6.

To compare the results of R-HLD and HLD, we control
the total number of labels hidden to be equal in these two
scenarios. In Figure 6, we set the hiding probability phide of
R-HLD to 0.33 and 0.67, respectively to compare with hiding
1 and 2 labels in HLD. In Figure 6b and Figure 6c, Figure 6d
and Figure 6e, the numbers of labels hidden in R-HLD and
HLD are approximately the same (e.g., the number of labels
hidden by (1) applying HLD to hide 1 of the 3 dimensions, as
shown in Figure 6c equals to (2) applying R-HLD to randomly
hide labels with a probability of 0.33, as shown in Figure 6b,
etc.). From the Hc results in Figure 6, we can see that:

1) With approximately the same number of labels hid-
den, both R-HLD and HLD achieves the same effect
of HeteroScore reduction, i.e., Hc is reduced to
approximately the same level.

2) In HLD, deterministically hiding labels results in
dimension reduction of the space of a cluster.

3) Applying R-HLD results in a denser point set in the
d-dimensional space.

The choice of R-HLD and HLD will be further discussed in
Section VII.

B. Relating HeteroScore with Security

In this part, we present results through experiments in a 40-
node Kubernetes cluster. We first show the relation between
HeteroScore and co-location rate, and then we present how
our HLD and R-HLD mitigation strategies can decrease the
co-location rate. Finally, we provide a case study of applying
HeteroScore to clusters in a production environment.

1) Experiment Setup: Due to the limited access to large
scale hardware, our experiments are deployed on a 40-node
Kubernetes cluster on CloudLab [21]. CloudLab is a platform
that provides dedicated cluster nodes for researchers to deploy
cloud systems. We utilize the default k8s profile to deploy
a Kubernetes cluster [4]. Our results obtained on Kubernetes
is representative since (1) Kubernetes is widely used and the
same type of schedulers are widely used in other types of cloud
infrastructure [6], [7], (2) our focus is only on the scheduler
part; hence the selection of specific cloud framework is not
important.

Nodes in our cluster are all configured to have 10 label-
value pairs in their corresponding metadata description fields.
Because we cannot control the hardware or low-level system
environments in CloudLab cluster, we assign these label-value
descriptions only for scheduling purposes. These label-value
pairs resemble the setting in a real cloud, containing: GPU
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(a) th = 1. (b) th = 2. (c) th = 3.

Fig. 5: Hc scores under different th and encoding settings.
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(e) HLD, 0.7118.

Fig. 6: Effects of our proposed mitigation strategies on Het-
eroScore Hc. In (b) and (c), approximately 33% of labels are
hidden either by random selection (R-HLD), or by determin-
istically hiding certain labels (HLD). In (d) and (e), 67% of
labels are hidden.

type, CPU type, memory type (high, medium or low capacity),
disk type (local SSD or not), network bandwidth, region,
partition, operating system version, FPGA type and security
level.

Since our evaluation in this part does not involve per-
formance analysis, symbolically assigning such description
information to nodes is acceptable. To better simulate a
production environment cluster, numbers of possible values
are not fixed for each label. For each label field, there
can be 2 to 7 different available values to choose from.
These descriptions are randomly generated and assigned
to nodes in our cluster using kubectl label nodes
<node name> <label>=<value> command.

To mimic the execution environment in real world, applica-
tions to be deployed on the cluster are selected from the most
widely used container applications from Docker Hub [2]. To
generate a job on the cluster, we randomly select an application
type out of 6 types of container applications and generate
its required .yaml metadata file that contains basic infor-
mation as well as scheduling constraints. We generate 1400
applications in each experiment, with: (1) 200 applications
as victim instances of 200 separate, independent co-location

attacks; (2) 200 applications as attack instances of the 200 cor-
responding co-location attacks; and (3) 1000 applications are
considered as background applications to provide background
contention/noise in a real multi-user environment. Here, each
attack instance only targets one victim instance.

Regarding scheduling constraints, we assume all users use
Node Affinity features [4], [23] to fine-tune scheduling results
and force the cloud scheduler to assign a node with specified
features. Also, attackers take the approach described in [22]
to replicate the scheduling constraints of victims to maximize
the probability of achieving co-location.

We set up machines and assign full node descriptions to
each node without empty label-value pairs, i.e., for every node,
each of the 10 label fields is assigned a value. Each experiment
consists of three phases: (1) generating .yaml files for the
1400 involved applications; (2) useing kubectl apply -f
<job name>.yaml command to deploy all applications
to the cluster; (3) collecting and analyzing pod (Kubernetes
container instance [4]) information to obtain the co-location
rate of attackers.

2) Relation between HeteroScore and Co-Location Rate:
In this part, we show the relation between HeteroScore and
co-location rate. To obtain clusters of different HeteroScore
from users’ view, we change the generation script of nodes
and applications (HLD is involved in the generation process to
produce cluster views with different HeteroScores), calculate
the resulting HeteroScores, deploy applications, and collect co-
location data. The results are shown in Figure 7.

Fig. 7: The relation between HeteroScore and co-location
rate. The two orange points show clusters that have the same
number of labels hidden but different HeteroScores, and hence
co-location rates are different.
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In Figure 7, we can see that co-location rate and Het-
eroScore are correlated. As HeteroScore increases, the co-
location success rate of attackers increases as well. The fastest
increase in co-location rate occurs at higher HeteroScore
values.

The trend in Figure 7 can be explained as follows. When
HeterScore Hc is lower, which indicates a lower heterogeneity
in the cluster, there are more schedulable nodes for each sub-
mitted application. The search space for schedulers shrinks as
HeterScore Hc increases, which results in more deterministic
scheduling results. Attackers can hence achieve co-location
with a higher success rate. As HeteroScore Hc is related to the
average number of similar nodes in the cluster, in clusters, with
higher heterogeneity (i.e., higher HeteroScore), the change in
the value of HeteroScore indicates a larger change in the size
of search space hence the co-location rate increases faster.

It is worth noting that in [22] the authors conclude that
when affinity features are used more often (users use more
labels), co-location can be achieved with a higher success rate.
Here, we argue that this observation is not accurate enough but
can still be explained by HeteroScore. Usually, when fewer
labels are used by users, from the users’ view, the cluster is
less heterogeneous with a lower HeteroScore. However, this
is still related to features of node labels, and there can be
counterexamples. In Figure 7, there are two points in the scatter
plot that are marked as orange. For these two experiments,
the numbers of labels contained in users’ scripts are the same
(both 7, with 3 labels that are hidden). The difference lies in
the selection of labels to hide and the resulting HeteroScore.
We can see from Figure 7 that though the numbers of labels
users use are the same, co-location rates are different. However,
it still matches our conclusion above that higher HeteroScore
leads to a higher co-location rate.

In conclusion, our experiment results shown in Figure 7
prove that HeteroScore is correlated with the co-location
success rate an attacker can achieve and hence, Empirically,
under th = 1, keeping a HeteroScore under 0.9 can lead to
co-location rates that are low enough to be threats for cloud
users. HeteroScore can be a quantitative metric to evaluate the
security level of a cluster against co-location attacks.

In addition, to further show how HeteroScore is related to
co-location rate and the threat level a cloud provider may face,
we set up experiments in the simulator mentioned in [22]. In
this set of experiments, we vary the size of the target cluster
and HeteroScore Hc, then run scheduler simulation for over
10000 instances. The results are shown in Table I.

The results show that for a given HeteroScore, larger
clusters tend to be less vulnerable to co-location attacks due
to the larger scheduling space of the scheduler. However,
attackers can still achieve an acceptable co-location success
rate if they can increase the number of attack instances and
the HeteroScore of a cluster is high. Unfortunately, commercial
cloud infrastructure details, such as numbers and types of
servers, are not available to the general public. Therefore, we
were not able to calculate the exact HeteroScores for commer-
cial clouds. Nonetheless, due to the size/scale and applications
of commercial clouds, they tend to contain heterogeneous
servers and a large number of identical servers from each
server type, which are factors for a low HeteroScore. Lastly, for

TABLE I: Co-location rates for varying cluster sizes and
degree of heterogeneity.

#. of Nodes Hc
Co-location Rate

1-Instance Attack 10-Instance Attack

100

0.9878 51.16% 92.65%
0.9497 34.04% 65.88%
0.7126 11.10% 37.42%
0.4070 4.07% 26.33%

0 1.12% 8.09%

1,000

0.9975 41.53% 79.20%
0.9522 15.89% 37.30%
0.7381 13.78% 22.74%
0.4084 7.74% 12.35%

0 1.90% 3.23%

10,000

0.9988 19.88% 65.23%
0.9437 14.06% 44.09%
0.7335 7.33% 28.81%
0.4138 6.42% 9.40%

0 0.80% 0.87%

smaller and more heterogeneous clusters, co-location attacks
and subsequent micro-architectural attacks can be a real threat.

3) Effects of Proposed Mitigation Technologies: This part
shows how our proposed mitigation technology can help re-
duce the co-location threat in a real cluster. We apply HLD and
R-HLD respectively, calculate HeteroScore for each parameter
setting and collect co-location results on our cluster. In our
experiment, to implement mitigation, we only add correspond-
ing rules to our generation scripts of .yaml files. In the
generation step, these rules can be considered an intermediate
layer in the scheduler that processes user-submitted scheduling
requirements. For HLD, we deterministically delete specified
label description fields in .yaml files. For R-HLD, we delete
label description fields with a preset probability. The results
are provided in Figure 8.

To evaluate HLD, we change the number of labels hidden
from users. Results in Figure 8a show that HLD can decrease
the HeteroScore in our cluster, and applying HLD decreases
the co-location rate attackers can achieve hence protecting the
cluster from co-location attacks. Furthermore, the co-location
rate drops as more labels are hidden, eventually reaching
a value near 0 when all labels are hidden, and the cluster
becomes homogeneous.

Similarly, in Figure 8b we change the parameter phide in
R-HLD and present HeteroScores as well as co-location rates.
We can see that R-HLD has similar effects on Hc and achieves
similar co-location reduction trends. As phide increases, co-
location rate drops and reaches a value close to 0 when on
average 90% of labels are hidden (phide = 0.9) and the cluster
becomes nearly homogeneous.

We also compare R-HLD with the mitigation strategy
proposed in [22], as shown in Figure 8c, since both rely on
bringing randomization controlled by probability parameters
(e.g. phide in R-HLD). It is worth noting that in [22], the
corresponding parameter p is related to the probability of
skipping node filtering, which is not directly related to labels,
unlike in R-HLD. Same as [22], we perform behavioral sim-
ulation, use the percentage of user applications that can meet
their scheduling requirements (named Affinity Satisfaction)
and the number of violated labels as metrics for cost. We
use co-location rate reduction (%) to represent mitigation
performance. We can see that the method proposed in [22]
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(a) Results of applying HLD. (b) Results of applying R-HLD. (c) R-HLD vs mitigation proposed in [22].

Fig. 8: Effects of proposed mitigation strategies HLD and R-HLD. In (a), how co-location rates change when more labels are
involved in HLD. In (b), how co-location rates change with phide. In (c), we compare our method with literature [22].

is more sensitive to parameter changes when p is small: with
small parameter changes, the mitigation method in [22] brings
higher reduction and higher costs. But both methods achieve
similar performance when costs are similar (when p is close
to 1). Compared to [22], curves of R-HLD are more smooth,
indicating better controllability.

For evaluating the loss of performance, power, etc., at
cloud scale, obtaining representative/accurate results is very
challenging. This is not only due to the limited access to
heterogeneous clusters in CloudLab, but also because there
are various ways for cluster managers to configure nodes, and
different configurations may result in totally different evalua-
tion results. We only show an example regarding performance
loss in the next part.

C. Case Study of University Clusters

To the best of our knowledge, infrastructure information
regarding numbers of machine types in a cluster is not available
to the public. Thus, we utilize two university clusters from
High Performance Computing Center of University of Califor-
nia, Davis (HPC1 Cluster and Genome Center Bioinformatics
Cluster, denoted as Cluster A and Cluster B respectively) to
perform real-world data analysis and try to provide an example
of performance loss due to mitigation.

Both Cluster A and Cluster B are managed by
SLURM [54], with 73 and 194 servers available to users,
respectively at our experiment time. In Cluster A, users are able
to select nodes by choosing partitions when submitting tasks
to the cluster. There are 6 partitions in the cluster (priority
partitions: Low, Med, High; GPU partitions: GPU, QiGPU,
ZdingGPU), and these partitions can overlap. All partitions
are defined by the cluster manager. In our processing, we
split the partition to 6 one-hot-encoding labels and perform
HeteroScore evaluation.

In Cluster B, however, machines are divided into 6 non-
overlapping manager-defined partitions. Since these partitions
are non-overlapping, we can directly plugin our proposed
metric to perform HeteroScore evaluation without the need
to split labels. Besides this dimension, it also allows users to
specify GPU resources to use and choose to run on nodes with
different network bandwidths.

1) HeteroScore Evaluation: We perform our HeteroScore
evaluation on the two clusters. For each cluster, we expose
different sets of labels and calculate the resulting HeteroScore
Hc. The results are shown in Figure 9.

For Cluster A, we choose to expose 4 sets of labels and
calculate the corresponding Hcs respectively. We can see from
Figure 9a that most nodes are included in Partitions named
Low and Med, since the resulting HeteroScore is low when
only exposing these two labels to users. By exposing GPU-
related labels (GPU, QiGPU and ZdingGPU) to users, Het-
eroScore increases significantly. Also, exposing High Partition
for users to choose from also contributes to the heterogeneity
of the cluster. After combining all labels, we obtain the highest
HeteroScore, since all selected heterogeneity information is
now exposed to users.

For Cluster B, we follow the same procedure and expose 4
sets of labels to users as well. We can see from Figure 9 that
the Partitions and GPU dimensions do not contribute much to
heterogeneity. But with the Bandwidth dimension introduced,
HeteroScore increases significantly. Same as in Cluster A, after
combining all labels, we obtain the highest HeteroScore. From
the HeteroScore results we obtain, we can see that both clusters
are relatively homogeneous. However, in a cluster where there
are users with more diversified needs, service providers will
introduce more diversified hardware and expose these features
to users. The HeteroScore will hence be higher.

2) Performance Impact of Mitigation: To give a real-
world example of a performance impact when employing
our proposed mitigation strategies, we conduct an experiment
on Cluster B. Due to the access to heterogeneous hardware,
we only select to hide one label related to network perfor-
mance (Bandwidth) and show the impact of our mitigation
on the performance of different benchmarks. We utilize a
network benchmark that downloads contents from the Internet
(called Download Benchmark) to represent applications that
are affected by this label and a computation benchmark from
Rodinia benchamrk set (Hotspot OpenCL build) [16] to rep-
resent applications that are not affected by this label. These
applications are run on single machines and are submitted in
batch. Our goal is to provide a real-world case study for the
performance impact of hiding one label, where applications
that are either affected or not affected by this label are
involved.

11



(a)

Cluster Label Set Labels

Cluster A

1 Partition: Low, Partition: Med
2 GPU-related labels
3 Partition: High

4
Partition: Low, Partition: Med,

Partition: High, GPU-related labels

Cluster B

1 Partitions
2 Partitions, GPU
3 Bandwidth
4 Partitions, Bandwidth, GPU

(b)

Fig. 9: Results obtained from our university clusters. (a) Hc calculation results. (b) Label information.

Within the Bandwidth dimension, there are two possible
values. There are 26 nodes labelled as “10G Bandwidth” (re-
ferred to as “matching machine” later) and 131 nodes labelled
as “1000M Bandwidth” (called “non-matching machine” later).
Download Benchmark downloads a 10MB file for 100 times
to stress the network. Rodinia-Hostpot, on the other hand, is a
network-agnostic application. We deploy these benchmarks to
different sets of machines and collect run time and schedule
time data. In this way, we simulate a scenario where cloud
manager selects Bandwidth label to hide. We are able to
summarize the performance impact of hiding a single label
from the collected data. The results are shown in Figure 10,
Figure 11 and Figure 12.
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Fig. 10: Normalized runtime of benchmarks.

Figure 10 shows the comparison of our benchmarks run-
ning on matching machines and non-matching machines. We
show the normalized run time of our benchmarks. For each
run time data point, we divide itself by the average run time
of its benchmark class. We can see that the normalized run
time is more concentrated on matching machines, which means
more applications are able to benefit from heterogeneity-aware
scheduling decisions. However, the lowest normalized run
times are similar and the median normalized run time of non-
matching group is even lower, possibly due to the large portion
of benchmarks that are not affected by this label being hidden.

Figure 11 shows the overhead of execution time brought
by our label-hiding defense. In our experiment, we vary the
CPU and memory configuration and deploy on matching and
non-matching machines respectively. The overhead data is
calculated by run time on non-matching machine divided by
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run time on matching machine. We can see that for our
download benchmark, overhead is higher, but in some cases
due to the randomness of execution environments overhead
could be lower than 1x. For Rodinia-Hotspot benchmark, the
overhead is generally around 1x, i.e., hiding the selected label
does not affect performance. The reported mean overheads are
0.95x for Rodinia-Hotspot, 1.45x for Download Benchmark
and 1.20x for all applications. Download Benchmark seems
to suffer the most from the defense mechanism; however,
as we mentioned before, performance-sensitive users can still
specify hard requirements to schedulers in our defense, hence
this is only the maximum possible overhead for Download
Benchmark. We conclude that as a selective defense mecha-
nism, since not all user instances are affected by the selected
label and users have the right to choose whether or not to be
restricted by the defense strategy, the overhead can be mild.

Figure 12 shows the results of scheduling time. As
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expected, the time spent on scheduling is slightly higher
for applications that run on matching machines, since the
heterogeneity-aware decision process is relatively more com-
plicated. This can be reflected on elapsed time (time spent in
the scheduling queue plus execution time). It is interesting
to note that for applications that are only executed for a
short period of time, this difference in scheduling time can
compensate for the performance loss brought by hiding labels.
According to our results, since heterogeneous-aware placement
can take a longer time, for short-lived applications the elapsed
time may not be negatively affected much or can even be
improved. Considering elapsed time performance, the cost of
our mitigation can be even lower in a real-world scenario.

VII. DISCUSSION

A. Choices of Mitigation Strategies

We have proposed two mitigation technologies in this
paper, namely HLD and R-HLD. We have shown that both
mitigation techniques achieve similar performance in decreas-
ing co-location rates. However, it is not clear how to select
from the two methods.

In HLD, during the scheduling process, certain labels are
hidden from users; hence the costs of performance, power,
etc., are determined and in control by cluster managers. Cluster
managers can select which features to hide to reach the balance
point between sacrifice and decrease in co-location rate. In R-
HLD, scheduling constraints of users are randomly ignored;
hence the costs on metrics like performance, power, etc., are
not deterministic. However, since the probabilities of labels
being hidden are equivalent and are solely determined by phide,
R-HLD can achieve a more balanced sacrifice.

Designers can choose to use HLD or R-HLD based on
considerations of the cost. For example, if certain scheduling
constraints are not important and will not result in a serious
violation of the service level agreement (SLA), HLD can be
selected. If balancing the cost for not meeting scheduling
constraints is more important, R-HLD can be selected. In
practice, HLD and R-HLD can actually be combined. For
example, a set of labels can be chosen to apply R-HLD, i.e.,
only labels in this chosen set will be randomly selected and
be hidden from users. Also, phide does not need to be the
same for all labels. By setting different phide cluster managers
can define which labels are more important and hence has a
lower probability of being hidden, while certain labels can have
a higher probability of being hidden to reduce HeteroScore.
By exploring this design space of mitigation strategy, cluster
managers can find the most suitable solution to trade-off
reduction in co-location attack threat and the cost of mitigation.

Currently, our implementation of defense mechanisms is
only at the prototype stage. Our future work will integrate our
mitigation strategy into a real cloud framework and make it
available to the community.

B. Additional Information Related to Schedulers

During our experiments, we observed that the scheduling
algorithm in SLURM [54] in the university clusters presents
timing locality, i.e., the scheduler tends to assign the same
nodes for applications that are scheduled close in time, which

has also been reported in other infrastructures [45]. Due to
this reason, we did not perform a co-location attack evaluation
on the two SLURM-managed clusters. Also, we observed that
some nodes are constantly down/unschedulable, which further
narrows down the search space of a scheduler. Combined
with similar features, attackers can achieve an even higher co-
location rate in a heterogeneous cluster which can be a real
threat to non-malicious users.

VIII. RELATED WORK

Co-location attack is proposed and proved to be a possible
threat to cloud users by Ristenpart et.al [45]. By using brute-
force submission to maximize the chance of co-location and
network probing to detect co-location, the authors successfully
issued side-channel attacks on victim instances. Ever since
that, there have been various works targeting applying micro-
architectural attacks to cloud infrastructures [29], [57], as well
as defending against micro-architectural attacks on cloud [10],
[25], [58], [8], [32], [35], [14], [31], [30], [20].

In previous works regarding co-location micro-architectural
attacks on the cloud, only a few papers discussed scheduler-
level vulnerabilities. In [11], the authors propose that involving
randomness in the scheduling process help defend against
co-location attacks. In [49], VM placement vulnerabilities
are studied, and different attack strategies are tested, but the
security threat is not quantized. In recent years, a few works
have discussed scheduler-level co-location attacks. Makrani
et. al [39] target neural-network-based scheduling strategies
and prove that by generating fake traces to mimic micro-
architectural traces of victim instances, attackers could in-
crease the chance of getting co-located with victim instances.
A similar work [22] targets more widely-used schedulers
and showcases that if schedulers allow users to submit cer-
tain scheduling constraints, attackers can greatly increase the
chance of achieving co-location in a heterogeneous cloud by
replicating scheduling constraints submitted by victims.

Previous works on evaluating cloud heterogeneity mainly
focus on performance or performance simulation [26], [24],
[12], [55]. As far as we know, this study is the first work
to quantitatively evaluate the heterogeneous configurations of
cloud infrastructure and establish its relation with security.

Our work is also related to heterogeneity-related defense
technology. Previous related works focus more on quantita-
tively evaluating the defense mechanism and use heterogeneity
more as a defense instead of a vulnerability. Larsen et.al [36]
discuss how diversifying software distribution may enhance
security. Okhravi et.al [44] evaluate factors that can affect
dynamic platform defense and come up with generalized
quantitative models to calculate metrics like attacker success
rate, etc. Carter et.al [15] utilize a game theory approach,
quantitatively models the probability of success, and prove that
optimized platform selection-based dynamic platform defense
outperforms randomized strategies. In [27], Hu et.al propose a
method to utilize heterogeneity as a defense in cyber systems.
Similarly, Okhravi et.al [43] propose a defense mechanism
based on heterogeneity for infrastructure applications. Com-
pared to these works, our work is the first to quantitatively
measure heterogeneity in a cloud setting and relate hetero-
geneity to the emerging micro-architectural vulnerabilities in
the cloud.
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IX. CONCLUSION

In this paper, we propose HeteroScore, a metric to eval-
uate the heterogeneity of a cluster. We define and introduce
algorithms to calculate this metric and successfully set up a
link between this metric and the security level against co-
location attacks. Based on HeteroScore, we propose defense
mechanisms and validate the efficiency of such techniques.
HeteroScore can be considered a tool to guide the design and
configuration of clusters, as well as the design of scheduling
algorithms. Its relation with the security of a cluster implies
that gain in performance by utilizing heterogeneity comes with
security vulnerabilities as costs. Therefore, cluster managers
should use HeteroScore as a tool to explore the design space of
cluster and scheduling algorithms, determine what information
can be securely exposed to users, and properly make trade-offs
between security and performance.
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