
Extrapolating Formal Analysis to Uncover Attacks in
Bluetooth Passkey Entry Pairing

Mohit Kumar Jangid*
The Ohio State University

jangid.6@osu.edu

Yue Zhang*
The Ohio State University

zhang.12047@osu.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—Bluetooth is a leading wireless communication
technology used by billions of Internet of Things (IoT) devices
today. Its ubiquity demands systematic security scrutiny. A key
ingredient in Bluetooth security is secure pairing, which includes
Numeric comparison (NC) and Passkey Entry (PE). However,
most prior formal efforts have considered only NC, and PE has
not yet been formally studied in depth. In this paper, we propose
a detailed formal analysis of the PE protocol. In particular,
we present a generic formal model, built using Tamarin, to
verify the security of PE by precisely capturing the protocol
behaviors and attacker capabilities. Encouragingly, it rediscovers
three known attacks (confusion attacks, static passcode attacks,
and reflection attacks), and more importantly also uncovers
two new attacks (group guessing attacks and ghost attacks)
spanning across diverse attack vectors (e.g., static variable
reuse, multi-threading, reflection, human error, and compromise
device). Finally, after applying fixes to each vulnerability, our
model further proves the confidentiality and authentication
properties of the PE protocol using an inductive base model.

I. INTRODUCTION

Being a vital short-range wireless communication
technology, Bluetooth has been used by numerous devices for
various applications (e.g., earbuds, wearables, and sensors)
[12]. Unfortunately, the past several years have also witnessed
numerous security flaws, from implementation (e.g., leaking
UUIDs [61], or misconfigurations [54]) to specification (e.g.,
BAIS attacks [5] and Method confusion attacks [53]) that
have rendered billions of Bluetooth devices vulnerable to
intruders [51]. While luckily these flaws have been discovered,
most of them were identified with manual efforts. Therefore,
rigorous approaches are needed to systematically reason about
the security properties and correct construction of Bluetooth
protocols.

Formal verification (FV) is a promising technique for
verifying the security of protocols (e.g., TLS 1.3 [19], [22],
[10], the Noise framework [26], [29], Signal [18], [16], [28],
5G authentication key exchange [9], and WPA2 [21]). Rec-
ognizing its potential, various prior attempts (e.g., [20], [14],
[37], [7], [35]) have been made to prove and discover attacks
in Bluetooth secure authentication pairing protocols (which
allows two or multiple devices to negotiate keys). However,

The first two authors contributed equally to this paper.

most of these work cover only one of the secure authentication
pairings, namely Numeric Comparison (NC), and the other
competitive pairing method, Passkey Entry (PE), considered as
at the same security level as NC, has been under-investigated.
For example, the prior work [57] models a simple version of
PE and uncovers only two attacks on PE. However, there could
be other attacks (our paper ultimately uncover 5 attacks against
PE). We believe that this is due to the higher complexity
of the PE protocol (which involves a multitude of messages
and confirmations exchanges; asymmetric human interactions;
and the involvement of a loop in the authentication phases)
compared to the NC protocol. Therefore, we hypothesize that
complete modeling of the long and sophisticated PE pairings
will expose a large attack surface and may uncover unknown
attacks of PE.

To this end, we started with analyzing an accurate Blue-
tooth pairing environment and the threat model for state-of-
the-art attacks involving PE pairing. In particular, we selected
the method confusion attack [53], an attack against the PE
protocol, as the starting point of our modeling. The attack
involves a sophisticated threat model, device capabilities, and
entity interactions. In the attack, the user attempts to pair up
two legitimate devices, and the intruder hijacks the pairing
sessions and initiates different pairing methods on each of the
pairing devices. That is, one device is tricked into running
PE pairing, which requires the user to input a passcode, and
another device is tricked into running NC pairing, which
requires the user to compare and confirm a passcode. At this
point, the user, unable to differentiate the pairing methods,
mistakenly enters the passcode for the NC pairing into the
device that is running PE pairing, which allows the passcode
to be leaked to the intruder to complete the pairing on both
sides and then succeeds with a MitM attack.

During this initial investigation, we found that the method
confusion attack covers intricate details of PE pairing. For
example, it requires accurate value format abstraction of
passcode (i.e., the pairing authentication value produced by
PE), parallel PE instances, device passcode customization
by an intruder, a careful abstraction of human interaction
(entering the passcode) and human errors (mistakenly entering
the passcode of an incorrect pairing method). Building a
model that can capture such attacks in detail should be able to
uncover hidden vulnerabilities that lie beneath the complexity
of the PE protocol complexity.

Therefore, in this paper, we present in great detail how
we have developed such a systematic formal PE model
with device access control (possession of a device for users
or intruders), human interaction (e.g., viewing, entering or

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23119
www.ndss-symposium.org

confirming the passcode), refined threat model (e.g., intruder’s
device possession and brute-force derivation), and device
capabilities (e.g., displaying static or random passcode).
During the modeling process, we faced multiple non-trivial
challenges including (i) modeling complex PE protocol,
and integrating many features into one unified model, (ii)
modeling refined intruder capabilities, and (iii) analyzing large
protocol traces. To overcome these challenges, we carefully
augmented the design of the pairing protocol environment in
Tamarin [32], one of the state-of-the-art symbolic protocol
verification tools. With iterative refinement, we gradually
upgraded the model complexity and captured semantic intruder
capability to explore the attack surface. The large traces were
optimized and studied piece by piece for comprehension. .

Encouragingly, our model discovers five attacks, including
three known attacks: (1) the confusion attack [53] (the root
cause of which is a human mistakenly entering the passcode of
a different pairing), (2) the reflection attack [15] (because the
devices fail to check the identity), and (3) the static passcode
attack [50] (because the devices display static passcode), and
more importantly two new attacks: (1) group guessing attack
(because the devices use random functions that are not thread
safe, displaying the same passcode for multiple devices) and
(2) ghost attack (because the devices leak the passcode to
intruders). We have validated the two new attacks on the real
world devices, and the results have proved the effectiveness
of our model and confirmed our insights.

Contributions. In short, we make the following contributions
in this paper:
• In-depth Model for PE Pairing. We propose a detailed

formal model for Bluetooth Low Energy secure pairing
protocols with refined adversary threat model, device
access control, human interactions (as well as human
errors) and device capabilities.

• Uncovered Attacks and Corresponding Fixes. Our
model1 formally verifies confidentiality and authentication
properties, and discovers three known attacks and two
new attacks. After applying the corresponding fixes
to the attacks with inductive base case of two PE
authentication loops, the model verifies the confidentiality
and authentication properties.

• Lessons Learned. We explain the mechanism behind
the PE pairing method, and draw insights through the
modeling process and the uncovering of attacks. For
example, the protocols with large loops can potentially
trade off FV model complexity by minimizing the loops
without compromising model results.

II. BACKGROUND

A. Bluetooth Passkey Entry (PE) Pairing
Bluetooth resorts to its security through pairing protocols,

where two or multiple devices (e.g., Bluetooth Mesh [8])
negotiate keys between each other and use the negotiated
key to further encrypt and decrypt the communication. While
Bluetooth includes multiple versions (e.g., Bluetooth Classic,
which is mainly for audio streaming, and Bluetooth Low
Energy, which is mainly for IoT devices), their pairing

1Our Tamarin code is released at Github: https://github.com/OSUSecLab/
bluetooth-pairing-formal-verification.

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi

Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Sessions

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator

PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

❶

❷

❸

❶

❷

❶

❷

Delay

Fig. 1: The protocol flow of PE pairing.

protocols are similar. At a high level, there are four pairing
methods, i.e., Just Works (JW), Passkey Entry (PE), Numeric
Comparison (NC) and Out of Band (OOB). In this paper, we
focus on the PE pairing method, since other pairing protocols
are either insecure (e.g., JW), very implementation specific
(e.g., OOB [60]), or well-investigated (NC). Figure 1 illustrates
the workflow of PE pairing between two devices A and B.

(I) Feature Exchange. Before authentication begins, the two
devices exchange their pairing features (i.e., IOcapA, and
IocapB, as illustrated in Figure 1). The pairing features are
mainly refer to as the support of a specific input and output
capabilities (e.g., presences of screens or keypads), through
which the devices can further decide which pairing method
should be selected in the following procedures. Then, the
devices use the Elliptic Curve Diffie–Hellman (ECDH) key
exchange protocol to exchange each other’s public key (i.e.,
𝑝𝑘𝐴, and 𝑝𝑘𝐵) and produce a DH key for future reference.

(II) Authentication Phase 1. In this step, the two pairing
devices select an association method based on the exchanged
pairing features. In this paper, we assume that PE is selected
as the pairing method. There are two ways to perform PE
pairing depending on the input and output capabilities of the
two pairing devices. The first case is that one device has a
display while the other device has a keypad. In this case,
one device displays a six-digits passcode. The user “view”
the passcode (i.e., 𝐾𝑃𝐸), and physically “enter” the displayed
passcode into the other device, and the transferred passcode is
used to drive the key in the following steps. The second case
is that both devices only have keypads. In this case, the user
is required to input the same passcode (i.e., 𝐾𝑃𝐸) into the two
devices. PE can defend against MitM attacks, because the user
is involved and obligated to transfer authenticated values (i.e,

2

https://github.com/OSUSecLab/bluetooth-pairing-formal-verification
https://github.com/OSUSecLab/bluetooth-pairing-formal-verification

passcode) from one device to the other. After the authentication
values are exchanged, the two devices have to make sure the
authentication values are the same. To this end, the two devices
produce commitments and exchange them 20 times (the reason
of why 20 times will be explained in §III). Particularly, during
each round, the two devices produce two nonces (denoted as
𝑛𝑎𝑖 and 𝑛𝑏𝑖 respectively, where 𝑖 is the particular round), and
exchange them for future references. Device A calculates a
CMACed commitment:

𝑐𝑟𝑎𝑖 = 𝐶𝑀𝐴𝐶{𝑝𝑘𝐴, 𝑝𝑘𝐵, 𝐾 𝑖𝑃𝐸}𝑛𝑎𝑖
and sends the CMACed commitment to device B. Similarly,
device B also calculates:

𝑐𝑟𝑏𝑖 = 𝐶𝑀𝐴𝐶{𝑝𝑘𝐴, 𝑝𝑘𝐵, 𝐾 𝑖𝑃𝐸}𝑛𝑏𝑖
and sends it to device A. The two devices both check whether
the obtained value is equal to the calculated value. If so, the
two devices then initiate the second round. The two devices
confirm the authenticated values until all 20 times’ CMACed
commitment checks are all passed. Then, the authentication
values will be used to derive keys.

(III) Key Calculations. After the successful completion of
authentication phase 1, based on the generated DH key and
the transferred authentication values, the two devices generate
a long-term key (LTK):

𝐾𝐿𝑇𝐾 = 𝐶𝑀𝐴𝐶{0, 𝑛𝑎20, 𝑛𝑏20, 𝐴, 𝐵}𝐾𝐷𝐻
and a MAC key:

𝐾𝑀𝐴𝐶 = 𝐶𝑀𝐴𝐶{0, 𝑛𝑎20, 𝑛𝑏20, 𝐴, 𝐵}𝐾𝐷𝐻
Generally, LTK is saved for the communication encryption.

(IV) Authentication Phase 2. The second authentication
phase ensures that the devices have completed the previous
steps honestly. This is achieved by exchanging the history of
preciously agreed values (CMACed) and verifying the same
values on both ends. Particularly, device A performs:

𝑒𝑎 = 𝐶𝑀𝐴𝐶{𝑛𝑏, 𝑛𝑎, 𝑟𝑏, 𝐼𝑂𝑐𝑎𝑝𝐴, 𝐴, 𝐵}𝐾𝑀𝐴𝐶
and sends the value to device B. Similarly, device B performs:

𝑒𝑏 = 𝐶𝑀𝐴𝐶{𝑛𝑏, 𝑛𝑎, 𝑟𝑎, 𝐼𝑂𝑐𝑎𝑝𝐵, 𝐴, 𝐵}𝐾𝑀𝐴𝐶
where 𝑟𝑏 and 𝑟𝑎 are two random numbers exchanged in this
step. The two devices both check whether the obtained value
is equal to the calculated value. If so, the pairing succeeds.
In particular, even if the passcode is leaked to an intruder in
the authentication phase 1, she cannot bypass phase 2 until
she was able to spoof the DH public key of the other pairing
device and derive the same DH session key. Finally, the two
devices will use 𝐾𝐿𝑇𝐾 to produce session keys, and the session
key will be used to encrypt the rest of the Bluetooth traffic.

B. Tamarin Prover

Overview of Tamarin. Tamarin prover is a symbolic veri-
fication tool to model cryptographic protocols. Being such a
prover, it takes the modeled protocol to be proved and security
properties (which specify the security goal and the security
requirements of a protocol) as inputs, and outputs whether or
not the modeled protocol satisfies the security properties, and
further reasons a protocol from given security properties.

• (Input-I) Modeled Protocol. The protocol that needs to
be verified is specified in the form of Multi-Set Rewriting
(MSR) Rules. At a high level, MSR Rules allow modeling
of protocol agents, model variables, and operations over the
variables. All variables in Rules are mathematical symbols.
Basic operations over the symbols involve: (i) combining
existing symbols to derive new composite symbols (i.e.,
terms); (ii) breaking down terms into its constituent sym-
bols or terms; and (iii) substituting one term into another
term (i.e., rewriting). Cryptographic or limited algebraic
operations are extensions of these basic operations.

• (Input-II) Security Properties. Security properties provide
the security requirements of the protocol, which are in the
form of first-order logic (FOL) [48]. Typical examples of
protocol security properties are confidentiality and authen-
ticity [23], [55], [30].

• (Output) Satisfiability of Security Properties. Ulti-
mately, Tamarin determines whether the security proper-
ties hold for all executions of the model. Since proving
properties for a given model can be undecidable, Tamarin
execution does not always terminate and conclude if the
security properties hold. Different heuristics are applied
in Tamarin to mitigate the undecidability for certain class
and patterns of protocols. These classes of protocols cover
many real-world protocols, and hence Tamarin can prove
properties for many real-world protocols.

Semantics and Execution of Tamarin. In Tamarin, protocol
processes are modeled as a sequence of MSR Rules, where
each Rule roughly corresponds to a protocol checkpoint. A
Rule is made up of three components: Premise (which usually
defines the inputs of the Rule), Conclusion (which usually
defines the outputs of the Rule), and Action (which is usually
used to label the specific protocol checkpoints that are used
to specify protocol properties or behaviors). The sequence of
Rules, bound together with Facts, forms one complete process.
The Fact is in the format of F(𝑡1, 𝑡2, · · · , 𝑡𝑛), where F is the
name of Fact, and 𝑡𝑖 are the model variables.

The execution of the Tamarin model is driven by the
demand of the property logic (aka Lemma). For a given
property, Tamarin’s goal is to find a model execution trace
that contradicts the property (failure trace) or to verify that
all possible model executions satisfy the property (proof).
The detailed failure traces can be observed in the Tamarin
interactive GUI [49], [3] rendered with HTML and JavaScript.
Additionally, the Tamarin engine allows a proved property to
be reused to prove other properties. In particular, the proved
property, denoted by Helper lemma, acts as a sub-proof to
prove other properties. In addition, FOL encoding can also
be used to enforce the behavior of the model. This encoding
is known as Restriction axiom. Tamarin adopts Dolev Yao
intruder [24] capabilities by (i) providing all public channels
data to the intruder; (ii) allowing the intruder to generate new
data and apply cryptographic and model algebraic operations
to compose or manipulate known data; (iii) replaying or
rerouting the known data to entity receiving endpoints.

III. SECURITY ANALYSIS OF PE PAIRING

The complete flow of the PE pairing is illustrated in
Figure 1. Recall that in order to validate that the user views
and enters the same passcode and that the involved devices

3

are indeed communicating with each other (e.g., not a MitM
intruder), the PE pairing process sends the entered passcode
value from device 𝐵 to device 𝐴. Since the two devices do
not share any pre-shared keys, theoretically it is impossible to
securely establish a shared secret without having an existing
shared secure channel among the entities [13]. However, in the
Bluetooth environment, user interaction with owned devices in
the same physical proximity allows partial mitigation of this
theoretical limit. In particular, the intruder’s ability to derive
the shared key can be made probablistically harder. The rest
of this section explains the motivations behind the design of
PE authentication phases 1 and 2. The cases discussed below
assume an alternative design.

(I) Hardening PE Security Using Encrypted Commitment.
As shown in case I of Figure 2, assume that one attempts to
harden PE security by first exchanging pairing features (❶),
then generating random nonces on 𝐴 and 𝐵 (❷), and using the
nonces to encrypt the passcode (❸) and public DH key (❺).
The encrypted chunk, known as the commitment message, is
passed on to the other side followed by exchanging the nonces
for the verification of the same passcode. In this approach,
since both devices commit to the same passcode value before
revealing the encryption keys (the nonces), it is impossible
for an active MitM intruder to derive the passcode during the
commitment phase. In particular, the intruder cannot decrypt
the committed passcode before the nonces are exchanged (❹).
Nevertheless, this restriction is not completely secure because
it allows an active MitM intruder to delay the nonce exchange
in one session and collect the passcode from the other session
and connect to a victim device on the other side. As such,
encrypting the commitment is not enough to protect the PE
protocol.

(II) Hardening PE Security Using CMACed Commitment.
A second attempt to harden PE security is to CMAC the
commitment data instead of encryption in step ❸, while steps
❶, ❷ and ❺ are the same as of the prior case. This attempt is
illustrated in case II of Figure 2. The use of CMAC prevents
the MitM intruder from obtaining the passcode directly. How-
ever, the intruder may still obtain the passcode by enumerating
all the possibilities of the passcode (❹). In particular, the
intruder works as a relay between 𝐴 and 𝐵, and sends the
intruder’s own public key to 𝐴 and 𝐵, respectively. As a result,
𝐴, which communicates with the intruder, believes that it is
communicating with 𝐵, and sends the CMACed commitment
to the intruder. Once the intruder obtains the commitment,
which is calculated from:

𝑐𝑟𝑎𝑖 = 𝐶𝑀𝐴𝐶{𝑝𝑘𝐴, 𝑝𝑘𝑖 , 𝐾𝑃𝐸}𝑛𝑎
the intruder can delay the session and use 𝑝𝑘𝐴, 𝑝𝑘𝑖 , 𝑛𝑎 to
brute force the passcode. Since the passcode is only 6-digits
long (e.g., 123456), the intruder can easily obtain such a
passcode [34], and successfully pass the check initiated by 𝐴.
Similarly, since the intruder has already obtained the passcode,
the intruder can use the passcode to pass the check initiated by
𝐵. Ultimately, the intruder launches the MitM attack. Again,
using CMACed commitment can be easily broken by the
intruder.

(III) Hardening PE Security Using 20 Loops of Commit-
ments. To eliminate the above weaknesses, the Bluetooth SIG
designed the PE protocol to exchange the passcode one bit

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Threads

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Delay
Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Resume

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

Fig. 2: MitM attacks on the single PE loop implementation.

at a time through commitment messages in 20 consecutive
loops. The passcode is a 6-digit value and it is 20 bits (e.g.,
999,999=0xF423F) in length as shown in Figure 1. In PE pro-
tocol, the intruder can carry out the case II attack for the first
loop iteration. She can also learn the first bit of the passcode as
it requires trivial brute force for two possible options of a bit.
However, she cannot easily advance to the second and further
loop interations. To continue in the second loop, she needs to
correctly guess the 2nd bit of the passcode before exchanging
the nonces. Otherwise, the protocol will not continue. Once
the intruder makes any guess mistake, the PE paring aborts
and the intruder has to restart the pairing again. Consequently,
to crack the whole passcode, the intruder has to guess each
bit of PE passcode value 20 times correctly. This renders the

4

success probability of the intruder to (1/2)20 = 0.000000954,
which is reasonably secure.

IV. TERMS, SCOPE, AND THREAT MODEL

A. Terms
Throughout the paper, we will use the following terminolo-

gies: (i) Device. A Bluetooth enabled equipment, which can en-
gage in Bluetooth protocol communication and can exchange
messages, and we use symbols 𝐴 and 𝐵 to denote the two
Bluetooth devices. (ii) Central. A Bluetooth device that acts
as a central controller for many surrounding Bluetooth devices.
Such a device supports multiple connections at the same time
and typically initiates connection requests with surrounding
devices. Examples of central devices are smartphones, tablets,
and personal computers. (iii) Peripheral. A Bluetooth device
that typically receives connections from a central device. Such
a device usually supports only one connection at a time,
but since 4.2, the peripheral devices can accept more than
one connection from centrals. Examples of peripheral devices
are keyboards, smart locks, and smart lights. (iv) User. A
legitimate human who owns a Bluetooth enabled device(s).
The user becomes a victim when exploited by an intruder. (v)
Intruder. A malicious human who illegitimately exploits the
vulnerabilities of victim’s devices. In general, an intruder is
also referred to as an attacker or an adversary. (vi) Entity. A
generic term for Bluetooth protocol participants that could be
a user, a device, or an intruder.

B. Scope

Scope of the Pairing Method. We focus on PE pairing by
following the Bluetooth specification 5.2 [45] (Vol 3, Part
H, Section 2.3.5.6, page 1645). Additionally, we made some
customization by allowing the devices to have both static
and random passcode. While Bluetooth SIG has explicitly
mentioned that a static passcode should not be used since
4.2 [43], they never explained what kinds of attacks can be
caused by that, thereby leading the device manufacturers (e.g.,
TI [52]) still follow the earlier PE protocol (configuring a
static passcode for user convenience). As such, we added
this feature to our model to further investigate its security
impacts. Finally, we also model NC in our paper, since some
attacks exploit the vulnerability existing in NC to attack PE
(e.g., method confusion attacks [53], which will be explained
in §V-A). JW and OOB pairing are not considered; since
JW is vulnerable to many attacks [60], [38] and does not
involve human interactions, and OOB implementations use
application-specific non-Bluetooth channel.

Scope of the Attacks. Not all Bluetooth attacks are of our
focus. In particular, attacks that occur after pairing are not
considered (e.g. BLESA [56], BadBluetooth [58], MisBond-
ing [33]). In Tamarin, keys are symbolic terms. Therefore
length or entropy of the keys are secure and cannot be down-
graded (e.g., KNOB attacks [6] and downgrade attacks [60]
are out of our focus). The DH cryptography is assumed to be
perfect. Thus our model does not capture the Invalid Curve
Attack [20]. Finally, hardware and side-channel attacks are
beyond the scope of this paper.

Scope of the Model. Our model follows the scope implied
by inherent Tamarin assumptions [27]. Specifically, we
allow unbounded instances of protocol users, devices,

and sessions. Each device can communicate with other
devices in parallel when needed. The model is queried
for authentication lemmas formulated according to Lowe’s
hierarchy of authentication [30]. The confidentiality lemmas
are formulated as adversaries’ ability to derive the protocol
secrets (data and keys) in all possible executions of the model.

C. Threat Model
Apart from the Dolev Yao adversary model [24], we

assume the following: (i) Access of Malicious Device. The
intruders can own many devices and can access the messages
produced by their own devices in a precise generation time
(e.g., they can reuse the NC passcode in PE pairing). (ii) Access
of Victim Devices. The intruder can also physically access the
user devices momentarily (e.g., when the user is away from her
office, her keyboard can be briefly accessed by the intruder)
or install malware (which does not have root permissions to
access the LTK) on the victim devices. These assumptions
are widely discussed in various papers [60], [57], [58]. For
example, BadBluetooth [58] assumes that the smartphone is
hacked by malware that allows the smartphone to pair with the
malicious device. Bluetooth downgrade attack [60] assumes
that the attacker can physically touch the Bluetooth device to
pair with it. In fact, these assumptions are included in a semi-
compromised device threat model (e.g., one of the devices is
compromised by malware attacks or by physical access of the
intruder), which is also a common threat model used in formal
Bluetooth verification [57].

V. MODEL DESIGN

A. Initial Target — Modeling The Method Confusion Attack
As discussed in §III, PE pairing is a complicated procedure

that involves multiple rounds of nonces exchanges, 20 loops of
commitments exchanges, and asymmetric human interaction.
As such, we need to set an initial target attack such that the
formal model captures the complete details of the PE protocol.
Our intuition is that if our model captures such an attack, it
may capture more attacks with similar settings. Fortunately,
we noticed that the Method Confusion attack [53] satisfies all
these requirements: first, in the attack, the victim executes the
PE protocol completely; second, the attack involves human
interactions as well as human mistakes (the user mistakenly
inputs one device’s passcode into another). Thus, we set this
attack as the initial target attack for our formal model.

Method confusion attack works against devices running
PE and NC (Numeric Comparison) pairing. We explained PE
in §II, and now we briefly explain NC. In NC association,
two pairing devices both display a six-digits passcode. It is
a CMACed value of public keys of two pairing devices with
nonces as a salt and also as a CMAC key. In this case, the
user has to check whether the displayed passcode is the same
to “confirm” that the two devices are communicating with each
other and not a third party intruder. Therefore, similar to PE,
NC can defend against MitM attacks as well.

However, method confusion attacks can break the guar-
antees of both NC and PE pairing. Now we provide more
details of the attack as shown in Figure 3. There are two
devices 𝐴 and 𝐵 owned by a user, and two devices 𝐴𝐼 and
𝐵𝐼 owned by an intruder. The attack begins with the intruder
controlling the PE session with one of the devices (𝐴 on the
left side) and the NC session on the other device (𝐵 on the

5

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Threads

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Delay
Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Resume

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

Fig. 3: Illustration of the Method Confusion attack.

right side), exchanging the pairing features with the two victim
devices (❶). The intruder waits for the NC session to show the
passcode 𝐾𝑁𝐶 (❷). Then the intruder uses the same passcode,
and displays it on 𝐵𝐼 (at the PE session on the left). At this
point, the user observes that 𝐵 displays passcode 𝐾𝑁𝐶 , and 𝐴
asks to enter the passcode (❸). At this checkpoint, note that
the device 𝐵 displays passcode for NC pairing with 𝐴𝐼 and not
𝐴. Given that the user is not aware of this fact (the user gets
confused about pairing methods and the pairing steps based
on their survey [53]), it is very likely that the user will enter
𝐾𝑁𝐶 in 𝐴. As a result, the intruder is able to pair both victim
devices (❹). In particular, 𝐴 pairs up with 𝐵𝐼. Intruder at this
point also hits the “Yes” prompt in 𝐴𝐼 to confirm the passcode
𝐾𝑁𝐶 with 𝐵. Such a pairing gives the user an illusion that 𝐴
and 𝐵 are successfully paired with each other. Note that since
the intruder has the passcode 𝐾𝑁𝐶 for both pairing sessions
and that she was able to initiate the feature exchange phase
with her own DH keys, she can perform all the later steps
simply by following the protocol steps.

B. Design Challenges and Solutions
To model the method confusion is non-trivial, and we

face at least three challenges. First, our model must have the
capabilities to model the complex pairing protocols (e.g., both
NC and PE need to be modeled), and the interactions between
the entities (e.g., there could be multiple users, each of which
owns multiple devices). Second, our model has to capture
the intruder capabilities that are not supported by Tamarin by
default. For example, to attack PE, the intruder may guess
the bit of passcode as discussed in §III, and such capabilities
are not defined by Tamarin. Finally, the modeling of such
a complex attack may result in large traces or proof non-
termination. We now explain these challenges (C), and their
solutions (S) in greater details:

C1. Complex Pairing Protocol and Interactions between
Entities. As discussed in §III, PE pairing itself is a complicated
pairing protocol. First, the user and intruder device should be
provided with appropriate access controls (e.g., a user should
be able to access and configure the owned devices’ settings but
should not have access to the other users’ devices). Second,
the combination of NC and PE flow should execute in parallel
within the same model for an attacker to exploit the confusion
attack. Lastly, the human passcode interaction should be
consistent and uniform between the two pairing methods.
Note that in the NC pairing, the passcode is generated at both
initiator and the responder side and is confirmed with human
interaction. Whereas in the PE, the passcode is displayed only
on one side and only entered on the other pairing device or
entered the same passcode on the both sides.
S1. We next explain how the three sub-challenges discussed in
C1 can be solved. Specifically, to solve the first sub-challenge,
our idea is to first establish a relationship network between
entities. To be more specific, the relationship network is a
hierarchical three-layer network that consists of users, devices,
and protocols. The first layer (user layer) instantiates multiple
users; the second layer has multiple devices that are owned by
each of the users at the first layer (i.e., one user can have one or
more devices); the third layer consists of the protocol processes
running within the devices of the second layer. Since each
entity is specified with a dedicated Tamarin term, the user and
intruder devices are provided with appropriate access controls.

Second, for the NC and PE pairing integration, note that
these pairings differ only in the authentication phase 1. To
combine the two protocols, our design is to generalize the
protocol variables before and after the differing authentication
phase. Starting from the single initiator and responder pro-
cesses, the protocol flow is split into PE and NC authentication
phase 1 as a possible choice of execution. Additionally, for
each pairing method, different choices of flow are possible. For
example, in PE pairing, each device could either show the pass-
code or require the user to enter the passcode. The displayed
passcode could be set static or it can be dynamically changed
in each session. All these choices are abstracted as protocol
branches and can be taken randomly in our model. Finally, as
the branch closes for the PE and NC protocols, the variables
are merged back into the common flow using dummy variables
to generalize specific variables of the individual protocol. In
this way, whenever the model executes, it assumes all possible
combinations of pairing method and protocol customization.

Finally, for the consistent human interaction abstraction, we
proceed as follows. Each human action uses encryption over
the passcode, which is further wrapped inside Tamarin Facts.
For displaying the passcode, each pairing entity releases the
passcode encrypted with a user ID (which is uniquely assigned
to each user). Similarly, the case where the user inputs the
same passcode on both two devices can also be modeled by
encrypting the passcode using the same user ID.Wrapping in
Tamarin facts avoids replaying of human interaction action by
the adversary. The human error is modeled by not binding NC
or PE human interactions with their pairing method type. Since
the user ID is explicitly kept inaccessible to the intruder using
the Tamarin Fact properties, it preserves the secure nature of
human interaction: uninterruptible, modifiable, or breakable by
the intruder. The access control works across the unbounded
user-device and intruder-device protocol communication.

6

C2. Modeling Precise Intruder’s Capability. Modeling
intruder’s capabilities is challenging, as some capabilities
are not directly supported by Tamarin. Particularly, the
intruder needs to guess the bit of the passcode, but such
capability is not included in the original Tamarin. Recall
that in authentication phase 1 of PE pairing (Figure 1),
there are 20 times iteration, and each of them exchanges the
commitment messages produced from passcode. The message
is CMACed with AES encryption and sent in each iteration.
Modeling the message in literal accuracy — irreversible keyed
message digest — in Tamarin would mean that the intruder
cannot derive the bit from each iteration. This is because
being a symbolic verification tool, Tamarin assumes that all
cryptography operations are perfect [3]. However, in reality,
there are only two possible values for the passcode bit, and the
intruder can easily break the security of the passcode bit, since
guessing a correct bit requires only two brute-force attempts.

S2. To model the capabilities of guessing a bit of the passcode,
we represent each bit of the passcode using the equational
theory: 𝒎𝒆𝒓𝒈𝒆(𝑠𝑝𝑙𝑖𝑡1(𝑣), 𝑠𝑝𝑙𝑖𝑡2(𝑣)) = 𝑣, where 𝑠𝑝𝑙𝑖𝑡1(𝑣)
and 𝑠𝑝𝑙𝑖𝑡2(𝑣) represent two bits of the generic model variable
𝑣 (in our case, variable 𝑣 represents the passcode) [2].
Thereafter, encryption of each bit of the passcode with the
nonce is generated in each round. Since in each round, the
nonces are exchanged after exchanging the commitment
messages, the intruder is able to obtain the exchanged nonce
and break the confidentiality of the bit of the passcode,
thereby modeling the procedure of guessing the passcode.
This method also preserves the time order of the checkpoint
when the intruder is able to derive the passcode bits from
the recent commitment message exchange among legitimate
entities. In other words, the intruder derives the passcode bits
only after the nonce exchange and not anytime before.

C3. Heavy Tamarin Model and Large Traces. Integrating
multiple pairing features into one unified model is challenging.
In particular, our approach combines the long PE protocol
together with NC protocol, resulting in various possible
protocol branches. Meanwhile, the model also integrates
device access control, human interactions, and human
mistakes. Consequently, Tamarin execution can run for
unreasonably long time before yielding a result. Parsing and
debugging such large traces is a challenging task.

S3. We use the following approaches to resolve the heavy
Tamarin model and large traces. First, we formulated security
lemmas that involve fewer constraints than the standard
authentication lemmas and are hence more effective to
execute. More details of the symbolic formulation of these
lemmas are explained in Appendix §A. Second, the inbuilt DH
equational theories introduced a lot of unnecessary variants in
the model. Therefore we replace them with the simpler user-
defined DH equational theory. Third, we ran the model under
limited scope (e.g., a limited number of sessions and user
devices). Observing the run time of terminating model lemmas
under a bounded scope often project the non-termination root
causes to an unbounded case. For example, an attack observed
within the bound of 3 parallel sessions is also effective under
unbounded scope, but the corresponding lemma may not
terminate in the unbounded model. Such a relative observation
of the lemma run time in the bounded scope allows easy
debugging and finding the root causes of non-termination.

C. Model Design and Implementation
In the Bluetooth environment, the main entities are users

and intruders, devices. In the following, we first present
how we model complex pairing protocols and interactions,
followed by modeling the actions of intruder, and finally we
explain how we resolve the heavy traces.

1) Modeling Pairing Protocols and Interactions: In the
following, we explain how we model the entities and the
ownership of devices, protocols processes, and interactions of
the users including human mistakes.

Modeling Entities and The Ownership of Devices. The
entities in our model are the intruders, the users, and their
owned devices. The intruder is already built-in to the Tamarin
FV engine. To assign a user to a device and the process that
runs on the device, we navigate the respective terms of the
entity of the user and device, denoted by user ID and device ID,
through the Facts that bind the different Rules of the pairing
process. Specifically, Rule of each protocol process is bound
together with Fact of the form: Fstep (𝑈, 𝐴, 𝐵, 𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ...),
where the participating devices IDs 𝐴 and 𝐵 in the protocol
are accessible to the user ID 𝑈. That is, the user 𝑈, has
exclusive access control to interact with the devices 𝐴 and 𝐵.
The variables 𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ... are the session variables observed
by the protocol process. Throughout the execution of the
process, the user ID is kept secret through the Tamarin Fact
properties [3]. Concurrent execution of processes is a direct
result of the Tamarin Rule execution criteria.

Modeling Pairing Protocols. We model both the PE and NC
protocols based on the described pairing steps introduced in
the Bluetooth specification. For simplicity, our model does
not include the feature exchange, but allows the devices to
freely choose their pairing methods. Additionally, in the PE
pairing, the passcode can either be random or static. To set the
passcode static in each run, the encrypted passcode is reused
in different runs by Tamarin executions. To set it random,
an additional restriction axiom over the displayed step is
introduced to enforce the passcode to be unique for each run. In
the model the displayed passcode Rule ShowPasscode receives
the passcode from the Rule GenPasscode that generates the
passcode.

𝐹𝑝𝑟𝑒𝑣 (𝑈, 𝐴, 𝐵, ...) , 𝐼𝑛(𝐸𝑛𝑐𝑈 (𝐾𝑃𝐸 , “𝑆𝑒𝑡𝑃𝑎𝑠𝑠𝑐𝑜𝑑𝑒”))
𝐹𝑛𝑒𝑥𝑡 (𝑈, 𝐴, 𝐵, ...) , 𝑂𝑢𝑡 (𝐸𝑛𝑐𝑈 (𝐾𝑃𝐸 , “𝑎𝑡 𝐴”))

ShowPasscode(𝐾𝑃𝐸)

!𝑈𝑠𝑒𝑟 (𝑈) , 𝐹𝑟 (∼ 𝐾𝑃𝐸)
𝑂𝑢𝑡 (𝐸𝑛𝑐𝑈 (∼ 𝐾𝑃𝐸 , “𝑆𝑒𝑡𝑃𝑎𝑠𝑠𝑐𝑜𝑑𝑒”))

GenPasscode(𝑈, ∼ 𝐾𝑃𝐸)

Thereafter, the restriction axiom:

(∀ ShowPasscode(𝐾𝑃𝐸) @𝑖1 ⋏ ShowPasscode(𝐾𝑃𝐸)@𝑖2 ⇒ 𝑖1 = 𝑖2)
⋏ (∀ EnterPasscode(𝐾𝑃𝐸) @𝑖1 ⋏ EnterPasscode(𝐾𝑃𝐸)@𝑖2 ⇒ 𝑖1 = 𝑖2)

ensure that all the protocol display and the enter steps of
corresponding action in the PE pairing will use a unique
random value for the passcode value.

7

Modeling Human Interactions. We now explain how we
model human interactions. Each human action uses encryption
over the passcode passed through Tamarin Facts. Specifically,
at the step of displaying the passcode, each pairing entity
releases the passcode encrypted with a user ID. In the model,
the user ID represents the user, and it is also used to encrypt
all variables that are accessible to the user. In this way, a
user can have multiple devices and she can use the user ID
to perform various actions over the passcode on the owned
devices. Specifically, in the model, the display encryption is
in the form 𝑺𝒆𝒄𝑪𝒉(𝑬𝒏𝒄𝑼 (𝐾𝑃𝐸 , “𝑎𝑡𝐴”)), where 𝐾𝑃𝐸 is the
passcode and the label; “𝑎𝑡𝐴” denotes that it is generated at
device 𝐴; 𝑆𝑒𝑐𝐶ℎ is the Tamarin Fact used for secure com-
mmunication. Obviously, “viewing” a passcode is the reverse
process of encryption, where the user decrypts the passcode as
𝑫𝒆𝒄𝑼 (𝐾𝑃𝐸 , “𝑎𝑡𝐴”) using her private user ID. For displaying
and entering the passcode in PE pairing, the encryption takes
place at the passcode display end and the decryption on the
other end. For entering the same passcode on both side, the de-
vices obtain passcode from the GenPasscode rule and thus also
allow customizable passcode feature. Finally, for NC pairing,
encryption and decryption take place at both ends of the pairing
device, effectively modeling the mutual passcode confirmation.

2) Modeling Precise Intruders’ Actions: We further
strengthen the Intruder on the top of insights discussed in
S2. During the pairing process, the intruder may appear at
any stage of the pairing, and the time order of the steps
should be strictly specified using action labels. Tamarin Dolev
Yao capabilities allow the built-in intruder to impersonate any
protocol entity. However, when Tamarin intruder impersonates
any model entity (or possesses a device with access control
described in C1) her protocol steps are not registered as action
label in the model trace. Such precise intruder action labels
were required for a clean derivation of Method Confusion
attack. Fortunately, the intruder’s device possession can be
modeled, which involves a dedicated MSR Rule in the format:

!𝑈𝑠𝑒𝑟 (𝑈)
𝑂𝑢𝑡 (𝑈) MakeIntruder(𝑈)

which leaks the user ID 𝑈 to the public channel. In this way,
all the protocol processes running with the leaked user ID
acts as protocol initiated and impersonated by the intruder.
Also, for each process Rule our model explicitly leaks the
private variables (e.g. nonces) encrypted by user ID to the
public channel. This way the Tamarin intruder can access
and exploit the impersonated process variables at the instance
when the related action is executed in the model.

3) Resolving Tamarin Model and Large Traces: As
discussed in S3, we noticed that the built-in Diffie-Hellman
equational theory [3] had a large set of rule variants [31], [39],
[40] to satisfy the logarithmic operation formats. The explosion
of these variants caused a cascading verification burden on
the Tamarin proof process, resulting in nontermination. The
replaced simpler DH equational theories can be observed in
Tamarin Code 1 in Appendix §B. Currently, there is no auto-
mated approach for debugging the Tamarin non-termination in
the community. Therefore, manual analysis of the interactive
Tamarin proof is a common way resolve non-termination. In
this way, we were able to write helper lemmas to terminate the

A1:
Meth

od
 Con

fus
ion

A2:
Re

fle
cti

on

A3:
Sta

tic
 Pa

ssc
od

e

A4:
Grou

p G
ue

ssi
ng

A5:
Gho

st

Attacks

0

10

20

30

40

50

60

Ti
m

e
Co

st
 (

M
in

ut
es

)

Fig. 4: Time cost for Tamarin to produce the attack traces for
the discovering individual attacks in the vulnerable model.

time-consuming lemmas in the unbounded model. To debug
and parse very large Tamarin traces, we first symbolized and
acronymized the long complex protocol terms, such as DH
public keys and encrypted or decrypted terms. Thereafter, we
draw pen-and-paper style traces to build a succinct represen-
tation of the whole trace. Such a representation helped us to
see the attack trace from the bird-eye view and quickly find
the root cause. After repeating the process multiple times, we
learned which protocol components were crucial to understand
the attack (e.g., the user and device identifiers for PE and
NC threads and intruder actions) and which components only
add to the details of the protocol flow (e.g., actions labels
and the respective tagged variables). We utilized the Tamarin
Python graph rendering script [1] to eliminate the non-essential
component of the traces and generate the manageable traces.

VI. RESULTS

A. Model Setup

Quantitative Assessment of Model Development. Our model
consists of about 1,700 lines of code. We defined 26 lemmas,
13 functions/equational theories with 5 branches. Compared
to Wu et al.’s [57] formal model, whose PE part is around
600 lines of code with 38 functions/equational theories and 2
branches, our model is complex enough to discover more PE
pairing-related attacks. For example, we model multiple loops
in authentication phase 1, while Wu et al.’s [57] formal model
apparently does not. As discussed in §III, missing those details
may lead to the failure of discovering new attacks. In terms
of model development timeline, integrating and verifying the
NC and PE protocol features took roughly 3 months.

Environment. All the models in our research were run with
Tamarin-prover 1.6.1, on Mac OS X - 10.14.6, Intel(R) i5-
7360U CPU @ 2.30GHz processor with 8GB RAM.

B. Overall Results
In the vulnerable models, the standard authentication lem-

mas and the derived lemmas with fewer constraints resulted
into the attack. The visual representation of these attacks
can be observed in Tamarin interactive GUI page. The trace
discovery time for all attacks is presented in Figure 4. As

8

Auth
en

tic
ity

 (a
t A

)

Auth
en

tic
ity

 (a
t B

)

Con
fid

en
tia

lity
 (a

t A
)

Con
fid

en
tia

lity
 (a

t B
)

Data
 In

jec
tio

n (
at

A)

Data
 In

jec
tio

n (
at

B)

Data
 St

ea
ling

 (A
t A

)

Data
 St

ea
ling

 (A
t B

)

Attacks

0

5

10

15

20

Ti
m

e
Co

st
 (

H
ou

rs
)

Fig. 5: Time cost for verifying the security lemmas in the
patched model. In symbolic formulation lemmas are proved
with respect to each protocol entity’s perspective. 𝐴 and
𝐵 denote the protocol entities as initiator and responder
repsectively.

discussed in §V-B-C3, proving standard properties for the
patched model takes a long time. Therefore, we broke down
the confidentiality and authenticity lemmas into sub-properties,
which consists of fewer constraints and thus are easier to prove.
The constraint-reduced lemma encodings for data stealing from
user device and data injection at the user device are explained
further in Appendix §A. The subproperty lemmas were further
granularized based on the hierarchy of authentication [30],
based on the point of view of protocol entities, and properties
with respect to session variables namely data and key. Finally,
after proving constraints heavy lemmas, we reused them to
restrict the state space of the model and reduce the time
to prove other lemmas. In total, we have reused 13 helper
lemmas, some of which are in the form of sub-property
lemmas, to complete verification of the patched model. The
complete lemma reuse mapping (Figure 10) and a piece of key
Tamarin code snippet (Tamarin Code 2, Tamarin Code 1 can
be found in Appendix §B), and the time cost for the verified
properties of the patched model are presented in Figure 5. It
can be observed that all the models in total are finished with
approximately 31 hours.

C. Uncovering Known Attacks
Our model successfully captures the targeted Method Con-

fusion attack (A1). Further, as per our hypothesis the model
also uncovers two other existing attacks, namely reflection
attacks (A2), static passcode attacks (A3). More importantly, it
also uncovers two new attacks, namely group guessing attack
(A4) and ghost attack (A5). In the following, we describe these
attacks in detail.

A1: Confusion Attack. The attack has been confirmed by
Bluetooth SIG (CVE-2020-10134) and has been broadly dis-
closed to its member companies. Its detailed Tamarin trace can
be observed in Appendix C and in the provided Tamarin code
folder. We will not go into details here as we have already
discussed the attacks in §V-A.

A2: Reflection Attack. This attack [15] exploits the PE pairing
method. The assumption made here is that the user device
does not check whether the DH public key received from the

Attacks Pairing
Methods

of Intruder
Devices Root Causes

A1. Method Confusion PE, NC 2 Human Errors
A2. Reflection PE 1 Missed Identity Checks
A3. Static Passcode PE 1 Static Passcode Across Sessions
A4. Group Guessing PE 21 Static Passcode Across Threads
A5. Ghost PE 2 Compromised Devices

TABLE I: Summary of Uncovered Attacks

other entity is a reflected copy of the device’s own public key.
Recall that in the public key exchange step described in §II-A,
the two legitimate devices need to exchange their public keys,
and then the key is used to perform a challenge response in
authentication phases 1 and 2. Overall, the attack executes in
three steps. (i) The intruder positions herself as MitM and
spoofs as one of the user’s devices. (ii) In the challenge
response process, the intruder then tricks the user’s device into
responding its own challenge, and returning the response to the
intruder. Consequently, the reflected DH public key and the PE
protocol commitment messages successfully pass the checks
on the reflected entity. (iii) By exploiting reflection in one of
the MitM sessions, the intruder completely bypasses all au-
thentication phases for the other sessions. This attack has two
variants: partial impersonation in BIAS attacks [5] (only pass
authentication phase 1 without LTK access), and BlueMirror
attacks [15] (complete impersonation). Our model captures the
complete impersonation and the successful MitM attacks.

A3: Static Passcode Attack. This attack [50] works against
the PE pairing method and assumes that the user devices
use the same passcode for all PE pairing sessions. Although
Bluetooth SIG has explicitly mentioned that a static passcode
should not be used since 4.2 [43], many Bluetooth stack imple-
mentations (e.g., TI [52]) still allow setting a static passcode
for the pairing. The static passcode attack can be deployed
in the following steps. (i) The intruder sniffs the PE pairing
traffic and analyzes the exchanged packets. As discussed in
§II-A each loop of PE pairing reveals one bit of PE passcode.
For each loop, the intruder needs only two guesses to derive
the bit. (ii) After obtaining the complete traffic of a legitimate
device communication with the PE pairing, the intruder learns
the complete passcode. (iii) Later, the intruder initiates the
pairing process and performs the MitM attacks, since at this
time the same passcode is used, which is already known to the
intruders, she can spoof with the user devices.

D. Uncovering New Attacks

A4: Group Guessing Attack. The Bluetooth specification
warns developers not to use the static passcode since 4.2
(which means all the Bluetooth devices that followed Bluetooth
4.2 or earlier Bluetooth specifications are all subject to the
group guessing attacks). In Version 5.2, Vol 2, Part H page
990, the specification specifies that “The Passkey should be
generated randomly during each pairing procedure and not be
reused from a previous procedure.” However, the specification
does not specify how to generate such a passcode. There-
fore, there could be confusions that mislead the developers.
For example, one attempt to avoid static passcode could be
to use a random function to generate the passcode. This
solution can work correctly for a single-threaded Bluetooth
connections. However, it can fail in the case of a concurrent

9

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Sessions

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Delay
Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Resume

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

❶

❷

❸

Fig. 6: A complete attack sequence for the Group Guessing
attack. Tamarin trace for the same attack shows the attack
pattern over two loops.

session from the same device. Particularly, if the random
generation function incorrectly provide the same passcode for
the concurrent sessions, it would produce the same passcode
in all concurrent sessions. For example, the random function
used by the devices may produce a passcode for the pairing
sessions to consume, and the passcode could be the same
(e.g., due to non-thread-safe [17]) until the devices finish
pairing. In general, there could be many ways (e.g., the random
function may consume the same timestamp as its seed) that
can compromise the randomness of passcode generation. All
of these cases can be exploited for Group Guessing attack.
The specification mentions that the devices should not reuse a
passcode from a previous procedure, while it does not prevent
the multiple connecting devices from using a passcode that
will be used in all sessions simultaneously (which has never
been used before). In this manner, a Bluetooth application

developer trying to comply with the specification could fail
to implement a complete solution to avoid static passcode.
Our responsible disclosure to Bluetooth SIG also confirms our
observation: group guessing attacks could be of concerns, as
it is theoretically possible.

As illustrated in Figure 6, the group guessing attack can be
executed in the following three steps. (i) The intruder connects
multiple peripherals with a single Bluetooth central owned by
a user. Since the central is running a stack that uses non-thread-
safe random functions, the central will generate the same
passcode for each of the simultaneously connecting peripherals
(❶). (ii) Each connecting peripheral allows the intruder to
guess and learn one bit of the passcode (as explained in
§III). A wrong guess at a peripheral will trigger disconnect a
central. However, it does not prevent the intruder to replay the
learned bit in the other simultaneously connecting peripherals.
As shown in the Figure 6, the intruder can continue replaying
the learned bits and guess the rest of the bits through other
peripherals. Since there are 20 bits in total, in the worst case,
the intruder may use up the first 20 peripherals to guess all
the passcode correct (❷). (iii) With the learned passcode, the
intruder completes the pairing session against the user central
on the 21st peripheral connection. Note that the attack assumes
the user is away from the central device and she does not
notice the passcode display prompt of pairing connection (❸).

PoC and Its Practicality. We have validated such attacks
on our own development board, namely, CC2640R2F, which
allows us to customize the passcode generation function.
In particular, the passcode callback was registered with
GAPBondMgr when the development board started to en-
ter or display the passcode, and we can modify the way
of generating a passcode by overwriting the logic of pass-
code generation before the passcode is finally fed into
GAPBondMgr_PasscodeRsp (which displays the passcode
to be entered). That is, we explicitly develop a function that
is non-thread-safe, which returns the same passcode if two or
more devices pair the central at the same time. We then use the
other six development boards to simulate the attack procedure.
Theoretically, in the worst case, the attack requires 21 device to
launch when each device only guesses a bit correct. However,
to simplify the procedure, we let the attack devices to simulate
a case where each of our device can guess three bits (i.e.,
20/6=3) correctly. Ultimately, we validated our attack.

We emphasize here that such an attack discovery was made
possible by the unbounded session design of our model Specif-
ically, without allowing unbounded processes for each device,
the group guessing attack would not work. Furthermore, the
sophisticated requirement of this attack hints at the reasons
why such attacks have not been uncovered so far. Although
we have not yet found any vulnerable implementation, we
believe that multithreading is prevalent in modern IoT devices.
Therefore, it is only a matter of time that such attacks will be
revealed in the near future. Therefore, cautioning developers
about using thread-safe random functions in the Bluetooth
specification will help developers build secure applications.

A5: Ghost Attacks. With a successful active MitM attack in
wired LAN networks, users find it difficult to detect the pres-
ence of the attacker. This is also because the user devices are
located in a physically distant location and they are not aware
of the responses on the other side of the connection. On the

10

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort Leak

Fig. 7: Tamarin produced authentication failure trace of Ghost
attacks. The highlighted red protocol actions denote the key
intruder’s moves to derive the attack.

other hand, Bluetooth devices connect to the wireless network.
Here, the involvement of the human interaction requires both
devices to be present within the purview of a user. Surpris-
ingly, even in this case, an active MitM of the intruder can
synchronize two simultaneous double impersonated sessions in
such a way that visual responses among the user devices occur
in near real-time. The active MitM attack remains “hardly-
detectable” for the user. For instance, in the confusion attack,
the checkpoint where the PE pairing enters the passcode, the
user is not aware that the keystrokes are actually being sent to
the intruder. We denote such flaws as Ghost keystroke.

To further explore the fundamental weakness, our model
allowed the entered PE passcode to leak to intruders. To
our surprise, Tamarin’s execution produced an authentication
failure trace, as illustrated in Figure 7. This trace conveys two
interesting clues for a feasible attack. These clues are: (i) both
active MitM sessions should use PE paring; (ii) the intruder
should be able to replay the passcode from one session to
another made possible by the Ghost Keystroke flaw. With these
two clues, we were able to extrapolate the idea to two attacks.
In the explanation of the two new attacks below, the use of
the pronouns he and she are frequently used to denote a victim
user and the intruder, respectively.

A5 - (I): Ghost Attacks via Compromised Peripheral.
This type of attack works against the PE pairing method and
assumes that the user has a compromised peripheral (e.g., key-
board). To be more specific, the attack involves user peripheral
𝐾; user central 𝑇 ; intruder peripheral 𝑖𝐾; and intruder central
𝑖𝑇 as shown in Figure 8. The attack can be carried out in
the following steps. The intruder disconnects the existing user
device connections and manages to complete a pairing with
the user peripheral 𝐾 to obtain the user’s keystroke (❶). This
can be achieved in many ways. Assume that the peripheral
device is a keyboard. When the user is away from his keyboard,
the intruder can physically access the user’s keyboard for a
short time and completes a full pairing connection between the
user’s keyboard and an intruder central (as assumed in [60]).

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Sessions

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Delay
Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Resume

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

❶

❷

❸

❶

❷

Fig. 8: Ghost attack via compromised peripheral device.

As such, the keyboard will send all the user’s keystrokes to the
intruder central. Next, when the user observes an unresponsive
keyboard 𝐾 and tries to reconnect it with his central 𝑇 , the
intruder pairs with the user’s central 𝑇 using a separate PE
pairing through 𝑖𝐾 . Here, the user thinks that the re-pairing
occurs among his two legitimate devices 𝑇 and 𝐾 . Therefore,
he enters the PE passcode displayed on the peripheral device
𝐾 (❷). Since the peripheral device 𝐾 is compromised by
the intruder, all keystrokes from the peripheral device will
be logged at the intruder’s central 𝑖𝑇 . Therefore, the intruder
enters the same passcode in 𝑖𝐾 and completes the full pairing
with the user central 𝑇 . At this point, the intruder can obtain
sensitive user data through the established pairing.

A5 - (II): Ghost Attacks via Compromised Central. This
type of attack works against the PE pairing method and
assumes that the user has a compromised central (e.g., a tablet).
It involves user peripheral 𝐿; user central 𝑇 ; intruder peripheral
𝑖𝐿; and intruder central 𝑖𝑇 as shown in Figure 9. The attack
can be carried out in the following steps: The intruder initiates
connections with user’s compromised central and peripheral
devices in different sessions. When the user tries to pair his
corresponding devices 𝑇 and 𝐿, the intruder manages to obtain
the displayed content (including the passcode) from the user
central T (❶). For example, the user can install a malware
on the user’s tablet (as assumed in [33]) and can capture
screenshots while pairing. As such, once the central 𝑇 shows
the passcode, the intruder obtains it through a separate Internet
connection. Thereafter, she displays the same passcode through
her central 𝑖𝑇 to connect to the user peripheral 𝐿. At this
point, since the user thinks that the pairing occurs between
his devices 𝑇 and 𝐿, he enters the displayed passcode into
his peripheral 𝐿 (❷). At this moment, the intruder enters the
same passcode in her peripheral 𝑖𝐿 to connect to the user’s
central 𝑇 to complete the full pairing with the two user devices.

11

(II) PE Authentication Phase 1

Device A

DH Keys: skA,pkA

Device B

DH Keys: skB,pkB

A, B, IOcapA, IocapB

(I) Feature Exchange

pkA, pkB

(II) Authentication Phase 1

Enter/Show passcode KPE Enter/Show passcode KPE

Loop for i

crai = CMAC{pkA, pkB, K
i
PE}nai

crbi = CMAC{pkB, pkA, K
i
PE}nbi

nai

Verify crbi Verify crai

20 Times

KDH ← g
skB*pkA

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

KDH ← g
skA*pkB

KMAC ← CMAC{0, na20, nb20, A, B}KDH

LTK ← CMAC{1, na20, nb20, A, B}KDH

(III) Key Calculation

(IV) Authentication Phase 2

eb =

CMAC{nb20, na20, ra, IOcapB, B, A}KMAC

Verify ea Verify eb

Device A

DH Keys: skA,pkA

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device M

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

 Encrypt {pkA, pkI, KPE}na

Encrypt {pkI, pkA, KX}ni

na

 nb

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Abort

Delay

Device A

DH Keys: skA,pkA

Enter passcode KNC

(I) Feature Exchange

A, BI, IOcapA, IocapI

pkA

pkBI

Device BI

DH Keys: skBI,pkBI

Device B

DH Keys: skB,pkB

(I) Feature Exchange

AI, B, IOcapA, IocapB

pkAI

pkB

Device AI

DH Keys: skAI,pkAI

(II) NC Authentication Phase 1

cr = CMAC{pkB, pkAI, 0}nb

cr

Verify cr

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

Confirm Passcode

KNC = CMAC{pkAI, pkB, ni}na

ea =

CMAC{na20, na20, rb, IOcapA, A, B}KMAC

Show Passcode

KNC = CMAC{pkAI, pkB, ni}na

(III) Key Calculation (III) Key Calculation

20 Loops

(IV) Authentication Phase 2 (IV) Authentication Phase 2

Intruder

UserN

User1

User2

The users are not

allowed to access

devices of others

Intruder may access

user-devices via

vulnerabilities

Device A, User U

DH Keys: skA,pkA

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

KX (Unknown)

 CMAC{pkA, pkI, K
1
PE}na1

CMAC{pkI, pkA, KX}ni1

Guess K
1
PE

1
st
 loop

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE (Replayed)

Guess K
2
PE

2
nd

 loop

1st Loop Passed

(I) Feature Exchange

pkA，pkI

(II) Authentication Phase 1

Enter passcode

K
1
PE, K

2
PE, …, K

20
PE (Replayed)

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

Launch 21 Sessions

…

…

21 Devices

18 Devices Guessing

Device A

DH Keys: skA,pkA

Enter passcode KPE

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

Device I

DH Keys: skI,pkI

Device B

DH Keys: skB,pkB

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Enter passcode KPE Show passcode KPE

 CMAC{pkI, pkB, K
i
PE}nai

CMAC{pkA, pkI, K
i
PE}nii

nii,nai

20 Loops

(III) Key Calculation (✓)

(IV) Authentication Phase 2

(✓)

Abort Leak

Keystroke Leak

 Passcode

Disconnect

Show Passcode

Enter Passcode

PE Pairing Initiator PE Pairing Responder

(III) Key Calculation (✓)

20 Loops

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

PE Pairing Initiator PE Pairing Responder

PE Pairing Initiator

PE Pairing Responder

(III) Key Calculation (✓)

(IV) Authentication Phase 2 (✓)

(I) Feature Exchange

(II) Authentication Phase 1

Enter Passcode

Nonce ni Nonce nb

Nonce na Nonce ni

Nonce nb

…

Device I1, Intruder I

DH Keys: skI,pkI

Device I2, Intruder I

DH Keys: skI,pkI

Device I21, Intruder I

DH Keys: skI,pkI

 CMAC{pkA, pkI, KPE}na

CMAC{pkI, pkA, KX}ni

nbi

(I) Feature Exchange

A, I, IOcapA, IocapI

pkA

pkI

(II) Authentication Phase 1

B, I, IOcapB, IocapI

pkI

pkB

(I) Feature Exchange

(II) Authentication Phase 1

Delay
Nonce na Nonce ni

Abort

Case II

Enter passcode KPE

crb = CMAC{pkB, pkI, KPE}nb

Brute Force Derive Kpe

cra = CMAC{pkA, pkI, KPE}na

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE Enter passcode KX (Unknown)

Show passcode KPE

cri = {pkB, pkI, KPE}ni

Enter passcode KPE

crb = {pkB, pkI, KPE}nb

Decrypt {pkA, pkI, KPE}na

ni

na

Case I

Delay

Nonce ni

na1

Abort

 CMAC{pkA, pkI, K
2
PE}na2

CMAC{pkI, pkA, KX}ni2

na2

Abort

…

Complete Pairing

Unresponsive Keyboard

Try Reconnect

Enter

Passcode

Initiate

Connect

Screenshot Leak

 PasscodeShow Passcode

Show Passcode

Nonce rb = nbi

Intruder Tablet iTIntruder Lock iLUser Lock L User Tablet T

Intruder Tablet iTUser Tablet T User Keyboard K Intruder Keyboard iK

cri

crb

ni

 nb

cri

crb

ni

na

Nonce ra = nai

cri = CMAC{pkI, pkB, KPE}ni

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❶

Show passcode

❷

❸

❹

❶

❷

❸

❶

❷

❶

❷

Delay

Fig. 9: Ghost attack via compromised central device.

Thereafter, the intruder can exploit the the paired devices
connections to obtain the unintended user information.

PoC and Its Practicality. We have validated our two types
of ghost attacks on our own devices. For ghost attacks via
compromised peripherals, we used two TI CC2640 devel-
opment boards to simulate the attack procedure. One board
works as the central connecting to the victim’s keyboard, and
the other as the peripheral connecting to the victim tablet,
as shown in Figure 8. We first assume that the intruder can
physically access the victim keyboard. The keyboard uses the
PE pairing protocol and the intruder can choose a passkey
for the intruder’s peripheral and enter it on the keyboard
in a matter of seconds to connect the intruder’s central to
the victim keyboard. Therefore, the intruder’s peripheral and
intruder’s central can then work as a relay to deploy the
MitM attacks. For the ghost attacks via compromised centrals,
we developed a Java-based malware that can take screen-
shots (robot.createScreenCapture(.)), and execute
it on our own Windows 10 machine. The victim is again, a
keyboard. The malware takes a screenshot every second and
updates the screenshots to its back-end for reference. Once we
capture a screenshot containing any passcode, we then quickly
set up two TI CC2640 development boards to pair with the
Windows 10 and keyboard correspondingly, which allows the
two boards to launch MitM attacks on those two victims.

It can be observed that the practicability of those two
attacks assumes the capabilities of compromising one of two

pairing devices. This assumption is in fact practical and widely
discussed in various Bluetooth attacks, e.g., Missing Bond
attacks [33] and BadBluetooth [58] require malware to be
installed on centrals to work, and downgrade attacks [60]
require the attackers to briefly access the Bluetooth devices.

VII. COUNTERMEASURES

This section discusses the root causes and the fixes of all
the attacks uncovered in this paper. Specifically, after applying
the fixes to each of the five attacks, we derive a new patched
model. In this model, we verify the effectiveness of the five
fixes within the scope of the model assumptions.

Fix for Confusion Attack. The root cause of the confusion
attack [53] is that the user cannot differentiate the UI prompts
for the PE and NC passcodes. Our model fixes this error
by humans actually confirming the paring method along with
the passcode match. In Bluetooth devices, such errors can
be mitigated by designing a distinguishable UI that is easy
to detect or by incorporating an incompatible passcode value
format for PE and NC. The latter case prevents an intruder
from reusing the NC passcode to the PE pairing.

Fix for Reflection Attack. The root causes of the reflection
attack is that the involved devices do not check if the received
DH public key from the other devices is a reflected copy of the
devices’ own public key. As such, we fix the flaw by explicitly
enforcing such check on each of the devices.

Fix for Static Passcode Attack. The root cause of the static
passcode attack is that the devices allow static passcode,
which can be fixed by enabling the random passcode.

Fix for Group Guessing Attack. The root cause of the group
guess attack is that the devices use a random function that is
not thread-safe. As such, we fix the model by enforcing the
implementation to be thread-safe, where we use a random
passcode for each of the pairing devices even if these devices
initiated the pairing simultaneously.

Fix for Ghost Attack. The root causes of two ghost attacks
are that the device or the user mistakenly leaks their passcode
for PE pairing (i.e., the intruder can steal the passcode from an
input device or an output device). As such, we fix the attack by
disabling the capabilities of leaking passcode for the intruder.
For instance, users can utilize the lockable input device, made
capable by the manufacturing vendors and the OS support,
to prevent brief physical access. Additionally, the screenshot
feature can be disabled on the passcode display screen.

VIII. DISCUSSION

Prevalence of PE Pairing. In our paper, we mainly focus
on the PE pairing method. Therefore, we would like to
understand the prevalence of the PE method to approximate
the impact of our work. We believe that the PE pairing method
is popular for two reasons. First, according to the Bluetooth
SIG’s reports [44], [46], nearly all smartphones, tablets, and
PCs support Bluetooth LE, and all those BLE-enabled devices
support PE. In the last decade 2013-2021, Bluetooth SIG
have shipped a total of 18 billion BLE devices. Since all
these devices have screens and keypad, they have to support
PE pairing. In 2022, the number of global smartphone users
is estimated at 6.6 billion [36], the number of PC users is
around 2 billion [41], and the number of tablet users is 1.28
billion [4]. There could be up to 9.88 billion devices that

12

support PE. Second, PE is the only secure PE method for some
of the devices, and those devices are very likely to use PE
for their security. One type of such devices is keyboard. This
is because PE only requires the devices to have a keyboard
or a screen, while other secure pairing methods such as NC
(which require the devices to have both keyboard and screen)
or OOB (which requires the devices to have a channel other
than Bluetooth such as NFC) will require extra hardware.

Lessons Learnt. We draw several insights from our modeling
and attack-discovery process. First, the extrapolating over the
attack traces derived from FV tools can uncover unforeseen
attack vectors. Note that FV tools can reason about the possible
state-spaces of the modeled protocol. When searching for
traces of security property violations, the FV engine explores
unbounded protocol interaction with the adversary’s actions.
Therefore, even for a single property violation, FV can provide
multiple distinct traces showing different ways to exploit
the same vulnerability. Similarly, different variations of the
security lemmas provide more diversity in the attack traces.
In this way, a manual investigation of the variety of traces
can further throttle the vulnerability discovery. Second, for
long iterations of loops in a protocol starting with minimal
loops could potentially be a good trade-off to handle model
complexity. Recall that each PE authentication loop iteration
adds probabilistic hardening of the protocol security. Since
Tamarin symbolic logic does not consider probabilistic intruder
capabilities, modeling of 2 out of 20 loops in our model did
not downgrade the intruder capabilities. Consequently, most of
our attack traces revealed an attack pattern over 2 iterations of
the PE authentication phase 1 loop that could be extrapolated
over the original loop of 20 iterations. Finally, an in-depth
understanding of the exact protocol behavior, threat model, and
nature of the FV tool is crucial for the precise abstraction of the
model. This understanding is crucial to differentiate the literal
protocol accuracy and intruder behavior versus the semantic
intruder capabilities. Modeling the latter case captures the
precise attack surface.

Limitations. We are aware that our model is not perfect and
has multiple limitations. First, we focus only on the pairing
process and not on other stages such as feature exchange and
re-connection, or related features such as ECDH group theory
and OS APIs. Therefore, our model cannot detect attacks such
as BadBluetooth [58], Misbonding attacks [33] and invalid
curve attack [20]. Second, when we model the pairing protocol,
we do not consider legacy pairing such as PIN based protocol,
which are subject to various attacks. Third, our model does
not match the literal accuracy of 20 iterations of PE pairing
authentication phase 1. Instead, it only models the first two
iterations. While this is a limitation, we believe that it at least
establishes our effort as useful because of two reasons. First,
the fact that once we fixed all attacks’ flaws, the patched model
verifies the confidentiality and authentication for two loops,
and establishes the base case for the inductive proof towards 20
iterations. Consequently, this partial proof can be extended to
establish the complete proof of 20 iterations. Second, the dis-
covery of the attacks from our model with two iterations, with
precise attack traces, demonstrates that attack patterns over two
iterations are enough to identify the full attack pattern.

Vulnerability Disclosure. We have reported the new attack
vectors to Bluetooth SIG. They informed us that the group

Previous Work PE Pairin
g Supporte

d

Unbounded
Sess

ions

Human Inter
actio

ns

Human Erro
rs

Comprise
d Device

s

Identifi
ed

Atta
cks

Veri
fication Tools

Chang et al. [14] ✗ ✓ ✓ ✗ ✗ − ProVerif [11]
Arai et al. [7] ✗ ✓ ✗ ✗ ✗ − ProVerif [11]

Ngyyen et al. [35] ✗ ✗ ✗ ✗ ✗ − Stand Spaces [25]
Cremers et al. [20] ✗ ✓ ✓ ✗ ✗ − Tamarin [32]

Sethi et al. [42] ✗ ✗ ✓ ✗ ✓ − ProVerif [11]
Wu et al. [56] ✗ ✗ ✗ ✗ ✗ − ProVerif [11]
Wu et al. [57] ✓ ✗ ∗ ✓ ✓ ✓ A1, A2 ProVerif [11]

Our Model ✓ ✓ ✓ ✓ ✓ A1-A5 Tamarin [32]
*Only Data Transmission is unbounded

TABLE II: Comparison of our formal model with previous re-
searches on Bluetooth. The column labels indicate the various
features incorporated into the formal model.

guessing attack (A4) could be of concerns. In particular,
Bluetooth SIG responded that simultaneous connections are
supported in a few Bluetooth topologies. In those cases,
thread latencies and implementation-specific checks on thread
handling could make it difficult for the execution of the group
guessing attack. Nevertheless, the attack could be of concern if
an implementation is found that does not handle the implemen-
tation (e.g., non-thread-safe) carefully. For the ghost attacks
(A5), Bluetooth SIG does not consider a compromised device
threat model within their scope. However, as discussed in
§IV, compromised device assumption has been considered in
many previous research work [60], [33], [58], [57], [42]. These
work show that compromising a user device can cause serious
attacks. Additionally, we emphasize that both of the new attack
vectors highlight important concerns for the development of
the secure Bluetooth protocol.

IX. RELATED WORK

Most of the previous efforts in formal verification of
Bluetooth protocol cover NC pairing. As shown in Table II,
Chang et al. [14] model the legacy NC pairing and derive
attack based on the fact that the displayed hashed passcodes are
not bound to the session identifiers and hence can be exploited
and misinterpreted for another concurrent session. Arai et
al. [7] model an improved NC protocol proposed by [59]
where instead of the user confirmation of the same displayed
passcode, the user enters the PIN on each of the devices
involved and confirms the PIN using additional commitment
message exchange. Ngyyen et al. [35] model and formalized
a separately proposed OOB pairing method as an extension to
Stand Spaces [25]. Cremers et al. [20] detected cryptographic
implementation flaws in which choosing DH parameters from
small subgroups or invalid curves allows an easier derivation
of DH share keys. It achieves this attack accuracy by detailed
modeling of DH group theory in Tamarin. Sethi et al. [42]
model the NC pairing based on semi-compromised devices,
which allows a device to bind to an unintended (or intruder)
device. BLESA paper [56] model the Bluetooth re-connection
procedure and demonstrate spoofing attacks caused by missing
implementation checks over responses to the authentication
capability of other devices. Compared to these research efforts,
our model focuses on PE pairing and discovers many attacks
in one generic model.

Closest to our work is Wu et al. [57]. In addition to secure
pairing PE and NC, it models breath of other pairing protocols

13

including BC, BLE, and Mesh protocols. In contrast, we model
PE pairing in depth. Such depth can be observed by the fact
that out of the five uncovered PE attacks in our paper Wu et
al [57] uncovered only two PE attacks — the confusion attack
and reflection attacks. The rest of the discovered attacks do
not pertain to PE pairing. We believe it is due to the missing
abstraction of passcode customization and fully unbounded
sessions in their formal model. Specifically, Wu et al. [57]
uncovered existing: MisBonding [33], Co-located [47], Bad-
Bluetooth [58], BLESA [56], Method Confusion [53] and new:
Mesh Provisionin [57] and Cross Stack Illegal Acces [57].
Whereas our model uncovers existing: Static Passcode [50],
Reflection [15], Method Confusion [53] and new: Group
Guessing Attack, and Ghost Attack. Furthermore, from a
design perspective, Wu et al. [57] used a modular model
design, whereas our model unifies all pairing components such
as feature exchange, authentication, and data transmission into
one model. Overall, our work can be seen as complementing
their work by going in-depth on modeling design.

X. CONCLUSION

This paper presents a detailed formal analysis of
Bluetooth PE pairing. In the process, we rediscover three
existing attacks and uncover two new attacks. In addition, we
provide a patched model with fixes for all those attacks where
the authentication and confidentiality properties of the model
are verified. Our model approach indicates that modeling
precise protocol behavior, entity interactions, and a refined
and accurate intruder’s capability could allow discovery of
large classes of attacks. We believe that the insights presented
through our research process and the uncovered attacks will
provide valuable feedback to improve the state-of-the-art
verification techniques and new modeling techniques that
could be standardized into mainstream formal verification.

ACKNOWLEDGEMENTS

We would like to thank Cas Cremers, Jannik Dreier and
Ralf Sasse for Tamarin related discussion on Google groups
and anonymous reviewers for their invaluable comments. This
research was supported in part by NSF awards 1834213 and
2112471. Any opinions, findings, conclusions, or recommen-
dations expressed are those of the authors and not necessarily
of the NSF.

REFERENCES
[1] “Improving Tamarin Graph Output,” 2015, retrieved September

5, 2022 from https://github.com/tamarin-prover/tamarin-prover/blob/
develop/misc/cleandot/README.md.

[2] “Tamarin bit-split Theory discussion,” 2021, retrieved October 19, 2022
from https://groups.google.com/g/tamarin-prover/c/6pr-mudKmwY/m/
Pw-1PzUjCgAJ.

[3] “Tamarin Manual,” 2021, retrieved January 18, 2021 from https://
tamarin-prover.github.io/manual/book/001 introduction.html.

[4] amazon, “How many tablets are there in the world?” 2019, https:
//alexaanswers.amazon.com/question/6gxbVYtvaFGnlB82046wAG Ac-
cessed: 2021-06-30.

[5] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: bluetooth
impersonation attacks,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 549–562.

[6] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The {KNOB}
is broken: Exploiting low entropy in the encryption key negotiation of
bluetooth br/edr,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1047–1061.

[7] K. Arai and T. Kaneko, “Formal verification of improved numeric
comparison protocol for secure simple paring in bluetooth using
proverif,” in Proceedings of the International Conference on Security
and Management (SAM). The Steering Committee of The World
Congress in Computer Science, Computer . . . , 2014, p. 1.

[8] M. Baert, J. Rossey, A. Shahid, and J. Hoebeke, “The bluetooth mesh
standard: An overview and experimental evaluation,” Sensors, vol. 18,
no. 8, p. 2409, 2018.

[9] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse,
and V. Stettler, “A formal analysis of 5g authentication,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2018, p. 1383–1396. [Online].
Available: https://doi.org/10.1145/3243734.3243846

[10] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in
2017 IEEE Symposium on Security and Privacy. Los Alamitos, CA,
USA: IEEE Computer Society, may 2017, pp. 483–502. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP.2017.26

[11] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends® in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, 2016.

[12] S. Bluetooth, “Bluetooth market update,” 2021, https://www.bluetooth.
com/wp-content/uploads/2021/01/2021-Bluetooth Market Update.pdf
Accessed: 2021-06-30.

[13] C. Boyd, “Security architectures using formal methods,” IEEE Journal
on Selected Areas in Communications, vol. 11, no. 5, pp. 694–701,
1993.

[14] R. Chang and V. Shmatikov, “Formal analysis of authentication in
bluetooth device pairing,” Fcs-arspa07, vol. 45, 2007.

[15] T. Claverie and J. L. Esteves, “Bluemirror: Reflections on bluetooth
pairing and provisioning protocols,” in 2021 IEEE Security and Privacy
Workshops (SPW), 2021, pp. 339–351.

[16] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, no. 4, pp. 1914–1983, 2020.

[17] CPPReference, “Pseudo-Random Number Generation: rand() CPP Ref-
erence,” 2021, retrieved Nov 5, 2021 from https://en.cppreference.com/
w/c/numeric/random/rand.

[18] C. Cremers, J. Fairoze, B. Kiesl, and A. Naska, “Clone detection in
secure messaging: Improving post-compromise security in practice,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. Association for
Computing Machinery, 2020, p. 1481–1495. [Online]. Available:
https://doi.org/10.1145/3372297.3423354

[19] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in ACM SIGSAC
Conference on Computer and Commuincations Security. ACM, Oct.
2017, pp. 1773–1788.

[20] C. Cremers and D. Jackson, “Prime, order please! revisiting small
subgroup and invalid curve attacks on protocols using diffie-hellman,”
in 2019 IEEE 32nd Computer Security Foundations Symposium (CSF).
IEEE, 2019, pp. 78–7815.

[21] C. Cremers, B. Kiesl, and N. Medinger, “A formal analysis of
IEEE 802.11’s wpa2: Countering the kracks caused by cracking the
counters,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1–17. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/cremers

[22] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Ras-
togi, N. Swamy, S. Zanella-Beguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue, “Implementing and proving the TLS 1.3 record layer,”
in 2017 IEEE Symposium on Security and Privacy, 2017, pp. 463–482.

[23] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and cryptography, vol. 2,
no. 2, pp. 107–125, 1992.

[24] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[25] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman, “Strand spaces: Why
is a security protocol correct?” in Proceedings. 1998 IEEE Symposium
on Security and Privacy (Cat. No. 98CB36186). IEEE, 1998, pp.
160–171.

14

https://github.com/tamarin-prover/tamarin-prover/blob/develop/misc/cleandot/README.md
https://github.com/tamarin-prover/tamarin-prover/blob/develop/misc/cleandot/README.md
https://groups.google.com/g/tamarin-prover/c/6pr-mudKmwY/m/Pw-1PzUjCgAJ
https://groups.google.com/g/tamarin-prover/c/6pr-mudKmwY/m/Pw-1PzUjCgAJ
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://alexaanswers.amazon.com/question/6gxbVYtvaFGnlB82046wAG
https://alexaanswers.amazon.com/question/6gxbVYtvaFGnlB82046wAG
https://doi.org/10.1145/3243734.3243846
https://doi.ieeecomputersociety.org/10.1109/SP.2017.26
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://en.cppreference.com/w/c/numeric/random/rand
https://en.cppreference.com/w/c/numeric/random/rand
https://doi.org/10.1145/3372297.3423354
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers

[26] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin, “A
spectral analysis of noise: A comprehensive, automated, formal analysis
of diffie-hellman protocols,” in USENIX Security Symposium, 2020.

[27] M. K. Jangid, G. Chen, Y. Zhang, and Z. Lin, “Towards formal
verification of state continuity for enclave programs,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 573–590. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/jangid

[28] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in IEEE European Symposium on
Security and Privacy, 2017, pp. 435–450. [Online]. Available:
https://hal.inria.fr/hal-01575923/document

[29] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,” in
2019 IEEE European Symposium on Security and Privacy, 2019, pp.
356–370.

[30] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings
10th Computer Security Foundations Workshop, 1997, pp. 31–43.

[31] S. Meier, “Advancing automated security protocol verification,” Ph.D.
dissertation, ETH Zurich, 2013.

[32] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover
for the symbolic analysis of security protocols,” pp. 696–701, 2013.
[Online]. Available: http://tamarin-prover.github.io/

[33] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter,
“Inside job: Understanding and mitigating the threat of external device
mis-binding on android.” in NDSS, 2014.

[34] C. Neskey, “Are your passwords in the green?” Benchmark
for Bruteforce Speed, 2022, https://www.hivesystems.io/blog/
are-your-passwords-in-the-green Accessed: 2022-09-01.

[35] T. Nguyen and J. Leneutre, “Formal analysis of secure device pairing
protocols,” in 2014 IEEE 13th International Symposium on Network
Computing and Applications, 2014, pp. 291–295.

[36] oberlo.com, “How many people have smartphones in 2022?” 2022,
https://www.oberlo.com/statistics/how-many-people-have-smartphones
Accessed: 2021-06-30.

[37] R. C.-W. Phan and P. Mingard, “Analyzing the secure simple pairing
in bluetooth v4. 0,” Wireless Personal Communications, vol. 64, no. 4,
pp. 719–737, 2012.

[38] M. Ryan, “Bluetooth: With low energy comes low security,” in 7th
{USENIX} Workshop on Offensive Technologies ({WOOT} 13), 2013.

[39] B. Schmidt, “Formal analysis of key exchange protocols and physical
protocols,” Ph.D. dissertation, ETH Zurich, 2012.

[40] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis
of diffie-hellman protocols and advanced security properties,” in 2012
IEEE 25th Computer Security Foundations Symposium. IEEE, 2012,
pp. 78–94.

[41] scmo.com, “How many computers are there in
the world?” 2019, https://www.scmo.net/faq/2019/8/9/
how-many-compaters-is-there-in-the-world Accessed: 2021-06-30.

[42] M. Sethi, A. Peltonen, and T. Aura, “Misbinding attacks on secure
device pairing and bootstrapping,” in Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, 2019, pp.
453–464.

[43] B. SIG, “Bluetooth SIG, core specification version 4.2,” Specification of
the Bluetooth System, 2014, https://www.bluetooth.com/specifications/
specs/core-specification-4-2/ Accessed: 2022-08-18.

[44] ——, “Bluetooth SIG, bluetooth market update,” 2018, https://www.
bluetooth.com/bluetooth-resources/2018-bluetooth-market-update/ Ac-
cessed: 2022-08-18.

[45] ——, “Bluetooth SIG, core specification version 5.2,” Specification of
the Bluetooth System, 2019, https://www.bluetooth.com/specifications/
specs/core-specification-5-2/ Accessed: 2022-08-18.

[46] ——, “Bluetooth SIG, bluetooth market update,” 2022, https://www.
bluetooth.com/2022-market-update/ Accessed: 2022-08-18.

[47] P. Sivakumaran and J. Blasco, “A study of the feasibility of co-located
app attacks against {BLE} and a large-scale analysis of the current
application-layer security landscape,” in 28th {USENIX} Security Sym-
posium ({USENIX} Security 19), 2019, pp. 1–18.

[48] R. M. Smullyan, First-order logic. Courier Corporation, 1995.
[49] C. Staub, “A user interface for interactive security protocol design,”

B.S. thesis, Eidgenössische Technische Hochschule Zürich, Department
of Computer Science, 2011.

[50] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-middle attacks on secure
simple pairing in bluetooth standard v5.0 and its countermeasure,”
Personal Ubiquitous Comput., vol. 22, no. 1, p. 55–67, Feb.
2018. [Online]. Available: https://doi-org.proxy.lib.ohio-state.edu/10.
1007/s00779-017-1081-6

[51] TheHackerNews, “New bluetooth vulnerability exposes billions
of devices to hackers,” 2021, https://thehackernews.com/2020/05/
hacking-bluetooth-vulnerability.html.

[52] TI, “Bluetooth programming official guide,” 2022, http:
//dev.ti.com/tirex/content/simplelink cc2640r2 sdk 1 35 00 33/
docs/ble5stack/ble user guide/html/ble-stack/gapbondmngr.html.

[53] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method confusion attack on bluetooth pairing,” Under submission,
2020.

[54] H. Wen, Z. Lin, and Y. Zhang, “Firmxray: Detecting bluetooth link layer
vulnerabilities from bare-metal firmware,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020.

[55] T. Y. Woo and S. S. Lam, “A semantic model for authentication
protocols,” in Proceedings 1993 IEEE Computer Society Symposium
on Research in Security and Privacy. IEEE, 1993, pp. 178–194.

[56] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and
D. Xu, “{BLESA}: Spoofing attacks against reconnections in bluetooth
low energy,” in 14th {USENIX} Workshop on Offensive Technologies
({WOOT} 20), 2020.

[57] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, “Formal model-
driven discovery of bluetooth protocol design vulnerabilities,” in IEEE
European Symposium on Security and Privacy, 2022.

[58] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “Badbluetooth: Breaking
android security mechanisms via malicious bluetooth peripherals.” in
NDSS, 2019.

[59] T.-C. Yeh, J.-R. Peng, S.-S. Wang, and J.-P. Hsu, “Securing bluetooth
communications.” Int. J. Netw. Secur., vol. 14, no. 4, pp. 229–235, 2012.

[60] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking
secure pairing of bluetooth low energy using downgrade attacks,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 37–54.

[61] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting
of vulnerable ble iot devices with static uuids from mobile apps,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

15

https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://hal.inria.fr/hal-01575923/document
http://tamarin-prover.github.io/
https://www.hivesystems.io/blog/are-your-passwords-in-the-green
https://www.hivesystems.io/blog/are-your-passwords-in-the-green
https://www.oberlo.com/statistics/how-many-people-have-smartphones
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/2022-market-update/
https://www.bluetooth.com/2022-market-update/
https://doi-org.proxy.lib.ohio-state.edu/10.1007/s00779-017-1081-6
https://doi-org.proxy.lib.ohio-state.edu/10.1007/s00779-017-1081-6
https://thehackernews.com/2020/05/hacking-bluetooth-vulnerability.html
https://thehackernews.com/2020/05/hacking-bluetooth-vulnerability.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/gapbondmngr.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/gapbondmngr.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_35_00_33/docs/ble5stack/ble_user_guide/html/ble-stack/gapbondmngr.html

APPENDIX A
MODELING SECURITY PROPERTIES

Confidentiality and authenticity are standard properties of
protocols. Confidentiality is defined as the property of the
protocol that the protocol secrets are available only to the
intended legitimate protocol entities. Whereas, authenticity is
defined as the property of a protocol where all the protocol se-
crets originate and receive only at indented legitimate protocol
entities (not from an unauthenticated intruder).

The queries in our model are largely a formulation of
Lowe’s hierarchy of authentication [30] and other well known
literatures [23], [55]. The only difference is that we integrate
the user component into the formulation, which is not exactly a
protocol principal. Rather, the user owns the principal devices,
and the user term also serves for device access control, human
interaction, and error part together. In our queries, we tried
to generalize the format of Lowe’s agreement queries and
fit the user component into it while maintaining the integrity
of the user actions. Therefore, the following sections explain
the mechanics behind extended symbolic formalization for
authentication queries.

To build the confidentiality and authenticity lemmas in
traditional formalization, two Action labels §II-B are desig-
nated after the authentication and key exchange (AKE) part
of a protocol finishes. The format of the Action label is:
CheckpointX (𝑖𝑑1, 𝑖𝑑2, ..., 𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ...) where 𝑖𝑑𝑖 is the ID of
𝑖 th entity engaged in the protocol as perceived by the entity 𝑋
and 𝑣𝑎𝑟𝑖 is one of protocol variables that are agreed between
the entities of the protocol.

In Bluetooth, the entities are the user with ID 𝑈 and his
devices with IDs 𝐴 (Intitator) ,𝐵 (Responder). The Action
label RunningA (...) (i.e., sending data) and CommitB (...)
(i.e., receiving data) are tagged with the IDs of the entities
participating in the protocol and the session variables. Sessions
variables are chosen based on the protocol data that needs
protection from the Intruders. To verify the confidentiality
and authenticity provided by Bluetooth pairing protocols, we
choose 𝑑𝑎𝑡𝑎𝐴 and 𝑑𝑎𝑡𝑎𝐵, generated at 𝐴 and 𝐵 respectively,
as the protocol secrets, and 𝑘𝑒𝑦, which is the negotiated key
in the pairing process, as the session data that should remain
secret for all protocol executions.

Confidentiality. The lemma for confidentiality uses the Action
label CommitB (...) as shown below:

∀ CommitB (𝑈, 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @𝑖𝐵 ⋏ ¬(∃ MakeIntruder(𝑈)@𝑖𝐼)
⇒ ¬(∃ K(𝑑𝑎𝑡𝑎)@𝑖𝐼)

With respect to the legitimate device 𝐵 the lemma states
that all CommitB instances occur without leaking data to the
intruder. The legitimate entity is indicated by the action label:
MakeIntruder (as described in S1). Overall, the encoding states
that at any time, the legitimate device 𝐵, which belongs to a
user 𝑈, receives encrypted data 𝑑𝑎𝑡𝑎𝐴 from the negotiated key
𝑘𝑒𝑦, and the received data are never obtained by the intruder.

This confidentiality of data is observed by the entity 𝐵. To
complete the confidentiality property for the model, similar
lemmas are introduced from the perspective of 𝐴 that involve
the session variables 𝑑𝑎𝑡𝑎𝐴, 𝑑𝑎𝑡𝑎𝐵 and 𝑘𝑒𝑦.

Authentication. The lemma for authenticity is made up of
three constraints (CNs) as shown below:

/***** For all data received at the legitimate entity B *****/

1. ∀ CommitB (𝑈, 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @𝑖𝐵 ⋏ ¬(∃ MakeIntruder(𝑈)@𝑖𝐼)
⇒

/***** the data should have been sent by a legitimate entity A *****/

/***** before receiving at B, from the device owned by user U *****/

2. ∃ RunningA (𝑈, 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @ 𝑖𝐴 ⋏ 𝑖𝐴 < 𝑖𝐵

/*****and no other entity should receive the same data or use the same
key *****/

3. ⋏ ¬(∃ CommitB (𝑈𝑥 , 𝐴𝑥 , 𝐵𝑥 , 𝑑𝑎𝑡𝑎𝑥 , 𝐾𝑒𝑦) @𝑖𝑥 ⋏ 𝑖𝑥 ≠ 𝑖𝐵)
4. ⋏ ¬(∃ CommitB (𝑈𝑥 , 𝐴𝑥 , 𝐵𝑥 , 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦𝑥) @𝑖𝑥 ⋏ 𝑖𝑥 ≠ 𝑖𝐵)

For all instances of CommitB in legitimate 𝐵, there exists
a running instance of RunningA before it, which is tagged
with the same entities and session variables (CN-I at line
1-2); For all instances of CommitB at the legitimate 𝐵, there
is no other instance of CommitB with the same data (CN-II
at line 3) and; For all instances of CommitB at the legitimate
𝐵, there is no other instance of CommitB with the same key
(CN-III at line 4); Combining all constraints together, the
lemma requires that all instances of CommitB be unique and for
each of its instances, there exists a RunningA instance with the
same entities and session variables before it. That is, for any
unique received data instances on the legitimate device 𝐵, there
exists a legitimate device 𝐴 that sends the same data, which are
encrypted by the same key, to it, and the two communicating
devices belong to the same user.

We now further explain how this encoding implies authen-
ticity. In particular, consider the cases where the above FOL
logic fails. For all unique instances of CommitB,
• Failure of CN-I. No instance of RunningA exists before or

after the CommitB instance: indicates that a legitimate de-
vice B receives data from an unknown source (the intruder);
All instances of RunningA occur after CommitB, which also
indicates that the first legitimate CommitB receives data
from an unknown source.

• Failure of CN-II. Two or more instances of CommitB occur
with the same data 𝑑𝑎𝑡𝑎𝐵: indicates that the intruder has
managed to use the same data in two possibly distinct
sessions with 𝐴 and 𝐵 (e.g., replay attacks).

• Failure of CN-III. Two or more instances of CommitB
occur with the same key: indicates that the intruder has
managed to use the same key in other sessions. At a high
level, the session variables 𝑑𝑎𝑡𝑎𝐵 and 𝑘𝑒𝑦 are derived from
fresh terms. Therefore, in protocols, the execution among
legitimate devices must always produce unique and distinct
values of 𝑑𝑎𝑡𝑎𝐵 and 𝑘𝑒𝑦 in each session.
In all the above failure cases, the legitimate 𝐵 received

data from an unintended entity: the intruder, and thus implies
that from the perspective of 𝐵’ the intended other device
𝐴 is not authentic. Also note that in all failure cases occur

16

with respect to the CommitB action. Here, the uniqueness of
RunningA action is not implied. Therefore, the above lemma
authenticates 𝐴 for 𝐵 but not the other way around. To
complete the authentication of 𝐵 for 𝐴, similar lemmas are
queries with RunningB and CommitA actions.

To optimize to model runtime, standard authentication
lemmas can be reduced to lemmas with fewer constraints.
For example, the standard authenticity lemmas in the Lowe’s
hierarchy of authentication [30] involve many sub-constraints.
However, data-steal and data-inject lemmas involve fewer
constraints as illustrated below:

/***** Data Steal from Entity A *****/

∀ RunningA (𝑈𝐴, 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @𝑖𝐴 ⋏ ¬(∃ MakeIntruder(𝑈𝐴)@𝑖𝐼)
⋏CommitB (𝑈𝐵 , 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @ 𝑖𝐵

⇒ ¬(∃ MakeIntruder(𝑈𝐵)@𝑖𝐼)

/***** Data Inject at Entity A *****/

∀ CommitA (𝑈𝐴, 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @ 𝑖𝐴 ⋏ ¬(∃ MakeIntruder(𝑈𝐴)@𝑖𝐼)
⋏RunningB (𝑈𝐵 , 𝐴, 𝐵, 𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦) @𝑖𝐵

⇒ ¬(∃ MakeIntruder(𝑈𝐵)@𝑖𝐼)

Here, the RunningX and CommitX action labels roughly
correspond to sending and receiving the encrypted data actions
at entity 𝑋 in the protocol model. A failure in these variety of
the constraint-reduced lemmas also reveals a possible practical
flaw in the protocol. Most of the attacks in our model were
derived as a result of the failure of these constraint-reduced
lemmas. Additionally, once the constraint-reduced lemmas are
proved within manageable time, it can be used to prove the
standard lemmas faster.

APPENDIX B
SUPPLEMENTARY FIGURES AND CODE

(conf sub-property)B
data(auth weak)B (conf sub-property)A

data (steal from)A
data

(auth)B
key

(auth)B
data

(auth)B

(steal from)B
data

(conf)A
data (auth weak)A

(auth)A
data

(auth)
A
key

(auth)A(conf)
A
key

(inject at)A
data

(inject at)B
data

(conf)B
data

(conf)B
key

Fig. 10: Lemma reuse mapping graph. All the lemmas used in
the verification of the patched model.

Tamarin Code 1: Equational theories and restrictions

functions: MAC/2, h/1, split1/1, split2/1, merge/2,
dhs/1, dhp/1, dha/2, dhb/2

equations: merge(split1(v), split2(v)) = v, // bitsplit
equation theory↩→

dha(a, dhp(b)) = dhb(b, dhp(a)) // Diffie Hellman
equation theory↩→

// dhp(x): derive DH public key using DH private
random parameter x↩→

// dha(): derive shared key at initiator device A
// dhb(): derive shared key at responder device B

restriction equality: "All x y #i. Eq(x, y) @ i ==> x = y"
restriction inequality: "All x y #i. Neq(x, y) @ i ==> not(x

= y)"↩→

// PATCH: Static Passocde Attack and Group Guessing Attack
-- enforce different PE passcode (Kpe) in each session↩→

restriction random_kpe_in_each_session:
"
(All Kpe #i #j. KpeValue_A(Kpe)@i & KpeValue_A(Kpe)@j ==>

#i=#j)↩→
& (All Kpe #i #j. KpeValue_B(Kpe)@i & KpeValue_B(Kpe)@j

==> #i=#j)↩→
"

// single rule instatiation is sufficient
restriction single_MakeIntruder_perUID_is_enough:
" All uid #i #j. MakeIntruder(uid)@i & MakeIntruder(uid)@j

==> #i=#j"↩→

Tamarin Code 2: Key Tamarin Rules

// Instantiate users IDs
rule GenUserIDs [color=#E5E8E8]:
[Fr(˜u)]
--[GenUserIDs(˜u)]->
[!User(˜u)]

// Instantiate devices IDs
rule GenDeviceAddr [color=#E5E8E8]:
[!User(u), Fr(˜addrX)]
--[GenDeviceAddr(u, ˜addrX)]->
[!UserDeviceAddr(u, ˜addrX),
Out(˜addrX) // Address are public and can be spoofed
]

// Device possession to Intruder is by leaking user ID to
public channel↩→

rule MakeIntruder [color=#CD5C5C]:
[!User(u)]
--[MakeIntruder(u)]->
[Out(<u>)]

// Generate random passcode for Show Passcode step
rule GenKpe [color=#E5E8E8]:
let keyOut = senc{˜Kpe, 'SetPasscode'}u
in
[!User(u), Fr(˜Kpe)]
--[GenKpe(u, ˜Kpe)]->
[Out(keyOut)]

APPENDIX C
TAMARIN TRACE FOR METHOD CONFUSION ATTACK

The attacks discovered in our model are detailed and clean.
As discussed in §VI, the attack traces generated by Tamarin
are very large. Therefore, we illustrate the precision of the
Tamarin-produced attack by providing a portion snapshot of
the model trace in Figure 11.

17

#
v
k
.3

 :
 c

_s
e
n
c[

!K
U

(
se

n
c(

<
d

h
p

(~
sk

b
),

 d
h

p
(~

sk
a
),

sp

lit
2

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 ~
n

b
2

)

)
]

#
v
f.

1
8

 :
 i
se

n
d

#
v
k
.4

 :
 c

_s
e
n
c[

!K
U

(
se

n
c(

<
d

h
p

(~
sk

b
),

 d
h

p
(~

sk
a
),

sp

lit
1

(M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

>
,

 n
b

1
_r

cv
)

)
]

#
v
f.

2
1

 :
 i
se

n
d

#
v
k
.7

 :
 c

o
e
rc

e
[!

K
U

(
sp

lit
2

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

)
]

M
e
m

A
P
E
4

5
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h
p

(~
sk

b
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
),

 ~
n
a
1

,
~

n
a
2

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

,

sp
lit

2
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

,

se
n
c(

<
d

h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

1
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

 >
,

 ~
n
a
1

),

se
n
c(

<
d

h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

2
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

 >
,

 ~
n
a
2

),

se
n
c(

<
d

h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
))

 >
,

 n
b

1
_r

cv
),

n
b

1
_r

cv
)

In
(

<

 s
e
n

c(
<

d
h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
2

(M
A

C
(<

p
ka

,

 d

h
p

(~
sk

b
.1

),

 ~

n
b

>
,

n

a
_r

cv
))

>
,

~
n
b

2
),

 '
8

'>
)

#
v
r.

1
4

 :
 A

_P
E
_5

_n
a
2

[]

O
u

t(
 <

~
n
a
2

,
'9

'>
)

M
e
m

A
P
E
4

6
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h

p
(~

sk
b

),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

 M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n

b
>

,
n

a
_r

cv
),

 ~
n

a
1

,

~
n
a
2

,
M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

sp
lit

2
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

1
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n

b
>

,
n

a
_r

cv
))

>
,

~
n
a
1

),

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

2
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n

b
>

,
n

a
_r

cv
))

>
,

~
n
a
2

),

se
n

c(
<

d
h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n

b
>

,
n

a
_r

cv
))

>
,

n
b

1
_r

cv
),

n
b

1
_r

cv
,

se
n

c(
<

d
h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
2

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n

b
>

,
n

a
_r

cv
))

>
,

~
n
b

2
)

)

M
e
m

A
P
E

3
4

(
~

u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h
p

(~
sk

b
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

 M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

 ~
n

a
1

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
))

,

se
n
c(

<
d

h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

1
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
))

>
,
~

n
a
1

),

se
n
c(

<
d

h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
))

>
,

 n

b
1

_r
cv

)
)

Fr
(

~
n
a
2

)
In

(
<

n
b

1
_r

cv
,

'6
'>

)

#
v
r.

1
5

 :
 A

_P
E
_4

_c
ra

2
[]

O
u

t(
 <

se
n
c(

<
d

h
p

(~
sk

a
),

d

h
p

(~
sk

b
),

sp

lit
2

(M
A

C
(<

p
ka

,

d
h

p
(~

sk
b

.1
),

~
n
b

>
,

 n

a
_r

cv
))

 >
,

 ~
n
a
2

),

'7
'>

)

M
e
m

A
P
E
4

5
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h

p
(~

sk
b

),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

 ~
n

a
1

,
~

n
a
2

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

sp
lit

2
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),

sp

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 ~
n

a
1

),

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),

sp

lit
2

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 ~
n

a
2

),

se
n

c(
<

d
h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

sp

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 n
b

1
_r

cv
),

n
b

1
_r

cv
)

O
u

t(
 s

e
n

c(
~

n
a
2

,
~

u
)

)

#
v
f.

2
2

 :
 i
se

n
d

M
e
m

A
P
E
2

3
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h

p
(~

sk
b

),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

 ~
n

a
1

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),

sp

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 ~
n

a
1

)
)

In
(

<

 s
e
n

c(
<

d
h
p

(~
sk

b
),

 d
h

p
(~

sk
a
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,

 d

h
p

(~
sk

b
.1

),

 ~

n
b

>
,

n

a
_r

cv
))

>
,

n
b

1
_r

cv
),

 '4
'>

)

#
v
r.

1
6

 :
 A

_P
E
_3

_n
a
1

[]

O
u

t(
 <

~
n
a
1

,
'5

'>
)

M
e
m

A
P
E
3

4
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h
p

(~
sk

b
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

 M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
),

 ~
n

a
1

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

se
n
c(

<
d

h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),
 s

p
lit

1
(M

A
C

(<
p

k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
))

>
,
~

n
a
1

),

se
n
c(

<
d

h
p

(~
sk

b
),

 d
h
p

(~
sk

a
),

 s
p

lit
1

(M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n
a
_r

cv
))

>
,
n

b
1

_r
cv

)
)

#
v
f.

1
7

 :
 i
se

n
d

M
e
m

A
_b

ra
n
ch

(
~

u
,

~
a
d

d
rX

,

 ~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
)

)

In
(

<
d

h
p

(~
sk

b
),

 '2
a
'

>
)

S
e
cC

h
(

se
n

c(
<

 M

A
C

(<
p

k
a
,

d
h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

 '
a
tB

'>
,

~

u
)

)

Fr
(

~
n
a
1

)

#
v
r.

1
7

 :
 A

_P
E
_2

_e
n

te
r[

]

O
u

t(
 <

se

n
c(

<
d

h
p

(~
sk

a
),

d

h
p

(~
sk

b
),

sp

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

~
n
b

>
,

 n

a
_r

cv
))

 >
,

 ~
n

a
1

),

'3

'>
)

M
e
m

A
P
E
2

3
(

~
u
,

~
a
d

d
rX

,
~

a
d

d
rX

.1
,
~

sk
a
,

d
h

p
(~

sk
a
),

 d
h

p
(~

sk
b

),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

 ~
n

a
1

,

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,
n

a
_r

cv
),

sp
lit

1
(M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

,

se
n

c(
<

d
h
p

(~
sk

a
),

 d
h

p
(~

sk
b

),

sp

lit
1

(M
A

C
(<

p
k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
))

>
,

 ~
n

a
1

)
)

O
u

t(
 s

e
n
c(

~
n
a
1

,
~

u
)

)

S
e
cC

h
(

se
n

c(
<

 M

A
C

(<
d

h
p

(~
sk

a
.1

),
 d

h
p

(~
sk

b
.3

),

~
n

b
.1

>
,

 ~

n
a
),

 '
a
tA

'>
,

~

u
.4

)
)

M
e
m

B
N

C
2

3
(

~
u
,

a
d

d
rA

,
~

a
d

d
rX

.2
,

p
ka

,
~

sk
b

.1
,

d
h

p
(~

sk
b

.1
),

 '
0

',
'0

',
 n

a
_r

cv
,

~
n
b

,

M
A

C
(<

d
h
p

(~
sk

b
.1

),
 p

k
a
,
'0

'>
,
~

n
b

)
)

#
v
r.

1
9

 :
 B

_N
C

_4
_s

h
o
w

[]

S
e
cC

h
(

se
n

c(
<

 M

A
C

(<
p

k
a
,

d
h
p

(~
sk

b
.1

),

~
n

b
>

,

 n

a
_r

cv
),

 '
a
tB

'>
,

~

u
)

)

M
e
m

B
N

C
3

4
(

~
u
,

a
d

d
rA

,
~

a
d

d
rX

.2
,

p
ka

,
~

sk
b

.1
,

d
h

p
(~

sk
b

.1
),

 '
0

',
 '0

',

n
a
_r

cv
,

~
n
b

,
M

A
C

(<
d

h
p

(~
sk

b
.1

),
 p

k
a
,
'0

'>
,
~

n
b

),

M
A

C
(<

p
k
a
,
d

h
p

(~
sk

b
.1

),
 ~

n
b

>
,

n
a
_r

cv
),

se
n
c(

<
M

A
C

(<
p

k
a
,

d
h

p
(~

sk
b

.1
),

 ~
n
b

>
,
n

a
_r

cv
),

 '
a
tB

'>
,

~
u
),

se
n
c(

<
M

A
C

(<
d

h
p

(~
sk

a
.1

),
 d

h
p

(~
sk

b
.3

),
 ~

n
b

.1
>

,
~

n
a
),

 '
a
tA

'>
,
~

u
.4

)
)

#
v
f.

2
0

 :
 i
se

n
d

~

u
.4

)
)

Le
gi

t D
ev

ic
e

(u
)

En
te

rs
 N

C
pa

ss
co

de
 in

 P
E

pa
iri

ng

(H
um

an
 E

rr
or

)

Le
gi

t D
ev

ic
e

(u
)

Sh
ow

 p
as

sc
od

e
in

 N
C

pa
iri

ng

In
tr

ud
er

 p
ro

vi
de

s
(is

en
d)

2nd

 bi
t (

sp
lit

2)
 o

f p
as

sc
od

e

In
tr

ud
er

 p
ro

vi
de

s
(is

en
d)

1st

 b
it

(s
pl

it1
) o

f p
as

sc
od

e

Fi
g.

11
:

A
po

rt
io

n
sn

ap
sh

ot
s

of
Ta

m
ar

in
pr

od
uc

ed
m

et
ho

d
co

nf
us

io
n

at
ta

ck
tr

ac
e.

T
he

co
m

pl
et

e
tr

ac
e

ca
n

be
ac

ce
ss

ed
in

th
e

pr
ov

id
ed

Ta
m

ar
in

co
de

fo
ld

er
.

18

	Introduction
	Background
	Bluetooth Passkey Entry (PE) Pairing
	Tamarin Prover

	Security Analysis of PE Pairing
	Terms, Scope, and Threat Model
	Terms
	Scope
	Threat Model

	Model Design
	Initial Target — Modeling The Method Confusion Attack
	Design Challenges and Solutions
	Model Design and Implementation
	Modeling Pairing Protocols and Interactions
	Modeling Precise Intruders' Actions
	Resolving Tamarin Model and Large Traces

	Results
	Model Setup
	Overall Results
	Uncovering Known Attacks
	Uncovering New Attacks

	Countermeasures
	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Modeling Security Properties
	Appendix B: Supplementary Figures and Code
	Appendix C: Tamarin Trace for Method Confusion Attack

