
AuthentiSense: A Scalable Behavioral Biometrics
Authentication Scheme using Few-Shot Learning

for Mobile Platforms

Hossein Fereidooni∗, Jan König†, Phillip Rieger∗, Marco Chilese∗, Bora Gökbakan‡
Moritz Finke†, Alexandra Dmitrienko†, and Ahmad-Reza Sadeghi∗

∗Technical University of Darmstadt, Germany
†University of Würzburg, Germany

‡KOBIL, Germany

Abstract—Mobile applications are widely used for online
services sharing a large amount of personal data online. One-time
authentication techniques such as passwords and physiological
biometrics (e.g., fingerprint, face, and iris) have their own
advantages but also disadvantages since they can be stolen or
emulated, and do not prevent access to the underlying device,
once it is unlocked. To address these challenges, complementary
authentication systems based on behavioural biometrics have
emerged. The goal is to continuously profile users based on their
interaction with the mobile device. However, existing behavioural
authentication schemes are not (i) user-agnostic meaning that
they cannot dynamically handle changes in the user-base without
model re-training, or (ii) do not scale well to authenticate millions
of users.
In this paper, we present AuthentiSense, a user-agnostic, scal-
able, and efficient behavioural biometrics authentication system
that enables continuous authentication and utilizes only motion
patterns (i.e., accelerometer, gyroscope and magnetometer data)
while users interact with mobile apps. Our approach requires
neither manually engineered features nor a significant amount
of data for model training. We leverage a few-shot learning
technique, called Siamese network, to authenticate users at a
large scale. We perform a systematic measurement study and
report the impact of the parameters such as interaction time
needed for authentication and n-shot verification (comparison
with enrollment samples) at the recognition stage. Remarkably,
AuthentiSense achieves high accuracy of up to 97% in terms
of F1-score even when evaluated in a few-shot fashion that
requires only a few behaviour samples per user (3 shots). Our
approach accurately authenticates users only after 1 second of
user interaction. For AuthentiSense, we report a FAR and FRR
of 0.023 and 0.057, respectively.

Keywords – Behavioural Biometrics, Authentication,
Few-shot Learning, and Siamese Networks.

I. INTRODUCTION

Today, traditional authentication methods such as multi-
factor methods (based on SMS, or authenticator apps) are not
sufficiently robust to prevent sophisticated attacks [12] leaving
a gap for persistent, adaptive and user-friendly authentication
schemes. One-time authentication methods, such as passwords
or physiological biometrics on mobile platforms require users
to explicitly interact with their devices, referred to as explicit
authentication, to gain access to the device.

While physiological biometrics promise to create a safer
and more convenient alternative to passwords, they are not
infallible and suffer from inherent disadvantages related to the
nature of physical characteristics. For instance, once the physi-
cal characteristics are exposed, they can be reused maliciously
multiple times [27], [45].

On the other hand, behavioral biometrics authentication
systems aim to address this challenge through an additional
layer of security which frequently and unobtrusively monitors
the user’s interaction with the device [47]. The approach is to
identify unique individual regularities in user’s behavior and
analyze several parameters such as touch gestures, navigation,
and motion patterns, during user’s online activities, to detect
potential irregularities not related to the real user. Behavioral
authentication systems promise to provide increased security
due to the dynamic authentication and the resilience to cir-
cumvention their traits are hard to emulate or copy [60].

An advantage of behavioral biometrics is that they can
be collected in non-obtrusively without disturbing the normal
service utilization. Moreover, they enable constant user mon-
itoring and ensure that only the authorized user can use the
system, even after an initial identity check has been performed.
This ensures a frictionless authentication process and prevents
identity fraud, account takeover, and automated attacks such as
recognizing non-human device activity (bots), Remote Access
Trojans and emulators [1]. Behavioral biometrics authenti-
cation are rapidly emerging and being deployed by major
enterprises, such as Mastercard and Deutsche Bank [5], [3].

Various behavioral authentication approaches for users of
mobile devices have been proposed in the literature so far: they

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23194
www.ndss-symposium.org

collect user’s unique individual features based on, e.g., motion
sensors [20], [51], [38], [50], [22], [24], touch gestures [52],
[67], [33], [68], or their combinations [29], [16], [21], [18],
[70], and detect irregularities during an entire online session.
In this paper we focus on behavioral authentication solutions
which utilize motion sensor values.

Despite their added value, existing behavioural authentica-
tion solutions still face several challenges: i) they often require
a large amount of training data to build an accurate model [53],
ii) they are not scalable and only work for a limited number of
users they were trained for (not user-agnostic) [61], iii) need
a model per user to improve model performance which could
result in a resource intensive implementation in deployment
phase [24], and iv) often require a long interaction time to
preciously learn users behaviour [62], [64].

Our Goal and Contributions. We present a framework
for continuous user authentication that leverages behavioural
biometrics and aims at tackling the aforementioned challenges.
Our scheme is (i) efficient and does not require hand-crafted
features for model training, (ii) scalable to authenticate mil-
lions of users, and (iii) user-agnostic, i.e., does not need to be
re-trained when users are dynamically changing (i.e., joining
or leaving the system).

For this, we utilize well-established few-shot learning
technique [31], [32] in which the model can learn how to
perform user authentication with a small amount of data
(hence few-shot). More specifically, we use the Siamese neural
network [17] which can also be used when even only one user
behavioral sample is available (one-shot learning). As the name
suggests, our model stems from ’Siamese twins’ [55] where
two networks share weights and biases with the intention to
learn similarities as well as dissimilarities between input data
(i.e., users behavior). The Siamese networks have been already
utilized for behavioral user authentication [29], [24]. However,
they do not solve the scalability problem (cf. Sect. VI).
Our contributions are summarized as follows:

• We present AuthentiSense, a user-agnostic behavioral
authentication system that utilizes few-shot learning
to authenticate users quickly at large scale without
requiring a significant amount of data for model
training.

• We develop an end-to-end neural network architecture
that can dynamically handle user changes without
requiring re-training and feature engineering of input
data. It only utilizes motion patterns (i.e., accelerome-
ter, gyroscope and magnetometer data). Our approach
can achieve an accuracy of 97% in terms of F1-score
for 3-shot verification, and can accurately authenticate
users only after 1 second of user interaction.

• We conduct an extensive and systematic measure-
ment study in which we investigate the impact of
different parameters such as training strategy (pairwise
or triplet), interaction time needed for authentication,
and n-shot verification (comparison with enrollment
samples) at recognition stage in our system.

SSL

Service Provider

Application
Layer

User

Business
Logic

Behavioral
Authentication

System

DL Model

Data

Sensor Data
Injection Attack

MITM Attack

Application
Layer

Behavioral
Authentication

Module

Client App

Fig. 1: Threat Model

II. BACKGROUND

In this section, we provide the background information on
Few-shot learning and Siamese neural networks. In App. B we
provide further background information on neural networks.

A. Few-shot Learning

Few-shot learning is a machine learning method where
models are trained with only a limited number of samples
for each class. The common practice for machine learning
applications is to feed as much data as the model can take.
This is because feeding more data to most machine learning
(especially deep learning) applications enables the model to
generalize better. However, few-shot learning aims to build
precise models with less training data. The fundamental idea
is to learn new concepts and generalize tasks from only a
few examples. One approach to few-shot learning includes
Siamese networks which involve learning an embedding space
to compare classes. Few-shot learning has gained traction in
areas such as computer vision, natural language processing,
audio processing, robotics and medical applications where a
large number of classes exist and labeled data is scarce [66].

B. Siamese Networks

Siamese Networks have been utilized for few-shot clas-
sification or representation learning problems in which only
a limited number of samples are available for each class.
They can also be applied to classification problems that suffer
from lack of enough data where only one sample per class is
available (one-shot learning). A Siamese Network is a tandem
of two identical of any given network architectures (i.e., MLP,
RNN, or CNN) with the objective of finding the similarity or a
relationship between two comparable observations. Both sub-
networks share the same parameters (weights w and biases
b). The objective of the training is to extract similar features
(i.e., embedding vectors) if the two input samples belong to
the same class, while extracting differing features if the two
input data belong to the different classes where the similarity
between vectors is typically quantified by a p-norm distance
metric, with the Euclidean distance being the most commonly
used one.

2

Siamese Network

Shared
Weights

Embedding
Vectors

Distance
Function

Decision
Network

Input
Pairs

User
Behavior

User
Behavior

CNN1D

Fig. 2: An abstract view of AuthentiSense at inference time

III. SYSTEM AND THREAT MODEL

Our system model, as shown in Figure 1, includes users
who access online services through their mobile apps and
a service provider after an authentication process. In this
section, we describe the assumptions we make regarding the
attacker capabilities and the threat model for our behavioral
authentication system. The main objective of the adversary is
to bypass the authentication system and impersonate the end-
user while authenticating into a sensitive service (e.g., mobile
banking). In particular, we make the following assumptions:

• The authentication model is trained and maintained
in a data center owned by the service provider. In
typical user authentication applications, to complete
a successful and secure authentication process, the
service provider is trusted. Since the authentication
model is trained at the service provider, this will avoid
adversarial machine learning such as model poisoning,
or privacy attacks.

• The adversary can compromise the user’s mobile
device, e.g., by installing malware or exploiting vul-
nerabilities.

• Aligned with existing work [66], we assume that
sensor data is trustworthy as its integrity can be
protected by hardware security technologies such as
ARM TrustZone [52]. The Behavioral Authentication
Module (BAM) in the client application, Fig 1., can
also run in the secure world of an ARM TrustZone.
The motion sensors can be exclusively assigned to the
secure world (and the BAM) to avoid any access to
sensor readings from outside of the secure world.
In case the OS is compromised, the adversary can still
not access the sensor, since reading from the sensor
is only possible from the secure world.

• Side-channel attacks to extract user behavioural data
from device sensors are orthogonal to this work and
can be mitigated with sensor data obfuscation tech-
niques [28], [54].

• The communication channels are secured through the
use of standard secure communication protocols such
as SSL/TLS, and hence are assumed not to be affected
by the adversary. Also, the adversary cannot tamper
with the data that the BAM already reads from the
sensor and they can also not conduct MITM or replay
attacks on the device. To perform such attacks the
attacker needs to sniff the secure communication chan-
nel, which requires breaking, e.g., SSL/TLS channel.

To authenticate a new user, AuthentiSense collects a num-
ber of enrollment samples (e.g., 3). After the initial setup,
AuthentiSense compares the (current) user samples against the
enrollment samples. If the samples match (collected samples in
the initial setup and current sample belong to the same user),
AuthentiSense produces similar embedding vectors, therefore,
the Euclidean distance between the computed embedding vec-
tors in the latent space is minimized. AuthentiSense performs
a binary classification based on the distance between the
embedding vectors. As result of the classification, it outputs
the binary label “1” leading to successful user authentication.

AuthentiSense authenticates users with high reliability (see
Section V-D); but, in the event of continuous authentication
failure, after three unsuccessful attempts, the AuthentiSense
automatically falls back to a passive authentication technique
(i.e., password) to enforce security.

IV. AUTHENTISENSE

In this section, we first outline the high-level architecture
of AuthentiSense and then describe its components in more

3

detail.

A. High-level Overview

The high level architecture of our system is depicted
in Figure 2. The system architecture involves the following
components: The Siamese networks (CNN-based), distance
function and decision network. At a high-level, the Siamese
network functions as a feature extractor generating embedding
vectors from input data. Then a Euclidean distance between
embedding vectors are computed by the distance function and
fed to the decision network for classification.

Siamese network. It consists of two identical sub-networks
having the same structure and sharing weights. Each sub-
network processes one user behavior and function as a feature
extractor learning a meaningful representation of input sam-
ples. Two recorded user behavior samples are fed to the sub-
networks and transformed into the embedded space learned by
the Siamese network.

Distance function. It computes the Euclidean distance be-
tween the computed embedding vectors in the latent space.
The Euclidean distance here can also be seen as the L2-norm
of the distance vector. The objective of the Siamese network is
to maximize the calculated value of this function for negative
pairs, i.e., when the input samples belong to different users,
and minimize the distance value for positive pairs, i.e., samples
from the same user.

Decision network. It consists of fully-connected layers which
performs a binary classification based on the distance between
the embedding vectors in the latent space. As result of the
binary classification, the decision network outputs a binary
label, “1” if the captured behavior samples belong to the same
user, and “0” otherwise.

B. Design

AuthentiSense is mainly designed for real-world deploy-
ment where our focus was on a mobile banking application. We
stress that to train the AuthentiSense, diverse user behaviors
(i.e., different genders, ages, and occupations) were captured
on a real mobile application from a bank where the users
provided their signed consent before data collection. Moreover,
to demonstrate the practicality of AuthentiSense, the most
frequently used functions in the mobile application (according
to an analysis conducted on the usage patterns of the bank
customers [40]) were identified and used to simulate the user
behavior. AuthentiSense consists of three components, each
of which has a precise task. In the following, we elaborate on
each component in more detail.

Siamese Network. We utilize Siamese neural network to
extract highly discriminative features for input data that can
distinguish the behavior between genuine and impostor users.
Particularly, the Siamese network aims to learn information-
rich transformation of the input data into an embedding (latent)
space that can preserve distance relation between input data.
Suppose we are given a pair of recorded behavior samples as
input data; the objective is to map them to an embedding space
where the embeddings of two input samples from the same user
are closer together and two input data from different users are
far apart. The Siamese network architecture, as depicted in

Fig. 3: Model Architecture: Siamese Neural Network followed by the
Distance Function and the Decision Network. The layers with ∗ are
followed by a Batch Normalization layer.

Figure 3, is made of two identical sub-networks (CNN1D, cf.
App. C) which share weights and biases. Each sub-network
processes one of the input behavior samples and works as a
feature extractor and outputs an encoding of recorded behavior
(embedding) using the same filters as the other. We perform
L2-normalization to normalize the embedding vectors and map
them to the surface of n-dimensional hyper-sphere of radius
1. This allows to compare the similarity between different
inputs by distance between two embedding vectors. As all
the embeddings will reside on the surface, this prevents that
embeddings with a high L2-norm distract the decision network.

Distance function. In order to train the Siamese network, we
define a triplet loss function (cf. Sect. IV-C) which, for a given
pair of input data, takes the distance between the two output
embedding vectors from the two sub-networks and regulates
large or small distances. The generated embedding vectors
are subjected to a distance function (created using a Lambda
layer [4]) which computes the L2-distance. Basically, this
distance between embedding vectors should be large enough
when the input samples belong to different users but small
when they belong to the same user. Among several distance
functions, we opted for the L2-distance. We evaluated other
distance metrics (i.e., L1-distance, and cosine distance), but
L2-distance showed the best results. Utilizing the L2-distance,
we fine-tuned the network parameters (i.e., weights) using back
propagation [58].

4

Decision Network. A fully-connected decision network fol-
lowed by the distance function makes the classification deci-
sion based on the distance between the embedding vectors in
the embedding space. The role of the decision network is to
solve a binary classification problem and it outputs “1” if the
behavior samples belong to the same user, and “0” otherwise.
We design a feed forward neural network with three subsequent
dense layers with decreasing width in terms of neurons, and
ReLU activation function along with a L2-norm as kernel
regulizer. The first-two layers are then followed by a batch
normalization layer for regularizing the activations of the prior
layer, so that they have mean close to 0 and standard deviation
close to 1. The last dense layer, followed by a dropout layer
with probability of 0.25, is made of a single unit with sigmoid
activation function for being consistent with a Bernoulli output
distribution.

As an input, the decision network receives the distance
vector of two embedding vectors and produces in output a
probability value (i.e., in range [0, 1]), which indicates how
likely the input data belongs to the same user. Since the point
of Equal Error Rare (EER) represents the best classification
threshold (because it is the point where False Acceptance and
False Rejection rates meet, cf. Sect. V-B), we set the threshold
for classification to the point of EER for a set of validation
data that were not used for training the neural networks (cf.
Fig. 5a), to decide if we will consider the prediction of the
decision network as correct.

C. Implementation

In the following, we explain sample preparation to train
the Siamese and decision networks. We then elaborate on
model building and describe our training strategy and model
hyperparameter search and tuning in more detail.

Sample preparation. The Siamese network learning process is
based on comparing pairs of behavior samples, namely positive
and negative pairs. In positive pairs, two samples belong
to the same user, while in negative pairs two samples are
from different users. During the model training phase multiple
samples of these pairs are fed to the model to minimize the
L2-distance between the embeddings of positive pairs, and
to maximize the L2-distance for negative pairs. One way of
selecting the positive and negative pairs is a random selection.
This naı̈ve approach has been shown to be good enough for the
positive pair selection. However, for negative pairs this naı̈ve
approach is problematic as many samples from different users
differ significantly, while it is more efficient for training to
focus on negative pairs that the network fails to distinguish.
Sophisticated techniques such as triplet loss can be utilized for
sample preparation, in which three samples simultaneously are
used to optimize every training step. In triplet sampling, the
first two samples are positive and the last one corresponds to
a negative sample. The goal is to minimize the L2-distance in
the embedding space between positive samples and maximize
the L2-distance between positive and negative samples.

Model building. The deep learning part of AuthentiSense
uses a Siamese Neural Network (NN) and a decision network.
The Siamese NN consists of 2 sub-networks, arranged in
the Siamese architecture by assembling layers (in this case,
Conv1D, Max Pooling1D, Flatten and Dense layers). After-
wards, the outputs of the two sub-networks are piped through

our custom distance function (using a Lambda layer), as shown
in Figure 3. In the end, we append the decision network to
the Siamese network and build our classifier by stacking fully
connected Dense layers.

We use three subsequent convolutional layers with an
increasing number of filters (from 64 to 256) in which data
is expanded in depth, and with a kernel size that is reduced in
the last layer (from 5 to 3) for a more fine-grained computation.
Since we are dealing with non-normalized data, after each
convolutional layer we add a batch normalization layer to
normalize the inputs to a layer for each mini-batch of data.
This has the effect of stabilizing the learning process and
dramatically reducing the number of training epochs required
to train the Siamese network [43]. Furthermore, each convo-
lutional layer includes a kernel regularizer (L2-norm) with a
value of 10−3.

After the convolutional layers, we use a 1-dimensional
Max Pooling layer for down-sampling the input representation
by taking the maximum value over a spatial window of a
specified size (in our case 4). Then, we flatten the output of
the convolutional block and feed it to the last fully connected
(i.e., dense) layer with no activation which is responsible for
producing the embedding representation of the input as an
array of fixed size (length of 32×1).

Training Strategy. The training procedure depends on the
sample generation strategy (i.e., pairwise or triplet). For the
pairwise training a contrastive [36] loss is used (cf. App. A)
while triplet loss [8] is utilized for triplet training. Triplet loss
learns both positive and negative distances simultaneously and
focuses more on negative samples that are hard to distinguish
reducing the number of easy-distinguishable negative samples.
This helps to reduce the risk of overfitting compared to
pairwise training. We opt for triplet training, therefore, we train
our Siamese network with triplets loss. The objective of triplet
loss is to ensure that two samples with the same label have
their embeddings close together in the embedding space, while
embeddings of two samples with different labels are far away
from each other.

To train the network, we sample triplets of desired batch
size. As the name implies, three input samples are needed,
which are called: i) Anchor which is a sample input data,
ii) Positive that is just another variation of the anchor, and
iii) Negative which is a different sample from above two
similar samples. This helps our model learn dissimilarities
with the anchor sample. Positive and negative samples are
passed individually to the Siamese network, as triplets are
mined online [59]. As depicted in Fig. 4 the network learns to
decrease the distance between the anchor and positive, while
increase the distance between anchor and negative such that
the difference of the two distances would reach to Alpha α
which is a pre-defined hyper-parameter (Eq. 1). The alpha
parameter in Eq. 1 aims to ensure that the difference between
the anchor-positive distance (d(a,p)) and the anchor-negative
distance (d(a,n)) is at least as big as a margin equal to alpha
to discourage the model from collapsing to trivial solutions
where f(a) = f(p) = f(n) which would satisfy Eq. 1. The triplet
loss is defined as follows:

5

c

c

c

c

Positive

Anchor

Negative

CNN1D

CNN1D

CNN1D

Shared
Weights

Shared
Weights

c

Positive

Anchor

Negative

Embedding Space

Embeddings

𝑓(𝑎)

𝑓(𝑝)

𝑓(𝑛)

a

p

n

Easy
Negatives

Semi-hard
Negatives

Hard
Negatives

(a) (b)

Fig. 4: Training using triplet loss: figure (a) demonstrates how triplet loss pushes positive and anchor samples toward each other and pulls
negative sample from anchor. Figure (b) shows Semi-hard triplet selection scheme.

L (a, p, n) = max(||f(a)− f(p)||2 − ||f(a)− f(n)||2 +α, 0)
(1)

In the triplet loss function, the term ||f(a)− f(p)|| is the
distance between the anchor and positive and the term ||f(a)−
f(n)|| is the distance between the anchor and negative. The
value of the first term is learned to be smaller while the second
term to be bigger. If their subtraction is smaller than minus
alpha, the loss would become zero and the network parameters
would not be updated at all. During the training, we minimize
this loss, which pushes ||f(a)−f(p)|| to 0 and ||f(a)−f(n)||
to be greater than ||f(a)− f(p)|| + α. Based on the definition
of the triplet loss, there are three categories of triplets:

• Easy triplets which have a loss of 0, because ||f(a)−
f(p)||+ α ≤ ||f(a)− f(n)||

• Hard triplets where the negative is closer to the anchor
than the positive, i.e., ||f(a)−f(n)|| ≤ ||f(a)−f(p)||

• Semi-hard triplets where the negative is not closer
to the anchor than the positive, but which still have
positive loss: ||f(a) − f(p)|| ≤ ||f(a) − f(n)|| ≤
||f(a)− f(p)||+ α

Each of these triplet definitions depends on where the neg-
ative sample is located, relatively to the anchor and positive.
The categorization (Easy, Hard, and Semi-hard triplets) can
therefore be applied to the negative pairs analogously: Hard
negatives, Semi-hard negatives or Easy negatives, as shown
in Fig. 4. So theoretically, in order to ensure the best effect
of network training, we need to choose Hard triplets or Semi-
hard triplets. The Hard negatives deliver better losses for model
optimization and lead to a strong convergence, but in practice
they might be too aggressive and collapse the loss function.

Therefore, we opt to use a semi-hard mining strategy in model
training.

After defining the loss on triplets of embeddings and ob-
serving that some triplets are more useful than others, meaning
their loss values help network for a better weight optimization,
we select online triplet mining [59] approach to mine triplets.
Unlike offline triplet mining where the data is fed as a triplet-
form input to the network, in online triplet mining triplets are
computed during training within each batch of data. The idea
behind online mining is to dynamically compute useful triplets
on the fly, for each batch of data. Given a batch of B samples,
it computes the B embeddings and then can find a maximum
of B3 triplets1 and selects the triplets for training that are semi-
hard. As already described, we use semi-hard triplet mining to
train the network, as semi-hard triplets are not as difficult as
hard triplets to learn, but still provide useful information. The
mining strategy that we adopt computes triplets online from a
batch of randomly drawn samples, therefore, it is impossible
to pre-determine the number of triplets.

We also stress that Figure 2 represents an abstract view
of the system at inference time, while Figure 4 illustrates
the AuthentiSense at training time. We utilized online triplet
mining [60] to train our network and unfolded the network
structure, in online mining, to explain the inner workings of
our system.

End to end model parameters optimization. Having trained
the Siamese network with triplet loss, we perform an end
to end parameter (i.e., weights) optimization of the decision

1However, since each triplet must consist of an anchor, a sample from the
same user of the anchor (positive pair), and a sample from a different user
(negative pair), many of these naı̈ve combinations are invalid, i.e., do not
contain a negative and a positive pair, s.t., the actual number of valid triplets
is smaller than B3 and depends on the batch.

6

Variable Setting
Optimizer Adam, SGD
Learning Rate 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005
Batch Size 64, 128, 256, 1024
Margin (Alpha) 1, 0.5, 0.3, 0.1, 0.05, 0.03, 0.01

TABLE I: Hyperparameter search for the Siamese Network

Variable Setting
Optimizer Adam, SGD
Learning Rate 0.1, 0.05, 0.01, 0.005
Batch Size 32, 64, 128

TABLE II: Hyperparameter search for the Decision Network

network using standard backpropagation on the predictions of
the entire network including both the Siamese and decision
networks. This includes the following steps: First, the weights
of the Siamese network are frozen (it is used as a feature
extractor), then fully connected decision network is appended
to the Siamese network and trained using a binary cross-
entropy loss function to optimize the network’s weights.

Hyperparameter tuning and network configuration. After
constructing the model architecture, we take a Grid Search
[6] approach and loop through pre-defined hyperparameters, as
shown in Tables I, and II, to choose a set of optimal hyperpa-
rameters for the learning algorithms that maximize the model
performance. In particular, we investigate multiple options con-
cerning the choice of the optimizer, learning rate, batch size,
and the margin value (Alpha) for the Semi-Hard Triplet Loss
function. At the end, we select the best performing parameters
that maximize the performance of the models, as shown in
Tables III and IV and use them for training our networks.

V. EVALUATION

In the following we describe the evaluation and also show
different alternatives for the design of AuthentiSense.

A. Dataset

To conduct our experiments, we use the DAKOTA
Dataset [40], more specifically, the recorded motion sensor
values (i.e. accelerometer, gyroscope and magnetometer) for
45 users while using a mobile banking smartphone app. Out
of the 45 users, we randomly selected 35 users for training,
3 users as validation data to determine the classification
threshold, and 7 users for testing. Data was recorded for every
user in 5 sessions for each of the postures sitting, standing
and phone on table. Therefore, each user in the training set
has 15 sessions, each 90 seconds in length. So it takes only a
few volunteer users to train the feature extractor. Furthermore,
we have mainly focused on having a few-shot solution for
new users joining after the system is deployed. We could have
asked the volunteers to provide as much data as we wanted.
However, for real-world users, we can only expect to collect a
few samples (Table V). As the raw data was sampled with a
non-constant frequency and non-uniform starting and ending
timestamps for each sensor, we resampled the sensor data for
every session at a rate of 5 ms, taking the mean in areas where
the data was downsampled and linearly interpolating in areas
where the data was upsampled. To obtain a pool of samples,
we then ran a sliding window of fixed length (1, 3, 5, 10
and 15 seconds) with step size equal to 1/10th of its length
over the data of every recorded session and labeled it with

Hyperparameter Setting
Optimizer Adam
Learning Rate 10−3

Batch Size 64, 128, 256
Loss Function Semi-Hard Triplet Loss
Margin (Alpha) 0.03

TABLE III: Siamese Network hyperparameter settings

Hyperparameter Setting
Optimizer Adam
Learning Rate 10−4

Batch Size 64
Loss Function Binary Cross-entropy

TABLE IV: Decision Network hyperparameter settings

the corresponding user. For each window, the values of every
axis of each motion sensor are concatenated to shape a one-
dimensional array that is later used to construct positive and
negative examples. The pool of windows was then shuffled and
split up into batches for the training and testing sets to be used
for the Siamese network. For the decision network, an equal
number of window pairs by the same user (positive example)
and different users (negative example) was randomly sampled
to generate 50,000 and 10,000 pairs which were then batched
for training and testing, respectively.

B. Evaluation Metrics

The performance evaluation of AuthentiSense is performed
using common metrics. Each metric is based on the number of
correctly (TP) and incorrectly (FN) classified benign authenti-
cation events as well as the number of correctly detected (TN)
and unrecognized (FP) attack attempts. We use the following
metrics to evaluate the effectiveness of AuthentiSense.

False Acceptance Rate (FAR) represents the risk to accept
attack attempts and is defined as follows:

FAR =
FP

FP + TN
(2)

False Rejection Rate (FRR) analogously represents the risk
to mistakenly decline benign attempts. It is defined as:

FRR =
FN

FN + TP
(3)

F1-Score: The F1-Score is harmonic mean of Precision and
Recall. The Precision calculates the ratio between the number
of positive samples classified correctly, and the total number
of samples classified as positive (Eq. 4). Recall defines how
many positive samples have been identified correctly overall
(Eq. 5).

Pr =
TP

TP + FP
(4)

Re =
TP

TP + FN
(5)

The F1-Score is then defined as:

F1-Score = 2 · Pr · Re
Pr + Re

(6)

7

Area Under ROC Curve (AUC): The above-mentioned met-
rics depend on a threshold that converts the predicted probabil-
ities into binary predictions (accept and reject). The Receiver
Operating Characteristic (ROC) curve plots the model’s True
Positive Rate TPR = 1 − FRR against FAR for different
threshold values, as illustrated in Fig. 6. The resulting area
between such curve and the X-axis at an interval of [0, 1] is
termed AUC and expresses the model’s capability of correct
classification.

Equal Error Rate (EER): The EER is the value of FAR (and
equally FRR) at a threshold value where both FAR and FRR
embody equal values.

C. Experimental Setup

All the experiments were conducted on a server running
Debian 10, with 1 TB of memory, 64 physical cores/128
threads, provided by an AMD EPYC 7742 processor, and
4 NVIDIA Quadro RTX 8000. We leveraged TensorFlow
2.4.0 [7] to implement the neural networks. We trained our
Siamese network using Semi-Hard triplet loss (cf. Sect. IV).
We used Contrastive loss as a baseline to compare the results
of this loss function with results obtained from the triplet
training in AuthentiSense. For all the loss functions, we used
the implementation provided by the Tensorflow Addons (TFA)
library [8].

D. Evaluation Results

To evaluate the effectiveness of AuthentiSense, we first dis-
cuss the performance of AuthentiSense, and then we compare
it against the baseline to see how the choice of loss function for
training the Siamese network can influence the performance.
We also conduct a performance comparison with individual
sensor modalities and fusion of modalities.

1) Performance of AuthentiSense: To verify the capabilities
and performance of AuthentiSense, we conduct a number of
experiments with different setups in the training and recogni-
tion phases. We perform a systematic evaluation with different
variables such as authentication window time (interaction time
required for authentication purpose) and the number of known
user samples (from previous history) to compare with (n-shot).

As shown in Tab. V, AuthentiSense achieves a F1-Score of
0.97 in 3-shot verification just in 1 second of interaction with
the user, meaning that for user authentication it only needs
3 enrollment samples. AuthentiSense can also verify users in
1-shot after 1 second of user interaction at the cost of 0.02
drop in the model performance (F1-Score =0.95). The table
also shows that the results vary slightly for an authentication
window length of 1s for 4- and 5-shot verification (F1-Score
=0.96).

Moreover, Tab. V shows that for 5-shot verification,
AuthentiSense effectively authenticates the users for all au-
thentication window lengths. This demonstrates the advantage
of the few-shot learning approach that allows AuthentiSense
to obtain a satisfactory description of user behavior from the
collected information (i.e., the motion patterns), resulting in
reliable authentication results, even for corner cases with small
number of (n) shots and short interaction time.

Authentication window length (Sec.)
1 3 5 10 15

n-
sh

ot

1 0.95 0.88 0.91 0.85 0.85
2 0.96 0.90 0.92 0.90 0.88
3 0.97 0.91 0.94 0.92 0.82
4 0.96 0.92 0.92 0.94 0.95
5 0.96 0.93 0.94 0.94 0.95

TABLE V: F1-Score for triplet training on test set.

Especially, the shorter authentication window time al-
lows AuthentiSense to perform verification very quickly at
recognition stage with only limited amount of data collected
during user interaction (t=1s). This confirms the usability
of AuthentiSense in practice. The users are not required to
interact for a long time with their devices to collect enrollment
samples needed for authentication process.

Figure 5b depicts the FAR and FRR for different classi-
fication thresholds. For AuthentiSense, the point of EER for
the validation data, as shown in Fig. 5a, represents the best
threshold (t=0.276) to choose, because it is the point where
FAR and FRR are equal. Having applied this threshold on the
unseen test data, AuthentiSense achieves a FAR=0.023 and
an FRR=0.057. It should be noted that FAR is significantly
lower than FRR. Since a false-reject results in an additional
request for manual authentication while a false-accept leads to
an unauthorized access, thus, having as low FAR as possible
is more important for AuthentiSense.

Moreover, Fig. 6 illustrates the Receiver Operating Char-
acteristic (ROC) curve for test samples. The ROC curve shows
the dependency between the FAR, FRR and the system’s de-
tection threshold. The Area Under Curve (AUC), ranges from
0.5 (random guessing) to 1 (perfect classification), aggregates
the system’s performance at all threshold settings and acts as
an indicator of the model performance. As it can be seen in
the figure, AuthentiSense obtains AUC=0.987 for unseen test
data.

2) Comparison against baseline: We perform an experi-
ment where we set the contrastive loss as a baseline to compare
the model performance in terms of F1-Score against triplet
training. Table VI shows the performance of AuthentiSense for
contrastive loss function while training its Siamese Network.
As shown in the table, the triplet loss outperforms contrastive
loss function, for almost all numbers of shots (n-shot) and all
authentication window times. Also the best F1-Score for the
triplet loss (0.97), as shown in Tab. VI, is higher than the
best value of the contrastive loss (0.93). The better efficiency
becomes especially visible for challenging authentication sce-
narios. For example, for an interaction time of 1s and n-
shot = 3, the contrastive loss baseline achieves an F1-Score
of only 0.92, while AuthentiSense achieves a F1-Score of
0.97. This shows the advantage of the triplet-loss function of
AuthentiSense, as here the triplet loss provides the training
process of the Siamese network with better choices for negative
samples, leading to a more powerful embedding extraction.

3) Individual modality performance: AuthentiSense per-
forms an implicit fusion of the individual sensors’ values, i.e.,
the raw data of multiple sensors (modalities) is consolidated
by the CNN before the model extracts any information. This
stands in contrast to classical fusion where the data of each
sensor is processed separately (i.e., by separate NNs) and the

8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Er
ro

r R
at

e
Validation FAR
Validation FRR
EER=0.140 @ t=0.276

(a) Calculation of the Equal Error Rate (EER).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Er
ro

r R
at

e

Test FAR
Test FRR
FAR=0.023
FRR=0.057
@ t=0.276

(b) Calculation of FAR and FRR.

Fig. 5: Calculation of the EER=0.140 and threshold (t = 0.276) on
validation data (a). Computation of FAR=0.023 and FRR=0.057 at
the threshold point (t=0.276) on testing data (b).

Authentication window length (Sec.)
1 3 5 10 15

n-
sh

ot

1 0.92 0.91 0.90 0.91 0.89
2 0.92 0.91 0.90 0.91 0.88
3 0.92 0.91 0.89 0.91 0.86
4 0.92 0.90 0.92 0.90 0.86
5 0.93 0.90 0.91 0.90 0.86

TABLE VI: F1-Score for pair training with the contrastive loss.

results of the complete processing pipeline are combined at
the end. In Sect. V-D4 we compare the implicit fusion of
AuthentiSense against different standard fusion techniques,
e.g., summing up or using a Multi-Layer-Perceptron (MLP).
In order to assess the performance of each modality indi-
vidually, in the following first we train AuthentiSense using
the data of every sensor. Therefore, we obtain three models
trained on three modalities (i.e., accelerometer, gyroscope, and
magnetometer). For this assessment, the Siamese Network is

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate (FAR)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(1

-F
RR

)

Naive Classifier
Test (AUC=0.987)

Fig. 6: ROC curve: The area under curve for test samples which
serves as a measurement for the model performance.

trained with 100 epochs and a batch size of 1024 while the
corresponding decision network is trained with 10 epochs and
a batch size of 64.

The results are shown in Fig. 7 and Tab. VII where they are
also compared with the performance of AuthentiSense. Both
accelerometer- and magnetometer-trained models, although
each performing good on the train samples, suffer from a
sharp performance decline when evaluated on the test samples.
In both cases, the precision remains mostly unchanged above
0.90, while the recall drops by twenty to thirty percentage
points (from 0.89 to 0.49 in the case of the magnetometer).
The gyroscope-trained model, on the other hand, offers the best
performance (F1-Score: 0.80) with relatively stable precision
and recall values (0.76 and 0.83 for test samples). Nevertheless,
even the gyroscope-trained model is not comparable with the
performance of AuthentiSense (F1-Score: 0.97), as shown in
Fig. 7.

It must be noted that an optimal F1-Score does not imply
an optimal EER (where FAR=FRR), since the threshold for
the highest score is sometimes located at a position, where
FAR̸=FRR. This is also the case in this experiment, as
found in Tab. VII. Here, it is the accelerometer-trained model
that achieves the best results in regard to EER. Still, the
achieved EER of 0.1706 is more than four times worse than
the corresponding EER of AuthentiSense. Overall, none of
the single-modality-trained models is able to compete with
AuthentiSense, affirming the benefits of an architecture that
feeds the consolidated data of all motion sensors into a single
neural network.

Modality AuthentiSenseSamples Acc. Gyr. Mag.
Test 0.1706 0.2308 0.1902 0.0371

TABLE VII: EERs of the test set of each single-modality trained
model and of AuthentiSense.

4) Fusion of modalities: Single-modality-trained models
do not perform well on their own, as found in Section V-D3.
With the fusion of their matching scores, an additional perfor-
mance improvement can be attempted. In the following, we

9

Acc. Gyr. Magn. AuthentiSense
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1

-S
co

re

Fig. 7: The F1-Scores of single-modality-trained models and of
AuthentiSense.

evaluate the effectiveness of such score level fusions. The per-
formance of fusion is compared both with the best performing
single-modality-trained models (described in Sect. V-D3) and
with the best performing configuration of AuthentiSense.

We evaluate multiple fusion methods. For each method,
different matching score normalization techniques are applied.
The individual methods are described in App. D in detail.
For training the fusion and normalization methods, we use
the scores that were predicted for the 50,000 training samples
in Sect. V-D3. For evaluation, the trained fusion methods are
applied to the matching scores of the corresponding 10,000 test
samples. The results of all utilized fusion techniques in regard
to their best performing normalization method are described
in Tab. VIII.

Measured by EER, the best results are obtained with
EER-weighted sum fusion with min-max normalization (EER:
0.1419). Compared with the best single-modality-trained
model (EER: 0.1706; cf. Tab. VII), this experiment shows that
score level fusion can offer a performance boost over single-
modality based systems in regard to the EER. Such boost,
however, is not achieved for the F1-Score. The best results,
measured by F1-Score, are obtained with Z-Score normalized
MLP Fusion. This technique’s F1-Score surpasses the scores of
the accelerometer and magnetometer trained models. However,
it is slightly below the score of the gyroscope trained model
(cf. Fig. 7). In general, all fusion methods reveal high precision
and low recall values, as very similarly experienced with
the accelerometer and magnetometer trained single-modality
models in Sect. V-D3. Overall, the improvement of score level
fusion over single-modality-trained models is only marginal.
The performance of AuthentiSense (F1-Score: 0.97; EER:
0.0371) is not reached by any of the single-modality-trained
models (best F1-Score: 0.80; best EER: 0.1706). With only
marginal improvement of score level fusion over the latter (best
F1-Score: 0.76; best EER: 0.1419), score level fusion is equally
incapable of achieving significantly better results. It must
therefore be acknowledged that, for the use cases discussed
in this work, our proposed sensor level fusion approach of
AuthentiSense constitutes a substantial advantage over score

Fusion Normalization F1-Score EER
Linear Reg. Not normalized 0.69 0.1454
Logistic Reg. Not normalized 0.69 0.1453
MLP Z-Score 0.76 0.1451
Sum Min-Max 0.75 0.1532
EER-W. Sum Min-Max 0.67 0.1419

AuthentiSense 0.97 0.0371

TABLE VIII: Performance of all utilized fusion methods. For each
fusion method, only the best performing normalization method is
listed.

level fusion.

VI. RELATED WORK

In the past, different approaches for authenticating the users
of mobile devices have been developed. These approaches use
either statistical features extracted on touch gestures [52], [67],
[33], [69], [68], [44], [26], values that are captured by the
sensors for identifying the user based on its motions [51], [38],
[18], [22], [14], [70], [50], [37], [15], [30], [49], [65], [25],
or correlate the touch gestures and motion sensors [29], [16],
[20], [21]. However, these existing approaches are 1) restricted
to identifying a user among a set of known users, thus can only
detect intruders that were part of the training data [30], [33],
[52], [65], [67], 2) require training the model when a new user
joins the system limiting their scalability [15], [24], [70], or 3)
work only in certain situations and not in a continuous way,
e.g., when picking up the phone [19], [20], [21]. Compared
to the existing works, by combining different data sources
(accelerometer, gyroscope, magnetometer) with a few-shot
learning approach, AuthentiSense can authenticate the user
reliably, while requiring only a minimum of user interaction.
In the following, we discuss the existing approaches in more
detail and compare them with AuthentiSense.

A. Touch and Typing Behavior

Lu et al. [52], Xu et al. [67], and Frank et al. [33] collect
touch-event features such as the position (X and Y coordi-
nates), pressure and gesture velocity for training a Support-
Vector-Machine (SVM). Lu et al. [52] and Xu et al. [67] use
training data from the benign user and another user that they
define as the attacker for training the SVM to distinguish them.
The SVM Frank et al. is trained for recognizing the user out of
a set of known users [33]. However, these approaches are not
practical, since they cannot detect unknown attackers but only
distinguish between known persons. Therefore, they cannot
reliably prevent unknown users from accessing the system as
the respective scheme will recognize unknown intruders as one
of the users from training, whose behavior is most similar
to the intruders’ behavior. AuthentiSense addresses this issue
by using a few-shot learning approach that detects arbitrary
intruders even if no samples of the benign user were part of
the training data.

Zhao et al. convert touch features (position, pressure
etc.) into an image, called Graphic Touch Gesture Feature
(GTGF) [68]. An extension uses a statistical feature model
on the features to make the system more robust against varia-
tions in the benign behavior [69]. However, these approaches
are limited since they require the user to perform specific
gestures on the phone for authentication, e.g., swiping from

10

the top-right corner to the bottom-left corner. In contrast,
AuthentiSense continuously analyses the sensor values for
identifying the user without requesting any specific gesture
patterns.

Chen et al. combine features that are extracted from the
touch gestures with acoustical sensor data [26]. However,
their similarity technique requires a comprehensive set of
comparison samples, while for AuthentiSense less than 5 shots
are sufficient. Similarly, also the approach of Karanikiotis et al.
requires a high amount of training data for each user to extract
standard features from the touch gestures, like the swiping
duration [46] and apply a SVM.

The solution by Islam et al. requires the users to solve
a challenge, e.g., draw a circle [44]. However, with this ex-
plicit authentication action, there is no advantage compared to
standard explicit authentication approaches, e.g., scanning the
fingerprint. If this is performed continuously, such a scheme
is likely to disturb the user, causing the user to turn-off the
authentication scheme. In comparison, AuthentiSense can run
unobtrusively in the background and becomes only visible,
when the user is not recognized and the device is looked.

Further approaches analyze the mobile keystroke dynam-
ics [42], [35], [23], [10], [57], [63]. However, keystroke
dynamics are not well-suitable for continuous authentication
on mobile platforms, as mobile apps do not frequently involve
keyboard-based user interactions. In contrast, AuthentiSense
utilizes only motion patterns (sensor values) and can frequently
and reliably authenticate users.

B. Motion-based Approaches

In order to obtain a more augmented set of machine
learning features, the CNN-based approach SCANet [51] and
its predecessor CNNAuth [38] perform a transformation of
the temporal sensor data into the frequency domain and
utilize a CNN that is trained to recognize the legitimate user.
However, since both approaches train CNNs for each user
individually, they require a large amount of training data during
the system enrollment. In comparison, the few-shot approach
of AuthentiSense allows an effective authentication of the user
and requires only very few user samples, e.g., just a single
sample of the current user for comparing the input without the
need for subsequent training which would require hundreds of
samples.

Buriro et al. proposed an approach that uses the sensor data
of the mobile phone for authenticating the user after unlocking
the phone, assuming that the movements in this scenario
are always similar for the same user [22]. In comparison to
AuthentiSense that performs continuous authentication while
the phone is being used, the approach of Buriro et al. only
authenticates the user once, i.e., right after the phone is
unlocked, s.t. their approach is orthogonal to AuthentiSense.

ActiveAuth uses a Gaussian Data Description verifier for
identifying the user [18]. Analogously to the previous ap-
proach, also ActiveAuth does not perform continuous authen-
tication but authenticates the user only in certain situations,
e.g., when uninstalling an application.

DeepAuth applies a user-specific RNN on data from the
accelerometer and gyroscope [14]. By using Long-Short-Term-

Memories (LSTMs), the system can effectively process time-
series data [14]. However, for training the user-dependent
RNN, DeepAuth first needs to collect a sufficient amount
of data, while AuthentiSense just requires few comparison
samples, making AuthentiSense more practical.

Zhu et al. use an n-gram Markov model based on data
from accelerometer, gyroscope and magnetometer to authenti-
cate the user [70]. In contrast to the user-agnostic approach
of AuthentiSense, their model is user-specific and requires
training efforts for each new user.

Lee et al. proposed an approach that identifies users based
on the motion that occurs while their phone is being picked
up from a surface [50]. A similar system is also introduced by
Haring et al. [37]. Compared to AuthentiSense, their approach
is is only effective in a single use-case, i.e., when a user
picks up the phone. Therefore, it cannot provide continuous
nor passive authentication while AuthentiSense provides both
authentication types.

Discrete motion is also generated when a user taps the
phone’s touchscreen. The authors of [15] capture the motion
sensor data of such events and feed a CNN model with it.
An SVM is trained on the generated CNN features as binary
classifier using data from the legitimate user and a non-
legitimate user [15]. However, because the SVM is trained
only to distinguish the legitimate user and the data from
other people that was used during training, it cannot detect
an intruder whose behavior was not covered by the training
data and is, e.g., more similar to the benign user than to the
non-legitimate user that was used during training.

The authors of [49] propose an authentication system that
enriches the motion data of phones with additional motion
information obtained from user-owned wearable devices such
as Smartwatches. While this system does not only require the
presence of a wearable device (the performance is considerably
degraded without such auxiliary information), it also requires
an available cloud to which the user’s motion data must be
sent for training. In contrast, AuthentiSense requires neither
subsequent training nor additional devices or cloud services.

In order to authenticate users continuously over a longer
period, Ehatisham-ul-Haq et al. utilize a phone’s motion
sensors to detect different types of human activity and iden-
tify users based on their everyday activity patterns using an
SVM [30]. Wang et al. use an accelerometer to identify the
user out of a set of known users, also using a Siamese network
[65]. However, their approach is not suitable for authentication
as it cannot distinguish between the benign user and unknown
users which were not present in the training data. Centeno
et al. train a One-Class SVM to identify the benign user
after extracting features from sensor data using a Siamese
network [25]. However, their approach does not scale, because
for training the One-class SVM, a high number of training
samples for each user is needed, while AuthentiSense requires
only few samples for comparison.

C. Touch-Motion Behavior

Deb et al. [29] combine raw horizontal and vertical
scrolling logs for touch behaviour, and Fourier-transformed
accelerometer, gyroscope or magnetometer data. For each

11

modality, they train a separate LSTM network using contrastive
loss, and modalities are combined with score level fusion.
However, they only train a distance threshold, which, given the
high variance of behavior data, does not solve the scalability
problem.

Buriro et al. proposed a sensor-augmented authentication
model during for PIN entry under different user positions,
using summary statistic representations for sensor data and
inter-key latency for fixed-length PIN entries, fed into binary
classifiers [21]. However, since they analyze the user-behavior
during the PIN insertion their approach focuses on improving
the security of classical authentication methods. In comparison,
AuthentiSense performs a continuous authentication allow-
ing to detect intruders also after the regular authentication.
Therefore, the approach of Buriro et al. is orthogonal to
AuthentiSense.

In a follow up work, Buriro et al. [20] used a one-class
Multilayer Perceptron on a behavioural dataset of 30 users
signing on their touch screens along with sensor data. For
each user, a Multilayer Perceptron was trained with owner data
only, without any impostor samples. However, analogously
to the previous work, also this approach cannot be applied
continuously. AnswerAuth analyses the phones’ sensor data
while the user is performing certain actions, e.g., like sliding
or lifting the phone. AnswerAuth applies a Random-forest
classifier to identify the current user out of a set of known
users [19]. However, since AnswerAuth can only identify a
person from a set of known users, for which training samples
were recorded, it cannot identify intruders.

Multiple approaches train models for each user individually
for authenticating them based on touch-gestures and sensor
data. Incel et al. use sensor and touch data to authenticate users
in a banking app. They trained binary SVMs with RBF kernels
to authenticate users [41]. Humayoun et al. train a DNN to
combine features that are extracted from touch-gestures with
sensor data [39]. Abuhamad et al. [9] utilize LSTM Net-
works to authenticate users with short authentication windows
at a high frequency. Acien et al. use touch, accelerometer,
gyroscope, keystroke, WiFi, GPS, and App Usage data to
authenticate user. They profiled users by training separate
RBF-SVM classifiers for each user and each modality, ending
up with seven models for every single user, combined with
score-level fusion [11]. However, since these approaches train
separate models for each user, they need to collect a high
number of training samples during the enrollment phase. Since
normal users are unlikely to perform certain gestures for many
times in during the setup, these approaches are not scalable.

To summarize, AuthentiSense utilizes only standard built-
in sensors (i.e., accelerometer, gyroscope, magnetometer) for
authentication purpose. These sensors are typically available
on mobile devices, therefore, AuthentiSense can work in most
settings. Furthermore, AuthentiSense is trained in a user-
agnostic fashion and even works for users it is not trained for. It
is scalable and allows users to be on-boarded with only a small
number of enrollment samples without any further training.
The use of a feature extractor network also makes it possible
to enroll users by only storing behavioral feature vectors rather
than raw behavior data, which makes it less privacy invasive
and reduces the total authentication overhead.

VII. DISCUSSION

Behavior biometrics systems are becoming more
widespread and effective as technology advances, they are not
a bullet-proof solution for authentication or identification. In
the following, we outline some of the limitations of behavioral
biometrics authentication systems including AuthentiSense.

Behavioral biometrics authentication systems may suffer
from failure to enrol. This happens when a reference sample
for biometrics cannot be successfully created at the time of
enrolment due to a number of factors, such as low-quality
sensors, poor environmental conditions, physical or medical
conditions of the individuals [2]. Ensuring effective enrolment
is crucial to the successful operation of a biometrics authenti-
cation system.

The use of behavioral biometrics, as with other security
measures, has vulnerabilities and can be compromised. The
sensor data can be spoofed or retrieved through side-channel
attacks. However, behavioral biometrics spoofing can be miti-
gated by hardware security extension technologies or through
sensor data obfuscation.

Another limitation of behavioral biometrics systems is
that unlike traditional authentication methods (i.e., passwords),
behavioral biometric characteristics cannot be reissued or
cancelled. In case of being compromised, if not impossible
it can be extremely difficult to change the characteristics. This
makes it problematic when using those behavioral biometric
characteristic for future authentication.

The matching of an individual with a reference information
stored in the system is a probabilistic calculation. There are
errors (i.e., false acceptance and rejection rates) that may be
influenced by a range of factors. The user interaction with
a sensor may differ between the enrollment and recognition
phases or, in rare cases, individuals may share similar be-
havioral biometric characteristics. In addition, factors such
as aging, or medical conditions can also affect individuals’
behavioral biometric characteristic between the enrollment and
recognition stages.

Behavioral biometrics like many other technologies can
pose challenges to privacy. Since in behavioral biometrics
authentication systems the information collection is covert
or passive, individuals may be unable to provide consent or
control over what information is collected or how it is used.
Another privacy risk is depending on the characteristics, some
behavioral biometrics (i.e., motion patterns) could potentially
reveal secondary information (i.e., health-related issues) about
an individual who may not want to provide that information.

Furthermore, during training of AuthentiSense, our loss
function does not take the context into account, and triplets are
formed using only “subject” information, where it is possible
to encounter a positive sample from a very different context
than the anchor. For instance, in the anchor, the user could
be on one device and scrolling, and in the positive sample,
the user could be typing on a different device. In this case, it
would be difficult for the network to learn a function that can
recognize the similarities between the two samples.

In future work, a triplet mining procedure can be imple-
mented to consider more than label information when selecting

12

positive and negative samples, such as posture, device model,
or any other relevant contextual information which could affect
the behavior samples collected. We hypothesize that a feature
extractor model may create more compact clusters for different
devices or postures, if positive samples are only drawn for the
same context, rather than one big loose cluster for all of a
given user’s behavior samples.

VIII. CONCLUSION

We propose AuthentiSense, a user-agnostic behavioral bio-
metrics authentication system that continuously uses motion
patterns while interacting with mobile apps and regularly vali-
dates the authenticity of a user after the user has logged in. The
passive nature of AuthentiSense makes it non-intrusive to the
users’ experience and takes the burden off the users, offering
a frictionless and quick authentication method. We utilize a
few-shot learning-based model called Siamese network and
train an efficient model that is not user-specific. Our proposed
approach is highly scalable and fast. It does not require hand-
crafted features for model training and does not need to be
re-trained when users are dynamically changing (i.e., joining
or leaving the system). When evaluated in a Few-shot fashion,
our system needs only a few behavior samples per user. We
conduct an extensive and systematic measurement study and
analyze the impact of different parameters such as choice of
loss functions, size of the authentication window time, and n-
shots. Our evaluation results demonstrate that AuthentiSense
can achieve an accuracy of 97% in terms of F1-score for 3-
shot verification and can accurately authenticate users already
after 1 second of user interaction.

ACKNOWLEDGMENT

We would like to thank Intel Private AI center and BMBF
for their support of this research.

REFERENCES

[1] Behavioral biometrics, 2022. https://finance.arvato.com/en/industries/
digital-business/behavioral-biometrics/.

[2] Biometrics and privacy - issues and challenges, 2022. https://ovic.vic.
gov.au/privacy/biometrics-and-privacy-issues-and-challenges/.

[3] Dautsche bank, 2022. https://internationaldirector.com/finance/
how-banks-can-achieve-protective-yet-intuitive-security/.

[4] Lambda layer, 2022. https://keras.io/api/layers/core layers/lambda/.
[5] Mastercard, 2022. https://www.mastercard.com/news/perspectives/

2021/behavioral-biometrics-explained/.
[6] Scikit-learn: Machine learning in Python, 2022. https://scikit-learn.org/

stable/.
[7] Tensorflow, 2022. https://tensorflow.org.
[8] Tensorflow addons, 2022. https://www.tensorflow.org/addons.
[9] ABUHAMAD, M., ABUHMED, T., MOHAISEN, D., AND NYANG, D.

Autosen: Deep-learning-based implicit continuous authentication using
smartphone sensors. IEEE Internet of Things Journal 7, 6 (2020), 5008–
5020.

[10] ACIEN, A., MORALES, A., VERA-RODRIGUEZ, R., AND FIERREZ, J.
Keystroke mobile authentication: Performance of long-term approaches
and fusion with behavioral profiling. In Iberian Conference on Pattern
Recognition and Image Analysis (2019).

[11] ACIEN, A., MORALES, A., VERA-RODRÍGUEZ, R., AND FIÉRREZ, J.
Multilock: Mobile active authentication based on multiple biometric and
behavioral patterns. CoRR abs/1901.10312 (2019).

[12] AKHTAR, Z., MICHELONI, C., PICIARELLI, C., AND FORESTI, G. L.
Mobio livdet: Mobile biometric liveness detection. In IEEE Interna-
tional Conference on Advanced Video and Signal Based (2014).

[13] ALSAADE, F. Score-level fusion for multimodal biometrics. PhD thesis,
University of Hertfordshire, 2008.

[14] AMINI, S., NOROOZI, V., PANDE, A., GUPTE, S., YU, P. S., AND
KANICH, C. Deepauth: A framework for continuous user re-
authentication in mobile apps. In ACM International Conference on
Information and Knowledge Management (2018).

[15] BENEGUI, C., AND IONESCU, R. T. Convolutional neural networks for
user identification based on motion sensors represented as images. In
IEEE Access (2020).

[16] BO, C., ZHANG, L., LI, X.-Y., HUANG, Q., AND WANG, Y.
Silentsense: silent user identification via touch and movement be-
havioral biometrics. In Annual international conference on Mobile
computing & networking (2013).

[17] BROMLEY, J., GUYON, I., LECUN, Y., SÄCKINGER, E., AND SHAH,
R. Signature verification using a ”siamese” time delay neural network.
In Advances in Neural Information Processing Systems (1994).

[18] BURIRO, A. Behavioral biometrics for smartphone user authentication.
PhD thesis, University of Trento, 2017.

[19] BURIRO, A., CRISPO, B., AND CONTI, M. Answerauth: A bimodal
behavioral biometric-based user authentication scheme for smartphones.
Journal of information security and applications 44 (2019), 89–103.

[20] BURIRO, A., CRISPO, B., DELFRARI, F., AND WRONA, K. Hold and
sign: A novel behavioral biometrics for smartphone user authentication.
In IEEE security and privacy workshops (SPW) (2016).

[21] BURIRO, A., CRISPO, B., FRARI, F. D., AND WRONA, K. Touchstroke:
Smartphone user authentication based on touch-typing biometrics. In
International Conference on Image Analysis and Processing (2015).

[22] BURIRO, A., CRISPO, B., AND ZHAUNIAROVICH, Y. Please hold on:
Unobtrusive user authentication using smartphone’s built-in sensors.
In IEEE International Conference on Identity, Security and Behavior
Analysis (ISBA) (2017).

[23] BUSCHEK, D., BISINGER, B., AND ALT, F. Researchime: A mobile
keyboard application for studying free typing behaviour in the wild. In
CHI Conference on Human Factors in Computing Systems (2018).

[24] CENTENO, M. P., GUAN, Y., AND VAN MOORSEL, A. Mobile
based continuous authentication using deep features. In International
Workshop on Embedded and Mobile Deep Learning (EMDL) (2018).

[25] CENTENO, M. P., GUAN, Y., AND VAN MOORSEL, A. Mobile based
continuous authentication using deep features. In 2nd International
Workshop on Embedded and Mobile Deep Learning (2018).

[26] CHEN, H., LI, F., DU, W., YANG, S., CONN, M., AND WANG,
Y. Listen to your fingers: User authentication based on geometry
biometrics of touch gesture. In ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (2020), vol. 4.

[27] CZAJKA, A., AND PACUT, A. Replay attack prevention for iris
biometrics. In 42nd Annual IEEE International Carnahan Conference
on Security Technology (2008).

[28] DAS, A., BORISOV, N., AND CAESAR, M. Tracking mobile web users
through motion sensors: Attacks and defenses. In NDSS (2016).

[29] DEB, D., ROSS, A., JAIN, A. K., PRAKAH-ASANTE, K., AND
PRASAD, K. V. Actions speak louder than (pass) words: Passive
authentication of smartphone* users via deep temporal features. In
international conference on biometrics (ICB) (2019).

[30] EHATISHAM-UL HAQ, M., AZAM, M. A., NAEEM, U., AMIN, Y.,
AND LOO, J. Continuous authentication of smartphone users based on
activity pattern recognition using passive mobile sensing. In Journal of
Network and Computer Applications (2018).

[31] FEI-FEI, L., FERGUS, R., AND PERONA, P. One-shot learning of object
categories. In IEEE Transactions on Pattern Analysis and Machine
Intelligence (2006).

[32] FINK, M. Object classification from a single example utilizing class
relevance metrics. In Advances in Neural Information Processing
Systems (2004), L. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17, MIT
Press.

[33] FRANK, M., BIEDERT, R., MA, E., MARTINOVIC, I., AND SONG, D.
Touchalytics: On the applicability of touchscreen input as a behavioral
biometric for continuous authentication. In IEEE transactions on
information forensics and security (2012), vol. 8.

13

https://finance.arvato.com/en/industries/digital-business/behavioral-biometrics/
https://finance.arvato.com/en/industries/digital-business/behavioral-biometrics/
https://ovic.vic.gov.au/privacy/biometrics-and-privacy-issues-and-challenges/
https://ovic.vic.gov.au/privacy/biometrics-and-privacy-issues-and-challenges/
https://internationaldirector.com/finance/how-banks-can-achieve-protective-yet-intuitive-security/
https://internationaldirector.com/finance/how-banks-can-achieve-protective-yet-intuitive-security/
https://keras.io/api/layers/core_layers/lambda/
https://www.mastercard.com/news/perspectives/2021/behavioral-biometrics-explained/
https://www.mastercard.com/news/perspectives/2021/behavioral-biometrics-explained/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://tensorflow.org
https://www.tensorflow.org/addons

[34] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep learning.
MIT press, 2016.

[35] GURARY, J., ZHU, Y., ALNAHASH, N., AND FU, H. Implicit authen-
tication for mobile devices using typing behavior. In International
Conference on Human Aspects of Information Security, Privacy, and
Trust (2016).

[36] HADSELL, R., CHOPRA, S., AND LECUN, Y. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06)
(2006).

[37] HARING, M., REINHARDT, D., AND OMLOR, Y. Pick me up and i
will tell you who you are: Analyzing pick-up motions to authenticate
users. In IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops) (2018).

[38] HU, H., LI, Y., ZHU, Z., AND ZHOU, G. Cnnauth: continuous
authentication via two-stream convolutional neural networks. In 2018
IEEE international conference on networking, architecture and storage
(NAS) (2018).

[39] HUMAYOUN, S. R., ABBAS, G., AND AL-TARAWNEH, R. Touch-
behavioral authentication on smartphones using machine learning. In
27th International Conference on Intelligent User Interfaces (2022),
pp. 105–108.

[40] INCEL, Ö. D., GÜNAY, S., AKAN, Y., BARLAS, Y., BASAR, O. E.,
ALPTEKIN, G. I., AND ISBILEN, M. Dakota: Sensor and touch screen-
based continuous authentication on a mobile banking application. In
IEEE Access (2021), vol. 9.

[41] INCEL, O. D., GÜNAY, S., AKAN, Y., BARLAS, Y., BASAR, O. E.,
ALPTEKIN, G. I., AND ISBILEN, M. Dakota: Sensor and touch screen-
based continuous authentication on a mobile banking application. IEEE
Access 9 (2021), 38943–38960.

[42] INGUANEZ, F., AND AHMADI, S. Securing smartphones via typing
heat maps. In International Conference on Consumer Electronics-Berlin
(ICCE-Berlin) (2016).

[43] IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
conference on machine learning (2015).

[44] ISLAM, M. M., SAFAVI-NAINI, R., AND KNEPPERS, M. Scalable
behavioral authentication. In IEEE Access (2021), vol. 9.

[45] JOSEPH, S., KELVIN, B., SHELDON, A., LASANIO, S., JOSHUA, A.,
DERRICK, L., ANIESHA, A., KARL, R., AND GERRY, D. Genetic
& evolutionary biometric security: Disposable feature extractors for
mitigating biometric replay attacks. In Procedia Computer Science
(2012).

[46] KARANIKIOTIS, T., PAPAMICHAIL, M. D., CHATZIDIMITRIOU, K. C.,
OIKONOMOU, N.-C. I., SYMEONIDIS, A. L., AND SARIPALLE, S. K.
Continuous implicit authentication through touch traces modelling. In
International Conference on Software Quality, Reliability and Security
(QRS) (2020).

[47] KENNETH, R. Behavioral biometrics. John Wiley & Sons, Ltd.

[48] KIRANYAZ, S., AVCI, O., ABDELJABER, O., INCE, T., GABBOUJ, M.,
AND INMAN, D. J. 1d convolutional neural networks and applications:
A survey. In Mechanical Systems and Signal Processing (2021),
vol. 151.

[49] LEE, W.-H., AND LEE, R. B. Implicit smartphone user authentication
with sensors and contextual machine learning. In Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)
(2017).

[50] LEE, W.-H., LIU, X., SHEN, Y., JIN, H., AND LEE, R. B. Secure pick
up: Implicit authentication when you start using the smartphone. In
ACM Symposium on access control models and technologies (2017).

[51] LI, Y., HU, H., ZHU, Z., AND ZHOU, G. Scanet: sensor-based contin-
uous authentication with two-stream convolutional neural networks. In
ACM Transactions on Sensor Networks (TOSN) (2020), vol. 16.

[52] LU, L., AND LIU, Y. Safeguard: User reauthentication on smartphones
via behavioral biometrics. In IEEE Transactions on Computational
Social Systems (2015), vol. 2.

[53] NEVEROVA, N., WOLF, C., LACEY, G., FRIDMAN, L., CHANDRA,
D., BARBELLO, B., AND TAYLOR, G. Learning human identity from
motion patterns. In IEEE Access (2016).

[54] P. SHRESTHA, M. M., AND SAXENA, N. Slogger:smashing motion-
based touchstroke logging with transparent system noise. In ACM WiSec
(2016).

[55] QUIGLEY, C. Conjoined twins. In Encyclopedia of Applied Ethics
(Second Edition) (2012), Academic Press.

[56] ROSS, A. A., NANDAKUMAR, K., AND JAIN, A. K. Handbook of
multibiometrics, vol. 6. Springer Science & Business Media, 2006.

[57] ROY, S., SINHA, D., AND ROY, U. User authentication: Keystroke
dynamics with soft biometric features. In Internet of Things (IoT):
Technologies, Applications, Challenges and Solutions (2017).

[58] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning
representations by back-propagating errors. In nature (1986), vol. 323,
Nature Publishing Group.

[59] SCHROFF, F., KALENICHENKO, D., AND PHILBIN, J. Facenet: A
unified embedding for face recognition and clustering. In IEEE
conference on computer vision and pattern recognition (2015).

[60] SHARMA, M., AND ELMILIGI, H. Behavioral biometrics: Past, present
and future. In Recent Advances in Biometrics (2022), IntechOpen.

[61] SHEN, C., YU, T., YUAN, S., LI, Y., AND GUAN, X. Performance
analysis of motion-sensor behavior for user authentication on smart-
phones. In Sensors (2016).

[62] SITOVÁ, Z., ŠEDĚNKA, J., YANG, Q., PENG, G., ZHOU, G., GASTI,
P., AND BALAGANI, K. S. Hmog: New behavioral biometric features
for continuous authentication of smartphone users. In IEEE Transac-
tions on Information Forensics and Security (2016).

[63] STANCIU, V.-D., SPOLAOR, R., MAURO, C., AND CRISTIANO, G.
On the effectiveness of sensor-enhanced keystroke dynamics against
statistical attacks. In 6th ACM conference on data and application
security and privacy (2016).

[64] VOLAKA, H. C., ALPTEKIN, G., BASAR, O. E., ISBILEN, M., AND
INCEL, O. D. Towards continuous authentication on mobile phones
using deep learning models. In Procedia Computer Science (2019).

[65] WANG, C., XIAO, Y., GAO, X., LI, L., AND WANG, J. A framework
for behavioral biometric authentication using deep metric learning on
mobile devices. In IEEE Transactions on Mobile Computing (2021).

[66] WANG, Y., YAO, Q., KWOK, J. T., AND NI, L. M. Generalizing from
a few examples: A survey on few-shot learning. In ACM Comput. Surv.
(2020), vol. 53, Association for Computing Machinery.

[67] XU, H., ZHOU, Y., AND LYU, M. R. Towards continuous and
passive authentication via touch biometrics: An experimental study on
smartphones. In 10th Symposium On Usable Privacy and Security
(SOUPS 2014) (2014).

[68] ZHAO, X., FENG, T., AND SHI, W. Continuous mobile authentication
using a novel graphic touch gesture feature. In IEEE sixth international
conference on biometrics: theory, applications and systems (BTAS)
(2013).

[69] ZHAO, X., FENG, T., SHI, W., AND KAKADIARIS, I. A. Mobile
user authentication using statistical touch dynamics images. In IEEE
Transactions on Information Forensics and Security (2014), vol. 9.

[70] ZHU, J., WU, P., WANG, X., AND ZHANG, J. Sensec: Mobile security
through passive sensing. In International conference on computing,
networking and communications (ICNC) (2013).

APPENDIX

A. Contrastive loss

In contrastive loss, two data samples are fed into the
Siamese networks one after the other to get embedding vectors.
Then in the latent embedding space, the distance D between
the two embedding vectors are computed. Finally, the calcu-
lated distance D is substituted into the loss function (Eq. 7)
and the Siamese network is trained via backpropagation for
better latent vector embedding. The loss function is defined as
below:

L (Y,D) = (Y)·(D2)+(1−Y)·max(margin−D, 0)
2 (7)

14

Where the Y value is ground truth label. Y = 1 if the
input pairs are of the same user, and Y = 0 otherwise. The
max function takes the largest value of 0 and the margin (a
pre-defined hyper-parameter) minus the distance.

B. Neural Network

Neural Networks use a so-called training dataset to learn
a specific task. They take samples from a domain D , e.g.,
images or sensor values, as input and predict an output vector
l indicating e.g., the recognized category, from a target set L .
The parameters of a NN, therefore, realize a function f : D 7→
L . It should be noted that l can also be a binary label, then
L = {0, 1}.

NNs consist of individual neurons, which are grouped
into layers. The input of the NN is given to first layer, that
determines for each neuron an activation status. The activation
status of each neuron of the current layer is then given to
the neurons of the next layer. The activation nl,i of a (linear)
neuron i in layer l, which uses the activations of K neurons
from the previous layer as input is then given by:

nl,i = g(bl,i +

K∑
k=0

wl,i,k · nl−1,k) (8)

where bl,i and wl,i,k are parameters of the NN that are
optimized during the training phase for the respective task.
g is the so-called activation function, a non-linear function as
relu(x) = max(0, x) that is used to determine activation of the
current neuron and allows the NN to recognize also non-linear
patterns [34].

C. 1-dimensional Convolutional Neural Network.

In Convolutional Neural Networks (CNNs) each neuron
only uses a small window of neighboring inputs to determine
its activation status, e.g., neighboring time steps for sequential
data [34]. CNNs are taking their name from the mathematical
tool called convolution, which is a linear operator used for
feature extraction where a small filter or a kernel, is slided
across an input sequence. Iterating on the input piece by piece
allows the model to extract small features producing in output
a feature map, that depends on both the input values and the
kernel weights. Different kernels can therefore be thought of
as different feature extractors.

Although CNNs are most popularly used for two-
dimensional inputs like images, they can be generalized to
other dimensions, and one-dimensional CNNs (or CNN1D) are
more suitable for certain applications dealing with sequential
data like one-dimensional sensor readings [48]. Furthermore,
another advantage of CNN1D is that they have less trainable
parameters (i.e., weights), therefore, they are less complex and
faster to train compared to 2D-CNNs allowing smaller sets of
training data, making them more suitable for real-time and
low-cost applications [48].

D. Score Fusion

In the field of behavioral biometrics, information from
different sensors is not always processed by a single classifier
(sensor level fusion). Instead, multiple classifiers (matchers)
are typically used that each produce a matching score. To

form a final classification, a vector of matching scores s =
[s1, . . . , sR], obtained from R matchers, is fused using special
techniques (e.g., score level fusion) in order to classify samples
as either genuine or impostor [56]. Having a broader collection
of information available, score fusion models can potentially
achieve better performance than each of the individual match-
ers does on their own. In the following, we describe a selection
of fusion and normalization techniques.

1) Normalization Techniques: simple rule-based fusion
techniques require matching scores to lie in a common range.
This is achieved through normalization methods. Each method
has different impact on the fusion technique’s performance.

The Z-Score Normalization: is a method that normalizes the
jth matcher by utilizing arithmetic mean (µj) and standard
deviation (σj) of the available match scores. The normalized
value of the ith match score sij , as specified in [56], is

nsij =
sij − µj

σj
. (9)

where feature distributions are centered around zero with
unit standard deviation.

Min-Max Normalization: Min-Max normalization maps values
between 0 and 1. Just as z-score normalization, this method is
not robust, because outliers can be mapped to the outside of
the lower and upper boundaries. Let sij , as defined in [56], be
the jth matcher’s ith matching score of the N scores that are
used for tuning the normalizer. Then the normalized value of
the ith match score sij is

nsij =
sij −minNk=1 s

k
j

maxNk=1 s
k
j −minNk=1 s

k
j

. (10)

where 0 corresponds to the minimum observation and 1
corresponds to the maximum

2) Fusion Techniques: Fusion techniques include (i)
weighted sum fusion, (ii) EER-weighted sum fusion, (iii)
linear and logistic regression fusion as well as (iv) multi-layer
perceptron (MLP) methods. For each technique, matching
scores are optionally normalized.

Weighted Sum Fusion: with this fusion technique, the weighted
matching scores of all matchers are added up. For a binary
classification problem, it is sufficient to focus on just one class
(genuine) and determine, if the sum passes a certain threshold.

The fused score of the normalized ith match score is
defined as

f i =

R∑
j=1

wjns
i
j (11)

where wj is the jth matcher’s weight [13]. For pure sum
fusion, the weight of all matchers is set to 1.

It is necessary to find an optimal threshold t in order
to perform final classification on the produced fusion score
f i (genuine, if f i ≥ t; impostor else). This optimization
is performed during fusion training and utilizes a sigmoid

15

activated linear regression model that takes single fusion scores
as input. Such model is described below.

EER-Weighted Sum Fusion: it sets the weights of accurate
matchers higher than those of less accurate ones. The weight
wj of the jth matcher is defined as

wj =
1

EERj

(∑R
i=k

1
EERk

) (12)

where EERj represents the jth matcher’s equal error rate [13].
All weights are then applied on the weighted sum fusion
defined in Equation 11.

Linear and Logistic Regression Fusion: both regression fusion
techniques are a form of classifier-based score fusion where
a boundary between the classes genuine and impostor is
learned [56]. For linear regression, the following function is
approximated

f i = β +

R∑
j=1

wj · nsij , (13)

while for logistic regression,

f i =
eβ+

∑R
j=1 wj ·nsij

1 + eβ+
∑R

j=1 wj ·nsij
(14)

is approximated. The produced value f i is then passed to
a sigmoid function for classification. For optimization, the
machine learning model adjusts both the bias β and each jth

matcher’s weight wj .

Multi-Layer Perceptron (MLP) Fusion: MLPs are fully con-
nected neural networks with one or more hidden layers. As
defined in [13], MLP fusion with one hidden layer applies the
function

f i = so

MH∑
j=0

wjish

(
MI∑
k=0

wkins
i

) (15)

on the ith normalized score nsi to produce the ith fused score
f i. The sigmoid activation functions of the output (so) and the
hidden layer (sh) are provided with the sum of MH weighted
(wji) hidden and MI weighted (wki) input nodes respectively,
whose weights are optimized during the training process [13].

16

	Introduction
	Background
	Few-shot Learning
	Siamese Networks

	System and Threat Model
	AuthentiSense
	High-level Overview
	Design
	Implementation

	Evaluation
	Dataset
	Evaluation Metrics
	Experimental Setup
	Evaluation Results
	Performance of AuthentiSense
	Comparison against baseline
	Individual modality performance
	Fusion of modalities

	Related Work
	Touch and Typing Behavior
	Motion-based Approaches
	Touch-Motion Behavior

	Discussion
	Conclusion
	References
	Appendix
	Contrastive loss
	Neural Network
	1-dimensional Convolutional Neural Network.
	Score Fusion
	Normalization Techniques
	Fusion Techniques

