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Abstract—In secure machine learning inference, most of the
schemes assume that the server is semi-honest (honestly following
the protocol but attempting to infer additional information).
However, the server may be malicious (e.g., using a low-quality
model or deviating from the protocol) in the real world. Although
a few studies have considered a malicious server that deviates
from the protocol, they ignore the verification of model accuracy
(where the malicious server uses a low-quality model) meanwhile
preserving the privacy of both the server’s model and the client’s
inputs. To address these issues, we propose Fusion, where the
client mixes the public samples (which have known query results)
with their own samples to be queried as the inputs of multi-
party computation to jointly perform the secure inference. Since a
server that uses a low-quality model or deviates from the protocol
can only produce results that can be easily identified by the client,
Fusion forces the server to behave honestly, thereby addressing
all those aforementioned issues without leveraging expensive
cryptographic techniques. Our evaluation indicates that Fusion
is 48.06× faster and uses 30.90× less communication than the
existing maliciously secure inference protocol (which currently
does not support the verification of the model accuracy). In
addition, to show the scalability, we conduct ImageNet-scale
inference on the practical ResNet50 model and it costs 8.678
minutes and 10.117 GiB of communication in a WAN setting,
which is 1.18× faster and has 2.64× less communication than
those of the semi-honest protocol.

I. INTRODUCTION

Machine Learning as a Service (MLaaS) [61], [20], [10] is
rapidly emerging as a dominant computing paradigm in the
past few years. In such a paradigm, the servers provide cloud-
based machine learning services for the clients. As such, the
clients now do not need to train their own models (which is
computationally expensive, and requires large datasets), but
consume the services on demand: the clients can simply feed
the server inputs, and let the server make inferences based on
the inputs. For example, a patient can provide the raw medical
data to the server, and the server can then generate diagnosis
results using the pre-trained models.

While MLaaS has brought the enormous convenience, it
is also subject to privacy risks. For example, the inputs of

clients may be highly sensitive (e.g., raw medical data) with
confidentiality concerns [14], and it is urgently necessary
for the server to provide inference services without breaking
their confidentiality. Currently, many efforts have been made
toward this end [13], [55], [28], [43], [30], [7], [60], [46],
[59], [58], [3], [18], [34] via various cryptographic techniques
such as homomorphic encryption (HE), garbled circuits (GC),
and secret sharing (SS). However, there could be plenty of
large matrix multiplications, non-linear operations, and secure
conversions back and forth between them in the neural network
inference, which are relatively expensive to achieve with
cryptographic techniques. To achieve practical and privacy-
preserving MLaaS, most of those works have no alternatives
but to settle for less by adopting a weaker threat model —
assuming the servers and the clients will follow the protocol,
but they will also try to obtain additional information (a.k.a,
semi-honest security).

However, there is no reason to believe that such an
assumption will always hold: the server can be completely
malicious, and does not follow the protocols at all (e.g.,
the server returns the client random results to trick the
clients) [17], [70], [16]. Furthermore, even if the server
follows the protocol, there is no guarantee that the server will
produce high-quality results as promised, as few protocols
can verify whether the inference results are produced by a
high-quality model. Those incorrect or inaccurate results can
have grave consequences (e.g., misleading patients). As such,
solutions that solely consider the semi-honest security are
obsolete, and we have to deal with a much worse scenario,
where (i) the server is completely malicious (i.e., malicious
security) to deviate from the protocol and provide incorrect
results, or (ii) although the server follows the protocol, it uses
a low-quality model as input, and (iii) the server and client
have the requirements of protecting their highly sensitive data
(including the server’s model and client’s query input).

To our best knowledge, there is no solution that can satisfy
all the criteria mentioned above. For example, LevioSA [18]
achieves the maliciously secure arithmetic computation by
following the high-level approach of the IPS compiler [24],
[41] (IPS compiler is designed to construct secure protocols
in the presence of malicious adversaries) and applies it to
privacy-preserving machine learning. CRYPTFLOW [34] con-
verts TensorFlow [2] inference code to MPC protocols. By
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using the trusted hardware, their solution also satisfies mali-
cious security. Although those solutions [34], [18] guarantee
computation correctness (which ensures the server follows the
protocol correctly) and preserve privacy, they do not verify
the model accuracy (e.g., the malicious server could still use a
low-quality model). Moreover, some schemes [17], [36], [70],
[16], [44], [64] utilize zero-knowledge (ZK) proofs to compel
the server to provide correct inference results for the client,
but they only protect the privacy of either the server’s model
or the client’s input.

This paper aims to propose a solution for MLaaS that satis-
fies all three criteria (including verification of model accuracy,
computation correctness, and privacy preservation) at the same
time. To that end, there could be multiple ways. For example,
we can directly apply maliciously secure two-party compu-
tation (2PC), which preserves privacy and ensures computa-
tion correctness, but extra expensive cryptographic approaches
(e.g., ZK proofs) are required to verify the model accuracy.
Alternatively, we can make changes on the existing efficient
semi-honest inference schemes [43], [30], [46] to achieve ma-
licious security. Given that these schemes usually use multiple
cryptographic techniques such as HE and GC simultaneously,
it is also challenging to customize them to let them meet all
three criteria (particularly, enabling the verification of model
accuracy may require significant modifications) effectively.

Fortunately, we observe that the client can know the com-
putation results (public samples’ labels) of some inputs (or
query samples) in advance, which is not possible in most
secure computation applications. These pre-collected public
samples with known (or expected) computation results can
be used to verify the model accuracy meanwhile force the
server to perform computations correctly by mixing them with
real query samples. Based on this observation, we customize a
mix-and-check method that combines the verification of model
accuracy with computation correctness for batched inference
queries. Specifically, we design a mixed dataset by preparing
query samples (non-public, and each with multiple copies)
and a number of public samples, and then using a random
permutation to shuffle them. If the server attempts to cheat
the client without being noticed, the server has to provide
incorrect-but-consistent results for all copies of a particular
query sample. Given that the server will not know how the
samples (the public ones and non-public ones) are mixed
according to our design, it is extremely challenging for the
server to cheat successfully, and the clients can easily notice
the misbehavior with overwhelming possibility.

By using this mix-and-check method, we propose a mali-
ciously secure inference scheme, named Fusion, which can
convert a semi-honest inference protocol into a maliciously
secure one. Fusion is superior because it fulfills the afore-
mentioned three security requirements effectively. It preserves
the privacy of both the server and the client by utilizing a
semi-honest secure inference protocol, and ensures the com-
putation correctness and model accuracy effectively (it uses
simple-but-effective local checks, not expensive cryptographic
techniques). We have also implemented Fusion and compared

its performances with existing maliciously secure solutions
and semi-honest inference protocols. Moreover, we conduct
ImageNet-scale inference on practical ResNet50 model.
When compared with CRYPTFLOW2 [59], Fusion is 1.30×
and 1.18× faster in the LAN setting and the WAN setting
respectively, and uses 2.64× less communication (when the
total number of query samples is 512 and the copies for
each query sample is 5 that ensure the statistical security
of 2−40). Finally, we also enable Fusion to defend against
model extraction attacks (by integrating a prior solution),
which proves that Fusion has good scalability.

In short, our contributions are twofold:
• First, we propose Fusion, a maliciously secure inference

scheme. To our best knowledge, Fusion is the first so-
lution that preserves the privacy of both the server and
the client, and ensures the model accuracy of the server’s
input and computation correctness at the same time in the
server-malicious threat model. Particularly, Fusion can be
used as a general compiler that converts a semi-honest
inference scheme into a maliciously secure one. As a
consequence, the proposed scheme can benefit from the
existing efficient and practical inference schemes.

• Second, we implement Fusion, and compare its perfor-
mance with the state-of-the-art maliciously secure work
LevioSA [18]. The results are encouraging: Fusion is
48.06× faster and uses 30.90× less communication than
LevioSA [18] (which currently does not support verifica-
tion of the server’s model accuracy). We also compare
Fusion with multiple semi-honest inference protocols
such as DELPHI [46] and ABY [13], and better perfor-
mance is also observed on Fusion when they all adopted
the same settings (e.g., the number of query samples is
large enough such as 32).

II. PRELIMINARIES AND BACKGROUND

In this section, we describe some background information
about neural network inference, followed by privacy-
preserving neural network inference, where we introduce a
few popular hybrid 2PC-based privacy-preserving inference
protocols.

A. Neural Network Inference

Being one of the important types of deep learning, convo-
lutional neural network (CNN) inference computations mainly
contain four components, i.e., convolutions, which extract
different features from a dataset, pooling layer, which mainly
attempts to reduce the dimensionality, activation function,
which is used as a feature transformation method to increase
the expression ability, and fully connected layer, which takes
the outputs of other components and produces the final out-
puts. All those components are connected, and ultimately form
a multi-layer network structure, where the outputs of one layer
can be the inputs of other layers. CNN inference usually con-
tains a lot of computationally expensive linear and non-linear
computations. For example, convolutions usually contain mul-
tiple linear matrix multiplications; activation functions such as
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rectified linear unit (ReLU) [48] are nonlinear transformations.
Pooling functions (e.g., max pooling functions) usually are
nonlinear operations as well.

B. Privacy-Preserving Neural Network Inference

In MLaaS without considering privacy preservation, the
client’s inputs are directly sent to the server who produces
the inference results, and the highly sensitive inputs (e.g., raw
medical test results) can be leaked to the server. As such,
the privacy-preserving neural network inference is introduced,
which generates the outputs without leaking sensitive inputs to
the server. At a high level, the client and the server adopt cryp-
tographic techniques to perform inference computations for
protecting their own inputs. Among all the privacy-preserving
inference frameworks, semi-honest privacy-preserving infer-
ence gained popularity due to its practical efficiency.

An intuitive way to implement privacy-preserving inference
is through two-party computation (2PC). 2PC is a sub-problem
of secure multi-party computation (MPC), which allows two
parties to jointly compute a function without sacrificing their
input privacy. However, due to the complexity of operation
types (e.g., nonlinear comparison operations, matrix multipli-
cation) and plenty of conversions between these operations
in neural networks, directly using general 2PC schemes faces
efficiency challenges.

Having seen the efficiency challenges, researchers proposed
hybrid 2PC-based privacy-preserving inference protocols [43],
[30], [46], [21], which improve the overall efficiency by using
appropriate cryptographic techniques for different kinds of
computation or designing new efficient subprotocols. In the
following, we would like to introduce a few popular hybrid
2PC-based privacy-preserving inference frameworks:

• ABY [13] is a semi-honest mixed-protocol framework
that combines Arithmetic (A) sharing, Boolean (B) shar-
ing, and Yao’s (Y) garbled circuits, and designs efficient
conversions between every pair of the three. It also adopts
a set of existing state-of-the-art optimizations in a novel
fashion and provides instantiations.

• DELPHI [46] combines the additive homomorphic en-
cryption with garbled circuits (HE is used to perform
linear matrix multiplication while GC is used to perform
non-linear operations) and connects them by additive
secret sharing (e.g., the output of the linear layer are
additive secret shares of computation results that are
ultimately fed into the GC for non-linear operations).
Besides, it allows users to automatically generate neural
networks that mix these two methods and navigate the
trade-off between accuracy and performance.

• CRYPTFLOW2 [59] is also a hybrid inference protocol
that shares some similarity with DELPHI. To improve
efficiency, it proposes a more efficient millionaires proto-
col Πl,m

MILL for securely computing the Yao’s millionaires’
problem (which is used for non-linear operations such as
DReLU and Maxpool). CRYPTFLOW2 also provides two
options, i.e., SCIOT and SCIHE that use oblivious trans-

fer and homomorphic encryption techniques to perform
computationally costly linear operations such as matrix
multiplication or convolution.

• Cheetah [21] is also a hybrid secure inference scheme
that utilizes two lattice-based homomorphic encryp-
tions [8] (i.e., learning with errors (LWE) and its ring
variant (ring-LWE)) to perform secure linear layers (e.g.,
matrix multiplications in convolution), and makes some
optimizations on the millionaire protocol [59] for non-
linear layer (e.g., activation function). They achieve per-
formance optimizations based on the insightful observa-
tion that matrix multiplication results can be represented
as the coefficients in specific positions of polynomial
multiplication, which can be efficiently performed using
ring-LWE. For the non-linear layers, they optimize the
millionaire protocol by adopting VOLE-style OT and
customizing truncation protocols.

III. THREAT MODEL AND SECURITY GOALS

In privacy-preserving neural network inference, the server
and the client jointly perform secure 2PC inference com-
putations with their private inputs (e.g., model parameters
or query samples). As such, similar to all other privacy-
preserving neural network inference, we consider two entities
in the system model, as shown in Figure 1: The server owns
a well-trained (in terms of accuracy) model for a specific task
(e.g., medical diagnosis) and provides inference services to the
clients. The client owns a set of query samples, and it attempts
to obtain the correctly computed inference results from the
server. During the process, the server is required to use a well-
trained model as input, and the client uses query samples as
inputs for privacy-preserving inference computations. In the
rest of this section, we describe the threat model and security
requirements.

DL model

ServerClient

Inference results

Privacy-preserving inference

Provide incorrect 
inference results

Fig. 1: System model.

A. System Model and Threat Model

Similar to previous efforts (e.g., [16], [64], [38]), in this
paper, we consider the server is malicious that may not follow
the protocol while the client is honest. In particular, given
there are two roles (i.e., the server and the client), we make
the following assumptions for each of them respectively:

• Server: We assume that the server may trick the clients
by using a low-quality model (in terms of accuracy)
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as input. Meanwhile, the server may deviate from the
protocol specification. However, the server still aims to
convince the client that the inference results are correctly
computed from the client’s query samples using a high-
quality model (e.g., high accuracy).

• Client: The client honestly follows the protocol but
may attempt to obtain additional information (i.e., semi-
honest). The client also holds a set of samples to be
queried. We additionally assume that the client has access
to a subset of public samples whose type is the same as its
query samples. This is reasonable since there are plenty
of public datasets with different categories (e.g., images,
audio, and healthcare data) that can be used for various
purposes (e.g., face recognition and medical diagnosis).
In particular, we can even find publicly available datasets
that are as sensitive as medical records on some large
national databases (e.g., TGGA [22] and NCBI [49])
or institutes (e.g., AIMI [6]), as data sharing can help
accelerate disease research and improve diagnostic meth-
ods. Examples of those medical records datasets include
genomic data [50], [23], gene expression profiles [66],
[51], COVID-19-Data [45], [63], and medical image
data [6], [39]. As such, it is practical for clients to obtain
a number of public samples for use.

B. Security Goals

While the semi-honest assumptions (by assuming the server
and the client will honestly follow the protocol without cheat-
ing and other misbehavior) are practical and widely adopted by
a lot of previous efforts, there is no reason to believe that such
an assumption will result in expected outputs. For example, the
server may be malicious, which feeds the protocol low-quality
model to trick the clients as discussed in §III-A. As such, this
paper considers a much stronger threat model, which attempts
to meet at least the following security goals: (1) we should not
leak the input privacy of both the server and the client; (2) we
should ensure the computation correctness of the outputs; and
(3) we should ensure the accuracy of the inference results (e.g.,
the server uses high-quality models as inputs).
Formalization. Without loss of generality, we provide se-
curity in the simulation paradigm. We consider a hybrid
model where parties both interact with each other and have
access to ideal functionalities. Assume that a two-party hybrid-
model protocol π uses ideal calls to ideal functionalities
f1, · · · , fp(n). Let ρ1, · · · , ρp(n) be protocols that securely
compute f1, · · · , fp(n) respectively. The composition theo-
rem [4] states that if π securely computes the functionality
g in the (f1, · · · , fp(n))−hybrid model, then πρ1,··· ,ρp(n) in
which the ideal functionalities are substituted by the secure
sub-protocols securely computes g in the real model.

Definition 1: A protocol ΠFusion between a server having
model M which satisfies the accuracy threshold δ and a client
having a dataset X = (x1, · · · , xn) as inputs securely achieves
a secure inference functionality FFusion against a malicious
server and a semi-honest client if it satisfies the following
requirements:

• R1. Model Accuracy. The accuracy (e.g., η) of the model
that the server uses as input should meet the requirement
(e.g., δ). Assume that the model accuracy η is calculated.
If η ≥ δ, the verification of model accuracy passes.

• R2. Computation Correctness. In an execution of
ΠFusion, the probability that the client’s output on every
input vector xi is not the correct inference result M(xi)
is negligible in security parameter λ.

• R3. Privacy. The server and the client both feed their
private inputs to ΠFusion. As such, from the perspective of
privacy preservation, the client and the server is said to
securely execute ΠFusion against a malicious server and
semi-honest client if the following properties are satisfied:
– Malicious Server Security. The view of the server

during a real execution of protocol ΠFusion is denoted
by ViewΠFusion

S . For any server S, there exists a
probabilistic polynomial-time simulator SimS such
that for any input M of the server and xi of the client,
we have:

ViewΠFusion
S ≈c SimS(M)

That is, SimS can simulate a computationally indistin-
guishable view of the malicious server without knowing
the client’s private inputs and inference results.

– Semi-honest Client Security. The view of the client
during a real execution of protocol ΠFusion is denoted
by ViewΠFusion

C . For any client C, there exists a
probabilistic polynomial-time simulator SimC such
that for any input M of the server and xi of the client,
we have:

ViewΠFusion
C ≈c SimC(xi,M(xi))

That is, SimC can simulate a computationally
indistinguishable view of the semi-honest client
without knowing the server’s model.

IV. THE Fusion SCHEME

In this section, we propose Fusion, a privacy-preserving
inference scheme that is secure against a malicious server and
a semi-honest client. We first explain our intuition, then we
present the overview of Fusion, and finally, we describe the
current design in greater details.

A. Challenges and Key Ideas

As discussed in §III-B, there are three goals that need to
be fulfilled in the presence of a malicious server, i.e., model
accuracy, computation correctness, and privacy. To our best
knowledge, there is no existing work that satisfies all three
goals mentioned above in neural network inference. The latter
two requirements (R2 and R3) can be achieved by directly
adopting general maliciously secure protocols (e.g., popular
SPDZ-style protocols [12], [31]), though they are not efficient
enough for performing neural network inference. In addition,
maliciously secure protocols do not provide guarantees for the
model accuracy (e.g., those protocols cannot force the server to
use a high-quality model as input). Even though there are some
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Client

DL model

Server

Private input

(a) Check model accuracy
(b) Check computation correctness

(II) Privacy-Preserving Inference Execution

(III) Model Accuracy & Computation Correctness Verification

Inference results

Mixed dataset

Public samples Requested
sample 1

Requested
sample 2

Requested
sample 3

Randomly shuffled

(I) Mixed Dataset Preparation

Private input

Semi-honest inference protocol

Fig. 2: The workflow of Fusion. Particularly, for better illustration, we highlight the local operations of the client as blue, and
highlight the interaction between the server and the client as pink.

additional techniques that could potentially be used to verify
model accuracy, they usually involved heavy cryptographic
techniques (e.g., using ZK proofs and commitments [64] to
convert publicly committed data into privately authenticated
values). As such, it is challenging to achieve all three goals in
neural network inference efficiently.

Our goal is to achieve all three security requirements with-
out using heavy cryptographic techniques such as ZK proofs.
Generally, the privacy requirement (R3) can be achieved by
adopting efficient 2PC protocols to perform the neural network
inference. We now discuss how to fulfill model accuracy (R1)
and model correctness (R2) at the same time. Our idea is that
if we can know the outputs of specific inputs in advance, we
can use such knowledge to ensure the computation correctness
and model accuracy. This is because if the server causes wrong
results (violating R2) or uses low-quality inputs (violating
R1), the client can notice that by comparing the expected
outputs (which are known in advance) with the actual outputs
(which are obtained at real time), thereby forcing the server to
behave honestly. Particularly, knowing the outputs in advance
is possible, since there are samples (e.g., TGGA [22] and
NCBI [49] databases) where both the inputs and outputs
(labels) are publicly available, as discussed in §III-A. The key
question now becomes how we can find a way to appropriately
utilize these public samples, and feed them into the server to
achieve R1 and R2.

The first solution that comes to our mind is cut-and-choose
technique [42], a leading technique used to convert Yao’s
garbled circuit [69] to be maliciously secure: in our scenarios,
we need a method to pinpoint the server’s malicious behavior,
while the insight behind the cut-and-choose technique is
that if a malicious generator (which takes responsible for
constructing garbled circuits for computing a function, such
as a server) constructs incorrect garbled circuits, the evaluator
(which evaluates the garbled circuits to obtain outputs, such

as a client) would detect the malicious behavior with high
probability. We now provide more details of batched cut-and-
choose (that can amortize the cost across many executions
of the same protocol): the generator first constructs many
garbled circuits and sends them to the evaluator, then the
evaluator asks the generator to open some of the garbled
circuits (e.g., revealing the decryption keys corresponding the
chosen garbled circuits) for checking the correctness of these
garbled circuits (meaning that the circuit indeed computes
the expected function). If all opened circuits are correctly
constructed, the remaining circuits are randomly grouped into
various buckets of a specific size, and all garbled circuits in
the same bucket are evaluated with the same inputs from
two parties. As a result, the evaluator would identify the
malicious behavior (by checking the construction correctness
of opened circuits and the result consistency of all copies in the
same bucket) with high probability if the generator constructs
incorrect garbled circuits.

However, the cut-and-choose strategy cannot be directly
applied to compile the hybrid 2PC-based inference protocol
(which typically utilizes additive secret sharing to connect
two different cryptographic protocols such as HE and GC) to
a maliciously secure one. The reasons for that are multiple:
First, the cut-and-choose technique for GC only ensures the
correctness (meaning that the garbled circuit is correctly
constructed for computing the expected function). However,
in our case, we need to verify the server’s inputs (not
the produced garbled circuits) which the cut-and-choose
technique itself cannot achieve. Second, the cut-and-choose
technique directly opens the generated circuits for checking
correctness because the garbled circuits themselves do not
relate to specific inputs (if they are never used for evaluation),
and therefore can be opened publicly without sacrificing the
privacy of both parties’ inputs. However, in our scenarios, we
customize the mix-and-check method to convert semi-honest
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inference protocols into maliciously secure counterparts,
while the underlying hybrid 2PC-based inference protocols
generally do not have the structure that can be directly opened
for checking correctness without sacrificing input privacy.
Key Insight. Fortunately, inspired by the cut-and-choose
technique, we propose a novel technique named mix-and-
check, which forms our technical foundation, and allows us
to overcome all challenges above. Our idea is to let the client
mix a set of public samples (imitating the evaluator’s choice
of randomly opening some garbled circuits) together with the
samples to be queried, and use them as inputs for executing
privacy-preserving inference (R3). If the client observes any
inconsistency (e.g., the outputs of these public data records
do not equal to their expected outputs, or inconsistent results
are observed across some of the copies), we detect that the
server does not honestly use a high-quality model or the server
does not follow the specified protocol. These public samples
are used to verify the model accuracy (R1) and computation
correctness (R2) at the same time in a novel fashion.

B. Overview of Fusion

Based on our newly proposed mix-and-check method, we
design a new maliciously secure inference protocol, Fusion.
We assume that before the server and client run Fusion, the
server trains a model and uses it to provide the inference
services. As shown in Figure 2, Fusion works as follows:

1) Mixed Dataset Preparation. The client locally prepares
a mixed dataset (with public samples, and the samples to
be queried) and utilizes the mixed dataset as input for the
privacy-preserving inference computations.

2) Privacy-Preserving Inference Execution. The server
and the client jointly perform the semi-honest privacy-
preserving inference protocols, and the inference results
are only revealed to the clients.

3) Model Accuracy and Computation Correctness Veri-
fication. The client verifies the model accuracy on public
samples, and computation correctness through the consis-
tency check of inference results for all copies of every
query sample. The client accepts the inference results if
the above two checks pass.

C. Detailed Design of Fusion

We summarize the maliciously secure inference protocol
ΠFusion in Figure 3 and describe the process in detail as
follows.
(I) Mixed Dataset Preparation. In this phase, the client
locally prepares the mixed dataset. To that end, the client
first selects R query samples, duplicates B copies of every
query samples (in total, there are R ∗B copies), and prepares
T public samples for future inference computations. Next, the
client uses a randomly chosen permutation to shuffle all public
samples and copies of all query samples.

The random shuffle of the query samples and public samples
is easy to design and implement, and therefore, in the follow-
ing, we would like to discuss how to select optimal B and T .
Particularly, we have two requirements. First, the server should

not successfully trick the client into believing that the incorrect
or low-quality results are correctly produced by a high-quality
model. The statistical security parameter is denoted by λ. The
security requirement is to guarantee that the server succeeds in
cheating with a probability (which depends on specific R, B,
and T ) at most 2−λ. We denote this requirement as security
requirement. Second, in order to achieve the best efficiency,
the goal of this phase is to pick the concrete numbers of
B and T (given a specific R) that minimize the cost per
query sample while satisfying the security requirement. We
denote this requirement as the cost requirement. Specifically,
computation and communication costs per query sample is
proportional to the number of public samples T and the
number of copies B for each query sample. As such, we have
to solve a parameter optimization problem that satisfies the
security requirement meanwhile meeting the cost requirement.

We are now starting with the security requirement. The
server can succeed in cheating the client when (1) the server
passes the accuracy check of public samples: accuracy is
calculated based on the T public samples; and (2) the server
also passes the consistency check of query samples: the
inference results of all copies for every query sample are
consistent and the inference results of some query samples
are incorrect (produced by a low-quality model or incorrect
inference computations). Without loss of generality, we further
define those two types of passes mathematically:

• Accuracy Check of Public Samples: To simplify the
problem, we assume that the server knows T and B.
Assume that the server attempts to corrupt i query sam-
ples by providing iB incorrect-but-consistent inference
results for all copies of every query sample. If the server
attempts to pass the check of model accuracy (accuracy
check of public samples), it should use the high-quality
model as input for the T public samples. Let ET denote
the event in which the server uses a high-quality model
to correctly perform the inference computations on all T
public samples. As such, we have the probability Pr[ET ]
that event ET happens:

Pr[ET ] =

(
RB + T − iB

T

)
(
RB + T

T

)
=

(RB + T − iB)!(RB)!

(RB − iB)!(RB + T )!
.

(1)

• Consistency Check of Query Samples: Let EB denote the
event in which the iB incorrect inference results chosen
by the server are exactly the incorrect-but-consistent
results for i query samples. There are (RB)! ways to
permute the RB query samples. Again, if the server
attempts to cheat the client successfully, it should provide
incorrect-but-consistent inference results for iB copies of
the i query samples, and use the high-quality model to
perform correct inference computations for the remaining
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Input: The server inputs a model M for a specific inference task, the client inputs R query samples X = (x1, · · · , xR)
and T public samples {(x∗1, y∗1), · · · , (x∗T , y∗T )}, and an accuracy threshold δ is set.
Output: The inference results M(x′i) (i ∈ {1, · · · , RB + T}).

1) Mixed Dataset Preparation (only the client).
a) Searches optimal (B, T ) that minimize cost(B, T,R) = RB+T

R by using the search protocol ΠSearch (Figure 4).
b) Duplicates B copies for each query sample to obtain {(x1

1, · · · , xB1 ), · · · , (x1
R, · · · , xBR)}, uses a random permu-

tation π to mix them together with (x∗1, · · · , x∗T ), and finally obtains a mixed dataset X′ = (x′1, · · · , x′RB+T ).
2) Privacy-Preserving Inference Execution.

Using {x′1, · · · , x′RB+T } and M as inputs respectively, the client and the server jointly invoke the semi-honest
inference protocol and reveal the computation results M(x′i)(i ∈ {1, · · · , RB + T}) to the client.

3) Model Accuracy and Computation Correctness Verification (only the client).
a) For i ∈ {1, · · · , T}, if M(x∗i ) = y∗i , sets yi = 1. Calculates the model accuracy η as follows.

η =

∑
yi
T

.

If η<δ, the client aborts.
b) Verifies the computation correctness by checking whether {M(x1

i ), · · · ,M(xBi )}(i ∈ {1, · · · , R}) are all the
same. If there is any inconsistency, the client aborts.

Fig. 3: Protocol ΠFusion for batched secure inference.

samples. Similarly, the probability Pr[EB ] that event EB
happens is as follows:

Pr[EB ] =

(
R

i

)
(iB)!(RB − iB)!

(RB)!
. (2)

Given that the server can succeed in cheating when it can
pass both accuracy check of public samples and consistency
check of query samples at the same time, combining Equa-
tion 1 and Equation 2, the probability Prsuccess that the server
succeeds in cheating is as follows:

Prsuccess = Pr[ET ∧ EB ]

= Pr[ET ]× Pr[EB ]

=

(
R

i

)(
RB + T

iB

)−1

.

(3)

As long as T ≥ B, we have the following equation (which
is proved in §V):(

R

i

)(
RB + T

iB

)−1

≤ R
(
RB + T

B

)−1

The security requirement states that Prsuccess should be no
more than 2−λ for every choice of i by the server and of R,
B, and T by the client.

On the basis of satisfying the security requirement, another
goal is to find the optimal B and T that meet the cost require-
ment (e.g., leading to the lowest amortized cost per query sam-
ple). We denote a cost function cost(B, T,R) = RB+T

R which
denotes the amortized cost per query sample. Specifically,
the parameter optimization problem must ensure the security
constraint Prsuccess ≤ 2−λ, and should try to minimize the
cost function. We additionally set a lower bound β of the

number of public samples for ensuring the reliability of the
accuracy check of public samples. Therefore, the parameter
optimization problem can be expressed as follows.

arg min
B,T

RB + T

R
, (4)

subject to
T ≥ β, (5)

Prsuccess ≤ 2−λ. (6)

To find the optimal B and R that satisfy the security require-
ment with minimized amortized cost, we design a search algo-
rithm (shown in Figure 4) based on the probability constraint
and cost function. For a given R, we search for a pair (B, T )
that minimizes the cost function cost(B, T,R) = RB+T

R while
satisfying the security requirement (e.g., Prsuccess ≤ 2−λ).
Specifically, for every choice of B ranging from 2 to λ, we
search for T for a given B until we find the smallest T that
satisfies the security requirement (the amortized cost decreases
as T decreases). We continue to explore and update the optimal
pair (B∗, T ∗) with the current pair (B, T ) if the current
pair saves more of the amortized cost (according to the cost
function) than the optimal pair. Finally, we obtain the optimal
(B, T ) that minimizes the amortized cost while satisfying the
security requirement when the protocol terminates.

(II) Privacy-Preserving Inference Execution. In this phase,
the client consumes inference services provided by the server
by feeding the privately mixed dataset as its input. The
server and the client jointly perform the secure inference
computations using the known semi-honest privacy-preserving
inference protocols (e.g., Cheetah, CRYPTFLOW2, etc). For
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Input: R, λ.
Output: (B∗, T ∗).

For B from 2 to λ:
1) For T from min(β,B) to +∞, find the smallest T that

satisfies Prsuccess ≤ 2−λ.
2) If cost(B, T,R) < cost(B∗, T ∗, R), set T ∗ = T ,

B∗ = B.

Output (B∗, T ∗) pair that minimizes the amortized cost
function.

Fig. 4: Protocol ΠSearch for searching optimized B and T .

every sample in the mixed dataset, the semi-honest 2PC-
based inference protocol is invoked to obtain the inference
result. Finally, the inference results on all samples in the
mixed dataset are only revealed to the client. At the end
of this phase, the correctness of the inference results is not
guaranteed and will be checked in the next phase. Please note
that Fusion provides flexibility in choosing the 2PC-based
privacy-preserving inference protocols. Given those are known
protocols, we omitted the details for brevity.

(III) Model Accuracy and Computation Correctness Ver-
ification. When obtaining inference results on the mixed
dataset, the client checks the model accuracy and computation
correctness. Particularly, the model accuracy η is defined as
the number of correct inferences on T public samples over
T . When η is greater than a threshold (e.g., 0.95), then
model accuracy is passed. Similarly, the client verifies the
computation correctness by checking the consistency of the
inference results on B copies of each query sample. If any
of the B copies of a query sample are inconsistent, it is
considered that the server attempted to deceive the client
by giving incorrect inference results. The client accepts the
inference results if both checks pass, otherwise, it aborts.

V. SECURITY ANALYSIS

In this section, we give the security analysis of Fusion. In
particular, we denote our protocol ΠFusion.

Theorem 1: Assuming the existence of Πsemi
PPML that se-

curely achieves inference functionality F semi
PPML under the

semi-honest security, the protocol ΠFusion for executing
secure inference securely achieves the ideal functionality
FFusion (with abort) against a semi-honest client and a
malicious server in the F semi

PPML-hybrid model.

We prove Fusion is secure against a semi-honest client and a
malicious server in the ideal or real simulation paradigm where
the view in both the ideal and real worlds are indistinguishable.
Hence, we need to prove that there exists a simulator in the
ideal world that can simulate a view that is indistinguishable
from the view in the real world for the adversary who corrupts
either the client or the server.

Compromised Client (CC): We first consider the case that the
client is corrupted by a semi-honest adversary. As described
in Definition 1, we have to prove that there exists a simulator
SimC that can simulate the view that is indistinguishable from
the view in the real world for the adversary. Since the client is
semi-honest and acts the identical way as the client in F semi

PPML

except for additional local checks, there exists a simulator
SimC that can simulate the indistinguishable view by invoking
the simulator of F semi

PPML.

Compromised Server (CS): We then proceed to the case that
the server is corrupted by a malicious adversary and construct
a simulator SimS . When the server is corrupted by a malicious
adversary who can deviate from the protocol, the final output
of the client may be incorrect and cause abort in both worlds.
Specifically, we construct a simulator SimS that simulates the
view in the ideal world. We will show that the view in the ideal
world is statistically indistinguishable from the view in the real
world. In step 2 of ΠFusion (Figure 3), we let simulator SimS
invoke the simulator of F semi

PPML and output whatever it outputs.
Specifically, these hybrid inference protocols use additive
sharing to connect two layers and the intermediate results that
the corrupted server obtains are random secret shares that can
be simulated by picking uniformly random values. Next in
step 3 of ΠFusion, the simulator SimS works as follows.
(I) CS-Case 1: If the adversary does not cheat throughout the
protocol, there are two probable results, i.e., (1) the model
accuracy fulfills the requirement and the simulator will not
send abort to the functionality, and (2) the model accuracy
does not meet the requirement and the simulator will send
abort to the functionality at the end of the protocol execution.
The simulator is given the corrupted party’s input [40] and it
can check the model accuracy, mirroring the behavior of the
client. If the model accuracy does not satisfy the threshold,
the simulator will send abort to the functionality while in the
real world the client rejects the results and aborts. If the model
accuracy satisfies the threshold, the functionality will not abort
and sends inference results to the client while in the real world
the client accepts the results. The view in both the ideal and
the real worlds is identical.
(II) CS-Case 2: If the adversary cheats by using inconsistent
model parameters for multiple query samples or deviating
from the protocol, the simulator will detect and send abort
to the functionality. In the real world, if the server cheats
as above, it will be caught with overwhelming probability.
The adversary can cheat successfully if all copies of the
same query sample obtain incorrect-but-consistent inference
results. The mix-and-check method ensures that the cheating
probability can be negligibly small when appropriately
choosing the parameters B and T .

We begin by defining the following mix-and-check game,
which is equivalent to our protocol ΠFusion (Figure 3).
The server wins the game if it chooses some of the query
samples and provides incorrect inference results for them
without being caught by the client. We need to prove that
the probability of the server winning the game is negligible,
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that is, the server cannot distinguish every two samples in
the mixed dataset. If the game’s output is 1, the malicious
server wins the game and cheats the client successfully. The
probability Prsuccess that the server succeeds in cheating
equals Pr[Game(S, C, R,B, T ) = 1].

Definition 2: The probability that the server S wins the
game is negligible by choosing appropriate R, B, and T .

The game Game(S, C, R,B, T ) proceeds as follows. (i) The
client C prepares the mixed dataset containing RB+T samples
and uses them as inputs for privacy-preserving inference com-
putations. (ii) The server S selects iB samples (i is the number
of query samples S chooses to fool) in the mixed dataset
and returns incorrect inference results for each of them. (iii)
The inference results for the remaining samples are computed
correctly using the high-quality model. The output of the game
is 1 if there are i query samples such that inference results
for each of them and corresponding copies are incorrect-but-
consistent, while inference results for remaining R − i query
samples and their copies are obtained by correctly performing
the inference computations using the high-quality model.

Claim 1: If T ≥ B, then for every adversary S, it holds that

Pr[Game(S, C, R,B, T ) = 1] ≤ R
(
RB + T

B

)−1

.

We need to show that for every 1 ≤ i ≤ R,(
R

i

)(
RB + T

iB

)−1

≤ R
(
RB + T

B

)−1

. (7)

At first, it can be observed that when i = 1, the left side
of the inequality equals the right side, and thus the equation
holds. Next, assume that i ≥ 2, it suffices to show that:(
R

i

)(
RB + T

iB

)−1

≤
(
RB + T

B

)−1

.

It is equivalent to proving that:(
R

i

)
(iB)!(RB + T − iB)!

(RB + T )!
≤ B!(RB + T −B)!

(RB + T )!
,

which can be represented as:(
R

i

)
(iB)!

B!
≤ (RB + T −B)!

(RB + T − iB)!
.

By multiplying both sides with 1
(iB−B)! the above inequality

can be transferred to(
R

i

)(
iB

iB −B

)
≤
(
RB + T −B
iB −B

)
.

Considering the assumption that T ≥ B and thus(
RB

iB −B

)
≤
(
RB + T −B
iB −B

)
, it suffices to prove that(

R

i

)(
iB

iB −B

)
≤
(

RB

iB −B

)
. (8)

To prove that the above Equation 8 holds, we can consider
the both sides of the inequality as following: The left side

(
R

i

)(
iB

iB −B

)
can represent the process: choosing i query

samples among R query samples, then choosing iB − B
samples from iB copies of the selected i query samples, and
using false model parameters to provide inference results for

the iB −B samples. The right side
(

RB

iB −B

)
can represent

the process: choosing iB − B samples from RB samples.
The above two processes both end with choosing iB − B
samples out of RB samples. Since there is no restriction on
the selection of the right process, the number of choices in the
right process is strictly larger than that in the left process. It
is sufficient to conclude that the inequality Equation 8 holds.

Claim 2: In real execution, if the parameter B and T are
properly chosen as in ΠSearch, then the client aborts with
probability at least 2−λ.

When B and T are properly chosen as in ΠSearch, it

ensures that R
(
RB + T

B

)−1

≤ 2−λ, then the probability

Pr[Game(S, C, R,B, T ) = 1] ≤ 2−λ. That is, if the server
cheats in the real protocol, the client will detect and abort
with probability at least 1 − 2−λ, while the simulator will
definitely detect the server’s cheating behavior and abort in
the ideal world. Thus, the view in both the ideal and real
worlds is statistically close.

To conclude, in all cases, the view in both the ideal and real
worlds is computationally indistinguishable. Thus, the protocol
ΠFusion (Figure 3) securely realizes the ideal functionality in
the F semi

PPML-hybrid model against the malicious server. This
completes the proof.

VI. EVALUATION

In this section, we test Fusion using multiple experiments.
In particular, we first explain the experimental setup (§VI-A),
followed by the experiment results (§VI-B).

A. Experimental Setup.

Datasets. In our study, we used 7 different datasets, and we
now explain each of them in greater details:

• TIMIT [15] contains speech data of English recordings
from 630 speakers for the development of automatic
speech recognition systems.

• MNIST [35] is a commonly used dataset that contains
(28×28) images of handwritten digits between 0 and 9.

• CIFAR-10 [33] is a standardized consisting of 60,000
(32×32) color images including 10 classes, e.g., bird,
automobile, truck, etc.

• BC-TCGA [66] is gene expression data and consists of
17,814 genes and 590 samples (including 61 normal
tissue samples and 529 breast cancer tissue samples).

• GSE2034 [66] is gene expression profiles and includes
12,634 genes and 286 breast cancer samples (including
107 recurrence tumor samples and 179 no recurrence
samples).
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• PneumoniaMNIST [68] contains pediatric chest X-Ray
images, and the task is a binary-class classification of
pneumonia or normal.

• DermaMNIST [68] consists of 10,015 dermatoscopic
images of common pigmented skin lesions that are cate-
gorized as 7 different diseases.

Environment. We performed experiments on two servers
running Ubuntu 16.08 with 2.3 GHz Intel Xeon E5 Broadwell
Processors and 244GB RAM. We set the latency as 40 ms
which is higher than the latency between two Amazon EC2
machines located in Ohio and Virginia. Other experiments
were carried on Intel Xeon CPU E5-2630 v3 @ 2.40GHz with
128GB of RAM and Intel Xeon CPU E5-2680 v4 @ 2.40GHz
with 256GB of RAM. The bandwidth between the machines
were 382 MBps and 44 MBps, and the echo latency were 0.3
ms and 40 ms in the LAN and the WAN setting respectively.
Availability. Our implementation is publicly available on
GitHub: https://github.com/daisy611/Fusion.
Selection of Optimal T . Our Fusion requires a number of
public samples T to work. Therefore, before testing Fusion, we
would like to explore an optimized number of public samples.
To approximate an optimal T , we then performed experiments:
we first denote the model accuracy that is calculated on a large
test dataset as standard accuracy, and the accuracy obtained
on the T public samples as test accuracy. We test the test
accuracy of 50 group non-overlapping and uniformly dis-
tributed data on six different datasets (e.g., MNIST, CIFAR-10,
BC-TCGA, GSE2034, PneumoniaMNIST, and DermaMNIST)
for T = 80, 85, 90, 95, 100, 105, 110, 115, and 120. We
calculate the variance of test accuracy for different numbers
of public samples (by setting the standard accuracy as its
expected value) and show results in Figure 5. The empirical
results show that when T = 100 the variance is smallest on all
the six datasets. When T = 100, the test accuracy fluctuates
around 2% above and below the standard accuracy (which
is acceptable). Theoretically, based on the analysis in §IV-C,
we can notice that T is determined by the cost requirement
and lower bound of public samples. Since the cost per query
sample increases as T increases (when R and B are the same),
especially the smaller the R, the larger the cost per query sam-
ple. We therefore empirically selected T = 100 for trade-offs.

MNIST CIFAR-10 BC-TCGA GSE2034 PneumoniaMNIST DermaMNIST
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Fig. 5: The variance of test accuracy when the numbers of
public samples and datasets vary.

B. Experimental Results
Comparison with State-of-the-art LevioSA: We compare
Fusion with the state-of-the-art work maliciously secure neural
network inference scheme, i.e., LevioSA [18]. To compare Fu-
sion with LevioSA, we implemented Fusion using Cheetah, and
adopted the same settings as LevioSA: We employed the same
neural network framework as LevioSA, which consists of a
four-layer deep neural network (DNN) with three hidden, fully
connected layers with 2000 neurons, quadratic activations, and
the final layer is fully connected with 183 output neurons. We
trained the DNN model on the TIMIT dataset [15] as they
used. Since LevioSA counted the communication and runtime
of inference on 1,845 speech samples, in our experiments, we
also set the number of query samples as the same as theirs.
When R = 1, 845, we obtain that optimal parameters B = 5
and T = 100 (when setting β = 100) by invoking the search
protocol ΠSearch. Then we let the client prepare the mixed
dataset that contains totally 1, 845 ∗ 5 + 100 samples (1,845
query samples (each with 5 copies) and extra 100 speech
samples used as public samples). We ran experiments by using
the trained DNN model to perform inference computations on
the mixed dataset.

The experimental results of communication and runtime
between LevioSA and Fusion are shown in Figure 6. Our
results show that Fusion has 48.06× less runtime and uses
30.90× less communication compared to LevioSA.

Comm. (GiB) Runtime  (min)0

10

20

30

40

20.7

0.67

34.6

0.72

LevioSA 
Fusion

Fig. 6: Comparison between LevioSA and Fusion.

Evaluation with Different Underlying Building Blocks:
The performances of Fusion depend on the efficiency of the
underlying semi-honest inference protocol (more efficient
underlying building block generally improves the performance
of Fusion), and the choices of R, B, and T (e.g., when T is
fixed, the lower B is, the lower the amortized cost of Fusion
is). As such, to test the performance of Fusion, we change the
underlying building blocks (e.g., ABY [13], DELPHI [46],
CRYPTFLOW2 (SCIHE) [59], and Cheetah [21]), and select
different R, B, and T . In particular, since the optimal
choice of B to minimize amortized cost is influenced by the
number of query samples (e.g., see Equation 6), we need
to select various R that lead to different B. To that end,
for each B ranging from eight to three, we look for the
corresponding R and T that satisfy the security requirement
Prsuccess ≤ 2−λ. We set the statistical parameter λ = 40
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and empirically choose the least number of query samples
β = 100. Specifically, for each B from eight to three, we
search for the least R, and for simplicity, we select R from
2x (x ∈ Z). The search results are shown in Table I. Having
decided (R,B, T ), we then conducted experiments on two
datasets (MNIST and CIFAR-10) using multiple building
blocks. Similarly, we used the four-layer DNN network, and
implemented Fusion with the settings in [37] to train models
on MNIST and CIFAR-10 datasets respectively. We then used
those models to perform inference computations in different
network settings (i.e., LAN and WAN).

TABLE I: The values of (R, T ) with different B.

B 8 7 6 5 4 3

(R, T) (23, 100) (25, 100) (27, 100) (29, 100) (213, 100) (219, 100)

The total communication and runtime of Fusion when
using different R (resulting in different B) in the MNIST
and CIFAR-10 datasets are shown in Table II and Table III
respectively. It can be observed that Fusion can achieve
the best efficiency when using Cheetah [21] as the building
block, while when Fusion uses ABY [13] and DELPHI [46],
the performance is not as good as that of using others.
For example, the Cheetah-based Fusion can save around
10× communication, and is roughly 2.5× and 4.8× faster
(in the LAN and WAN respectively) compared with those
using CRYPTFLOW2 on both the MNIST and CIFAR-10
datasets. When comparing the performance of DELPHI-based
Fusion, Cheetah-based Fusion uses more than 105× less
communication and is about 22× faster and 37× faster (in the
LAN and WAN settings respectively) on these two datasets.
Comparison with Semi-honest Solutions: We would
like to understand whether Fusion can be more efficient
when compared with semi-honest inference protocols (i.e.,
ABY [13], DELPHI [46], and CRYPTFLOW2 (SCIHE) [59]).
To that end, we conducted experiments using the DNN
network on both MNIST and CIFAR-10 datasets and both
network settings (the LAN and WAN settings). We change R
as 23, 25, 27, 29, 213, and 219, and the corresponding B for
each R ranges from 8 to 3 (with fixed T = 100).

In Table IV, we compare the communication and runtime
per query sample of Fusion with those of ABY [13], DEL-
PHI [46], and CRYPTFLOW2 [59]. Note that the amortized cost
of Fusion decreases as B decreases, and greater performance
improvements will be achieved. The experimental results im-
ply that Fusion is more efficient than ABY, DELPHI, and
CRYPTFLOW2 in terms of communication when R ≥ 25, B ≤
7, and T = 100. For instance, when using the MNIST dataset
and setting R = 25, B = 7, T = 100, the communication cost
of Fusion is 14.13×, 10.61×, 1.04× lower than those of ABY,
DELPHI, CRYPTFLOW2, respectively. When R ≥ 25 and cor-
responding B ≤ 7, Fusion is faster than ABY and DELPHI in
both the LAN and WAN settings. For example, when R = 29,
B = 5, and T = 100, Fusion is about 10.52× and 7.37×
faster than ABY and DELPHI respectively on the CIFAR-10

dataset in the WAN setting. Fusion uses about 2.62× less
communication, and is 1.25× faster than CRYPTFLOW2 on
MNIST dataset in the WAN setting when R = 213 and B = 4.

Evaluation on Medical Datasets: Since medical data is high-
sensitive and has strong privacy preservation requirements,
medical data analysis is one of the most important applications
of secure inference. To show the applicability of Fusion in
real-world medical datasets, we evaluated experiments on four
publicly available healthcare datasets. We used the same four-
layer DNN network with settings [37] to train these models
and perform inference. Table V shows the experimental results
on four medical datasets BC-TCGA [66], GSE2034 [66],
PneumoniaMNIST [68], and DermaMNIST [68]. Take the
BC-TCGA dataset as an example, it consists of 17,814 genes
(features), and costs 14.579 ms and 0.469 MiB respectively
in maliciously secure inference per query sample. As such,
the runtime cost and communication cost are acceptable.

Evaluation on Practical DNN ResNet50: To demonstrate
the scalability of Fusion, we also conducted evaluations of
maliciously secure inference on ImageNet-scale deep neural
networks (DNN) ResNet50 [19]. We trained a model on
ResNet50 using an image dataset [1], and used it to perform
inference computation. Since R affects the amortized cost of
Fusion, we choose R as 23, 25, 27, and 29, and the corre-
sponding number of copies for each query sample varies from
8 to 5 (when T = 100). We also conducted experiments by
using the semi-honest CRYPTFLOW2 protocol and compared it
with Fusion. Table VI shows the communication and runtime
per query sample. It can be observed that when R ≥ 25 and
corresponding B ≤ 7, Fusion is more efficient than the semi-
honest CRYPTFLOW2 (SCIHE) in terms of communication. For
example, when R = 29 and B = 5, Fusion costs 1.30×
runtime and is 1.18× faster in the LAN setting and the WAN
setting respectively, and has 2.64× less communication than
that of CRYPTFLOW2 (SCIHE).

VII. DISCUSSION

In MLaaS, a semi-honest client who correctly follows the
protocol still has some other approaches to steal the server’s
model, and the black-box model extraction attack [62], [53],
[5], [25] is one of them. In this type of attack, the client
with black-box access keeps querying the model to extract
an equivalent ML model. Since this type of attack is getting
more attention recently, and the threat model of this attack
is consistent with ours (i.e., the client is semi-honest), in this
section, we would like to discuss the scalability of Fusion
(e.g., how hard or easy to integrate prior defenses into Fusion)
in defending against model extraction attacks. As such, the
researchers who would like to use our Fusion and also have
the requirements of defending against model extraction attacks
can benefit from our paper in a timely manner.

While it is true that there are already numerous defense mea-
sures that can work against model extraction attacks (e.g., [26],
[65], [67]), intuitively, we can directly use any of those off-
the-shelf solutions. However, we would like to note there
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TABLE II: Comparison of Fusion instantiated using ABY [13], DELPHI [46], CRYPTFLOW2 (SCIHE) [59], and Cheetah [21]
on the MNIST dataset in both LAN and WAN settings. We use Comm. to denote communication and is in MiB, and runtime
is in seconds.

# of Samples
(MNIST)

ABY DELPHI CRYPTFLOW2 Cheetah

Comm. LAN WAN Comm. LAN WAN Comm. LAN WAN Comm. LAN WAN

164 (23 * 8 + 100) 27.4949 0.1211 0.3843 20.6144 0.0862 0.2583 1.9984 0.0101 0.0333 0.1914 0.0039 0.0068
324 (25 * 7 + 100) 54.4965 0.2407 0.7386 40.7033 0.1711 0.5128 3.9787 0.0201 0.0676 0.3782 0.0073 0.0136
868 (27 * 6 + 100) 146.0627 0.6393 1.9728 107.6844 0.4619 1.3667 10.5904 0.0541 0.1808 1.0133 0.0198 0.0363
2,660 (29 * 5 + 100) 441.7787 1.9620 5.9044 335.8445 1.4615 4.2086 32.6136 0.1651 0.5529 3.1048 0.0605 0.1105
32,868 (213 * 4 + 100) 5,478.9059 24.3705 73.9667 4,124.8922 18.1847 51.7762 400.9943 2.0339 6.7420 38.3905 0.7429 1.3678
1,572,964 (219 * 3 + 100) 262,641.3367 1,166.8446 3,607.8405 197,253.8050 887.0325 2,475.5588 19,340.8286 98.3081 327.7937 1,832.7539 35.7586 65.8347

TABLE III: Comparison of Fusion instantiated using ABY, DELPHI, CRYPTFLOW2, and Cheetah on the CIFAR-10 dataset.

# of Samples
(CIFAR-10)

ABY DELPHI CRYPTFLOW2 Cheetah

Comm. LAN WAN Comm. LAN WAN Comm. LAN WAN Comm. LAN WAN

164 (23 * 8 + 100) 33.1801 0.1405 0.4155 25.4172 0.1016 0.2982 2.4810 0.0121 0.0387 0.2350 0.0046 0.0078
324 (25 * 7 + 100) 65.5365 0.2776 0.8237 50.3487 0.1994 0.5907 4.9215 0.0239 0.0768 0.4637 0.0091 0.0154
868 (27 * 6 + 100) 175.8464 0.7456 2.1523 134.9016 0.5372 1.5797 13.1828 0.0639 0.2051 1.2436 0.0243 0.0414
2,660 (29 * 5 + 100) 537.8853 2.2732 6.8505 409.4743 1.6361 4.8425 40.0124 0.1961 0.6345 3.8084 0.0745 0.1261
32,868 (213 * 4 + 100) 6,659.7936 28.1152 83.2735 5,140.3375 20.1743 59.4230 497.8308 2.4246 7.7918 47.0841 0.9203 1.5706
1,572,964 (219 * 3 + 100) 318,618.4824 1,337.5954 4,075.8356 245,896.7141 971.4180 2,854.9131 23,768.0474 115.9847 374.3836 2,256.4829 44.1961 75.1037

TABLE IV: Performance of Cheetah-based Fusion (with dif-
ferent (R,B, T )), and comparison with semi-honest inference
protocols. Comm. is in KiB, and runtime is in µs.

Scheme MNIST CIFAR-10

Comm. LAN WAN Comm. LAN WAN

Fu
si

on

(23, 8, 100) 24.499 487.500 850.000 30.080 575.000 975.000
(25, 7, 100) 12.102 228.125 425.000 14.838 284.375 481.250
(27, 6, 100) 8.106 154.688 283.594 9.949 189.844 323.438
(29, 5, 100) 6.210 118.164 215.820 7.617 145.508 246.289

(213, 4, 100) 4.799 90.686 166.968 5.886 112.341 191.724
(219, 3, 100) 3.580 68.204 125.570 4.407 84.297 143.249

CRYPTFLOW2 [59] 12.591 62.499 208.392 15.473 73.736 238.012
DELPHI [46] 128.412 563.924 1573.818 160.079 617.572 1814.989

ABY [13] 170.980 741.813 2293.657 207.421 850.366 2591.182

TABLE V: Performance on medical datasets. It shows amor-
tized communication (MiB) and runtime (ms) per query sam-
ple when R = 213, B = 4, and T = 100.

Dataset Comm. LAN WAN

BC-TCGA [66] 0.469 8.710 14.579
GSE2034 [66] 0.297 6.628 11.342
PneumoniaMNIST [68] 0.694 26.864 44.931
DermaMNIST [68] 0.034 2.353 3.928

should be at least two criteria that need to be fulfilled. First,
Fusion can verify model accuracy (R1), computation correct-
ness (R2), and preserve privacy (R3). The integrated solution
should not introduce weaknesses to break those guarantees.
Second, Fusion itself is cryptographic-friendly, and as such,
we should not introduce heavy cryptographic-based solutions
for performance concerns. Fortunately, we adopt a passive
defense method [37] that satisfies all those design criteria by

TABLE VI: Performance on ResNet50 and ImageNet-scale
benchmarks. It shows communication cost (GiB) and runtime
(minutes) per query sample with different (R,B, T ).

Scheme Comm. LAN WAN

Fusion (23, 8, 100) 39.921 20.410 34.241
Fusion (25, 7, 100) 19.714 10.082 16.912
Fusion (27, 6, 100) 13.205 6.750 11.326
Fusion (29, 5, 100) 10.117 5.173 8.678

CRYPTFLOW2 [59] (SCIHE) 26.742 3.988 10.204
CRYPTFLOW2 [59] (SCIOT) 281.497 4.795 39.466

perturbing the model’s activation layer to change the output
probabilities. As the solution directly makes changes to the
neural network, it will not introduce extra overhead on Fusion,
and allows Fusion to achieve the three requirements even
when the solution is adopted. Consequently, by integrating
the solution, Fusion is defense-effective against the model
extraction attacks (e.g., the accuracy of the client’s stolen
model drops by up to 42.7% compared with when not using
defense) meanwhile maintaining the utility (e.g., reducing the
model accuracy with no defense by 1.75%). Moreover, the
presence of defense only causes low extra costs, accounting
for less than 1% of the overall runtime and communication.
We have detailed design and evaluation in Appendix §A for
readers of interest.

VIII. RELATED WORK

This paper studies secure inference protocols. We categorize
existing works into outsourcing scenarios (§VIII-A) and non-
outsourcing scenarios (§VIII-B). Since Fusion works in non-
outsourcing scenarios, we particularly focus on the later case.
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A. Secure Inference Protocols in Outsourcing Scenarios

In an outsourcing scenario, some servers are responsible
for performing the secure inference protocol, and the client
does not participate in the inference computations. Typically,
the client provides query samples to and receives inference
results from the servers such that the servers cannot know both
the client’s inputs and inference results. Based on the adopted
threat model, the secure inference protocols in the outsourcing
scenario can further have two types:

Semi-honest Security: ABY 1.0&2.0 [13], [55] are mixed 2PC
protocols that consider the semi-honest security and provide
secure conversions between Arithmetic (A), Boolean, and Yao
(Y) sharing. Some schemes [28], [7] adopt HE to perform
secure outsourced neural network inference and make efforts
to improve the performance.

Malicious Security in Honest Majority Setting: Some
schemes [47], [57], [56], [11], [32] achieve honest-majority
malicious security (i.e., the number of corrupted parties is less
than half of the total number of computing parties involved in
MPC). These protocols need three [47], [57], [56], [32] or
four [11] non-colluding servers to perform secure inference
protocols. The aim of these schemes is to achieve better effi-
ciency by various means (e.g., by enabling the communication
of dot products in the online phase is independent of the
vector size [56]) or achieve stronger security (e.g., output
delivery guarantee by using the property of honest-majority
setting [32], [11]).

The major difference between Fusion and those schemes
is the scenarios: those schemes all work in the outsourcing
scenario, while Fusion work in the non-outsourcing scenario.
Moreover, our Fusion additionally supports a stronger
security level (i.e., malicious security in the dishonest
majority). Moreover, our scheme can ensure the computation
correctness and verification of model accuracy in the presence
of a malicious server.

B. Secure Inference Protocols in Non-outsourcing Scenarios

In the non-outsourcing scenario, the client participates in
performing the 2PC-based secure inference protocol by inter-
acting with the server and finally obtains the inference results.
Similarly, there are also two types correspondingly:

Semi-honest Security: Due to the efficiency bottleneck, most
of the existing secure inference protocols [43], [30], [7], [60],
[46], [59], [58] consider semi-honest security (e.g., assuming
both the server and client honestly follow the protocol), and
focus on improving efficiency to enable practical applications.
Specifically, many solutions use a hybrid cryptographic proto-
col (e.g., adopting different cryptographic techniques for linear
and non-linear layers respectively) to achieve better efficiency.

Malicious Security: Recently, some works begin to recognize
the significance of security against a malicious server in
MLaaS, and try to present solutions for achieving computation
correctness in the presence of a malicious adversary.

TABLE VII: Comparison of Fusion with others. � represents
“semi-honest”. � represents “malicious security with honest
majority”. � represents “malicious security with dishonest
majority”.

Schemes Threa
t Model

Meth
odology

No Extra
Hardware

Non-outso
urci

ng?

R1.M
odel

Accu
racy

R2.Corre
ctn

ess

R3. Both
Priv

acy

Jiang et al. [28] � HE 3 7 7 3 3
Chen et.al. [7] � HE 3 7 7 3 3
ABY [13] � SS+GC 3 7 7 3 3
ABY2.0 [55] � SS 3 7 7 3 3
ABY3 [47] � SS+GC 3 7 7 3 3
Trident [57] � SS 3 7 7 3 3
Blaze [56] � SS 3 7 7 3 3
FantasticFour [11] � SS 3 7 7 3 3
SWIFT [32] � SS 3 7 7 3 3
MiniONN [43] � HE+GC+SS 3 3 7 3 3
GAZELLE [30] � HE+GC+SS 3 3 7 3 3
XONN [60] � GC+SS 3 3 7 3 3
DELPHI [46] � HE+GC+SS 3 3 7 3 3
SiRNN [58] � SS 3 3 7 3 3
CRYPTFLOW2 [59] � HE+SS+OT 3 3 7 3 3
Cheetah [21] � HE+SS+VOLE 3 3 7 3 3
Veriml [70] � ZK 3 3 3 3 7
zkcnn [44] � ZK 3 3 3 3 7
Mystique [64] � ZK 3 3 3 3 7
CRYPTFLOW [34] � SS 7 7 7 3 3
LevioSA [18] � SS 3 3 7 3 3

Fusion � Mix&Check 3 3 3 3 3

• ZK Proof-based Protocols: There are some
schemes [70], [44], [64] that adopt zero-knowledge
proofs to achieve verifiable inference computations.
Verifiable inference services based on ZK proofs allow
one party with a secret witness to prove some statement
(e.g., the inference results are correctly produced by the
expected model) without revealing private information.
Schemes based on ZK proofs have the advantage of being
publicly verifiable. It usually assumes, however, that the
client’s input is visible to the server. As a consequence,
it is unable to apply to scenarios where both model and
client’s inputs are required to be protected, while our
scheme preserves the privacy of both the server and
client’s inputs.

• TEE-based Protocols: CRYPTFLOW [34] presents a
novel technique, called Aramis, that takes any semi-
honest secure MPC protocol for computation and converts
it into a malicious secure MPC protocol by using hard-
ware Intel SGX. Our scheme is a purely cryptographic
protocol and does not require the trust in hardware.

• MPC-based Protocols: If there exists a malicious party
in 2PC computation, it definitely has to achieve malicious
security with the dishonest majority (meaning the number
of corrupted parties is greater than or equal to half of
the total number of parties involved in MPC). Naturally,
MPC protocols that consider malicious security in the
dishonest majority are relatively complicated problems
compared with those achieve malicious security in the
honest majority setting or semi-honest security. Since
the malicious security in the honest majority setting
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(a weaker security model) naturally bring dramatic
performance improvements and is generally used in an
outsourcing scenario, it is unfair to compare them [57],
[56], [11], [32] with Fusion which achieves malicious
security in the dishonest majority.

As shown in Table VII, our scheme is the only scheme
that satisfies all the three requirements (i.e., R1, R2 and R3)
that proposed in this paper at the same time, while other
works have their own different focuses. In particular, our work
considers the verification of the inputs (R1), and currently,
only a few works have considered it. When compared with
those works that fulfilled R1, our work does not use ZK proofs,
which is more computational friendly. We would like to note
that the most similar work to ours is LevioSA [18] which
achieves maliciously secure 2PC arithmetic computation in
the dishonest majority setting and applies it to neural network
classification. It proposes a passive-to-active oblivious linear
function evaluation (OLE) compiler by following the high-
level approach of IPS compiler [24], [41]. Different from
their work, our Fusion additionally achieves the verification
of model accuracy.

IX. CONCLUSION

We propose Fusion, which can achieve security require-
ments including privacy-preserving, verification of model ac-
curacy and computation correctness. Fusion can be used as
a general compiler by converting a semi-honest inference
protocol (e.g., Cheetah, DELPHI) into a maliciously secure
one and thus can benefit from the state-of-the-art efficient 2PC-
based inference scheme. Our evaluation shows that Fusion
is 48.06× faster and has 30.90× less communication than
LevioSA (the state-of-the-art maliciously secure inference pro-
tocol). Moreover, evaluation on the practical ImageNet-scale
ResNet50 model indicates that Fusion can be more efficient
than semi-honest inference protocols.
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[62] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
25th USENIX Security Symposium, USENIX Security 16, pages 601–
618. USENIX Association, 2016.

[63] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas,
Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis
Katsis, Rodney Michael Kinney, Yunyao Li, Ziyang Liu, William
Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan,
Zhihong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Nancy
Xin Ru Wang, Christopher Wilhelm, Boya Xie, Douglas M. Raymond,
Daniel S. Weld, Oren Etzioni, and Sebastian Kohlmeier. CORD-19: The
COVID-19 open research dataset. In Proceedings of the 1st Workshop
on NLP for COVID-19 at ACL 2020, Online, July 2020. Association for
Computational Linguistics.

[64] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao
Wang. Mystique: Efficient conversions for zero-knowledge proofs with
applications to machine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[65] Xun Xian, Mingyi Hong, and Jie Ding. A framework for understanding
model extraction attack and defense. arXiv preprint arXiv:2206.11480,
2022.

[66] Haozhe Xie, Jie Li, Tim Jatkoe, and Christos (2017) Hatzis. Gene
expression profiles of breast cancer. Mendeley Data, 2017.

[67] Haonan Yan, Xiaoguang Li, Hui Li, Jiamin Li, Wenhai Sun, and
Fenghua Li. Monitoring-based differential privacy mechanism against
query flooding-based model extraction attack. IEEE Transactions on
Dependable and Secure Computing, 2021.

[68] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian
Ke, Hanspeter Pfister, and Bingbing Ni. Medmnist v2: A large-scale
lightweight benchmark for 2d and 3d biomedical image classification.
arXiv preprint arXiv:2110.14795, 2021.

[69] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986),
pages 162–167. IEEE, 1986.

[70] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and
Bo Feng. Veriml: Enabling integrity assurances and fair payments for
machine learning as a service. IEEE Transactions on Parallel and
Distributed Systems, 32(10):2524–2540, 2021.

APPENDIX A

A. Defense against Model Extraction Attacks

Existing defense strategies [29], [27], [37], [9], [52], [38]
can be divided into two types, i.e., detecting anomalous queries
or analyzing query patterns [29], or using perturbation to make
it resilient to the model extraction attacks. The former type
makes strong assumptions on the attacker’s query distributions
and requires query pattern analysis on the client’s query sam-
ples. Since the query samples and the output labels (inference
results) are private to the server, it is tricky to defend against
the client by detecting the client’s query patterns [52] or adding
perturbation according to specific inference results [37]. The
latter type can be implemented by the server before the infer-
ence service, allowing it to collaborate with privacy-preserving
inference protocols without compromising the client’s input
privacy. These strategies, on the other hand, mitigate model
extraction attacks by sacrificing model accuracy, necessitating
a trade-off between model utility and defense effectiveness.

Since the query samples and the final inference results are
protected from the server in secure inference, the passive de-
fense methods, without requiring additional knowledge about
the client’s query samples or output labels, are well-compatible
with our scheme. We adopt a passive defense method proposed

in [37] because it mitigates the model extraction attacks by per-
turbing the server’s model network. As the attacker essentially
approximates the loss hypersurface to find parameters for the
stolen model with the minimum loss value, the defense method
leverages a new activation layer that manipulates the estimated
loss surface by adding a small controllable perturbation and
thus maximizes the loss of the stolen model while preserving
the accuracy of the original model. Specifically, this defense
method only perturbs the model’s final activation layer (e.g.,
softmax) that maps a vector to a number of probability values.

The Reverse Sigmoid perturbation r(yij) is as follows.

r(yij) ≈ β(s(γs−1(yij))− 1/2), (9)

where yij represents j-th dimension of probability vector yi for
sample xi, s(·) is a sigmoid function, γ is a positive dataset
and model specific convergence parameter, and β is a positive
magnitude parameter. The reverse sigmoid perturbation only
replaces the final layer. Then the final perturbed probability
value is calculated as follows.

ŷij = αi(yij − β(s(γs−1(yij))− 1/2)) (10)

where αi is a sum-to-1 normalizer for yi.

B. Security Requirement against Model Extraction Attacks

The goals of model extraction attacks can be divided into
two objectives, i.e., accuracy, which measures the extracted
model’s correctness on test samples, and fidelity, which mea-
sures the agreement between the extracted model and original
model on any point. We measure the goal of the client’s attack
by accuracy because it is natural that the clients steal the model
for use. Informally, the goal of the defense against the client’s
model extraction attacks is to reduce the accuracy of the stolen
model while maintaining the utility of the server’s defense
model. Formally, there are two metrics [52] to measure the
effectiveness of the defense.
• Non-replicability. The non-replicability is measured in

terms of the accuracy of the client’s stolen model. That
is, the accuracy of the client’s stolen model should be far
lower than that of the server’s model.

• Utility. The utility is measured in terms of the accuracy
of the server’s model. The defense method should have
little impact on the server’s model to maintain its utility.

To mitigate the model extraction attacks, the server locally
trains a defense model and adds perturbations before the secure
inference service starts. This method is well compatible with
the privacy-preserving inference protocol ΠFusion and can be
locally implemented by the server. The server’s model with de-
fense is trained using the specific strategy described in §A-A.
The server uses the defense model to provide inference service
while mitigating the client’s model extraction attacks.

C. Evaluation

Experiment Setup: Since the Fusion integrated with
a defense method can cause extra costs, we conducted
experiments to test how much costs the defense will bring
compared with those without defense. Specifically, we
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Fig. 7: The impacts of different settings on the performance is depicted in this figure. M and C represent MNIST and CIFAR-10
datasets, respectively. NA denotes no attack while WA denotes with attack. Similarly, ND and WD represent no defense and
with defense respectively. A1 and A2 represent attack 1 and attack 2, respectively.

modified the DNN network (in §VI-A) by integrating it with
the defense method (§A-A) and used it to train models (with
defense ability) on both two datasets (MNIST and CIFAR-10
datasets) respectively. Similarly, we also used the same
network without being changed (namely no defense ability)
to train models on the two datasets. Then we ran experiments
by using these trained models and Cheetah as the underlying
building block under different settings. To compare the
performance of Fusion thoroughly, we ran experiments with
extensive settings, i.e., the presence of the server’ defense,
the presence of the client’s attack, as well as different attack
methods (attack 1 [54] and attack 2 [5]). We change R as 23,
25, 27, 29, 213, and 219, and the corresponding B for each R
ranges from 8 to 3 (with fixed T = 100).

(I) The Integrated Defense Has Negligible Impacts on
Fusion. Figure 7 shows the communication and runtime under
different settings. First, we compare the performances of
Fusion with defense (e.g., using the defense models, denoted as
WD) with that without defense (e.g., using the trained models
with no defense, denoted as ND) to measure the impact of
the existence of defense. As Figure 7. (a) and (d) show, the
existence of defense brings very small extra costs when com-
pared to without defense. For example, when the total number
of samples is 1,572,964, the Fusion with defense increases
only 3.956/8.488 MiB communication and 0.0007/0.0006 s
runtime overhead compared to that without defense using
dataset MNIST and CIFAR-10 respectively, which is negligible.
The reason for this is that the defense method only changes
the final activation layer and adds very little computation

compared to the overall computation. Second, we compare
the performances of Fusion when there exist attacks (denoted
as WA) with when there is no attack (NA) to measure the
impact of the existence of attacks. As Figure 7. (b) and (e)
show, the existence of the client’s attacks does not affect the
running time and communication. Similarly, when the client
uses different attack approaches (e.g., attack 1 (A1) [54], and
attack 2 (A2) [5]), as shown in Figure 7. (b) and (e), the
running time and communication remain nearly the same.
The reason for this is that the client only exploits the attack
after receiving the inference results, so it has no effect on the
privacy-preserving inference computations.

(II) Fusion Is Defense-Effective against Model Extraction
Attacks. We would like to test the defense effectiveness
of Fusion against model extraction attacks. We conducted
experiments by letting the server use the models with defense
(WD) and no defense (ND), and the client perform two attack
approaches (i.e., attack 1 (A1) [54] and attack 2 (A2) [5])
respectively when the total numbers of query samples vary.
To test the non-replicability of Fusion, we tested the model
accuracy of the client’s stolen models.

As shown in Figure 8, the accuracy of the client’s stolen
models significantly decreases when the server used defense
compared with when there is no defense, indicating the non-
replicability of Fusion. In other words, Fusion’s defense is
effective on both two datasets and when the client performed
two different attacks. When using the MNIST dataset and the
numbers of total samples vary, if the server used the models
with defense, the accuracy of the client’s stolen models de-
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Fig. 8: Accuracy of the client’s stolen models when the server uses models with defense and with no defense, the client uses
different attack methods (A1 and A2), and the numbers of samples vary.

creases by 36.1-42.7% (A1), while the accuracy decreases by
33.1-39.8% (A2). For instance, when the number of samples
is 1,572,964, the accuracy of the client’s stolen model drops
from 95.81% (A1, ND), 96.25% (A2, ND) to 58.42% (A1,
WD), 63.15% (A2, WD), respectively. When using the CIFAR-
10 dataset and the total number of samples is 1,572,964, for
example, the accuracy of the client’s stolen model drops from
71.9% (A1, ND), 72.88% (A2, ND) to 40.62% (A1, WD),
48.63% (A2, WD), respectively.
(III) Fusion Maintains Utility When Integrated with the
Defense. To evaluate the utility of the server’s model with
defense, we tested the model accuracy of the models with
defense and with no defense on two datasets respectively. As
Figure 8 depicts, Fusion maintains the utility, e.g., the accuracy
of the server’s models with defense (labelled as Defense in
Figure 8) slightly decreases when compared with those with
no defense (No defense). For instance, when using the MNIST
and CIFAR-10 datasets, the model accuracy of the models with
defense is 96.78% and 75.34%, while that with no defense is
98.53% and 76.31%, respectively.
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