
Browser Permission Mechanisms Demystified

Kazuki Nomoto∗, Takuya Watanabe†, Eitaro Shioji†, Mitsuaki Akiyama† and Tatsuya Mori∗ ‡ §
∗Waseda University

Email: {nomotokazuki,mori}@nsl.cs.waseda.ac.jp
†NTT Social Informatics Laboratories

Email: {takuya.watanabe.yf, eitaro.shioji.es}@hco.ntt.co.jp, akiyama@ieee.org
‡National Institute of Information and Communications Technology

§RIKEN Center for Advanced Intelligence Project

Abstract—Modern Web services provide rich content by ac-
cessing resources on user devices, including hardware devices
such as cameras, microphones, and GPSs. Web browser vendors
have adopted permission mechanisms that achieve appropriate
control over access to such resources to protect user privacy. The
permission mechanism gives users the ability to grant or deny
their browser access to resources for each website. Despite the
importance of permission mechanisms in protecting user privacy,
previous studies have not been conducted to systematically
understand their behavior and implementation. In this study, we
developed PERMIUM, a web browser analysis framework that
automatically analyzes the behavior of permission mechanisms
implemented by various browsers. Using the PERMIUM frame-
work, we systematically studied the behavior of permission mech-
anisms for 22 major browser implementations running on five
different operating systems, including mobile and desktop. We
determined that the implementation and behavior of permission
mechanisms are fragmented and inconsistent between operating
systems, even for the same browser (i.e., Windows Chrome vs.
iOS Chrome) and that the implementation inconsistencies can
lead to privacy risks. Based on the behavior and implementation
inconsistencies of the permission mechanism revealed by our
measurement study, we developed two proof-of-concept attacks
and evaluated their feasibility. The first attack uses the permission
information collected by exploiting the inconsistencies to secretly
track the user. The second attack aims to create a situation
in which the user cannot correctly determine the origin of the
permission request, and the user incorrectly grants permission
to a malicious site. Finally, we clarify the technical issues
that must be standardized in privacy mechanisms and provide
recommendations to OS/browser vendors to mitigate the threats
identified in this study.

I. INTRODUCTION

Modern Web services can provide dynamic and rich
content, such as location-based recommendations and online
conferencing services, by enabling the browser to access
hardware resources, such as the cameras and GPSs on user
devices. On the other hand, granting web browsers access
to hardware resources without any restrictions may cause
unintended security/privacy risks. The permission function is
generally provided as an access control mechanism to protect
user privacy. By configuring the permissions, users expect web

browsers to appropriately control which resources they can
access, thereby protecting user privacy.

Major mobile operating systems (OSs), such as Android
and iOS, employ a permission mechanism as a means of
exerting control over the access of applications to hardware
and other resources [1], [2]. Users of mobile OSs can utilize
the permission mechanism to fine-tune the available resources
on a per-application basis. In the security research community,
many studies have been conducted on permission mechanisms
in mobile OSs, including large-scale measurements [3], [4],
[5], user perception [6], [7], [8], [9], unauthorized privilege
acquisition [10], [11], and the proposals of new permission
mechanisms [12], [13], [14], [15]. While mobile OS permis-
sion mechanisms have been studied by many researchers, to the
best of our knowledge, no studies have systematically analyzed
the permission mechanisms of web browsers.

The behavior of the permission mechanism in Web
browsers (“Web Permission”) varies widely across OSs and
browsers because it depends on the browser vendor’s imple-
mentation. The erroneous implementation of the permission
mechanism risks unintentional disclosure of user privacy infor-
mation. Web Permission was developed for each API (Medi-
aDevice API, Geolocation API, etc.) that utilizes the functions
of individual devices, such as cameras and GPSs [16]. For
this reason, each API has its specification for the permission
mechanism. Owing to the background mentioned, the imple-
mentations of Web Permission differ depending on the type of
API and browser. Such fragmentation of the implementation
risks user confusion and exploitation of the permission mecha-
nism by attackers. To avoid the fragmented implementations of
the permission mechanism, “Permissions API” was proposed
to manage various permissions in a unified manner across
various platforms [17]. The Permissions API offers a new
feature that allows websites to query the permission state
without requesting permission. However, as of 2022, support
for the Permissions API varies from browser to browser, and
fragmented implementations are still widely used. (For more
details on the Permissions API, see Appendix XI-D.)

This study aims to conduct a large-scale measurement
study of web permission implementations to identify differ-
ences in behavior among implementations, as well as im-
plementation inconsistencies and vulnerabilities that lead to
privacy risks. To achieve this, we developed PERMIUM, a
framework for the systematic analysis of the behavior of
browser permission mechanisms. PERMIUM is a framework
that automatically analyzes a browser’s web permission imple-

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23109
www.ndss-symposium.org

mentation according to predefined test scenarios and autopilots
the browser as if operated by a human. PERMIUM supports 22
different browser implementations running on 5 different OSs,
including mobile and desktop. The share of these OSs and
browsers covers 94% and 89% of desktop and mobile browser
users, respectively [18]. This study targets Microphone, Cam-
era, and Geolocation as sensitive permissions and Notification
as the most frequently used permission. As a result of our
extensive measurement study, we found 191 implementation
inconsistencies in 22 different browsers that could pose a threat
to user privacy. Those inconsistencies include cases where the
selected web permission state was shared between normal and
private browsing modes, where permission state was retained
after clearing the web browser data, and where permission
request dialogs for tabs running in the background overlaid
the foreground tab, which can confuse users. We also perform
user studies to identify gaps between user expectations and
actual browser implementations.

In addition, we propose two proof-of-concept attacks that
combine the implementation inconsistencies of the web per-
mission mechanism identified in our measurement study. We
also evaluate the feasibility of the attacks. The first attack
uses the permission information collected by exploiting the
inconsistency to secretly track users. The attacker can dis-
tinguish users visiting the site using only the permission
information, without using cookies or browser fingerprints. The
other attack targets users that inadvertently granted permissions
to malicious sites by creating a situation in which they cannot
correctly determine the origin of the permission request. In a
user study of 99 participants, we determined that this attack
succeeds more than 55% of the time.

The contributions of this paper are summarized as follows.

• This is the first systematic and extensive study on the
behavior of web permission implementations.

• We developed PERMIUM, a framework for automatically
analyzing web permission behavior, which uses a high-level
abstraction to enable the operations of various browsers
using common methods regardless of OS or browser type,
cross-platform browser analysis.

• As a result of our measurement study using PERMIUM, we
found 191 inconsistencies in the browser implementation
that could pose privacy risks, such as when a user grants
or denies permission, the browser cannot properly reflect in
some cases.

• We proposed two proof-of-concept attacks, a permission-
based user tracking attack and a permission-based phishing
attack, which are realized by combining the web permission
implementation inconsistencies revealed in the measurement
study.

• We identified fixes for the inconsistencies present in the im-
plementation of web permission mechanisms and provided
recommendations for stakeholders.

II. BACKGROUND

This section describes the two main mechanisms for pro-
tecting the privacy of web browser users: the permission mech-
anism and private browsing modes. Note that the permission
mechanism is the main target of this study. Private browsing

mode is a mechanism that enables users to explicitly protect
their privacy while browsing.

A. Overview of the Permission Mechanism for Web Browsers

A website that aims to leverage various resources on a
user device, including hardware devices such as a camera,
microphone, GPS, etc., requests permission from the user to
access the resources. In the following, we present a sequence
of processes that range from the permission request from the
website to the permission granted by the user.

1) A website requests permission from the user’s browser to
access hardware resources on the device using Web APIs,
such as the Geolocation API [19], which provides the user’s
location, and the MediaDevices API [20], which provides
access to the connected microphones and cameras.
2) The web browser shows a permission request prompt on
the user’s screen.
3) The user grants or denies the request, or ignores the request
by closing the prompt window.
4) The web browser allows the website to use the hardware
resources corresponding to the permission when the permission
state is granted.

In web browsers, the permission is managed per “origin”
basis, whereas the permission in the mobile OS is managed
per application basis [21]. In the context of the web, “origin”
is defined by the 3-tuple: scheme, hostname, and port number,
which are present in the URL that points to a web content [22].
The origin is a fundamental unit used to determine the identity
of a website and is widely adopted in security protection
mechanisms, such as in the Same-Origin Policy [23].

Typically, the Web browser maintains the permission state,
i.e., granted or denied, for each origin1. When an origin web-
site requests permission for the second time, the permission is
automatically granted or denied based on the permission state
selected by the user and kept by the browser the previous
time. Formally, the permission has the following three states:
“prompt,” “granted,” and “denied.” “prompt” is a state in which
the user has not selected a permission state. The default state
of the permission state is “prompt.” “granted”/“denied” is the
state when the user grants or denies the permission request,
respectively. The Web browser provides access to a hardware
resource on the website only when the permission state for
that resource is granted to the website (origin).

B. Private Browsing Modes

Private browsing modes are mechanisms that enable users
to perform private web browsing without using the personal
browser environment in which cookies and account infor-
mation are stored; thus, these are expected to protect user
privacy [24]. The major browsers support private browsing
modes. Because technical specifications for private browsing
modes have not been standardized, browser vendors have
implemented their own features according to the principles of
the market [25]. The name of this feature also varies between
browsers; that is, it is called “Incognito mode” in Chrome and
“InPrivate window” in Edge [26], [27]. In this paper, we use
the term “private browsing modes,” as used in the W3C [25].

1As shown in Section IV-C, the rules for keeping the permission state are
intrinsic to the browser implementation.

2

III. PERMIUM FRAMEWORK

PERMIUM is a unified framework that automatically an-
alyzes browsers’ web permission implementations according
to predefined test scenarios and autopilots the browsers as if
operated by a human, e.g., clicking a button and inputting text,
which is required to open a URL. We designed the code to
define test scenarios as generic such that it can run on various
OSs/browsers.

A. Overview of the Framework

Figure 1 presents a workflow of the PERMIUM framework.

1⃝: The analyst creates a test scenario to analyze the behavior
of permission implementation in a web browser and send it to
Commander, which consists of two functionalities: Wrapper
and Manipulator, which are described in the following.

2⃝: Next, Commander uses Wrapper to convert the test sce-
nario into specific operations for each OS/browser. Manipula-
tor connects to each OS/browser device using remote control
schemes, such as Remote Desktop Protocol (RDP) or Virtual
Network Computing (VNC). Once the connection is estab-
lished, Manipulator controls the web browser by performing
the operations sent from Wrapper, e.g., accessing web pages
for testing, clicking a button, and restarting the browser. The
web server sends the permission state and access status to
Commander. The access status is used to execute the next
event, such as a permission request, permission state query, or
page transition.

3⃝: Commander logs information involving the permission
state, dialog display status, etc.

4⃝: Finally, the analyst analyzes the logs to clarify the permis-
sion handling for each browser in each test scenario.

The following section describes the technical components
that compose the PERMIUM framework.

B. Components of the PERMIUM Framework

In the following, we describe the components of the
PERMIUM framework shown in Figure 1.

Test Scenario. It is necessary that web browsers be operated in
a consistent manner to assess the behavior of permission imple-
mentations under a variety of conditions, while considering the
detailed conditions such as the order of user operations and use
of private browsing modes. In the PERMIUM framework, the
browser operating procedure is defined as a coded test scenario.
The code for test scenarios uses abstract methods that are
independent of differences in OS and browsers. The abstract
methods are provided by Wrapper, which will be described
later. An example code for a test scenario is shown in Listing 1,
which describes a series of operating procedures in which a
web browser accesses a test page and grants the permission.

Wrapper. In general, the UI of each browser is different, and
the way to operate the same operation differs greatly among
browsers and operating systems. The purpose of the Wrapper
is to provide a unified method that absorbs these differences.
Analysts using the PERMIUM framework write a common,
browser-independent operation method in the test scenario
code. The operation methods are divided into three types

url = "https://example.com"
mode = "normal"
platform.startBrowser(browserName)
browser.goToUrl(url,platformName,"normal")
browser.requestPermission(platformName, mode)
if browser.checkPermissionDialogue(platformName,

mode):
browser.clickAllow(platformName,mode)

browser.close(platformName, mode)

Listing 1. A Test Scenario

TABLE I. MANIPULATOR CONNECTION METHODS FOR EACH OS
OS Connection methods
Windows Remote Desktop Protocol
Linux Virtual Network Computing
macOS Virtual Network Computing
Android Android Debug Bridge + scrcpy
iOS Virtual Network Computing + screendump

of operations: basic operations, OS-related operations, and
browser-related operations. Basic operations include mouse
operation, key input for feeding URLs, communication with
the server, and matching of operation elements. OS-related
operations include starting a browser and opening and closing
windows. Browser-related operations include opening new tabs
and page transitions in each browser.

Manipulator. Manipulator receives the operating instructions
specific to each OS/web browser generated by Wrapper based
on the test scenarios. Manipulator then connects to each
OS/web browser and operates them according to the received
operation instructions. Manipulator connects to each device
with the methods shown in Table I to acquire information from
the screen and operate the mouse and keyboard.

Client Devices. A client device corresponds to a combination
of OS and browser, e.g., macOS Chrome, and is operated by
Manipulator. The web browsers are installed on each OS of the
client device, and a microphone and camera are connected to
the device. In this study, all devices were physical machines.
Note that virtual machines can also be used. Appendix XI-A
details the OSs and web browsers used in this study.

Test Web Server. A test web server provides web pages
that request the permission used in the test scenario. Specifi-
cally, when the server receives an HTTPS Request sent by a
client device’s browser, it responds with a page that contains
JavaScript requesting the permission. We implement a test web
server that provides behaviors used in test scenarios, such
as requesting permission with arbitrary timing and creating
arbitrary page transitions. The test web server also has the
function of logging the response codes and the permission state
of the web browser.

C. Technical Challenges of the PERMIUM Framework

Implementing the PERMIUM framework involves the fol-
lowing two technical challenges. The first is realizing the mea-
surement of browser permission implementations across a wide
range of browsers and OSs. Few measurement studies have
been conducted that cover both desktop and mobile browsers.
Popular automation frameworks such as Selenium, Puppeteer,
and Playwright were designed to use APIs, such as WebDriver
and DevTools protocols, provided by the web browser [28],
[29], [30]. For iOS, existing browser measurement frameworks
do not support autopilot for browsers other than Safari [31],

3

Analyst

① create a test scenario

Test Scenario

② run the test scenario
1. Launch a browser
2. Access a test page
3. Check the permission dialogue window
4. Click the approval button
5. Record the permission state
6. Close the browser

Wrapper Manipulator
Windows

Chrome, Firefox,Edge,Brave
Linux

Chrome, Firefox,Edge,Brave
Mac

Chrome, Firefox,Edge,Brave, Safari

Android
Chrome, Firefox,Edge,Brave

iOS
Chrome, Firefox,Edge,Brave, Safari

Test Pages

Access and manipulate

 test pages

Test Web Server

send the status (access and permission)

Commander Client Devices

③ record logs
Logs

④ analyze logs

Results
Fig. 1. Overview of the PERMIUM Framework.

[32]. We also note that existing frameworks cannot change
settings that affect the permission state or operate permission
request prompts. For example, it is impossible to click a button
on the permission request prompt or change the settings of
the Safari browser on iOS. Our PERMIUM implementation
successfully resolves these issues. The second challenge is
providing analysts with the abstracted operating methods that
can absorb the browser UI differences. Our implementation
enables us to launch 22 different web browser operations
across desktop/mobile OSs using the abstracted operation
methods. Using this approach, analysts can work with the 22
different browsers by simply writing a test scenario code.

The details of the PERMIUM framework (for example, how
the framework clicks buttons on the web browser and how it
obtains the permission state of the web browser) are described
in Appendix XI-A.

IV. MEASUREMENT STUDY

In this section, we report the results of the study of
the measurement of permission behaviors for the 22 Web
browsers using the PERMIUM framework. We focus on the four
primary permission types: Microphone, Camera, Geolocation,
and Notification.

A. Overview

We measured the behaviors of permission implementations
based on the following six test scenarios:

T1: Is the permission state set by a user (granted or denied)
correctly reflected by the browser?
T2: Is the permission state set by a user persistent?
T3: Is the permission state isolated between the browsing
modes?
T4: Does clearing browser data and settings erase the
permission state?
T5: How is the permission state set when the prompt is
ignored?
T6: Does a permission request from a tab running in the
background pop up in front?

Scenarios T1–T4 aim to study the basic functionality of
permission mechanisms, whereas scenarios T5 and T6 aim
to study the behaviors of permission implementations under
relatively complex conditions. In addition to the measurement
results of the six test scenarios, we derived several implications
from the findings. Section VIII-A discusses solutions against
privacy risks determined in our study.

B. Is the Permission State Set by a User (Granted or Denied)
Correctly Reflected by the Browser? (T1)

In test scenario T1, we investigate how browsers set the
permission state when a user grants or denies permission
requests.

Measurement Results. Table II summarizes the measurement
results. First, in normal browsing modes, the permission state
set by the user was correctly reflected by all browsers, except
iOS, which does not support Notification permissions [33].
In private browsing modes, most OSs and web browsers
did not support the Notification permission. The exceptions
were Safari on macOS, where all permission states were
correctly reflected, and Firefox on Desktop OS, where the
denied Notification permission was not correctly reflected by
the browser.

Implications. The differences in the permission handling de-
pending on the OS, web browser, and browsing modes can
contribute to establish browser fingerprinting. The difference
in functionality between normal and private browsing modes
is not a problem itself; a mechanism is necessary to hide these
differences from the website and prevent them from being
used for browser fingerprinting. Furthermore, in Firefox private
browsing modes, the permission states set by the user should
be reflected properly.

C. Is the Permission State Set by a User Persistent? (T2)

In test scenario T2, we investigate whether the permission
states set by the user persists after the web browser is closed.
To this end, a client device first grants or denies a permission
prompt. Then, we restart the web browser. Finally, we inves-
tigate the permission state on the browser when it receives a
permission request from the same origin website.

Measurement Results. Table III summarizes the measurement
results. In normal browsing modes, the permission state per-
sisted in many cases. In private browsing modes, we may have
expected that the state of granted permissions would not be
persistent, i.e., the state set would revert to “prompt” when
private browsing mode is closed. However, we found several
exceptions. In general, the conditions under which permission
states persisted and the permission types that persisted vary
depending on the browsers.

In normal browsing modes of Chrome and Edge, all four
analyzed permissions persisted, except for iOS. The behavior
of the iOS web browser was different from other browsers;
with the exception of iOS Safari in private browsing modes,

4

TABLE II. REFLECTION OF THE PERMISSION STATE SET BY USER (SCENARIO T1).

Browsing Mode Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal # # # # N # # # # N # # # # N # # # # N # N
Private N N N N N † † † # N N N N N N N N N N N # N

#: Permission state set by a user is correctly reflected for all permission resources (Microphone, Camera, Geolocation, and Notification)
N : Notification permission is unsupported. Other permissoins are correctly supported.
†: Notification permission is supported, but the state “denied” is not correctly reflected. Other permissions are correctly supported.
W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE III. PERSISTENCE OF THE PERMISSION STATE (SCENARIO T2).

Browsing mode Permission state Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal Granted G N N N # G G # # # # G N G
Denied G N N N # G G # # # # G N G

Private Granted # # # # G # # N # G # # # # G # # # # G N #
Denied # # # # G # # # # G # # # # G # # # # G N #

 : Permission state persists for all supported resources, # : Permission state does not persist for all supported resources
N : Notification permission state persists. G : Geolocation permission state persists. W: Windows, L: Linux, M: macOS, A: Android,
i: iOS

only the Geolocation permission persisted when a user grants
the permission at least twice.

Implications. As observed, the conditions and environments
under which permission states persist are not obvious or
transparent to users. The unclear persistence of the permission
state can pose an unintended privacy risk to users. For example,
some users may grant permission to provide their location on
the website at the office or cafe but do not want to provide
their location to the website at home. Table III suggests that
many environments and conditions do not meet these user
expectations.

Furthermore, the permission state set by a user for a
website persisting implies that the website can determine if
the user has visited the website before. That is, users risk
website administrators inferring whether a user has accessed
the site from the permission state. We have identified cases
in which the user’s access history to a particular website can
be inferred, even in private browsing mode, if the user has
previously denied the permission due to scripts installed on
the website.

Note that the permission state persisting in private brows-
ing modes violates the official documents published by web
browser vendors [26], [27], [34], [35], [36]. Inconsistencies
between the specifications described in the documents and
actual behaviors create user confusion and unintended risks.

D. Is the Permission State Isolated Between the Browsing
Modes? (T3)

In test scenario T3, we investigate whether the permission
state set by a user is isolated or shared between the normal and
private browsing modes. We check the permission state in one
browsing mode after the permission state was set in another
browsing mode. The analysis procedure is as follows. First,
in normal browsing mode, a client device accesses website A,
which requests permission. The client device grants or denies
the request. Next, the browser of the client device is switched
to private browsing mode. The client device accesses website A
again, and we analyze the permission state. Similarly, we
investigate changes in permission state when the permission
state is first set in private browsing mode and then switched
to normal browsing mode. We investigate two cases: when a

tab of website A is closed (Closed) after being accessed in the
first browsing mode, and when the tab is not closed (Open).　

Measurement Results. Table IV summarizes the measure-
ment results. To our surprise, the permission state was not
always isolated between browsing modes in many browsers.
In general, permission states set in private browsing modes
were rarely shared to normal browsing modes, but the iOS
web browser (WebKit) shares the Geolocation permission
state, and Safari on macOS shares the Notification permission
state. In Chrome, Edge, and Brave, the denied permission
state set in normal browsing modes was reflected in private
browsing modes. In Brave, permission was not shared to
private browsing modes when the tab was closed in normal
browsing modes. Chrome and Edge shared denied permissions
regardless of the Open or Close state of the tab.

Implications. As mentioned in Section II-B, because private
browsing modes lack a standardized specification, behavior
varies between browser vendor implementations. This situation
creates a risk to confuse users. For example, consider a
case in which the Geolocation permission was granted in
normal browsing mode and then unintentionally reflected in
the private browsing mode. The user may expect that their
private information was not sent to the website when using
the private browsing mode. However, in reality, the website can
acquire the user’s location information. Unintentional location
leakage can pose the threat of linking accounts used in each
mode according to the consistency of location and IP address.
In particular, sharing the state of granted permission between
browsing modes can lead to a high risk mismatching user
expectations and web browser behavior.

E. Does Clearing Browser Data and Settings Erase the Per-
mission State? (T4)

In test scenario T4, we investigate whether the permission
state is erased when a user clears stored data, such as history,
settings, and cookies, from their browser. The analysis proce-
dure is as follows. First, the web browser accesses the website
requesting permission and grants or denies the permission
request. To clear browser data, the Clear Data mechanism
installed in each browser, that is, the feature for deleting
data and settings, is used. The web browser accesses the
same website, and we check whether the permission state was
affected.

5

TABLE IV. SHARING OF PERMISSION STATE BETWEEN DIFFERENT BROWSING MODES (SCENARIO T3).

Order Permission state Tab Status Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal → Private Granted Open # # # # G # # # N G # # # # G # # # # G N #
Granted Closed # # # # G # # # N G # # # # G # # # # G N #

Normal → Private Denied Open G # # # N G G G N #
Denied Closed G # # # N G G # # # # G N #

Private → Normal Granted Open # # # # G # # # # G # # # # G # # # # G N #
Granted Closed # # # # G # # # # G # # # # G # # # # G N #

Private → Normal Denied Open # # # # G # # # # G # # # # G # # # # G N #
Denied Closed # # # # G # # # # G # # # # G # # # # G N #

 : Permission state of all resources is shared, # : Permission state of all resources is not shared.
N : Notification permission state is shared. G : Geolocation permission state is shared. W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE V. PERMISSION STATE AFTER DELETING BROWSER DATA (SCENARIO T4).

Mode Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal # # # # G NMC1 NMC1 NMC1 # G # # # # G # # # # G # #
Private G NMC2 NMC2 NMC2 # G G G # #
: Permission states for all resources are erased. : Permission states for all resources are retained.
G : Permission state (granted/denied) for Geolocation is retained.
NMC1 : Permission states (granted/denied) for Notification and permission states (granted) for Microphone and Camera are retained.
NMC2 : Permission states (granted) for Notification, Microphone, and Camera are retained.
W: Windows, L: Linux, M: macOS, A: Android, i: iOS

Measurement Results. Table V summarizes the measurement
results. In normal browsing modes, at least one permission
state was retained by all browsers except Safari, after clearing
the web browser data. Interestingly, in private browsing modes,
the permission state was not erased in most browsers, except
Safari. Although inconclusive, we assume that the measure-
ment result reflects the web browser storing its configuration
data in a different location (such as memory) in private
browsing modes than in normal browsing modes; thus, they
are unaffected by the clear-data method, which erases data
stored in the storage space.

Implications. As demonstrated, deleting web browser settings
does not necessarily remove the permission state. This behav-
ior may oppose user expectations and risks the unintended
leakage of privacy data. This implementation in Firefox does
not follow the official documentation [37], [38]. As with
private browsing modes, the permission state behavior after
clearing web browser data greatly differs between browsers
as well as OSs, implying that correctly understanding this
behavior is extremely difficult for users.

F. How Is the Permission State Set When the Prompt Is
Ignored? (T5)

In test scenario T5, we investigate how the permission
state is set when the permission request prompt is ignored.
Our preliminary experiments revealed that if none of the
permission states are selected at the permission request prompt
and the reload is repeated multiple times, the permission state
is automatically set to “denied”2. The analysis procedure is
as follows. First, a client device browser accesses website
A, which requests a permission; the browser accesses the
site in either a background or foreground tab3.. The client
device ignores the request and reloads the page multiple times.
Finally, we analyze the state of the permissions.

2The number of reloads for which the permission state is automatically set
to “denied” depends on the web browser and OS. Table XV summarizes the
results.

3The reason for analyzing the case in which the browser accesses the
website in a background tab is to evaluate the feasibility of the advanced
attack described in Section VI-A

Measurement Results. Table VI summarizes the measurement
results. In many web browsers, the permission was automat-
ically set to “denied” by ignoring the prompt multiple times.
The type of permission resource whose state is automatically
denied differs depending on whether the reloading tab is in
the foreground or background. In general, more cases in which
the permission was automatically denied when the tab was in
the foreground were observed. At least one permission was
automatically denied in all browsers except Firefox.

Implications. Multiple reloads can cause the permission state
to automatically be set to denied. This implies that attackers
can control the permission state, which can be used to track
users. Furthermore, such operations can be performed covertly
in a background tab. We present a novel user tracking attack
that uses this property in Section VI-A.

G. Does a Permission Request from a Tab Running in the
Background Pop Up in Front? (T6)

In test scenario T6, we first investigate whether a per-
mission prompt pops up when permission is requested on
a tab running in the background. We call this analysis the
base case. In the base case, all operations such as permission
requests, page reloads, and returning to the previous page are
performed in a background tab. In addition, as a special case,
we investigate whether a permission prompt pops up for a
permission request sent from a background tab running in
a private browsing mode. We assume that the browser was
restarted. We target browsers for iOS in which the private
browsing mode tabs are retained even after the web browser is
restarted. In browsers for iOS, tabs running in private browsing
mode are invisible, although the tabs can render web content
in the background.

Measurement Results. Table VII presents the measurement
results. In many browsers, permission prompts were not in-
voked from the background tabs. In the base case, permission
prompts were invoked only in Firefox and Brave on iOS and
Safari on macOS. In a web browser that displays a prompt,
the prompt overlaid the web browser screen where the active
foreground page was displayed. In the special case, all iOS

6

TABLE VI. RESULTS OF AUTOMATICALLY SETTING PERMISSION STATE TO DENIED BY IGNORING THE PROMPT MULTIPLE TIMES
(SCENARIO T5).

Mode Tab Status Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal Foreground – # # # # – – – –
Background MCN MCN MCN N # # # # # G# MCN MCN MCN N # MCN MCN MCN N G# N† #

Private Foreground – # # # # – – – –
Background MC MC MC # # # # # # G# MC MC MC # # MC MC MC # G# N† #

 : Permission state is automatically set to denied for all resources, # : Permission state is not automatically set to denied for all resources.
M/C/N : Microphone/Camera/Notification permission state is automatically set to denied.
G# : No results (Permission request dialog overlay display occurs and dialog cannot be ignored.), – : Analysis inapplicable.
† : Permission request dialog is overlaid, and state is automatically set to denied. W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE VII. DISPLAY OF A PERMISSION REQUEST DIALOG FROM A BACKGROUND TAB (SCENARIO T6).

Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i
§ # # # # † # # # # # # # # # † ‡
: The dialog is not displayed on top of the foreground tab. : The dialog is displayed on top of the foreground tab.
§ For all permissions, both “granted” and “denied” are reflected in the permission state.
† For Microphone and Camera permissions, both “granted” and “denied” are reflected in the permission state. For Geolocation permission,
only “denied” is reflected in the permission state. ‡ Notification permission will have “denied” reflected in the permission state.
W: Windows, L: Linux, M: macOS, A: Android, i: iOS

web browsers, except Chrome, did not display the prompt as an
overlay. The behavior in Chrome for iOS was as follows. The
permissions dialog requested by the tab placed in the front row
of the private browsing mode overlaid the active tab working
in the normal browsing mode.

Implications. We found a browser implementation that does
not display a permission request prompt when a website loaded
in a background tab requests permissions. This suggests that
noticing that the tab is performing such behavior is difficult for
a user. The combination of these behaviors and the behavior
shown in test scenario T5, i.e., automatically setting the permis-
sion state to denied, allows the website to secretly manipulate
the permission state of the web browser. In Section VI-A, we
propose a user-tracking attack that takes advantage of these
features.

Cases in which the prompts are overlaid also pose an
inherent threat. As Section VII-B demonstrates, distinguishing
between a prompt prompted by a tab running in the background
and a prompt prompted by a tab running in the foreground is
often difficult for users. Users may misidentify the website
(origin) that requests permission and make an erroneous deci-
sion to grant/deny permission. We call this attack “permission-
based phishing attack” and provide details in Section VI-A.
Furthermore, the overlaid display of prompts originated from
the background private browsing mode tab (special case) risks
being used for attacks that are more difficult for the target to
detect.

In total, we found 191 implementation inconsistencies that
could lead to user privacy risks. For reference, Table XIV
in Appendix XI-B presents the number of implementation
inconsistencies for each browser. We note that one or more
implementation inconsistencies are found in all 22 browsers
analyzed in this paper.

V. GAP BETWEEN THE USER PERCEPTION AND BROWSER
PERMISSION IMPLEMENTATIONS

We conduct a user study designed to understand users’
expectations and perceptions of web browser permissions. To
this end, we conducted an online survey that included 298
participants. After applying a consistency check, we identified

a total of 232 valid responses. Through the online survey, we
attempt to comprehend the intrinsic gap that exists between
the web browser implementation inconsistencies identified in
Section IV and the users’ perceptions. The user study consisted
of six surveys, U1–U6, which correspond to the six test
scenarios T1–T6 defined in Section IV. In the following, we
highlight only the key results of the survey due to space
limitation. The details of the demographics are shown in
Table XIX in Appendix XI-H. The detailed results of the
following survey can be found in our website [39].

Permission Behaviors in the Browsing Modes (U2,U3).
Among the users who were familiar with the private browsing
mode, 70–80% expected that the permission state is not
persistent in the private browsing mode and the permission
state will not be inherited between browsing modes. However,
as we have clarified in Section IV, all the web browsers
examined in this study persist some permission states in the
private browsing mode, and some of the permission states are
inherited across the normal and the private browsing modes.

Data Deletion Mechanism (U4). More than 70 % of the users
expected that the data deletion mechanism would clear the
permission state. However, as we have clarified in Section IV,
in Chrome, Firefox, Edge, and Brave, the permission state is
retained even after the data deletion mechanism is applied.

Behavior When Permission Requests Are Ignored (U5).
60% of users were unaware that some browsers will automati-
cally set the permission status denied when a website requests
the permission several times and the requests are ignored. As
we have clarified in Section IV, such a feature is implemented
in all web browsers except Firefox.

VI. ATTACK CONCEPT

This section describes the concepts of two attacks based
on the inconsistencies in permission implementations of the
web browsers we found in the measurement study: permission-
based user tracking attack and permission-based phishing
attack. In a permission-based user tracking attack, the attacker
uses the permission state maintained in the web browser to
track the user. In a permission-based phishing attack, the at-

7

Target UID Permission State
W1 W2 W3

A 101
B 010
C 100
D 001

Target A

W1

UID1 = 1

Set the permission state

to “denied” by reloading

UID2 = 0

Do nothing

W2

UID3 = 1

W3

Denied Prompt Denied

Step1. UID assignment

UID : 101

Step2. Encoding

Landing website

Tracking websites

UID1 = 1 UID2 = 0 UID3 = 1
Step3. Decoding

UID : 101

=

Visitor

Visitor Target A

 : Prompt, : Denied

Check the
permission state

Landing website

Fig. 2. Overview of permission-based user tracking attack.

tacker induces an erroneous decision to grant/deny permission
by displaying a fraudulent overlay of permission prompts.

A. Permission-based User Tracking Attack

1) Threat Model: In a permission-based user-tracking at-
tack, an attacker tracks users who visit a landing website by
checking the permission state set for the tracking websites and
stored in the target’s browser. This attack uses implementation
inconsistencies T3 and T5 found in Section IV. To collec-
t/check the permission state, the attacker installs malicious
code on the landing website or installs the code into a web
advertisement. The attacker sets up their tracking websites
and lets the target’s browser set the permission states for each
tracking website, following a predetermined pattern specific to
each user, the user ID (UID). By checking the permission states
for the tracking websites when the user revisits the landing
website, an attacker can reconstruct the UID.

This attack has advantages over tracking methods that
simply encode information in URLs, such as the persistence
and the ability to track users across the different browsing
modes. The advantages of this attack are as follows: First, even
in situations where third-party cookies are deprecated [40],
[41], this attack allows an attacker to track users from a
cross-origin. Second, this attack does not require user consent
because the permission state is automatically set as denied by
ignoring the permission prompts, as shown in Section IV-F.
The attack is stealth because the automatic permission state can
be executed in a background tab. Third, after the target leaves
the website, this attack can still track the target as long as the
permission state is maintained. Finally, the permission state is
shared between browsing modes, as shown in Section IV-D,
which implies that an attacker can track a target across normal
and private browsing modes.

2) Attack Procedure: The procedure for this attack com-
prises the following three steps: Step 1: UID assignment,
Step 2: encoding, and Step 3: decoding. Figure 2 presents
an overview of the three steps.

Step 1: UID Assignment. First, an attacker assigns a unique
UID to each target. The length of the UID is l bit, the
maximum number of people to be tracked, U is U = 2l.

When l = 32, approximately 4.3 billion users can be uniquely
identified in theory. Second, the attacker prepares l-tracking
websites with different origins. Here, the n-th tracking website
Wn(1 ≤ n ≤ l) is mapped to the n-th bit of the ID.
Finally, a JavaScript code is added to each tracking website
to automatically set the denied permission state (Step 2) or
obtain the permission state (Step 3).

Step 2: Encoding. Using malicious JavaScript code loaded by
the target’s browser, an attacker manipulates the permission
states of the tracking websites, following the ID generated
in Step 1. Any type of permission can be used. Regardless
of the browser, the resources used universally are cameras or
microphones; hence, the attacker is likely to require these per-
missions. When the n-th digit of the UID is 0, the attacker does
nothing, leaving the permission state for Wn to be “prompt.”
When the n-th digit of the UID is 1, the attacker makes
the permission state for Wn to be “denied” by repeatedly
reloading the tracking website. Malicious code lets the target
web browser to repeat the aforementioned process for all
Wn(1 ≤ n ≤ l).

The target browser must wait to render permission prompts
in the foreground or background at each tracking website.
Otherwise, the number of times that the prompt is ignored will
not be incremented, and the permission state for the tracking
website Wn cannot be denied. We experimentally derived the
waiting time as 2ms to 160ms required for a successful attack,
detailed in Appendix XI-F.

Step 3: Decoding. When a user revisits the landing website,
their browser loads malicious code, making the browser access
the tracking websites Wn(1 ≤ n ≤ l) and checks the
permission state on each tracking website4. Following the data
created in Step 2, the attacker can decode the binary sequence
corresponding to the permission states and obtain the ID of
the user; hence, tracking the user is completed.

3) Tweaks: In the following section, we present tweaks to
increase the feasibility of the attack.

Packing Multiple Permissions. By leveraging the fact that the
landing website can simultaneously request or obtain multiple
permission states, the attack can occur sooner than expected.
Web browsers for desktop OS display only one permission
prompt when a tracking website requires Microphone and
Camera permissions simultaneously. The combinations of the
two permission states are represented as a 2-bit sequence, 00,
01, 10, 11, where 0/1 represents permission granted/de-
nied. This approach enables an attacker to encode/decode 2
bits of information per request. This method can reduce the
required time to complete the encoding/decoding by about half.

Background Attack. An attacker can improve the secrecy
of the attack by executing this attack in a background tab.
Many web browsers provide the feature of opening different
pages simultaneously in multiple tabs; and this feature is
widely used. When multiple tabs exist, the user can only
see the tab in the foreground and cannot know the behavior
of the tabs in the background. By taking advantage of this

4An attacker can prepare a special bit to determine whether it is a first
visit or a return visit. Malicious code running on a landing website can check
that special bit to decide whether or not it should perform the encoding or
decoding operation next. For brevity, we omit a detailed description.

8

characteristic, an attacker can perform the encoding/decoding
process unbeknownst to the user.

Iframe Attack. In Safari on macOS, the decoding process
can be efficiently performed using an iframe element. Most
browsers implement “Permission Delegation” to manage per-
missions in iframes. Permission delegation is a mechanism
that allows a child page embedded in an iframe to request
permission from the domain of the parent page when it
attempts to request permission and then delegates the results to
the child page [42]. As Safari on macOS has not implemented
permission delegation, it can request/obtain permission in
multiple domains depending on the domains of the child pages
by transitioning only the child pages embedded in the iframe
window. With Safari on macOS, the decoding process can be
performed only with page transitions of the child pages in the
iframe window without causing the transition of the parent
page.

In summary, permision-based user tracking attack aims to
track users by encoding and decoding UIDs into permission
state. In addition to 1⃝ normal attack, attackers can improve
the efficiency and secrecy of this attack by 2⃝ packing multiple
permissions, 3⃝ background attack, and 4⃝ iframe attack.

B. Permission-based Phishing Attack

1) Threat Model: An attacker compels the target to mistak-
enly grant access to a resource by presenting a fake permission
request. This attack uses implementation inconsistencies T6

found in Section IV. First, the attacker prepares a website that
requests permission. This site is hereafter called the “attack
site.” When users access the attack site, they are prompted to
click a link that opens Website A in a new tab. When the
user clicks the link, a tab displaying Website A is opened
in the foreground, whereas the tab on the attack site runs
in the background. The script runs on the attack site in
the background tab and requests permission. Consequently, a
dialog is overlayed on the screen of Website A, displayed in the
foreground. Once the user is tricked into granting permission
to the attack site, the attacker accesses the privacy-sensitive
resources of the target, such as camera footage, microphone
audio, and location information.

2) Attack Procedure: The procedure of this attack has the
following steps: Step 1: Preparation of the attack site, Step 2:
Displaying prompt, and Step 3: Abuse of granted permission.

Step 1: Preparation of the Attack Site. The attacker prepares
an attack site that the target accesses. The domain name of
the attack site is displayed in the permission prompt as the
source domain for the permission request. The attacker adopts
a domain name that looks authentic; thus, the target users may
believe that a permission request is sent from a trustworthy
source, such as a browser or a trusted site. The attack site uses
HTML links and JavaScript to allow the target to open a widely
trusted popular website in a new tab. Such trusted websites
include search engines, map services, and online conferencing
services, which many users use daily and for which granting
permission requests are natural.

Step 2: Displaying Prompt. The attack site displays a permis-
sion prompt as an overlay on the foreground tab, displaying
the trusted website. The tab of the attack site is moved to the

background, and the attack script can detect this change by
monitoring the on click event of the link or the visibilitychange
event of DOM [43], [44].

Step 3: Abuse of Granted Permission. After the user is
tricked and grants permission to the attack site, the attacker
can abuse the privacy-sensitive resources of the target, such as
camera footage, microphone audio, and location information.
The attacker can use WebSocket and WebRTC [45], [46],
which allow them to monitor and collect information such as
video, audio, and location of the target in real time.

VII. FEASIBILITY OF THE ATTACK

In this section, we evaluate the feasibility of the two attacks
described in Section VI.

A. Permission-based User Tracking Attack

1) Attack Targets: Attackable browsers vary depending on
the attack conditions. Table VIII summarizes the attackable
targets for each attack condition. First, it is clear that all
browsers, except iOS browsers and Firefox, can be targeted by
1⃝ normal attacks. Second, the results show that 2⃝ packing

multiple permissions and 3⃝ background attack are also feasi-
ble for a wide range of browsers. 4⃝ iframe attack is feasible
in Safari on macOS. Table IX summarized the effectiveness of
tracking across browsing modes. Tracking users from normal
browsing modes to private browsing modes is feasible in
browsers similar to normal attack. Tracking users from private
browsing modes to normal browsing modes is only possible
in Safari on macOS.

To succeed in this attack, the target browser must support
the Permissions API or Notifications API to enable the attacker
to secretly obtain the permission state of the browser without
displaying a permission prompt. These APIs are available in
all browsers except iOS. Appendix XI-D presents the details of
our survey. We investigated the availability of packing multiple
permission requests for Microphone and Camera permissions
and found it in all browsers on desktop operating systems
except Safari. The details of our survey are presented in
Appendix XI-E.

2) Evaluation of the required time: The time required for
the attack was evaluated. We measured the time Tenc and Tdec,
being the time required to complete the encoding and decoding
processes, respectively.

Measurement Setup. The following section describes the
measurement setup. The server is a virtual environment with
Ubuntu 20.04 LTS installed with 2GB memory and 2 vCPUs.
The web interface was implemented in Python and the Flask
framework. The three client devices, Device A, Device B,
and Device C, are a Windows PC (desktop), macOS (laptop),
and Android smartphone. In Device A, the microphone and
camera were connected via USB. In Device-B and Device-C,
the microphone and camera were built into the device.

Measurement. Figure 3 presents the relationship between U
and Tenc and Tdec when a normal attack is performed on
devices A, B, and C and when the packing multiple permis-
sions technique is performed on device B. We performed the
experiments three times for each combination of parameters

9

TABLE VIII. THE TARGET OF THE PERMISSION-BASED USER TRACKING ATTACK.

Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

1⃝ Normal attack # # # # # # # # #
2⃝ Packing multiple permissions # # # # # # # # # # # # #
3⃝ Background attack # # # # # # # # G# #
4⃝ Iframe attack # #
 : Attackable, # : Not attackable, G# : Attackable for Encoding, W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE IX. THE TARGET OF THE PERMISSION-BASED USER TRACKING ATTACK ACROSS BROWSING MODES.

Order Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Normal → Private # # # # # # # # #
Private → Normal # #
 : Attackable,　# : Not attackable, W: Windows, L: Linux, M: macOS, A: Android, i: iOS

102 104 106 108 1010

User Space U
0

5

10

15

20

En
co

din
g

Ti
m

e
T e

nc
 [s

]

Device-A (Mic.)
Device-B (Mic.)
Device-C (Mic.)
Device-B (Mic. & Cam.)

102 104 106 108 1010

User Space U
0

5

10

15

20

De
co

din
g

Ti
m

e
T d

ec
 [s

]

Device-A (Mic.)
Device-B (Mic.)
Device-C (Mic.)
Device-B (Mic. & Cam.)

Fig. 3. U vs. required time. Top: encoding and Bottom: decoding.

and calculated the average value of the measured time. We
used Microphone permission during a normal attack.

When the number of target users, U , was approximately
4.3 billion and when the ID length assigned to each user l
was 32 bits, the Tenc of devices A, B, and C were 17.3 s,
7.0 s, and 9.4 s, respectively. Tdec were 3.4 s, 2.6 s, and 6.0 s,
respectively. We deem that Device-A took a long time encod-
ing because the microphone was connected as a USB external
device, which required more time for the browser to iterate
through the permission request process. Furthermore, the result
implies that packing multiple permissions (Microphone and
Camera) increases the attack efficiency.

Appendix XI-G presents several other methods that can
further improve the attack efficiency.

B. Permission-based Phishing Attack

The following section evaluates the feasibility of the
permission-based phishing attack, where an attacker aims to
mislead the user’s judgment.

1) Attack Targets: Table X summarizes the attackable
targets for each attack condition. The attack applies to iOS
browsers such as Firefox and Brave.

TABLE X. ATTACKABILITY OF THE BROWSERS WITH
THE PERMISSION-BASED PHISHING ATTACK.

Chrome Firefox Edge Brave Safari
macOS # # # # #
iOS # MC # MC #

MC : Microphone+Camera permissions are vulnerable.
: All permissions are not vulnerable.

TABLE XI. RESULTS OF THE EXPERIMENT (E1 ,E2 : N=99,
EXPERIMENT E3 : N = 60)

Experiment Participants’ answers Counts

E1 (Normal)
Restaurant website (correct answer) 67
Google website 31
Other 1

E1 (Fake)
Restaurant website 10
Google website 89
Other (correct answer) 0

E2

Website from which permission is requested 60
Necessity of permission 61
Permission type 40
Timing of permission prompt 11
No basis for judgment as I always grant it. 4
No basis for judgment as I always deny it. 19

E3

Features provided by the website 37
Daily use or not 39
Existence of a description of the purpose 22
Appearance of the website 3
Expertise of the website 9
Authoritativeness of the website 22
Trustworthiness of the website 40

2) User Study: We conducted a user study to assess the
threat of a permission-based phishing attack. We aimed to
investigate how users understand permission mechanisms and
how they interact with the displayed permission prompts.
Therefore, we adopted an online survey approach. We recruited
participants for our survey using Lancers [47], a well-known
crowdsourcing platform in Japan, hence our participants are
Japanese. Our participants spanned a wide range of ages (18
years and older) and had a variety of educational backgrounds.
Many participants were in their 30s or 40s. The details of the
demographics are shown in Table XX in Appendix XI-H. The
questionnaire used for the online survey is available on our
website [39].

Our user study consisted of the following three experi-
ments: E1, E2, and E3.

E1: Understanding the Source of the Permission Request.
This experiment aims to answer the following question: When
a user sees an overlaid permission request prompt, what does
the user think the source of permission request is? To answer
this question, we set two scenarios “Normal” and “Fake.”
Participants saw the smartphone browser screens for the two
scenarios and were asked to determine which sites requested
permission for both scenarios. In the “Normal” scenario, the
foreground tab of the browser shows the restaurant’s website,
with an overlay of a prompt permission dialog requested by
that website. In the “Fake” scenario, the foreground tab of the
browser shows the results of a search for Italian restaurants

10

using Google. There is an overlay of a permission request
dialog invoked by the attack site running in the background tab
on this tab. Table XI (top) shows the results. Surprisingly, even
for the “Normal” scenario, 32% of the participants could not
correctly identify the actual source of the permission request.
Furthermore, for the “Fake” scenario, none of the participants
could identify the correct source. These results suggest that it is
not easy for users to understand where the permission request
dialog originates correctly and that our proposed attack makes
understanding even more difficult.

E2: Reason to Grant or Deny a Permission Request. This
experiment aims to answer the following question: What basis
does the user choose to grant or deny a permission request?
We presented the participant with options that provided the
basis for granting or denying permission. The participants
selected one or more of these options as their basis. We
also provided participants with two options: always grants
or always denies. Table XI (middle) shows the results. Most
participants answered that they relied on information about
the website or the context (necessity of permission) to decide
whether to grant permission. We performed experiment E3

for those who responded that they relied on the features of
the website. Approximately 20% of users reject permission
requests regardless of the content or context of the website,
whereas 4% of users always accept permissions.

E3: Information about the Website to Decide Whether
to Grant or Deny a Permission Request. This experiment
aims to answer the following question: When a user receives
a permission request, what information about the website
does the user use in deciding whether to grant or deny
the request? Participants in experiment (E3) were limited
to those who responded “Website from which permission is
requested” in experiment (E2). We presented participants with
information options that can provide a basis for decisions
related to the website. Participants selected one or more of
the options presented. Table XI (bottom) shows the results.
The following were reported by many participants as the basis
for their judgments about websites that requested permissions:
“trustworthiness of the website” (67%), “daily use or not”
(65%), and “features provided by the website” (62%).

Implications of the User Study to the Attack Success.

In a permission-based phishing attack, potential attack
targets should first meet the following condition:
C0: The user makes permission decisions without always
granting or denying permission.
The experiment E2 revealed that the probability that a user
meets the condition is P (C0) = 76/99 = 0.77. Subsequently,
under condition C0, the potential attack targets should meet
the following two conditions:
C1: The user misidentifies the source website of the permission
request owing to an overlay of permission prompts.
C2: The user uses the basis of the website features when
making permission decisions.
Experiments E1 and E2 revealed that the conditional joint
probability is P (C1, C2|C0) = 54/76 = 0.71. In summary,
77% users meet condition C0 and of these, 71% of users meet
the two conditions, implying 55% of entire users are potential
attack targets. Note, we can directly compute the conditional
joint probability as the same group of users participated in the
three experiments. Under condition C0, the two conditions C1

and C2 were not correlated; i.e.,
P (C1|C0)P (C2|C0) = 68/76× 60/76 ≈ P (C1, C2|C0).

VIII. DISCUSSION

A. Toward the Fundamental Solutions

Sections IV, VI, and VII indicate the specifications and
implementations of permission mechanisms are fragmented,
and it is difficult for users to correctly understand their
behavior. We showed several implementation inconsistencies in
web browsers and that attacks that exploit these inconsistencies
are a real threat. The root cause of these inconsistencies in the
permission mechanism is the lack of standardization and shar-
ing of best practices. Currently, only a working draft [48] exists
to standardize the permission mechanism. Although the draft
has a substantial discussion for the Permissions API, there is a
lack of discussion about the browser’s handling of permissions,
e.g, persistence and automatic setting of “denied” state.

Specifications and implementations are not consistent
across browsers because they are determined independently
by each browser vendor. We suggest that standardization at
W3C and WHATWG [49], [50] and sharing of best practices
among browser vendors are needed to solve this problem.
In fact, our user study, presented in Section V, revealed the
mismatch between the user expectation and browser imple-
mentations. The standardization process will be the promising
first step toward achieving consistent and user-friendly browser
behavior implementation. We present several generic technical
approaches to address the implementation inconsistencies in
this study and mitigate threats. Comments on issues specific
to each browser were also presented.

Desirable Features and Settings to Be Introduced in the
Permission Mechanism. As shown in Sections VI and VII,
there is a risk that privacy information, such as browsing
history, can be inferred from the permission state that could
be leaked from the web permission mechanism. An attacker
can covertly track users by browsing footprints on multiple
websites. A primary factor that makes these attacks a practical
and serious threat is that some implementations share the
permission state between normal and private browsing modes.

Based on the above observations, we summarize the re-
quirements that implementations of permission mechanisms
must meet to protect users’ privacy as follows:

• R1: Do not make the permission state permanent; create an
option to clear it periodically.

• R2: Do not automatically set the permission state denied
when the prompt state is reloaded multiple times.

• R3: Restrict permission requests sent from pages in the
iframe.

• R4: Make permission state visible and configurable by
users.

R1 expires permission state after a set period and allows the
user to reset it when the site is visited again. Users can check
for incorrectly set permission states by providing this option.
Firefox, Brave, and Safari implemented this approach [51].
However, they are incomplete, as some permissions do not
support the ability to set an expiration date and the expiration
options provided are limited.

11

R2 is a proposal to avoid an attacker remotely forcing the
user’s permission state to deny. Currently, Firefox and iOS
browsers (WebKit) have adopted this approach. We believe
that other browsers need to support this as well.

R3 is a feature provided as a Permission Delegation [42]
in the working draft of the Permissions Policy [52]. While the
Permission Delegation is implemented only in Chromium and
Firefox, it should be standardized and spread to all browsers.

R4 provides a list of permissions that the users set for
each site. Visualization of permission state improves the
transparency of permission mechanisms for users. R4 has
been implemented in many browsers [53], [51], [54], [55].
However, because these functions are in the deep hierarchy
of the settings screen, it is difficult for users to recognize
their existence unless they understand web permissions and
operate their browsers to check or change their settings. The
standardization of functions that provide permission settings
has not progressed. Alternatively, mobile operating systems
already provide a usable interface for controlling permission
settings for each app, allowing users to review app permission
settings regularly. A similar user interface should be provided
for web permission.

We expect these requirements to be shared as best practices
by browser vendors and established as technical standards.

Fixes for Implementation Inconsistencies We present the
proposed solutions for implementation inconsistencies in the
permission mechanism.

• F1: Do not share the permission state between the normal
and private browsing modes.

• F2: Explicitly clear stored permission state when exiting
private browsing mode.

• F3: Do not overlay a permission prompt screen sent from
a background tab. When a background tab requests per-
mission, a pop-up is held until the requesting tab becomes
visible.

Note that each browser vendor can fix all the aforemen-
tioned inconsistencies.

Finally, we comment on Apple WebKit. WebKit is a
browser engine developed by Apple [56]. Apple’s policy is
that all iOS browsers must be developed using WebKit [57].
This policy has the advantage that vulnerabilities caused by the
browser engine can be fixed early, without waiting for individ-
ual app updates, because WebKit is set in conjunction with the
OS updates. However, as shown in Section IV, there are several
cases in which all iOS browsers have common inconsistencies
in the permission mechanism. For example, even with Brave,
a browser designed with privacy in mind, the only iOS version
implemented inconsistencies such as persistent permissions
and sharing permission states between normal browsing mode
and private browsing mode. This inconsistency confounds
the expectations of Brave users, who value privacy. Because
WebKit’s impact is significant, we hope that countermeasures
would be introduced, such as the aforementioned proposed
modifications, being applied or aligned with the policy that
reaches a consensus in the browser vendor community.

B. Ethical Considerations

User Study. We followed the policy set forth by our orga-
nization’s IRB and confirmed that our user study falls under
the exemption of IRB review. Our user study did not collect
sensitive information about participants. In the experiment
shown in Appendix XI-G2, the participants used the devices
we provided, and the data obtained in the experiment were
anonymized and statistically processed so that individuals
could not be identified. Furthermore, fake domain names used
in the experiment were not publicly registered. This domain
name is accessible only in our experimental environment and
has no negative impact on third parties. We paid participants
an amount above the minimum wage in the region in which
the experiments were conducted.

Responsible Disclosure.

We contacted and disclosed information to the five browser
vendors, Google, Mozilla, Microsoft, Brave Software, and
Apple on August 14, 2022. We have asked each browser
vendor to let us know their course of actions within two
weeks of receiving our report. Furthermore, we had extensive
discussion with JPCERT/CC [58], which is a vulnerability
coordinator in Japan, prior to the disclosure.

The five browser vendors are currently reviewing the issue
and implementing fixes based on our report. Brave has fixed
the implementation where the permission state is inherited
from normal browsing mode to private browsing mode (Sec-
tion IV-D), and on Android, they have fixed the implemen-
tation where the Notification permission is automatically set
to “denied” when it is requested multiple times from the
background tab (Section IV-F). The Brave team has already
merged the revised code. A fixed version of Brave will be
published [59], [60]. They are also considering a UX/UI update
regarding the implementation where the private browsing mode
permission state is not cleared when the permission-clearing
mechanism is used (Section IV-E), so that users are aware of
this implementation correctly [61]. Microsoft has informed us
that they are working on implementing a fix. Google is treating
our report as a high priority and is currently discussing it
internally. Mozilla has separated our report into issues for each
platform. The corresponding teams in charge are reviewing
each issue. Apple is currently reviewing our report.

The details of responsible disclosure process are available
on our website [39].

C. Limitations

Coverage of Permission Types. This study selected Micro-
phone, Camera, and Geolocation permissions because they
are used to control resources directly associated with user
privacy. Additionally, the Notification was selected as permis-
sion, accounting for 74% of all permission requests in the
real world [62]. However, some minor Web APIs that require
permission (such as the clipboard API and idle detection API)
have not been studied. With the PERMIUM framework, it is
straightforward to study newly implemented features of the
web browser or other web APIs. We leave the analysis of
other permission types for a future study.

Persistence of Permission States. The duration for which
our proposed permission-based user tracking attack is effective

12

depends on the persistence of the permission state stored by
the browser. We confirmed that some web browsers supply
options for users to select whether to remember permission
state in permission prompts. Our measurement study adopted
only the default settings, although the behavior may change
depending on the options.

Note that in chromium-based browsers, if the permission
state “denied” is stored by repeatedly ignoring a prompt,
the state is maintained for one week [63]. Our experiments
found that after a week had passed, ignoring the prompt just
once would cause the stored permissions to remain denied
again. The attacker can still use the difference in the number
of required ignorings to conduct the permission-based user
tracking attack. The attacker first uses a special bit to determine
whether the user is one of the following: A, a user who
has visited within a week (permission already denied); B, a
user who has visited before a week (permission denied after
a single prompt ignore); C, a user who has never visited
the site (permission is not denied after ignoring the prompt
once). If the visitor is A, the attacker can be tracked by
applying the same decoding step as in Section VI-A2; for B,
the attacker can be tracked by repeating the same procedure
after ignoring permissions once for all tracked sites. For C,
the attacker must only apply the encoding step. Therefore,
this attack can continue to have tracking effects, even if over a
week has passed since the user’s previous visit. We discuss the
implementation of permission state persistence in each browser
in Appendix XI-G3.

IX. RELATED WORK

Web Tracking. Several methods have been proposed for
tracking users visiting websites. Solomos et al. proposed and
evaluated a novel tracking technique for tracking users without
cookies by leveraging favicons [64]. This tracking method is
effective because it is persistent and allows websites to write
and read IDs to track users in only 2 seconds. Klein and
Pinkas proposed and evaluated a novel user-tracking method
that leverages the DNS caching mechanism and assigns unique
DNS records to users [65]. The DNS cache used for tracking
and is shared among various browsers on the same device.
This method allows an attacker to track users across multiple
browsers and browsing modes. Koop et al. conducted the first
large-scale study on user tracking using redirects [66]. This
study crawled websites in the Alexa top 50k and revealed 100
redirect domains. The results show that 11.6% of websites in
the Alexa Top 50k have at least one link that leads to the
redirect domain. In this study, we propose a novel web-tracking
technique that leverages permission mechanisms.

Cross-Browser Analysis. Several existing studies have re-
vealed threats by analyzing and comparing the behavior of
several different web browsers. Franken et al. developed a
framework to evaluate policy implementation for third-party
requests, and analyzed it for seven browsers and 46 exten-
sions [67]. The analysis found that browser features such as
PDF rendering libraries and pre-rendering functionality leak
third-party cookies. Luo et al. developed Hindsight as a frame-
work for identifying UI vulnerabilities in mobile browsers [68].
This study analyzed 27 attack building blocks (ABBs) that at-
tackers could use in their attacks, covered 128 browser families
and 2,324 individual browser versions. The results show that

2,292 (98.6%) of the 2,324 browser versions were vulnerable
to at least one ABBs. Wu et al. performed a comparative
analysis of the implementation of private browsing modes on
desktop and mobile versions of browsers [69]. The study found
inconsistencies between different browsers and the desktop and
mobile versions of the same browser. This study also evaluated
a browser fingerprinting attack and showed that an attacker
could link user sessions in private browsing modes. Using
the automated analysis framework we developed, our study
investigated permission mechanisms across multiple operating
systems and web browsers.

Mobile Permission. While our study is the first systematic
analysis of permission mechanisms for web browsers, many
studies have investigated permission mechanisms in mobile
operating systems, typified by Android smartphones. Tuncay
et al. proposed “false transparency attacks” in the runtime
permission model introduced for Android. This attack allows
an attacker to obtain illegitimate permissions from a target
by layering a transparent malicious app on top of the other
apps [10]. Marforio et al. proposed the “application collusion
attack,” which allows apps that have not obtained permis-
sions to indirectly perform operations that require permissions
through collusion between apps [11]. Chia et al. evaluated
the characteristics of apps that require many permissions,
the information users use to make permission decisions, and
their effectiveness through an extensive survey of Facebook
apps, Chrome extensions, and Android apps [3]. Bonné et al.
conducted a user study with 157 participants to identify user
decision-making when presented with permission prompts in
an Android runtime permission model [7]. The study found
that user decision-making depends on the app’s functionality,
whether the app really needs permission or whether the user
needs the functionality associated with the permission. Cao
et al. conducted a large survey of 1,719 participants from
ten countries and regions to determine users’ behaviors, ex-
pectations, and engagement with permissions in the Android
runtime permission model [8].

X. CONCLUSION

We developed PERMIUM, a web browser analysis frame-
work that automatically analyzes the browser implementations
of the permission mechanism. Using the PERMIUM framework,
we conducted a large-scale measurement study of permission
mechanism implementations in 22 browsers running on five
different operating systems to understand their behaviors and
inconsistencies. We found that browser implementations are
highly fragmented. Even within the same browser, imple-
menting a permission mechanism differs from one OS to
another. We also found 191 implementation inconsistencies in
the permission mechanism implementation that could threaten
user privacy. We also propose two practical attacks that exploit
the identified implementation inconsistencies in the permission
mechanism. One attack is a user tracking attack that uses the
permission state set by the attacker in the victim’s browser
for multiple websites. In the other attack, the attacker obtains
permission by causing the user to misidentify the permission
requester. We analyzed the threats of these attacks in detail
by performing an automated analysis using our framework
and several user studies. We identified the viability conditions
under these attacks and show that they are highly feasible.

13

We then summarized the requirements for permission mecha-
nisms to be standardized by the web browser community and
the inconsistencies in browser implementations that browser
vendors should fix. The PERMIUM framework is expected to
be useful in the standardization process and in sharing best
practices among browser vendors, as it allows the systematic
investigation of various browser implementations of permis-
sion mechanisms that exhibit complex behavior.

ACKNOWLEDGMENT

The authors would like to thank the members of
JPCERT/CC [58] for their cooperation in our responsible
disclosure.

REFERENCES

[1] Google. Permissions on Android — Android Developers. https:
//developer.android.com/guide/topics/permissions/overview, December
2021.

[2] Apple. Accessing User Data - App Architecture - iOS - Human Interface
Guidelines - Apple Developer. https://developer.apple.com/design/
human-interface-guidelines/ios/app-architecture/accessing-user-data/,
October 2021.

[3] Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. Is this app safe?
a large scale study on application permissions and risk signals. In
Proceedings of the 21st International Conference on World Wide Web,
WWW ’12, page 311–320, New York, NY, USA, 2012. Association for
Computing Machinery.

[4] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu,
and Zhong Chen. Autocog: Measuring the description-to-permission
fidelity in android applications. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’14, page 1354–1365, New York, NY, USA, 2014. Association for
Computing Machinery.

[5] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS ’11,
page 627–638, New York, NY, USA, 2011. Association for Computing
Machinery.

[6] Lena Reinfelder, Andrea Schankin, Sophie Russ, and Zinaida Benenson.
An inquiry into perception and usage of smartphone permission models.
In Steven Furnell, Haralambos Mouratidis, and Günther Pernul, editors,
Trust, Privacy and Security in Digital Business, pages 9–22, Cham,
2018. Springer International Publishing.

[7] Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina Taft. Explor-
ing decision making with Android’s runtime permission dialogs using
in-context surveys. In Thirteenth Symposium on Usable Privacy and
Security (SOUPS 2017), pages 195–210, Santa Clara, CA, July 2017.
USENIX Association.

[8] Weicheng Cao, Chunqiu Xia, Sai Teja Peddinti, David Lie, Nina Taft,
and Lisa M. Austin. A large scale study of user behavior, expectations
and engagement with android permissions. In 30th USENIX Security
Symposium (USENIX Security 21), pages 803–820. USENIX Associa-
tion, August 2021.

[9] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya
Mori. Understanding the inconsistencies between text descriptions and
the use of privacy-sensitive resources of mobile apps. In Eleventh
Symposium On Usable Privacy and Security (SOUPS 2015), pages 241–
255, Ottawa, July 2015. USENIX Association.

[10] Güliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. See no evil:
Phishing for permissions with false transparency. In USENIX Security
Symposium, 2020.

[11] C. Marforio, A. Francillon, and S. Capkun. Application Collusion
Attack on the Permission-Based Security Model and Its Implications
for Modern Smartphone Systems. Department of Computer Science,
ETH Zurich, 2010.

[12] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Al-
muhimedi, Shikun (Aerin) Zhang, Norman Sadeh, Yuvraj Agarwal, and
Alessandro Acquisti. Follow my recommendations: A personalized
privacy assistant for mobile app permissions. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016), pages 27–41, Denver,
CO, June 2016. USENIX Association.

[13] Yuan Zhang, Min Yang, Guofei Gu, and Hao Chen. Rethinking permis-
sion enforcement mechanism on mobile systems. IEEE Transactions
on Information Forensics and Security, 11(10):2227–2240, 2016.

[14] Yiting Qu, Suguo Du, Shaofeng Li, Yan Meng, Le Zhang, and Haojin
Zhu. Automatic permission optimization framework for privacy en-
hancement of mobile applications. IEEE Internet of Things Journal,
8(9):7394–7406, 2021.

[15] Xing Gao, Dachuan Liu, Haining Wang, and Kun Sun. Pmdroid:
Permission supervision for android advertising. In 2015 IEEE 34th
Symposium on Reliable Distributed Systems (SRDS), pages 120–129,
2015.

[16] Mozilla. Permissions API - Web API — MDN. https://developer.
mozilla.org/en-US/docs/Web/API/Permissions API, September 2021.

[17] W3C. Requesting Permissions. https://wicg.github.io/
permissions-request/, May 2022.

[18] StatCounter. Browser Market Share Worldwide — Statcounter Global
Stats. https://gs.statcounter.com/browser-market-share/, March 2022.

[19] W3C. Geolocation API. https://www.w3.org/TR/geolocation/, Novem-
ber 2021.

[20] W3C. Media Capture and Streams. https://www.w3.org/TR/
mediacapture-streams/#dom-mediadevices-getusermedia, December
2021.

[21] WHATWG. Html Standard. https://html.spec.whatwg.org/multipage/
origin.html, May 2022.

[22] Mozilla. Origin - MDN Web Docs Glossary: Definitions of Web-related
terms — MDN. https://developer.mozilla.org/en-US/docs/Glossary/
Origin, October 2021.

[23] Mozilla. Same-origin policy - Web security — MDN. https://developer.
mozilla.org/en-US/docs/Web/Security/Same-origin policy, April 2022.

[24] W3C. Private Mode Browsing. https://w3ctag.github.io/private-mode/,
November 2018.

[25] W3C. W3C TAG Observations on Private Browsing Modes. https:
//www.w3.org/2001/tag/doc/private-browsing-modes/, July 2019.

[26] Google. How private browsing works in Chrome. https://support.google.
com/chrome/answer/7440301, April 2022.

[27] Microsoft. Browse InPrivate in Microsoft Edge.
https://support.microsoft.com/en-us/microsoft-edge/
browse-inprivate-in-microsoft-edge-cd2c9a48-0bc4-b98e-\
5e46-ac40c84e27e2, April 2022.

[28] Software Freedom Conservancy. Selenium overview — Selenium. https:
//www.selenium.dev/documentation/overview/, December 2021.

[29] Google Developers. Puppeteer — Tools for Web Developers —
Google Developers. https://developers.google.com/web/tools/puppeteer,
February 2021.

[30] Microsoft. Fast and reliable end-to-end testing for modern web apps
— Playwright. https://playwright.dev/, May 2022.

[31] Apple. Webdriver is Coming to Safari in iOS 13 — Webkit. https:
//webkit.org/blog/9395/webdriver-is-coming-to-safari-in-ios-13/, July
2019.

[32] Software Freedom Conservancy. Install browser drivers — Se-
lenium. https://www.selenium.dev/documentation/webdriver/getting
started/install drivers/, August 2022.

[33] Mozilla. Notification - Web APIs — MDN. https://developer.mozilla.
org/en-US/docs/Web/API/Notification, April 2022.

[34] Mozilla. Incognito browser: What it really means. https://www.mozilla.
org/en-US/firefox/browsers/incognito-browser/, April 2022.

[35] Brave Helo Center. What is a Private Window? https://support.brave.
com/hc/en-us/articles/360017840332-What-is-a-Private-Window-,
April 2022.

[36] Apple. Use Private Browsing in Safari on Mac. https://support.apple.
com/guide/safari/browse-privately-ibrw1069/mac, April 2022.

14

[37] Mozilla. Manage local site storage settings — Firefox Help. https:
//support.mozilla.org/en-US/kb/storage, September 2022.

[38] Mozilla. Delete browsing, search and download history on
Firefox — Firefox Help. https://support.mozilla.org/en-US/kb/
delete-browsing-search-download-history-firefox, September 2022.

[39] Kazuki Nomoto. Permium. https://permium.seclab.jp/, October 2022.
[40] Apple. Full Third-Party Cookie Blocking and More. https://webkit.org/

blog/10218/full-third-party-cookie-blocking-and-more/, March 2020.
[41] Google. Chromium Blog: Building a more private web: A path towards

making third party cookies obsolete. https://blog.chromium.org/2020/
01/building-more-private-web-path-towards.html, January 2020.

[42] Google. Permission Delegation - Chrome Platform Status. https:
//chromestatus.com/feature/5670617353289728, December 2021.

[43] Mozilla. GlobalEventHandlers.onclick - Web APIs —
MDN. https://developer.mozilla.org/en-US/docs/Web/API/
GlobalEventHandlers/onclick, January 2022.

[44] Mozilla. Document: visibilitychange event - Web APIs —
MDN. https://developer.mozilla.org/en-US/docs/Web/API/Document/
visibilitychange event, March 2022.

[45] Mozilla. The WebSocket API (WebSockets) - Web APIs —
MDN. https://developer.mozilla.org/en-US/docs/Web/API/WebSockets
API, May 2022.

[46] Google. WebRTC. https://webrtc.org/, May 2019.
[47] Lancers,inc. Lancers. https://www.lancers.jp/, October 2022.
[48] W3C. Permissions. https://www.w3.org/TR/permissions/, December

2021.
[49] World Wide Web Consortium (W3C). World Wide Web Consortium

(W3C). https://www.w3.org/, May 2022.
[50] WHATWG. Web Hypertext Application Technology Working Group

(WHATWG). https://whatwg.org/, May 2022.
[51] Mozilla. How to manage your camera and microphone permissions

with Firefox — Firefox Help. https://support.mozilla.org/en-US/kb/
how-manage-your-camera-and-microphone-permissions, May 2022.

[52] W3C. Permissions Policy. https://www.w3.org/TR/
permissions-policy-1/, July 2020.

[53] Google. Change site permissions - Computer - Google Chrome Help.
https://support.google.com/chrome/answer/114662, May 2022.

[54] Brave. How do I change site permissions? - Brave
Help Center. https://support.brave.com/hc/en-us/articles/
360018205431-How-do-I-change-site-permissions-, May 2022.

[55] Apple. Change Websites preferences in Safari on Mac - Apple Support
(CA). https://support.apple.com/en-ca/guide/safari/ibrwe2159f50/mac,
May 2022.

[56] Apple. WebKit. https://webkit.org/, April 2022.
[57] Apple. App Store Review Guidelines - Apple Developer. https:

//developer.apple.com/app-store/review/guidelines/, October 2021.
[58] JPCERT Coordination Center. JPCERT Coordination Center. https:

//www.jpcert.or.jp/english/, October 2022.
[59] Brave. Don’t inherit permissions in private windows · Issue #24720

· brave/brave-browser. https://github.com/brave/brave-browser/issues/
24720, August 2022.

[60] Brave. Don’t inherit privacy-sensitive content settings in incognito. by
goodov · Pull request #14765 · brave/brave-core. https://github.com/
brave/brave-core/pull/14765, August 2022.

[61] Brave. Inform users that they need to close private windows to clear
data in them · Issue #25046 · brave/brave-browser. https://github.com/
brave/brave-browser/issues/25046, August 2022.

[62] Igor Bilogrevic, Balazs Engedy, Judson L. Porter III, Nina Taft,
Kamila Hasanbega, Andrew Paseltiner, Hwi Kyoung Lee, Edward Jung,
Meggyn Watkins, PJ McLachlan, and Jason James. ”shhh...be quiet!”
reducing the unwanted interruptions of notification permission prompts
on chrome. In 30th USENIX Security Symposium (USENIX Security
21), pages 769–784. USENIX Association, August 2021.

[63] Chromium Platform Status. Status in Chromium. https://chromestatus.
com/feature/6443143280984064, May 2022.

[64] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis.
Tales of favicons and caches: Persistent tracking in modern browsers.
In Network and Distributed System Security Symposium, 2021.

TABLE XII. CLIENT DEVICE DETAILS AND OS VERSIONS

Type Device Name OS Version
Desktop Acer Veriton X490 Windows 10 21H1
Desktop Home-built computer Ubuntu 20.04 LTS
Desktop MacBook Pro 15-inch Mid 2015 macOS 12.0.1
Mobile LG G8X ThinQ Android 10
Mobile iPhone X iOS 14.3 (JailBreak)

[65] Amit Klein and Benny Pinkas. Dns cache-based user tracking. In
Network and Distributed System Security Symposium, 2019.

[66] Martin Koop, Erik Tews, and Stefan Katzenbeisser. In-depth evaluation
of redirect tracking and link usage. Proceedings on Privacy Enhancing
Technologies, 2020:394 – 413, 2020.

[67] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. Who left
open the cookie jar? a comprehensive evaluation of Third-Party cookie
policies. In 27th USENIX Security Symposium (USENIX Security 18),
pages 151–168, Baltimore, MD, August 2018. USENIX Association.

[68] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis.
Hindsight: Understanding the evolution of UI vulnerabilities in mobile
browsers. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page 149–162, New
York, NY, USA, 2017. Association for Computing Machinery.

[69] Wu Yuanyi, Dongyu Meng, and Hao Chen. Evaluating private modes
in desktop and mobile browsers and their resistance to fingerprinting.
pages 1–9, 10 2017.

[70] julioverne. julioverne/screendump. https://github.com/julioverne/
screendump, November 2021.

[71] Pallets. Welcome to Flask; Flask Documentation (2.1.x). https://flask.
palletsprojects.com/en/2.1.x/, May 2022.

[72] Bo Peng, Hongxing Fan, Wei Wang, Jing Dong, Yuezun Li, Siwei Lyu,
Qi Li, Zhenan Sun, Han Chen, Baoying Chen, Yanjie Hu, Shenghai
Luo, Junrui Huang, Yutong Yao, Boyuan Liu, Hefei Ling, Guosheng
Zhang, Zhiliang Xu, Changtao Miao, Changlei Lu, Shan He, Xiaoyan
Wu, and Wanyi Zhuang. Dfgc 2021: A deepfake game competition,
2021.

[73] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-
df: A large-scale challenging dataset for deepfake forensics. In IEEE
Conference on Computer Vision and Patten Recognition (CVPR), 2020.

[74] Matt Gaunt. Permissions API for the Web. https://developer.chrome.
com/blog/permissions-api-for-the-web/, March 2019.

[75] Google. Temporarily stop permission requests after 3 dis-
missals - Chrome Platform Status. https://chromestatus.com/feature/
6443143280984064, April 2022.

XI. APPENDIX

A. Details of the PERMIUM Framework

We describe the details of the PERMIUM framework.

Setup of the PERMIUM Framework. We used three desktop
PCs and two smartphones as client devices. As desktop OSs,
Windows, Linux, and macOS were installed on the three PCs.
As mobile OSs, Android and iOS were installed on the two
smartphones. Table XII summarizes the details of each client
device and OS version. To establish remote controlling on
iOS, screendump [70] was installed on a jailbroken iOS. For
browsers, we used Chrome, Firefox, Edge, Brave, and Safari
as major browsers. In summary, the number of OS/browser
combinations is 22, because Safari is only available on macOS
and iOS. Table XIII lists the web browser versions. The
entire framework was implemented in Python and the Flask
framework [71].

Mechanism for Determining the Permission Status. PER-
MIUM uses a JavaScript API to get the permission status
of the web browsers. PERMIUM attempts to access each
resource protected by permissions through the JavaScript API.

15

TABLE XIII. BROWSER VERSIONS USED IN THIS STUDY.
Platform Browser Version

Windows

Chrome 96.0.4664
Firefox 94.0.2
Edge 95.0.1020
Brave 1.31.91

Linux

Chrome 94.0.4606
Firefox 94.0
Edge 95.0.1020
Brave 1.30.87

macOS

Chrome 96.0.4664
Firefox 94.0.1
Edge 95.0.1020
Brave 1.31.91
Safari 15.1

Android

Chrome 95.0.4638
Firefox 94.1.2
Edge 95.0.1020
Brave 1.31.90

iOS

Chrome 95.0.4638
Firefox 39.0
Edge 93.0.961
Brave 1.32
Safari 604.1

At this time, PERMIUM determines whether the permission
status is granted, denied, or unset by observing the property
value or callback function. This checking process is available
on all operating systems and browsers and does not affect the
evaluation results.

Mechanism for Operating a Web Browser. PERMIUM
operates browsers from hard-coded images of button icons
that each web browser displays. We manually extracted infor-
mation about the button-icon images and their corresponding
operations (e.g., allow, deny, close a dialogue) from all the
browsers and registered the information in the framework. With
this information, the framework can automatically analyze the
browser behaviors. To interact with a browser, the framework
identifies a button-icon image corresponding to a certain op-
eration by matching the registered images and clicking it.

Availability of PERMIUM Framework. We share artifacts
with researchers based on their application on our website [39].
Applications will be accepted from researchers who wish to
use the artifact, which will shared through a review process.
It should be noted that the artifact-sharing model is widely
adopted in the research community. For example, Celeb-
DF [72], [73], a widely used benchmark dataset for Deepfake.

B. Breakdown of the Identified Implementation Inconsistencies

We counted the implementation inconsistencies identified
in Section IV for each of the 22 browsers. Table XIV presents
the breakdown of the implementation inconsistencies identified
for each browser. We can see that each browser has, on
average, 8.5 implementation inconsistencies.

C. Conditions for Automatically Setting the Permission State
to “Denied”

The number of times the prompt needs to be ignored to
automatically set the permission state to “denied” is shown in
Table XV. It is clear that the number of times required differs
between desktop browsers and mobile browsers. In desktop
browsers, most browsers automatically set permissions with
4 prompt-ignores, while in mobile browsers, most browsers
automatically set permissions with 3 prompt-ignores. In Sa-
fari, Microphone, Camera, and Geolocation permissions were

automatically denied after three ignores, while Notification
permission was automatically denied after one ignore.

TABLE XV. NUMBER OF TIMES THE PROMPT NEEDS TO
BE IGNORED TO AUTOMATICALLY SET THE PERMISSION

STATE TO “DENIED.”

Chrome Firefox Edge Brave Safari
Windows 4 – 4 4 n/a
Linux 4 – 4 4 n/a
macOS 4 – 4 4 †
Android 3 – 3 3 n/a
iOS – – – – –

4: Permission is automatically set to denied after ignoring
the prompt 4 times
3: Permission is automatically set to denied after ignoring
the prompt 3 times
† : Microphone, Camera, and Geolocation are automatically
set to denied after ignoring the prompt four times, and for
Notification, permission is automatically set to denied after
ignoring the prompt once.
– : Permission state will not be automatically set to denied
by ignoring the prompt.

D. Permissions API

Historically, web permission requests have been provided
by different APIs for each function. For example, the Me-
diaDevices API is used to request permission to access the
camera, and the Geolocation API is used to request permission
to access the GPS [16]. The Permissions API is currently
being standardized as a mechanism to unify these fragmented
APIs [48]. Since 2022, most websites request permission using
legacy APIs, not the Permissions API, because no browser
enables to request permission using the Permissions API by
default. We expect the Permissions API to be widely adopted
for permission requests in the future.

Currently, the progress of implementing the Permissions
API varies between web browsers [16]. Chrome, Edge, and
Opera have enabled permission requests using the Permissions
API as an experimental feature. Firefox and Safari have not
adopted the permission request functionality using the Permis-
sions API. The Permissions API provides a new feature that
allows websites to query the permission state without request-
ing permission. Although this feature is expected to improve
the user experience [74], the risk of using the feature as a
browser fingerprinting technique is also being discussed [48].

We investigate whether the Permissions API for querying
the permission status works in each case where the tab is in the
foreground or background. For browsers that do not support
the Permissions API, we use the Notification API to check if
it is possible to obtain the permission state without notifying
the user. The results are shown in Table XVI. We found that
it is possible to obtain the permission states without notifying
the user by using the Permissions API or Notification API in
all browsers except iOS.

E. Browsers that Support Packing Multiple Permissions

Using the PERMIUM framework, we investigated browsers
that support packing multiple permissions. Table XVII shows
the results. All browsers capable of attacking permission-based
tracking attacks, with the exception of the Android browsers,
support packing Microphone and Camera permissions.

16

TABLE XIV. BREAKDOWN OF THE IDENTIFIED IMPLEMENTATION INCONSISTENCIES. FOR T1 , CASES THAT DO NOT SUPPORT
PERMISSION SETTINGS ARE EXCLUDED.

Chrome Firefox Edge Brave Safari SUMW L M A i W L M A i W L M A i W L M A i M i
T1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
T2 2 2 2 2 4 2 2 3 0 4 2 2 2 2 4 0 0 0 0 4 4 2 45
T3 2 2 2 2 8 0 0 0 4 8 2 2 2 2 8 1 1 1 1 8 8 0 64
T4 1 1 1 1 2 2 2 2 0 2 1 1 1 1 2 1 1 1 1 2 0 0 26
T5 4 4 4 3 0 0 0 0 0 0 4 4 4 3 0 4 4 4 3 0 4 0 49
T6 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 4

SUM 9 9 9 8 15 5 5 6 4 15 9 9 9 8 14 6 6 6 5 15 17 2 191

W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE XVI. OBTAINING PERMISSION STATE USING PERMISSIONS API

Tab Status Chrome Firefox Edge Brave Safari
W L M A i W L M A i W L M A i W L M A i M i

Foreground # N N N N # # # N† #
Background # N N N # # # # N† #
 : All permission states can be obtained with Permissions API, N : Notification permission states can be obtained with Permissions API,
: All permission states are not supported by Permissions API
† : Not supported by Permissions API, but Notification permission state can be obtained by Notification API
W: Windows, L: Linux, M: macOS, A: Android, i: iOS

TABLE XVII. SUPPORT OF THE PACKING MULTIPLE PERMISSIONS
(MICROPHONE AND CAMERA).

: SUPPORTED : NOT SUPPORTED
chrome firefox edge brave safari

Windows # # # # n/a
Linux # # # # n/a
macOS # # # # #
Android n/a
iOS

F. Wait Time Twait Required for the Permission-based User
Tracking Attack

In the encoding process of the permission-based user
tracking attack, the browser needs to wait for a moment when
a permission prompt is required. If the browser reloads the
tracking website before the permission prompt is rendered in
the foreground or background, the number of times that the
prompt is ignored will not be incremented, and the permission
state for the tracking website cannot be denied. The waiting
time is defined as Twait seconds. This section evaluates Twait

for devices A, B, and C during a normal attack, and Twait for
device B during a packing multiple permissions. In the normal
attack, Microphone permission was used, and in the packing
multiple permissions, Microphone and Camera permissions
were used.

We measured the number of attack success rates when
Twait = 20, 40, . . . , 100. Each attack was carried out 10 times.
If all the attack success rates were 1, we further measure the
attack success rate when Twait = 0, 2, . . . , 20. If all attack
success rates are less than 1, then further measure the attack
success rate when Twait = 120, 140, . . . , 200.

Figure 4 presents the relationship between Twait and the
attack success rate. The Twait for deice A, B, and C during
normal attacks were 160 ms, 2 ms, and 40 ms, respectively. In
the packing multiple permissions case, Twait was 2 ms. These
results show that Twait is small, less than 0.2 seconds, in all
cases. On the other hand, the difference in time by device
suggests that Twait varies depending on the operating system
and browser of the attack target and the connection method of
the camera and microphone. Also, it can be seen that packing
multiple permissions does not have an effect on processing

0 20 40 60 80 100 120 140 160 180 200
Wait Time Twait [ms]

0.00

0.25

0.50

0.75

1.00

At
ta

ck
 S

uc
ce

ss
 R

at
e

Device-A (Mic.)
Device-B (Mic.)
Device-C (Mic.)
Device-B (Mic. & Cam.)

Fig. 4. Relationship between Twait and attack success rate

time, even though two permissions are requested at the same
time.

G. Further Evaluation and Discussion of the Permission-based
User Tracking Attack

1) Optimizing the Time for Attacks: We propose a method
to dynamically change the length of UIDs and evaluate the
time required for the attack. The proposed method generates
and assigns UIDs of dynamic length, sorted according to
the user’s access order. That is, the N -th person is assigned
a UID of N , represented as a binary number; i.e., N =
1, 01, 10, 11, 001, , We introduce a flag that represents
the end of the identifier; i.e., when the state of a particular
permission is denied, we use that information to represent the
end of the identifier. This approach, named the “sorted index,”
allows us to optimize the time required for the attack.

First, we surveyed the operating systems and browsers that
support the sorted index. As a result, we found that Chrome,
Edge, and Brave, excluding the iOS version, support the sorted
index. Next, we measured the time Tenc and Tdec for the case
of random ID assignment and the case of ID assignment with
sorted index approach, using the device B. Here, we fixed the
user space U = 232 and measured the time taken for the attack
when three random users visited from the first to the Nth user.
Figures 5 present the results. We can see that the use of sorted
index optimizes the time required for the attack, regardless of
the user space to be attacked.

2) Evaluation of User Perception: We evaluated user per-
ceptions in the permission-based user tracking attack. Twenty
participants were recruited to conduct the study. All the partic-
ipants were university students majoring in science and engi-
neering. The participants were divided into two groups, A and

17

102 104 106 108 1010

Max Number of Targets N
0

2

4

6

8
En

co
din

g
Ti

m
e

T e
nc

 [s
]

Device-B (Sorted)
Device-B (Random)

102 104 106 108 1010

Max Number of Targets N
0

2

4

6

8

De
co

din
g

Ti
m

e
T d

ec
 [s

]

Device-B (Sorted)
Device-B (Random)

Fig. 5. N vs. required time. Top: encoding and Bottom: decoding.

B, each consisting of 10 participants. Participants in Groups
A and B browsed the attack website, where the user tracking
attack ran in the foreground/background, respectively, using
a desktop (macOS) Chrome browser that we provided. We
asked all participants if they had noticed anything suspicious
after browsing. If they reported seeing anything suspicious, we
asked them why and what they thought should be done about
it.

The results showed that 80% of the participants in Group
A noticed suspicious behavior related to this attack. Moreover,
40% of the participants in Group A were able to correctly
indicate how to stop the attack while it was happening. None
of the participants in Group A were able to demonstrate
how to eliminate the threat of this attack, such as erasing
the permission state stored in the browser or deleting the
browser data. None of the participants in Group B noticed
any suspicious behavior related to this attack. These results
suggest that users are unable to detect user tracking attacks
using background tabs.

Note that, according to the results of the user study
presented in Section V, 60% of users do not know the feature
that lets web browsers automatically set the permission status
to denied when a permission is requested multiple times
by the same website. These observations conclude that the
permission-based user tracking attack is highly covert.

3) Evaluating the Persistence of the Attack: In the fol-
lowing, we evaluate the persistence of the attack. First, we
investigated whether a permission state set to denied by a
user tracking attack persisted when the browser was restarted.
Table XVIII shows the results. In Chrome, Edge, and Brave,
the permission state persisted even after a browser restart.
Next, we examined the permission state more than 7 days
after the attack. For Chromium-based browsers — Chrome,
Edge, and Brave (except for the iOS version, which is WebKit),
the permission state set to “denied” by reloading returned
to the state “prompt” after 7 days. Then, when the prompt
was reloaded once again, the permission state was set to
“denied.” This behavior is consistent with the description in
the literature [75]. Thus, 7 days after the attack the encoded
permission state can be restored by making a single permission
request to all tracking websites. By performing these additional
operations, user tracking can be achieved for longer than 7
days. Safari maintained the permission state even after 7 days

TABLE XIX. DEMOGRAPHIC DATA FROM THE ONLINE SURVEY
(N=232).

Age

18–29 24
30–39 59
40–49 83
50–59 41
60 or over 19
I don’t want to answer. 6

Level of education

Graduate degree 11
Bachelor’s degree 132
Assoc. degree/Tech. degree 16
High school 65
I don’t want to answer. 6
Other 2

Self-identified gender
Female 98
Male 132
Others/I don’t want to answer. 2

Job status

unemployed 64
self-employed 43
employed 113
I don’t want to answer. 12

IT professionals
Yes 23
No 203
I don’t want to answer. 6

TABLE XX. DEMOGRAPHIC DATA FROM THE ONLINE USER STUDY
(N=99).

Age

18–29 17
30–39 38
40–49 31
50–59 11
60 or over 1
I don’t want to answer. 1

Level of education

Graduate degree 2
Bachelor’s degree 62
Assoc. degree/Tech. degree 13
High school 21
I don’t want to answer. 1

Self-identified gender
Female 50
Male 48
Others/I don’t want to answer. 1

Job status

unemployed 24
self-employed 6
employed 64
I don’t want to answer. 5

IT professionals Yes 15
No 84

had elapsed.

TABLE XVIII. IMPACT OF BROWSER RESTARTS ON
PERMISSION STATE PERSISTENCE

Chrome Firefox Edge Brave Safari
Windows – n/a
Linux – n/a
macOS – N
Android – n/a
iOS – – – – –

 : All permission states persist after the browser restarts.
N : Notification permission state persists after the browser
restarts.
– : Permission state will not be automatically set to denied
by ignoring the prompt.

H. Demography of Participants in the Online User Study

Table XIX and Table XX show the demographics of the
participants in the online user study experiment conducted in
Section V and Section VII-B2, respectively.

18

