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Abstract—Ethereum smart contracts are automated decen-
tralized applications on the blockchain that describe the terms
of the agreement between buyers and sellers, reducing the
need for trusted intermediaries and arbitration. However, the
deployment of smart contracts introduces new attack vectors into
the cryptocurrency systems. In particular, programming flaws in
smart contracts have been already exploited to lead to enormous
financial loss. Hence, it is crucial to detect various vulnerability
types in contracts effectively and efficiently. Existing vulnerability
detection methods are limited in scope as they typically focus on
one or a very limited set of vulnerabilities. Also, extending them
to new vulnerability types requires costly re-design.

In this work, we develop ESCORT, a deep learning-based
vulnerability detection method that uses a common feature
extractor to learn generic bytecode semantics of smart contracts
and separate branches to learn the features of each vulner-
ability type. As a multi-label classifier, ESCORT can detect
multiple vulnerabilities of the contract at once. Compared to
prior detection methods, ESCORT can be easily extended to
new vulnerability types with limited data via transfer learning.
When a new vulnerability type emerges, ESCORT adds a new
branch to the trained feature extractor and trains it with limited
data. We evaluated ESCORT on a dataset of 3.61 million smart
contracts and demonstrate that it achieves an average F1 score
of 98% on six vulnerability types in initial training and yields
an average F1 score of 96% in transfer learning phase on five
additional vulnerability types. To the best of our knowledge,
ESCORT is the first deep learning-based framework that utilizes
transfer learning on new vulnerability types with minimal model
modification and re-training overhead. Compared with existing
non-ML tools, ESCORT can be applied to contracts of arbitrary
complexity and ensures 100% contract coverage. In addition, we
enable concurrent detection of multiple vulnerability types using
a single unified framework, thus avoiding the efforts of setting
up multiple tools and greatly reducing the detection time. We
will open source our dataset and the data labeling toolchain to
facilitate future research.

I. INTRODUCTION

The success of Bitcoin [85] fueled the interest in cryp-
tocurrency platforms. As a result, next-generation blockchain-
powered application platforms emerged, such as Ethereum [5]
and Hyperledger [10]. These platforms provide smart contracts
that are automated decentralized applications describing the

terms of agreements and the transaction rules between the
buyers and the sellers. Smart contracts have various benefits
including accuracy, efficiency, trust and transparency, savings,
and security [39].

Blockchains are append-only, distributed, and replicated
databases with two key properties: immutability and tamper-
resistance [51]. In smart contract systems, the above two
properties enforce the ”code is law” principle, meaning that
conditions recorded in a smart contract are not to be mod-
ified since they have been written and published. However,
these properties bear their own security risks and challenges:
First, smart contracts are written in error-prone programming
languages such as Solidity [29], and can contain exploitable
programming errors/bugs that are often overlooked or detected
only after deployment on the blockchain, and cannot be easily
fixed. Second, Ethereum operates on open networks where
everyone can join without trusted third parties while smart
contracts are often in control of significant financial assets.
Hence, smart contracts are attractive and easy attack targets
for adversaries to gain financial profits [43].

The consequences of bug exploitation may have global ef-
fects on the entire underlying blockchain platform, far beyond
the boundaries of individual contracts. For instance, vulner-
abilities in a single smart contract, the DAO [67], affected
the entire Ethereum network, when in June 2016 the attacker
exploited a re-entrancy bug and had withdrawn most of its
funds worth $60M US dollars [48], [98]. In the aftermath,
the value of Ether, Ethereum’s cryptocurrency, dropped dra-
matically [92], and the postulated ”code is law” principle was
undermined through the deployment of a hard fork – a manual
intervention orchestrated by a notable minority, the team of
Ethereum core developers. The Ethereum blockchain was thus
split into two versions, Ethereum and Ethereum Classic, which
are maintained in parallel since then. In another case, a critical
bug accidentally triggered in 2017 resulted in freezing of more
than $280M worth of Ether in the Parity multisig wallet [99].

To prevent economic losses caused by bug exploitation,
various smart contracts vulnerability detection techniques have
been proposed. For instance, researchers have adapted sym-
bolic execution [81], [105], satisfiability modulo theories
(SMT) solving [42], data flow analysis [55], runtime monitor-
ing [53], and fuzzing [56] from conventional software security
to detect smart contracts vulnerabilities. These techniques
require human expertise and need a long detection time [23],
[55]. Furthermore, they do not cover 100% of smart contracts:
For instance, symbolic execution tools are not guaranteed
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to finalize evaluation in a given time budget due to their
complexity1, while analysis by tools that rely on decompilation
of smart contracts (such as Vandal [45]) may fail if the contract
cannot be decompiled. Furthermore, these detection tools only
check for specific vulnerabilities and are hard to extend on
new vulnerability types since experts need to investigate the
new security loopholes. As such, one needs to deploy multiple
detection tools to cover diverse security bugs, which (i) makes
testbed setup cumbersome for smart contract developers as
well as contract users; (ii) increases the latency overhead of
vulnerability scanning and thwarts runtime analysis.

Recently, Machine Learning (ML) has attracted the at-
tention of security researchers due to its capability to au-
tomatically learn the hidden representation from the abun-
dant data [41]. Prior works have shown effectiveness of ML
techniques for detecting vulnerabilities in smart contacts [65],
[101], [107]. However, as we elaborate in Section VIII, existing
ML-based solutions suffer from the following shortcomings: (i)
The tools [23], [114] require access to source code, which is
only available for 1% of overall contracts [88]; (ii) They only
distinguish between vulnerable and safe smart contracts (i.e.,
binary classification), without the ability to detect vulnerability
types; (iii) They are inherently unscalable and unextendible,
as the inclusion of any new vulnerability types would require
training-from-scratch of new models;

Our goal and contributions. In this paper, we address the
deficiencies of existing solutions and propose ESCORT, the
first ML-based smart contract vulnerability detection frame-
work that enables transfer learning and fast adaption to new
vulnerability types with limited data. In comparison to exist-
ing vulnerability detection tools, ESCORT has the following
advantages: (i) Operates on contract bytecodes that are more
accessible than source code; (ii) Distinguishes safe and vulner-
able contracts; (iii) Identifies the exact vulnerability types in
unsafe contracts; (iv) Adapts fast and effective transfer learning
to detect new vulnerability types with limited data; (v) Enables
efficient detection of multiple vulnerabilities in a single scan;
(vi) Evaluation can be conducted by smart contract developers
and users by leveraging a convenient API or a mobile app and
without an extensive labour of a testbed setup.

In particular, our technical contributions are as follows:

• ESCORT enables efficient and scalable multi-
vulnerability detection of smart contracts. We propose
a novel multi-output network architecture where the
common feature extractor learns general contract se-
mantics and each branch learns representation of a
specific vulnerability type (Section IV-B). This en-
ables the defender to utilize a single tool, ESCORT, for
concurrent detection of multiple vulnerability types in
a single scan instead of deploying multiple detection
tools. Therefore, ESCORT greatly reduces the detec-
tion time and the effort of testbed setup for contract
developers and users.

• ESCORT is the first DNN-based framework that sup-
ports lightweight transfer learning on new vulner-
ability types, thus is extensible and generalizable.
More specifically, to perform transfer learning, the

1For example, while analysis by Oyente [81] takes 350 sec. on average,
around 1,4% of analyzed contracts require more than 30 min.

defender adds a new branch to the feature extractor
and updates it to learn the new vulnerability type
(Section IV-C). This modular update approach has two
advantages: (i) ESCORT only needs a small set of
new data to learn the new vulnerability since we only
update parameters in the new branch. This suggests
that defender can enable detection of the new secu-
rity bug in a short time. (ii) ESCORT preserves the
detection performance on existing vulnerability types.
Our multi-output architecture resolves the catastrophic
forgetting issue in transfer learning [50], [75] since
the new branch layer is designated to learn the new
task (i.e. new vulnerability type). The independence
between different branches ensures that our transfer
learning does not impact the performance on the old
tasks (detection of existing vulnerability types).

• ESCORT is automated for inspecting vulnerabilities
in smart contracts prior to their deployment and
demonstrates superior vulnerability detection perfor-
mance with low overhead (Section VI). We perform
a comprehensive evaluation of ESCORT on a dataset
of 3,640,153 EVM-compatible smart contracts to cor-
roborate its effectiveness, efficiency, and extensibility
(Section VII). Our framework can detect 11 vulnera-
bility classes in 0.15 s per smart contract on average
and yields an average F1 score of 97% across all
evaluated classes.

• We develop a toolchain named Demeter that automates
bytecode acquisition, and smart contracts labeling
from Ethereum blockchain (Section V). Demeter’s
modular structure enables one to easily integrate other
tools for labeling. We will open-source Demeter and
make our dataset of 3,640,153 labeled smart contracts
available for research at https://github.com/sss-wue/s
marter-contracts.

• To facilitate interacting with ESCORT, we have imple-
mented a model serving API where a smart contract
developer or blockchain user can query ESCORT for
detected vulnerabilities (Section VI-B1). We also have
embedded ESCORT into the Metamask Android ap-
plication [14] where a user can privately and securely
check the smart contract against vulnerabilities before
sending funds (Section VI-B2).

To summarize, ESCORT provides an automated and trans-
fer learning-friendly vulnerability detection for smart contracts.
Our modular design of the multi-output architecture allows
ESCORT to distill the knowledge of existing detection tools
and quickly adapt to new vulnerability types with limited
data using transfer learning. The transfer learning capability
of ESCORT allows it to collect sufficient training data and
achieve lifetime security maintenance. Compared to existing
non-ML based detection methods that focus on very few
vulnerability types, ESCORT is a unified framework that can
identify diverse vulnerabilities in a quick single run. As such,
ESCORT provides security support for contract developers at
contract development time and also enables runtime analysis
for contract users.

II. BACKGROUND

We provide background information on smart contracts in
this section. More detailed description of Ethereum and deep
learning are given in Appendix.
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A. Smart Contracts and Vulnerabilities
A smart contract is written in high-level programming

languages such as Solidity [29] and is called by its address to
run operations on the blockchain. Once compiled, the bytecode
of the contract is generated and executed inside the Ethereum
Virtual Machine (EVM). Since there is a one-to-one mapping
between a blockchain operation and bytecode representation,
it is feasible to analyze the control flow of a contract at the
bytecode-level. When triggered, the execution of the smart
contract is autonomous and enforceable for all participating
parties [52]. The EVM itself is a stack-based machine with
a word size of 256 bits and stack size of 1024 [108]. The
memory applies a word-addressable model. Once a contract is
deployed on the blockchain, it requires gas to function. Gas
is the unit used to pay the computational cost of the miners
running contracts or transactions and is paid in Ether.

Similar to any other software, smart contracts might suf-
fer from vulnerabilities and programming bugs. The Smart
Contract Weakness Classification (SWC) Registry [22] collects
information about various vulnerabilities. We differentiate four
categories of vulnerability types: External Calls, Programming
Errors, Execution Cost, and Influence by Miners.

External Calls. Any public function of a smart contract can be
called by any other contract. A malicious user can then exploit
public availability to attack vulnerable functions of smart
contracts. A prominent example is the so-called reentrancy
bug (SWC-107 [22]). Here, an attacker can call a contract’s
function multiple times before the initial call is terminated. If
the internal contract state is not securely updated, the attacker
can drain Ether from the contract by recursively calling the
function.

Programming Errors. Some programming errors in smart
contracts are very similar to those found in traditional pro-
grams, such as missing input validation, typecast bugs, use of
untrusted inputs in security operations, unhandled exception,
exception disorder, and Integer overflow and underflow vulner-
abilities. In another example, an assert function used in tests
and not removed by the programmer in the release version may
lead to its misuse by an attacker, which can result in exploitable
error conditions (SWC-110 [22]). Other vulnerabilities can be
specific to smart contracts. Examples are greedy contracts that
lock Ether indefinitely, gasless send bug that does not provide
sufficient gas to execute the code of the smart contract, Ether
lost in transfer if sent to unknown recipients, etc. Further
examples are callstack depth limit reached exception bug
and unprotected selfdestruct instructions (see SWC-106 [22]),
where an attacker can call a smart contract’s public function
containing a selfdestruct to terminate the contract, or he can
fill up the stack to reach the stack size limit. Both attacks result
in a Denial of Service (DoS) of vulnerable smart contracts.

Execution Cost. Every transaction on the Ethereum network
costs gas. However, every block has a spendable gas limitation.
An attacker can use this limit to induce a DoS of a vulnerable
contract. For example, if the execution time of a function is
dependent on input from the caller, a malicious caller can
expand the execution time of the smart contract over the gas
limit (SWC-128 [22]). Thereby, execution is terminated by
exceeding the gas limit before it is finished. Another way an
attacker can misuse the gas limit per block is to induce an
error on a send call. If a programmer bundles multiple sends

in one function of the smart contract, the attacker can then
prevent the execution of other send calls in the function.

Influence by Miners. Miners are entities that actually execute
transactions on the blockchain. They can decide which trans-
actions to execute, in what order, and are also able to influence
environment variables (e.g., timestamps). To illustrate the
problem, let us assume a scenario where a smart contract is
instructed to send Ether to the first user that solved the puzzle.
If two users commit a transaction with the solution at the same
time, a miner decides who will be first and therefore will be
getting the Ether (SWC-114 [22]). This vulnerability type is
generally referred to as Transaction Order Dependence (TOD).

III. GOAL, THREAT MODEL AND CHALLENGES

In this section, we first introduce our goal and then present
our threat model and assumptions. We also discuss the chal-
lenges of developing an effective and scalable detection tool.

A. Goal
Our goal is to simplify the effort of security testing for

both smart contract developers and users. On the one hand,the
process of security testing by smart contract developers is
cumbersome, since existing vulnerability detection tools have
limited vulnerability coverage and are hardly extensible. Many
of them also require significant amount of time for testing.
Hence, sound testing requires non-trivial engineering effort for
setting up individual testing environments for every vulnera-
bility scanner, and may also result in time-consuming testing.
This load is often unbearable for smart contract developers,
who either opt to outsource security testing to professionals,
which induces additional costs or bear the risks of publishing
poorly tested smart contracts. On the other hand, runtime
security testing on the contract user side is also critically
important. The user typically has less expertise and computing
power compared to the contract developer, which makes user-
side testing even more challenging.

With ESCORT, one can integrate the knowledge of many
security tools in one solution and enable high-coverage and
highly efficient testing with only one framework. Overall, our
approach has the potential to significantly simplify the effort
of smart contract developers for security testing.

B. Threat Model and Assumptions
Assumptions. We assume the detection metrics (such as F1
score, false positive/negative rates) reported in the previous
papers [59], [81], [84] as well as the open-sourced implemen-
tation of existing detection tools [4], [17], [23] are reliable
(accurate). ESCORT uses these detection scores to guide the
aggregation of detection decisions made by these tools when
labeling smart contracts (detailed in Section V). This assump-
tion is feasible since expert inspection has been performed to
cross-validate the performance of proposed detection methods
in the previous works.
Attacker Capability. The attacker is a malicious party that
can obtain knowledge from any public data structure in the
blockchain and can upload his contract code to the Ethereum
system. The attacker also knows how to exploit software
vulnerability in the Solidity source code. However, he cannot
interfere with the detection or make further changes to the
smart contracts after uploading it.
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Fig. 1: Overview of ESCORT framework for Ethereum smart contract vulnerability detection. ESCORT has three stages: training,
transfer learning, and deployment as shown in the top, middle, and bottom part of the figure.

ESCORT aims to provide the defenders with a holistic
smart contract vulnerability detection solution. To this end,
we formulate vulnerability inspection as a supervised multi-
label classification problem where the input is the contract (can
be represented in high-level language, opcodes, or bytecodes)
and the output is the corresponding vulnerability types as
introduced in Section VII-A.

C. Challenges
In this section, we present the challenges posed on devel-

oping an effective DNN for automated smart contract vulner-
ability detection.

(C1) Feature Extraction. Analyzing smart contracts based
on the bytecode is a preferable option, since only 1% of all
contracts are open-sourced [88]. Moreover, blockchain plat-
forms typically host their smart contracts as long bytecodes.
The first challenge concerns the problem of finding the proper
feature representation of the smart contract programs with
such long bytecode. On one hand, manual design of contract
features is time-consuming and has limited efficacy, since the
contract bytecode is long and hard to interpret by human
developers. On the other hand, current implementations of
automated feature extraction [101], [107], [114] (Section VIII)
mainly apply traditional software testing techniques on the
smart contract without exploring its domain-specific properties,
thus the inspection time is long.

(C2) Dataset Imbalance. The second challenge is a class
imbalance in the training set. Prior works have shown that the
number of contracts with specific vulnerability types is much
lower than the one of non-vulnerable contracts [107]. Learning
the characteristics of vulnerable contracts with a DNN is
challenging since the stochastic gradient descent (SGD) based
learning of DNN models is inherently biased towards the
majority class [76], while our objective is to recognize the
minority class (i.e., vulnerable contracts). As such, it is crucial
to provide the DNN model with sufficient vulnerable contracts
to ensure a high true positive rate.

(C3) Efficiency. The third challenge is to ensure the effi-
ciency of DNN training and inference for concurrent detection
of multiple vulnerability types. Identifying diverse attacks with

a single DNN detector is challenging since different vulnerabil-
ities exploit distinct loopholes in the contract, which might be
hard to capture with a conventional DNN. For non-ML based
detection methods, the defender needs to deploy multiple tools
in order to cover various vulnerability types, which increases
the overhead of testing. Efficiency is important for practical
development of the contract scanner since devising individual
classifiers for each vulnerability class, as done, e.g., in [107],
is unscalable and incurs large computation overhead.

(C4) Extensibility. Further, smart contract inspection
should be capable of learning new vulnerability types quickly
while preserving the knowledge of the known ones. We call
this requirement ‘extensibility’. This property is important for
both, researchers, and practitioners since new attacks on smart
contracts are emerging at a fast speed. Augmenting an existing
contract detector to new attacks is non-trivial since the new
attack exploits the unseen and unpredictable susceptibilities
of smart contracts compared to the previously known attacks.
Training a new DNN from scratch to accommodate the new
vulnerabilities consumes extensive resources and incurs addi-
tional engineering costs.

(C5) Limited Data. Finally, the number of available
samples per vulnerability might be limited, which hinders
researchers and practitioners to apply ML techniques to more
vulnerability types. Data augmentation may mitigate this issue.
However, augmentation will result in bias in the model [66].

IV. ESCORT DESIGN

We propose ESCORT, the first extensible and transfer
learning-friendly DNN-based framework for vulnerability de-
tection of Ethereum smart contracts. The key innovation of
ESCORT is that we decompose the task of vulnerability detec-
tion into two subtasks: (T1) Learning the bytecode features of
general contracts (attack-agnostic); (T2) Learning to identify
each particular vulnerability class (attack-specific). To achieve
(T1), we design a feature extractor that captures the semantic
and syntactic information of contract bytecode regardless of
its vulnerabilities. To perform (T2), we devise an individual
vulnerability class branch to characterize susceptibility given
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the bytecode features extracted in (T1). Our divide-and-
conquer design is highly modular and flexible compared to
previous ML-based detection techniques (cf. Section VII).

A. ESCORT Global Flow
Figure 1 shows the global flow of ESCORT. The three

main stages are detailed below:
Training. The top part of Figure 1 shows ESCORT’s train-

ing pipeline. In this stage, ESCORT distills the knowledge of
multiple existing detection tools into an coherent architecture
while improving the attack coverage. To enable supervised
learning for vulnerability detection, the defender first con-
structs the smart contracts bytecode dataset with corresponding
labels, as detailed in Section V. The defender specifies the
system parameters, including the vulnerabilities of interests
and the available hardware resources for ESCORT’s multi-
output DNN design. Finally, the devised model is trained on
the collected contract data with their corresponding labels,
resulting in a converged DNN detector.

Transfer Learning. The middle part of Figure 1 shows the
transfer learning phase of ESCORT. Given a trained detector
and the bytecode of smart contracts with new vulnerability
labels, ESCORT extends the DNN architecture devised in
the original training phase with new parallel branches. The
layers in the expanded branch are then trained on the new
vulnerability data with the associated labels to perform transfer
learning. To the best of our knowledge, ESCORT is the first
framework that supports transfer learning to accommodate new
vulnerability types of the smart contracts.

Deployment. The bottom part of Figure 1 shows the
workflow of ESCORT’s deployment stage. After the training/-
transfer learning phase completes, ESCORT returns a trained
DNN classifier that can detect whether an unknown smart
contract has any of the learned vulnerability types. Our detector
provides diagnosis results for multiple vulnerabilities with
high accuracy and short runtime. More specifically, for smart
contract developers, we devise a REST API that hosts the
learned ESCORT model and performs inference for vulnerabil-
ity detection (Section VI-B1). For contract users, we integrate
ESCORT into MetaMask Mobile [14], a popular crypto wallet
app for Android and iOS devices. The integration of ESCORT
ensures that the safety of a transaction is checked either
on-device by retrieving the contract bytecodes and running
ESCORT inference, or the user can outsource the security test
to our remote server by sending the receiver address via a
REST API web request (Section VI-B2).

Note that ESCORT is a smart-contract-specific classifier. In
particular, the length of the bytecode is limited to 17.5k, and
our preprocessing is specific to EVM bytecode. Both of these
design choices are tailored for smart contracts and are not
transferable to other domains. We comprehensively compare
though alternative approaches in the domain of vulnerability
detection in smart contracts using ML in Section VIII.

B. Neural Network Design
Prior ML-based detection techniques have tried various

models for vulnerability detection/classification such as SVM,
Decision Trees [107], CNN [65], LSTM [58], [101], and
GNN [114]. However, all of these methods require one to
train a new ML model from scratch given contracts with new
vulnerabilities, resulting in slow and inefficient model adap-
tation. ESCORT aims to design an extensible DNN detector

that: (i) provides the probability that the smart contract has
certain vulnerabilities, instead of making a binary decision
about contract security; (ii) classifies multiple vulnerabilities
using a single DNN with the consideration of vulnerability type
extension. To this end, we propose a multi-output architec-
ture for concurrent detection of multiple vulnerability types.
This neural network design step is shown by the ‘Multi-output
DNN Design’ module in ESCORT’s global flow (Figure 1).

Figure 2 shows the generic architecture of our DNN
detector. The stem and branch layers are typical DNN layers
such as the Dense layer, Dropout layer, and GRU layer. The
multi-output model has two main components discussed below:

Fig. 2: General topology of ESCORT’s multi-output model for
concurrent detection of multiple vulnerability types.

(i) Feature Extractor. The first component of ESCORT’s
extensible DNN model is the common feature extractor (i.e.,
‘stem’) shared by all the bottom branches. The feature extractor
is a stack of layers that aim to learn the fundamental features
in the input data that are general and useful across different at-
tributes. In the context of smart contracts, the feature extractor
is trained to learn the semantic and syntactic information from
the contracts’ bytecode. To this end, we incorporate several
key layers in ESCORT’s feature extractor:

• Embedding Layer. The bytecode of smart contracts
are long hexadecimal numbers, while DNNs typically
work with fractional numbers to achieve high accu-
racy. The embedding can solve this discrepancy since
it stores the word embedding in the numerical space
and retrieves them using indices [111]. The embedding
layer provides two key benefits: (i) Compressing the
input via a linear mapping, thus reducing the feature
dimension; (ii) Learning bytecode in the embedding
space (fractional numbers). This facilitates represen-
tation exploration and gathers similar bytecode in
the vicinity of each other. ESCORT leverages the
advantages of the embedding layer to capture the
semantics in the input bytecode.

• GRU/LSTM Layer. The stem layers and branch lay-
ers in Figure 2 can include GRU/LSTM layers for
processing sequential inputs. Gated Recurrent Units
(GRU) and Long Short-Term Memory (LSTM) are
two typical layers in recurrent neural networks that
help to overcome the short-term memory constraint
and vanishing gradient problem [70] using a ‘gating’
mechanism. More specifically, both types of layers
have internal gates that regulate the information flow
along the time sequences and decide which data shall
be kept/forgotten. We mainly use GRU layers in
ESCORT’s DNN design.
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(ii) Vulnerability Branches. The second component of ES-
CORT’s multi-output DNN architecture is the ensembling of
multiple vulnerability branches. Each branch is a stack of lay-
ers that are trained to learn the patterns/hidden representation
of the corresponding vulnerability class. While there is no
direct dependency between different branches, they share the
same feature extractor, i.e., the input to each branch is the
same. This is feasible since the branch input (which is also
the feature extractor’s output) shall capture the semantics in
the contract’s bytecode, which is common/general information
useful for different vulnerabilities. Note that the last layer of
each vulnerability branch is a Dense layer with one neuron.
The sigmoid evaluation of this neuron gives the probability
that the input contract has the specific vulnerability. As such,
ESCORT engenders detection results with better interpretabil-
ity by providing the confidence score for its diagnosis instead
of the binary decision about vulnerability existence.

ESCORT’s ‘stem-branches’ architecture is similar to the
‘mixture of experts’ paradigm where the problem space is di-
vided into homogeneous regions and individual expert models
(learners) are trained to tackle each sector [72]. The main
difference between ESCORT’s multi-output design and the
mixture of experts model is that the latter one requires a
trainable gating network to decide which expert shall be used
for each input region, while our DNN model does not need
such a gating mechanism since we aim to detect multiple
vulnerability types of the input contract in parallel.

In summary, ESCORT’s multi-output architecture solves
the feature extraction, efficiency and extensibility challenges
(C1, C3, C4) identified in Section III-C. In particular, ESCORT
allows the defender to train a single DNN for detecting
multiple vulnerability types instead of training an individual
classifier for each attack, thus demonstrating superior effi-
ciency compared to the prior ML-based techniques [58], [65],
[101], [107], [114], as we elaborate in Section VIII. ESCORT
design incurs minimal non-recurring engineering cost and is
scalable as new vulnerabilities are identified.

The superior efficiency of ESCORT can be attributed to
two factors: (i) We use a single multi-branch DNN architec-
ture to achieve concurrent, multi-output detection instead of
devising individual ML models for each vulnerability type.
Therefore, our model has much fewer trainable parameters and
requires smaller computation overhead for training. (ii) Fast
transfer learning with new branches. We empirically show in
Section VII-C that our transfer learning is successful with a
small set of new data and a new branch (which implies the
total computation amount is also small).

C. Transfer Learning
Malicious parties have a strong incentive to discover and

exploit new vulnerabilities of smart contracts due to the
associated prodigious profits. As such, the contract inspection
technique shall be extensible to learn new vulnerabilities
as they are identified. We propose transfer learning as the
solution to the challenge (C4 and C5) in Section III-C. Transfer
learning makes it possible to exploit the knowledge gained
from existing vulnerabilities to improve generalization about
new vulnerabilities with limited data. More specifically, we
suggest to expand the pre-trained multi-output DNN model
by adding new vulnerability branches for transfer learning.
This process is demonstrated in the middle part of Figure 1.

The transfer learning capability of ESCORT ensures that our
detection framework can be upgraded with the minimal cost
to defend against emerging attacks on smart contracts.

Our transfer learning stage has two goals:
(G1) Preserve Knowledge on Old Vulnerabilities. On

the one hand, the DNN detector shall retain knowledge about
the previous vulnerability types that are used in the initial
training phase. This property is important since ESCORT aims
to provide a holistic and extensible solution to concurrent
detection of multiple vulnerabilities. As such, maintaining high
classification accuracy on the known attacks is essential.

(G2) Learn New Vulnerabilities Quickly. On the other
hand, transfer learning aims to adapt the pre-trained model to
achieve high accuracy on the new task data (limited size) in an
efficient way. This is also required by the extensibility chal-
lenge (C4) and limited data challenge (C5) in Section III-C. To
achieve fast adaptation, transfer learning shall yield minimal
runtime overhead. This requirement is crucial for practical
deployment, since training a new DNN model from scratch
for the new vulnerabilities with limited data is prohibitively
expensive and hard to maintain.

ESCORT’s transfer learning phase works as follows. When
a new vulnerability is identified, the defender constructs a
new training dataset accordingly and updates the converged
DNN detector by adding a new vulnerability branch (i.e., the
stack of layers). During transfer learning, the parameters of the
common feature extractor and existing vulnerability branches
are fixed. Only the parameters in the newly added branch are
updated with the new vulnerability dataset. Freezing the feature
extractor and the converged branches ensures that the updated
DNN classifier preserves the detection accuracy on the old
vulnerabilities (G1), and training a new branch enables the
updated model to learn the new attack (G2).

Besides extensibility, ESCORT also enables lightweight
and fast adaptation when model drift occurs. Smart contracts
running on Ethereum are dynamic and change over time,
which might lead to a decrease of ESCORT’s performance.
To alleviate the model drift concern, the contract developer
can update the parameters of the vulnerability branches given
a set of labeled new contracts while keeping the weights of
the feature extractor fixed.

V. DATASET CONSTRUCTION TOOLCHAIN

In this section, we present Demeter, a toolchain we built
to harvest smart contracts and construct the labeled dataset.
We will open source our toolchain and the collected dataset to
facilitate the development and comparison between emerging
detection techniques.

A. Design Choices
To build a sufficiently large training set for our super-

vised DNN training, we make the design choice to work on
the bytecode-level because not only the bytecode of smart
contracts are publicly available but also easily attainable for
vulnerability detection task running by users. The users are
unlikely to have access to the source code of smart contracts
(only 1% of smart contract source codes are public [88]),
and even if the source codes are accessible, the users need
a guarantee to ensure the bytecode they communicate with
is an exact compiled version of the intended source code.
Operating on bytecode-level also makes our approach agnostic
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to the programming languages of smart contracts, since smart
contracts that are written in different languages (e.g., Solid-
ity [29], Viper [38], and Serpent [28]) get compiled to the
same bytecode eventually. The EVM bytecodes are executed
in a stack context, thus the control flow of a program at the
bytecode level contains useful information for detection.

Demeter is designed to obtain the bytecode files of
smart contracts from the Ethereum platform consisting of
the blockchain Ethereum Mainnet and its testnets [20] (e.g.,
Goerli [31], Rinkeby [33], Ropsten [34], Kovan [32]), label
them using available bytecode-level detection tool(s), and
store the result in a database. Note, that we concentrate
on Ethereum smart contracts for exemplary purposes in this
paper. Generally, ESCORT can also be used for vulnerability
detection in smart contracts of other cryptocurrency platforms
that use Ethereum-compatible EVM, such as Quorum [25],
Vechain [37], Rootstock [26], and Tron [36], to name a few.
This is possible since the bytecode of smart contracts on these
platforms is compatible with Ethereum EVM.

B. Demeter Architecture

Fig. 3: Generic workflow of Demeter for smart contract
acquisition and labeling.

We show the generic workflow of Demeter toolchain in
Figure 3. In step (1), the addresses of contracts are retrieved
from the blockchain. Step (2) involves downloading the byte-
code from the Ethereum network by block and extracting
information into a database. In step (3), the bytecode is pre-
processed for input efficiency. The last step (4) outputs the
vulnerability types of the contracts using the bytecode-level
detection tools. It is worth noticing that any vulnerability
detection techniques that take bytecode as input can be used
by Demeter for contract labeling, including existing methods
such as Oyente [23], Mythril [17], Vandal [45], Maian [88].
We show in Section VII that ESCORT outperforms existing
tools in terms of both detection effectiveness and efficiency.

For a concrete instantiation of Demeter, we use the open-
source clients Geth (shorthand for Go Ethereum, official imple-
mentation) [7] and Erigon (third-party client) [3], as well as the
open dataset of Google BigQuery [8] to access the bytecode of
contracts in step (1). Both of the Ethereum clients (i.e., Geth
and Erigon) sync with the entire blockchain. We use Erigon
to gain access to the testnets Goerli, Ropsten, and Rinkeby
since it is faster and generates less data on disk. For Kovan,
we use Geth since Erigon does not support Kovan yet. We
download Ethereum Mainnet from a open dataset hosted on
Google’s BigQuery [8]. For step (2), we also utilize existing
tools. Multiple Web APIs exist and allow us to download
contract bytecodes by its address or block number. We opt
for the Python API Web3 [11] for instantiating the bytecode
downloading module of Demeter. For the instantiation of step

(3), we develop an assistive Python module named Contract
Loader to extract the information from smart contracts into
a MySQL database [16]. In the last step (4), we use four
tools for contract bytecode labeling: Oyente [23], Mythril [17],
Vandal [45], Maian [88]. The modular structure of Demeter
makes it easy to extend our toolchain with other vulnerability
detection tools.
C. Demeter Workflow

1) Bytecode Acquisition: For dataset construction, Demeter
first utilizes Python’s Web3 library to extract smart con-
tracts from each blockchain. We were able to extract in
total 26,740,370 bytecodes from the five nets. Particularly,
we obtained 22,789,100 bytecodes from Ethereum Main-
net, 101,998 from Goerli, 1,382,338 from Rinkeby, 1,831,168
from Ropsten, and 635,766 from Kovan. Since smart contracts
can be deployed across all networks, we need to deduplicate
the retrieved contracts. Deduplication also eliminates contracts
that are identical in the same net due to contract factories and
multiple deployments of the same contracts. In some cases, the
download resulted in an empty bytecode 0x. The possible rea-
sons could be: (i) The Ethereum node is not fully synced with
the network, thus the bytecode is not available; (ii) An empty
contract is deployed; (iii) The smart contract is self-destructed.
At the end of the bytecode acquisition process, 4,062,844
smart contract bytecode files become available for ESCORT’s
vulnerability analysis.

2) Bytecode Preprocessing: The downloaded bytecodes
consist of hexadecimal digits that represent particular operation
sequences and parameters. In the preprocessing step, Demeter
first transforms the collected raw bytecodes to sequences
of operations divided by a unique separator, and removes
input parameters from the bytecode to reduce the input size.
Furthermore, it merges operations with the same functionality
into one common operation. For instance, similar commands
PUSH1 - PUSH32 (represented by the bytes 0x60-0x7f ) are
replaced with the PUSH operation (represented by 0x60). Note
that some hexadecimal digits in the crawled bytecode do not
correspond to any operations defined in the Ethereum Yellow
Paper [108]. These bytes are considered as invalid operations
and substituted with the value XX. This operation merging step
might map bytecodes to identical preprocessed bytecodes. We
also deduplicate the dataset of preprocessed bytecodes, which
results in 3,640,153 bytecodes in our dataset.

Note that we only model opcodes and ignore operands,
which is sufficient to capture semantics. For instance, in
the case of an integer overflow/underflow, any integer can
be overflown if no boundary checks are added to the code.
ESCORT can distinguish the presence or absence of those at
the level of opcodes. Similarly, a reentrancy bug results in state
change after a call command.

3) Labeling of Smart Contracts: A smart contract might
have multiple vulnerabilities as introduced in Section II-A.
Each of the vulnerability detection tools used by Demeter is
specialized for detecting a specific set of vulnerability types.
Note that besides the bytecode-level detection tools, Demeter
also stores the performance metrics (e.g., F1 score) of each
tool on each vulnerability type that they can detect. The
performance characterizations are obtained from the previous
publications [4], [17], [23] with experts’ manual inspection to
ensure the correctness. To determine if a given smart contract
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has a specific vulnerability type, Demeter selects the detection
tool that features the highest F1 score on this vulnerability
among all available tools and uses it for contract labeling.
Demeter repeats the above process for each contract and each
vulnerability type. We develop Python modules to perform the
above task. In the end, 3,640,153 smart contracts are labeled. It
is worth repeating that since there are no dependencies among
the vulnerability scanning tools, the set of vulnerability types
can be easily extended with other available tools.

We would like to point out that we do not focus on
dealing with the labeling bias of existing detection methods
(Oyente [23], Mythril [17], Vandal [45], Maian [88]) since
our goal is not to design a meta-detector that performs ‘smart’
ensembling/aggregation on top of the existing detectors. There-
fore, we do not tackle the labeling bias of existing tools used by
our toolchain Demeter. The main objective and contribution of
ESCORT is to simplify security testing (replace multiple tools,
provide high coverage, simple usage, fast detection, no access
to source code required, extendable, the analysis never fails).
No existing tools can provide this.

VI. IMPLEMENTATION

For our proof of concept, we instantiate design of ESCORT
(cf. Section IV) on eleven vulnerability types and elaborate on
the implementation details below.

A. ESCORT DNN Instantiation
1) Dataset imbalance: We construct the labeled bytecode

dataset as explained in Section V for supervised learning of
ESCORT. The collected contract data might have the class
imbalance issue [107] (Challenge (C2) in Section III-C). In
our work, we construct a balanced training set to ensure that
each batch of data fed into ESCORT’s DNN model has a
comparable number of vulnerable and safe contracts. Partic-
ularly, we take an under-sampling approach and randomly
removed examples from the majority class labels to avoid the
class imbalance problem. Another possible selection strategy
is to over-sample minority classes, which we do not opt
for to avoid introducing additional bias. In addition, utilizing
Transfer Learning, we solve the data imbalanced problem
in the vulnerability type extension phase to a great extent
(Section VII-C) if the vulnerability type is underrepresented.
Transfer learning can augment learning when training exam-
ples are not sufficient and induce balance into skewed datasets.
Details about our dataset balancing is given in Section VII-A.

2) Model Building and Training: We instantiate a Multi-
Output-Layer (MOL) DNN based on our generic architecture
in Section IV-B. Figure 4 shows the actual model used in our
experiments. We build a MOL-DNN with six branches for
main model training, and then extend it with five new branches
for transfer learning. Our multi-output RNN enables concurrent
detection of multiple vulnerability types as discussed in Sec-
tion IV-B. ESCORT learns vulnerabilities in Demeter’s labeled
bytecode dataset via supervised learning in this stage.

We train the above instantiated RNN using the hyper-
parameters shown in Table I. These hyper-parameters are found
by grid-search. Before the data is passed to the model’s input
layer, the bytecode sequence needs to be vectorized. This is
realized by a tokenizer, which transforms the hexadecimal data
into numeric vectors. After tokenization, a hyper-parameter
MAX SEQUENCE LENGTH is applied to the input vectors.

Input Layer

Embedding Layer

In:

out:
In:

(BS*, 17500)

(BS, 17500)
(BS, 17500, 20)

*BS: Batch Size

Dense Layer
out:
In: (BS, 128)

(BS, 1)

Dropout Layer
out:
In: (BS, 128)

(BS, 128)

BN Layer
out:
In: (BS, 128)

(BS, 128)

Dense Layer
out:
In: (BS, 128)

(BS, 128)

Dense Layer
out:
In: (BS, 128)

(BS, 1)

Dropout Layer
out:
In: (BS, 128)

(BS, 128)

BN Layer
out:
In: (BS, 128)

(BS, 128)

Dense Layer
out:
In: (BS, 128)

(BS, 128)

GRU Layer
out:
In: (BS, 17500,20)

(BS, 128)

BN Layer
out:
In: (BS, 128)

(BS, 128)

Dropout Layer
out:
In: (BS, 128)

(BS, 128)

Dense Layer
out:
In: (BS, 128)

(BS, 1)

Dropout Layer
out:
In: (BS, 128)

(BS, 128)

BN Layer
out:
In: (BS, 128)

(BS, 128)

Dense Layer
out:
In: (BS, 128)

(BS, 128)

Fig. 4: Multi-output DNN architecture of ESCORT for con-
current detection of multiple vulnerability types. Here, BS is
the batch size and BN is batch normalization, the rightmost
red branch denotes adding a new branch for transfer learning
on new vulnerabilities.

Sequences are zero-padded or truncated to this length. We
empirically study the distribution of the bytecode length and
show the results in Figure 5. The hyper-parameter MAX SE-
QUENCE LENGTH is set to 17,500 to ensure none of the
contracts are truncated.2

Variable Setting

#Hidden Units GRU:128, Dense:[128 ,1]
Optimizer, Loss Function Adam, BCE
Learning Rate 0.001
Batch Size 128
MAX Seq. Length 17500

TABLE I: Model Hyper-parameters.

Fig. 5: Distribution of bytecodes length in the dataset.

The tokenized data are then passed to the RNN for training.
In the training phase, we monitor the loss of our model for
performance improvements. The training and validation results
are stored with Tensorboard. In the testing phase, the remaining
(unseen) data are passed to the model and we compute the
detection metrics. At the end of model training, we save the
converged MOL-DNN model, the deployed tokenizer, and the
evaluation metrics files to wrap the model as an API service.

B. End-to-end deployment
We discuss how ESCORT provides automated, end-to-end

security testing for two deployment cases below.

1) Deployment for smart contract developers: Our trained
DNN model can detect pre-defined vulnerability types in smart
contracts. We wrap the model within an API to ensure that

2Both excessive padding and truncation may impair the performance. For
instance, truncated contracts might be mislabeled as benign if a vulnerability
resides in the removed part of the contract.
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we can serve predictions to end-users on the fly. We utilize
Flask [6] and devise a Python module to provide a REST
API endpoint for running model inference on bytecode files.
The learned ESCORT model and associated configurations
are passed to our API. Our API also performs automated
bytecode transformation (input preprocessing) to remove the
manual efforts for the defender. The Python module creates
two different API endpoints. The first endpoint shows the
configuration passed to the module and the second one triggers
model inference. Listing 1 shows an example of the plain
bytecode of a smart contract, which is passed to the second
endpoint for vulnerability detection.

Listing 1: Sample request body when calling ESCORT’s
prediction endpoint.
1 {” s m a r t c o n t r a c t ” : ” 606060405236150100000 . . . ” }

In the second endpoint, the bytecode of the input smart
contract is vectorized using the same tokenizer as the one used
in ESCORT’s model training step. The processed sequence
is then fed as the input to the trained MOL-DNN model for
vulnerability detection. In addition to the detected vulnerability
types, the prediction time of ESCORT is tracked and shown to
the user. An example response from ESCORT’s API endpoint
is shown in Listing 2.

Listing 2: ESCORT’s response to the sample request when
calling our prediction endpoint. The response includes the
analysis results of multiple vulnerability types.
1 {” p r e d i c t i o n ” : {
2 ”ASSERT VIOLATION” : 0 . 0001 ,
3 ”ACCESSIBLE SELFDESTRUCT” : 0 . 9998 ,
4 ”DoS (UNBOUNDED OP) ” : 0 . 9996 ,
5 ”MULTIPLE SENDS” : 0 . 0012 ,
6 ”TAINTED SELFDESTRUCT” : 0 . 9998 ,
7 ”CALLSTACK” : 0 . 9995 ,
8 ”MONEY CONCURRENCY” : 0 . 0013 ,
9 ”REENTRANCY” : 0 . 0009} ,

10 ” p r e d i c t i o n t i m e i n s e c o n d ” : ” 0 . 02 ”}

2) Deployment for smart contract users: We also devel-
oped a Proof-of-Concept (PoC) implementation of ESCORT
within MetaMask Mobile [14], a widely used crypto wallet
app for Android and iOS devices that provides easy access to
the Ethereum blockchain. It can also be used as a gateway to
communication with decentralized apps and smart contracts.
Adding vulnerability detection to MetaMask allows the users
to check the smart contracts before interacting with them.
This is especially important, since non-developer users of the
blockchain generally do not have the knowledge and time to
test smart contracts with several security tools. For instance,
setting up the tooling for security testing is not trivial and
demand proficient knowledge of the underlying technologies.
Further, a deployment of those tools (i.e., Mythril, Oyente,
Vandal) for Android is not available. With ESCORT deployed
in MetaMask, users can easily check smart contracts for
vulnerabilities before sending funds.

For this purpose, we modified the app’s behavior in the
following way. As soon as the user begins a new transaction,
the app determines whether the receiver address belongs to
a smart contract. If that is the case, the Android app can
either send the address to our remote server using a REST-
API web request (c.f. Section VI-B1), or directly downloads,
pre-processes the smart-contract bytecode, and then run the

inference on the device. The results (i.e., the probabilities
of vulnerability classes) are displayed to the user to take an
action: interrupting or resuming the transaction. The former
way offers a better performance (c.f. Section VII-E) due to
more powerful hardware (i.e., remote server) and the latter
provides a better privacy due to on-device pre-processing and
classification. Our PoC shows that ESCORT can easily be
adopted by existing applications.

VII. EVALUATION

We extensively evaluated ESCORT on the large-scale smart
contract dataset built as described in Section V. We utilize
the tf.keras package [30] for model building, training, and
inference. All of our experiments, if not otherwise stated, are
conducted on a machine with Arch Linux OS having AMD
Ryzen 9 3950X and NVIDIA GeForce RTX 3090 GPU with
32 and 24 GB of RAM, respectively. The software versions
are as follows: Tensorflow 2.7.0, CUDA 11.6, NVIDIA driver
510.54, cuDNN 8.2.1 and kernel 5.15.28. In this section, we
explain our experimental setup and the evaluation metrics to
characterize the performance of ESCORT’s DNN model.

A. Dataset
To build our dataset, we collected 3,640,153 smart con-

tracts from five Ethereum nets using Demeter and labelled
them accordingly (Section V-C). We consider eleven vulnera-
bility types in our evaluations, while ESCORT can be easily
extended to detect new attacks (Section IV-C). We use the first
six vulnerability types (cl. 1-6) for main model training and
cl. 7-11 for transfer learning experiments. The mechanisms of
these eleven vulnerability types are discussed below (general
vulnerability categories are provided in Section II-A):

• Callstack Depth [cl. 1] (Oyente): This vulnerability
class belongs to the Programming Error category
(Section II-A) and exploits the stack size limit issues
of the EVM.

• Money Concurrency [cl. 2] (Oyente): This vulnera-
bility is also known as Transaction Ordering Depen-
dence (TOD) and belongs to Influence by Miners.

• Assert Violation [cl. 3] (Mythril): This Programming
Error leads to a constant error state of the smart
contract, which can be exploited by an attacker.

• Reentrancy [cl. 4] (Vandal): Reentrancy bugs are
caused by External Calls and allow an attacker to
drain funds.

• Unchecked Calls [cl. 5] (Vandal): With this Pro-
gramming Error, function calls are not checked. In
the worst case, the contract execution will continue
despite a possible exception of the call.

• Time Dependency [cl. 6] (Mythril): The contract
uses block values as a proxy for time (Programming
Error). However, block values are not exact and can
lead to an unpredictable state.

• DoS with Failed Call [cl. 7] (Mythril): This is similar
to the Unchecked Calls class 5. Here, the error will
induce a DoS if the calls are in a loop.

• Integer Under/Overflow [cl. 8] (Mythril): This Pro-
gramming Error is identical to the one in conventional
programming languages. Integers may flip to zero/in-
finity when incremented over the feasible range.
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• Accessible Selfdestruct [cl. 9] (Mythril): This Pro-
gramming Error can be exploited to terminate a
contract such that the remaining funds are sent to a
predefined address.

• Arbitrary Jump with Function Type Variable [cl.
10] (Mythril): If a user alters a function type variable
(i.e., pointer to a function), an attacker may abuse this
Programming Error to jump to an arbitrary function.

• Weak Sources of Randomness [cl. 11] (Mythril):
Randomness is difficult to obtain in standard computer
programs and this task is more challenging on the
blockchain since the consensus protocol is based on
determinism. Using blockchain attributes to generate
randomness makes the contract vulnerable to an Influ-
ence by Miners.

For each vulnerability class in our main model (trained on
cl. 1-6), we select around 60,000 samples with this specific
vulnerability from our raw dataset 3,640,153 contracts) and
concatenate them to construct the dataset of vulnerable con-
tracts (thus it has equally-sized distribution). We empirically
set the minimal sample number to 60,000 since this is the
smallest size of the well-represented vulnerability types in our
dataset. The dataset of vulnerable contracts was then extended
with 60,000 safe smart contracts for which no vulnerabilities
were detected by the tools used in Demeter (Section V-C).

Figure 6 shows the vulnerability class distribution of our
labeled dataset. We group vulnerabilities into three groups,
depending on the number of vulnerable samples per class. The
extension dataset includes vulnerability classes with at least
20k samples per class, while underrepresented have at least
1k but far less than 20k.

We use transfer learning to tackle the challenge (C2) in
Section III-C. Transfer learning uses vulnerability classes in
main training to augment the learning process, when new
vulnerability classes (shown as Extension dataset in Fig. 6)
are not sufficient for training or are highly imbalanced towards
the main vulnerability classes. We show that a baseline model
(without transfer learning) does not converge when trained
using the Underrepresented Dataset (not enough data). How-
ever, the model trained using Transfer Learning can converge
successfully. Hence, Transfer Learning allows us to cover
vulnerability classes for which only a small amount of data
is available.

Fig. 6: Vulnerability types distribution.

It is worth mentioning that the actual size of our labeled
main dataset is 279,726 samples instead of 60,000 × (6 + 1)

that one could expect. This is because ESCORT formulates
vulnerability detection as multi-label classification, meaning
that a contract might have multiple labels and repeatedly
appear in the selection of several vulnerability types described
above. Note that the labeled dataset is split into three sets of
80%, 10%, and 10% for training, validation, and testing, re-
spectively. The definition of the evaluation metrics is provided
in Appendix D.

B. Evaluation Results of Main Training
1) Classifier Learning: We train ESCORT’s model on the

training set with hyper-parameters listed in Table I and assess it
on the test set (consisting of 27,973 contracts). To corroborate
the detection effectiveness of ESCORT, we plot the learning
curves of our multi-output DNN in Figure 7. The training
and the validation curves demonstrate the time-evolving per-
formance of ESCORT and the generalization capability of the
model, respectively. The learning curves show that our MOL-
DNN model can achieve an average F1 score higher than
97% on both the training and validation set. This corroborates
that ESCORT successfully learns the knowledge of multiple
vulnerability types from the reference detection tools used in
Demeter’s data labelling.

(a) BCE loss. (b) F1 score.

Fig. 7: Learning process of ESCORT.
ESCORT is able to detect those vulnerabilities only by

observing opcodes. For example, an integer overflow may
be present, if the attacker controls a variable (i.e, function
arguments are accessed via opcode) and the arithmetic op-
eration has no bounds-checks (i.e., branching opcodes). For
reentrancy, a state change may happen after a external call—
both are visible as opcodes. Further, the issue with time
dependency on bytecode level is the branching based on block
values (i.e., timestamp), both of which are visible as opcodes.

2) Sensitivity to Training Configurations: ESCORT’s train-
ing pipeline is described in Section VI-A. We use the MOL-
DNN architecture in Figure 4 with six vulnerability branches
in ESCORT’s training phase. This model has a total num-
ber of 199,214 learnable parameters. We investigate whether
the detection performance of ESCORT can be improved by
increasing the number of layers, epochs, and learning rate.
ESCORT’s accuracy has no increase with a longer training
time. Further, our model exploration did not yield any better
performing models.

3) Class-wise Detection Performance: We describe ES-
CORT’s overall performance on the vulnerability types in-
troduced in Section VII-A. Here, we provide a fine-grained
insight into ESCORT’s capability on each vulnerability class.
Table II shows the class-specific metrics obtained by our MOL-
DNN model. ESCORT achieves an average of 94% precision
and 98% F1 score across all six vulnerability types. In the case
of the Money Concurrency vulnerability (cl. 2), ESCORT’s
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recall score is relatively lower than others. The low recall
value indicates that ESCORT yields more false negatives on
this vulnerability class according to Equation (1).
C. Extensibility Performance

We perform transfer learning on the trained main model by
expanding branches as described in Section IV-C. Each new
branch (for cl. 7-11) has 16,897 trainable parameters.

Transfer learning on well-represented data. For initial
transfer learning, we use the same hyper-parameters listed
in Table I and train the model on vulnerability types 7 and
8 simultaneously with 20,000 sample for each class. The
detection result on the new vulnerability types are shown in
the two columns cl. 7 and cl. 8 of Table II. It can be seen
that ESCORT achieves 95% and 94% F1 score on the two
new vulnerabilities cl. 7 and cl. 8, respectively. The empirical
results corroborate that ESCORT is extensible to new attacks
by enabling lightweight and effective transfer learning. We
would like to point out that none of the existing detection
techniques consider/solve the challenge of vulnerability exten-
sion, which is essential to ensure high attack coverage in the
dynamic blockchain environments. ESCORT demonstrates fast
and effective extension to new vulnerabilities for the first time.

Effect of transfer learning dataset size. To further eval-
uate ESCORT extensibility in a more practical scenario where
new smart contract vulnerabilities are underrepresented, we
gradually reduce the dataset size of transfer learning on cl. 7
and 8 by a certain percentage until we observe large perfor-
mance degradation. Note that the extension dataset distribution
in this new transfer learning experiment is shown in Figure 6
(orange color). Figure 8 shows how ESCORT performs in
the transfer learning scenario when different amounts of new
contracts with the new vulnerability type (cl.7, cl.8) are given
to update our multi-output detector (detailed in Section IV-C).
The y-axis is the F1 score of vulnerability detection. The
vertical bars with different colors along the x-axis correspond
to different transfer learning dataset sizes. One can observe
that ESCORT can effectively identify new vulnerability types
even when only 1,000 contracts (for cl. 7-8) are available for
transfer learning. If only 500 samples are available per class,
the performance of ESCORT degrades for cl.8.

Fig. 8: Performance comparison of transfer learning with
different dataset sizes.

We also demonstrate the superior efficiency of ESCORT’s
transfer learning compared to the existing ML-based detection
techniques when extending to detect new vulnerabilities with
limited samples. In this comparison experiment, we define a
regular RNN consisting of the five-layered feature extractor
and two four-layered branches shown in Figure 4 as the base-
line model. This model is trained from scratch on vulnerability

types cl.7 and cl.8 with limited data separately. For ESCORT,
we expand the trained main model with two new branches and
only update parameters in these two branches. We use 1,000
smart contracts in cl.7 and cl.8 in this experiment. This process
takes only 1 h and 23min, which is about half of the baseline
model training time. We train the baseline model on cl. 7-8
with different hyper-parameters and observe that it does not
converge on only 1,000 samples. This is because the limited
data for new vulnerabilities (cl. 7-8) is not sufficient to learn
all parameters in the baseline model.

Transfer learning on underrepresented data. To assess
the superior efficiency on underrepresented data, we conducted
further experiments on cl. 9-11. In Figure 6 we can see the
underrepresented dataset, where the vulnerability classes have
only around 1,000 samples (in green color). We applied our
transfer learning approach again and added three new branches
to our main model. As expected, we are able to achieve an
average F1 score of 97% on cl. 9-11. We similarly trained
a baseline model with three branches. However, the baseline
model also does not converge for cl. 9-11 with only 1,000
samples for each class.

D. Comparison with other ML approaches
For the comparison with other ML approaches, we use

the labels of our dataset obtained by Maian [88] since the
related work [58], [101] uses Maian to label their dataset.
The dataset consists of 15k samples for each of the four
classes labeled by Maian. We compare ESCORT against three
papers: Color-inspired [65], Towards Sequential [101], and
NLP-inspired [58].

Color-inspired. Since no open-source implementation or
data is available for the color-inspired detection [65], we
re-implemented the model and preprocessing based on the
description in the paper. Here, we transform the bytecode
of smart contract to RGB pictures and use a pre-trained
CNN model (Inception-v3) to train on and classify contracts
in our dataset. While the retraining of the classifier works,
we achieved an F1 score of 40%. We hypothesize that the
authors of [65] achieved a better performance due to a more
homogeneous dataset.

Towards Sequential. We used our dataset to test the open-
source model provided by Towards Sequential [101] and NLP-
inspired [58] (both use the same dataset). First, we tested our
dataset against Towards Sequential [101] and achieved an F1
score of 76% with their binary classifier. While this approach
achieves better performance than Color-inspired [65] on the
same test dataset, the performance of Towards Sequential is
not as good as reported [101]. After investigating their training
dataset, we found many duplicates were used in training and
testing—resulting in poor performance.

NLP-inspired. Next, we test NLP-inspired [58]. While the
authors use the same dataset as Towards Sequential [101], we
achieved an F1 score of only 54%. We attribute the reduced
performance to the over-sampling approach the authors took
to generate more data for training. Consequently, the authors
introduced bias impairs the general performance.

ESCORT. Last, we used the Maian-labeled dataset to
train ESCORT. When we train from scratch, we achieve an
average F1 score of 98%, showing superior performance.
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Metrics Initial vulnerability types New Vuln. Classes

cl. 1 cl. 2 cl. 3 cl. 4 cl. 5 cl. 6 cl. 7 cl. 8 cl. 9 cl. 10 cl. 11
Precision 0.92 0.92 0.96 0.93 0.94 0.98 0.88 0.97 0.94 0.97 0.95
Recall 0.97 0.93 0.98 0.94 0.97 0.99 0.97 0.88 0.99 0.94 0.94
F1 score 0.98 0.97 0.99 0.97 0.98 0.99 0.94 0.95 0.98 0.97 0.96
FPR 0.02 0.02 0.01 0.02 0.02 0.01 0.07 0.02 0.03 0.01 0.02
FNR 0.03 0.07 0.02 0.06 0.03 0.01 0.03 0.12 0.00 0.06 0.06

TABLE II: Class-specific metrics (for unseen/test data) retrieved by our multi-output model for initial training phase (cl. 1-6)
and after transfer learning phase (cl. 7-11).

When we apply our transfer learning, we achieve an average F1
score of 95%. While this is worse than training from scratch,
we still see better performance than other works.
E. Runtime Performance

In this section, we evaluate the performance of our model
serving API (c.f. Section VI-B1) and MetaMask Mobile (c.f.
Section VI-B2). The API is assumed to run on a server, where a
CPU and GPU may be available. We assume for the MetaMask
Application a normal Android phone. We choose ten ”random”
contracts for PC and Android performance analysis. We use
the median runtime as the efficiency metric.

API performance. Here, ESCORT is executed on CPU
(with and without Tensorflow’s Docker container) and a GPU.
The performance on the CPU is different, whether the model
is loaded via the host OS or the Tensorflow Docker container.
Loading the model directly on the host yields an inference time
of 1.5 s. When loading the model inside a docker container,
the inference time is only a third with 0.5 s. The performance
on the GPU is the fastest with 0.15 s.

MetaMask performance. Our MetaMask prototype is
based on MetaMask v5.0.1 (877) and runs on a Nokia 7.1 with
a Qualcomm Snapdragon 636 using Android 10. We ported
ESCORT to Tensorflow Lite for Android (embedded in the
MetaMask Application). The median runtime of our bytecode
preprocessing and vulnerability type detection is 102.5ms and
226.79 s, respectively. For time-sensitive classification tasks
the user can switch to server-sided classification, which allows
for drastic performance increases with the drawback of reduced
privacy. Note that Tensorflow Lite currently does not support
GPU acceleration of DNN inference.

Using dumpsys, a tool that runs on Android devices and
provides information about the system, we measured the
performance of our MetaMask prototype. We classified random
contracts for about 9 minutes on the device as performance
measurements. For a total runtime of 520.6 seconds, dumpsys
measured a drain of 183.7 mAh (milliampere-hour). Consider-
ing the median classification time of a contract, we calculated
an average battery drain per contract of around 80mAh or
2.62% of the capacity. Furthermore, the RAM consumption
was continuously at 0.6 GB and the CPU utilization remained
at around 20 %. In consequence, we assume that the resource
utilization, especially battery usage, of our prototype is within
accepted bounds.
F. Ground Truth Analysis

In this section, we first explain our data acquisition, statis-
tics of the labeling tools (i.e., Mythril, Vandal, and Oyente)
and software aging of smart contracts. We then show the per-
formance comparison between the labeling tools and ESCORT
against ground truth.

Data acquisition. Ground truth data is notoriously hard
to obtain as one need to invest a substantial amount of time

for correct labeling. For this task, we base our analysis on
professional security audits of smart contracts. More specif-
ically, we use the audit repositories of Quantstamp [24],
OpenZeppelin [21], Trail of Bits [35], ConsenSys [2], and
CertiK [1]. Those audits are publicly available. To match the
vulnerability classes in those audits with the ones in our setup,
we went through the audits, and generated a ground truth
dataset of 373 smart contract projects in source code for classes
2, 4, 5, 6, and 8. The inspected audits do not include any
samples of the remaining vulnerability classes.

Compilation and analysis. Since ESCORT operates on
contract bytecodes, we compiled the obtained source code
of the smart contracts. We found that 156 smart contract
projects from the audits cannot be compiled because of soft-
ware aging (i.e., libraries or repositories are not available
anymore). Among the rest of 217 projects (containing 268
smart contracts), Vandal fails to complete analysis for 104 and
Oyente failed for 8 smart contracts. Mythril completed testing
of all smart contracts. All 268 contracts from the ground-truth
dataset are used for the analysis of all three tools. If Oyente
and Vandal failed analysis, respective contracts are considered
non-vulnerable (since they fail to detect any vulnerability).

Detection performance. We analyzed the performance
of ESCORT and three detection tools used by Demeter on
the compiled ground truth smart contracts and summarize
the results in Table III. Recall that we show the mapping
Vulnerability class → Tool (i.e., which detection tool was
used for which vulnerability class) in Section VII-A. Table III
summarizes the F1 score for each vulnerability of its respective
labeling tool. It is worth noting that we did not calculate the
average of F1 scores since each score only applies to one tool.
We can see that ESCORT has a similar or better performance
compared with the original tools used when labeling the
vulnerability classes except for cl. 5.

Metrics cl. 2 cl. 4 cl. 5 cl. 6 cl. 8
Underlying tool Oyente Vandal Vandal Mythril Mythril
Positive samples 8 64 150 10 21
F1 tools 0.96 0.53 0.47 0.89 0.83
F1 ESCORT 0.96 0.73 0.31 0.90 0.88

TABLE III: Class-specific metrics for ground truth data.
We attribute the poor performance of ESCORT on cl.5 in

Table III to two factors: (i) Coding style changes over time. For
example, developers used exceptions to check return values in
older contracts instead of “require()” or applied “require()”
and “assert()” interchangeably. (ii) The ”REVERT” opcode
was introduced and changed the function-to-opcode mapping.
Since our main dataset of 3.6mln smart contracts includes
mostly older contracts, ESCORT learns older opcode mappings
and coding styles. In contrast, the ground truth dataset mostly
consists of recent smart contracts. We attribute the better
performance in the other classes to the ability of ESCORT
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to generalize attack patterns better than the underlying tools.
In-depth manual analysis of mis-classified cases on the main
dataset is non-trivial due to a large number of samples to
explore (255 for cl.7 and 235 for cl.8), the absence of source
codes for these contracts, and the fact that AI results are not
trivially explainable.

VIII. RELATED WORK

We discuss existing ML-based vulnerability detection
methods in this section and provide a more detailed catego-
rization of other related works in Appendix E.

ContractWard. ContractWard detects smart contracts vul-
nerability in the opcode-level by extracting bigram features
from the simplified opcode and training individual binary
ML classifiers for each vulnerability class [107]. It targets
six vulnerabilities and experiments with Random Forests, K-
Nearest Neighbors, SVM, AdaBoost, and XGBoost classi-
fiers. Compare to our work, ContractWard has three main
limitations: (i) Requires opcode of smart contracts. Obtaining
opcode is non-trivial since smart contracts are typically stored
in bytecodes on the blockchain. (ii) Not extensible to new
exploitation attacks. It requires to build and train a new ML
model for each new vulnerability type. (iii) Not scalable to
long contracts since the bigram language model has a short
window size.

LSTM-based. In [101] the authors proposes a sequence
learning approach to detect weaknesses in the opcode of
smart contracts. Particularly, it uses one-hot encoding and
an embedding matrix to represent the contract’s opcode. The
obtained code vectors are used as input to train an LSTM
model for determining whether the given smart contract is
safe or vulnerable (i.e., binary classification). Compared to
ESCORT, the paper [101] yields limited detection perfor-
mance: (i) The reported F1 score of 86% is relatively low. We
hypothesize the reason is that different vulnerability types have
diverse behaviors, thus making it hard to distinguish the group
of multiple vulnerabilities from the safe contracts. (ii) The
LSTM model only provides a binary decision about contract
security without distinguishing vulnerability types. Another
work [64] formulates vulnerability detection as a multi-task
learning problem [94], [112] and adjusts model architecture
for each vulnerability type. Although [64] also works on the
bytecode-level, this paper does not address the scalability
challenge compared with ESCORT. Furthermore, [64] uses a
single detection tool to label the contracts for training and
assumes the labels are correct. This assumption is too strong
and the ground-truth labels are not reliable. Our Demeter tool
incorporates three different detection techniques and uses the
most reliable one for each vulnerability type when constructing
the labeled dataset (Section V-C), thus increasing the reliability
of the obtained label.

AWD-LSTM based. The work in [82] adapts ‘Aver-
age Stochastic Gradient Descent Weighted Dropped LSTM’
(AWD-LSTM) for multi-class vulnerability detection. The
proposed model consists of two parts: a pre-trained encoder
for language tasks [63], and an LSTM-based classifier for
vulnerability classification. This method works on the opcode-
level and can detect three vulnerability types. Compared to
ESCORT, the AWD-LSTM based detection method has the
following constraints: (i) Non-uniform effectiveness. The multi-
class detection performance of [58] is not uniformly effective

across different vulnerabilities. In particular, [58] yields an
F1 score of 95% on safe contracts and 30% on Prodigal
contracts [89]. ESCORT features a much smaller performance
divergence across different classes as can be seen from Ta-
ble II. (ii) Not extensible. The AWD-LSTM based model [58]
is a fixed design to detect pre-specified vulnerability types. The
extension to incorporate new attacks is not considered in [58].

CNN-based. In [65], the proposed solution transforms
the contract bytecode into fix-sized RGB color images and
trains a convolution neural network for vulnerability detec-
tion. Similarly to ESCORT, the CNN-based classifier uses
multi-label classification, which has a low confidence score
when determining the exact vulnerability types. ABCNN [100]
proposes a multinomial classification CNN model with self-
attention mechanism to improve the detection performance.
Compare to our work, these CNN-based detection schemes
have the following limitations: (i) The multi-label classification
performance is not satisfying due to its low confidence level.
We hypothesize that this is because image representation of
the bytecode and the CNN architecture ignore the sequential
information existing in the contract. (ii) The extensibility/-
generalization ability of the CNN-based detection method is
neither discussed nor evaluated.

GNN-based. The solution in [114] proposes a graph neural
network (GNN)-based approach. In particular, it builds a
contract graph from the contract’s source code where nodes
and edges represent critical function calls/variables and tem-
poral execution trace, respectively. This graph is normalized
and passed to a temporal message propagation network for
vulnerability detection. While supporting multi-class detec-
tion, the work [114] has the following drawbacks: first, they
operates on contract source code, which is typically hard
to obtain from the public blockchain; second, it has limited
effectiveness, as it yields an average F1 score of 77% across all
three vulnerabilities. We hypothesise that graph normalization
in [114] does not preserve the malicious nodes responsible for
vulnerability exploitation, leading to the low F1 score. The
follow-up works [78], [79] extend GNN-based vulnerability
detection by integrating expert-defined security patterns into
the graph representation, thus providing explainability for
the detection. However, these two detection methods do not
solve the scalability challenge. Furthermore, they operate at
the source-code level, thus only apply to smart contracts
with public available source codes. Another source-level tool
Peculiar [109] adapts the pre-trained GraphCodeBERT [61] as
its model and extracts critical data flow graph from contract’s
source code for vulnerability detection. Peculiar demonstrates
its effectiveness on the reentrancy bug only and does not
support detection of other vulnerabilities.

IX. CONCLUSION

We present ESCORT, the first transfer learning-friendly
vulnerability detection framework for smart contracts. Our tool
is extensible to new vulnerability types using limited data with
minimal model modification and re-training overhead. ES-
CORT can identify different vulnerability types in a single run
and achieves effective (F1 score 97%) and efficient detection
(0.15 second per contract). In contrast to previous ML-based
vulnerability detection methods, ESCORT does not require
source code access, supports concurrent detection of multiple
vulnerability types, and is the first framework that allows
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vulnerability type extension via transfer learning. Compared
to non-ML techniques, ESCORT is a unified and automated
framework that fully covers a smart contract with arbitrary
complexity. In addition, ESCORT provides concurrent detec-
tion of various vulnerabilities through a single run, thus incurs
much smaller deployment overhead compared to applying
multiple non-ML based tools. ESCORT’s multi-output RNN
design is highly modular, scalable, efficient, and extensible.
As a separate contribution, we devise Demeter, a toolchain for
dataset construction. We will open-source Demeter and our
dataset to promote research in this area.
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[88] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” Annual Computer
Security Applications Conference, 2018.
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APPENDIX

In this section, we provide a detailed introduction about
cryptocurrency systems, detailed background on deep learning
as well as more related works.

A. Ethereum Platform

Blockchain is proposed as a distributed ledger that records
transactions between two parties in a verifiable and perma-
nent way [113]. Ethereum is an open-sourced cryptocurrency

platform based on blockchain and provides a Turing-complete
Ethereum Virtual Machine (EVM) that enables developers to
deploy decentralized applications. A cryptocurrency platform
has the following key characteristics:

Decentralized Nature. In contrast to conventional curren-
cies, virtual money is not administered by a central authority
but by a distributed peer-to-peer network. A network of nodes,
the so-called ‘miners’, are responsible to perform money
transactions, data storage, and updates [5]. Note that on a
blockchain, all code, data, and transactions are shared and
available for inspection on every single node. All actions
performed inside of this network need to be confirmed by the
majority of all participating nodes [95].

Mathematical Algorithm as a Basis of Cryptocurrency
Value. Money, in the Ethereum context called Ether, can be
initially earned by solving a complex mathematical problem
that can be accepted by the other nodes. The process is called
mining. Once a transaction is triggered, a state value for the
new block is calculated and verified by the participating nodes
in the network [5]. The amount of money available in the
network is also ensured to be limited. As such, the Ether and
the associated owners can be tracked at all times [54].

Resilience to Data Manipulations from Outside. The
information of the mined money is stored in a public data
structure, i.e., the blockchain. More specifically, modifications
and transactions are stored in blocks that are appended to
the chain in a chronological order after checking its valid-
ity [81]. Afterward, the network rejects any attempts to alter
the blockchain entries. Therefore, the data is immutable and
irreversible [54].

Pseudonymous Nature. In general, registration is not
required to use cryptocurrency. Users that perform transactions
inside the network are identified by a public key and a private
key. All transactions are associated with the addresses instead
of explicit users [5]. Therefore, it is hard to determine the
identity of a user although all transactions are stored publicly
on the blockchain.

B. Deep Learning

ESCORT operates on contract bytecode, which can be
considered as a special case of text data. We briefly present
the background of text representation and recurrent neural
networks below.

Text Representation. The text modality is typically trans-
formed into numerical vectors for usage in ML algorithms.
This transformation can be realized in different ways, such
as a bag of words [106], n-gram language model [46], and
embedding layer [111]. The numerical vectors converted from
the text data are then used as the direct input to the DL models.

Recurrent Neural Network. An RNN is a category of
DNNs where the connections between neurons construct a
direct computational graph along the temporal sequence [70].
A key property of the RNN is that the model can use its internal
states as memory cells to store the knowledge about prior
inputs, thus capturing the contextual information in sequential
inputs (e.g., text document). As shown in Figure 9, the hidden
states obtained from the previous input (st) affects the output
in the current time step (ot+1). The unfolded RNN diagram
reveals the ‘parameter sharing’ mechanism of RNNs where
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the weight matrices (W , V , and U ) are shared across different
time steps. Parameter sharing makes RNNs generalizable to
unseen sequences of different lengths.

Fig. 9: A recurrent neural network and its unfolding in
time [74]. The computation of the forward pass is shown.
C. Machine Learning-based Classification

Multi-label vs. Multi-class Classification. We introduce
two types of ML architectures for classification tasks here
and show how ESCORT leverages multi-label topology for
concurrent vulnerability detection in Section IV. Smart con-
tracts vulnerability detection can be realized with two different
paradigms. The first one is known as multi-class classification,
which refers to the case where the classification task has more
than two classes that are mutually exclusive. In particular, each
sample is assigned to one and only one class label. The second
one, multi-label classification, also involves multiple classes
while a data sample can have more than one associated labels.
This is because the classes in multi-label tasks describe non-
exclusive attributes of the input (e.g., color and length).

Multi-class vs. Multi-label Model Let us use an example
to illustrate the difference between these two paradigms. Given
a clothing dataset with three colors (black, blue, red) and
four categories (jeans, dress, shirt, shoes), we want to train a
model to predict these two clothing attributes simultaneously.
Figure 10 shows the architecture of the multi-class and multi-
label formulation of the clothing classification task. The multi-
class design has only one set of dense layers (i.e., ‘heads’)
at the bottom of the DNN where the last dense layer has
3 × 4 = 12 neurons. The network topology for multi-label
classification has two sets of dense heads at the end of the DNN
where the last dense layer in each branch has 4 and 3 neurons
to learn the clothing category and color attribute, respectively.
We call the network design of the multi-label classification
with multiple sets of dense heads as ‘multi-output’ architecture
throughout this paper. The ‘stem-branch’ topology makes the
multi-output architecture extensible to learn new attributes.
ESCORT leverages this observation to devise an efficient and
extensible smart contract inspection solution.
D. Evaluation Metrics

ESCORT provides concurrent detection of multiple vul-
nerability types. We evaluate the performance of ESCORT’s
multi-output DNN model with F1 score, precision, and recall.

Base Values. The results of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)
are the base values to compute other metrics. The true values
represent the number of correctly predicted results, which can
be either true positive or true negative. The false values indicate
that the DL model gives the wrong outputs [9].

Precision and Recall. The precision metric describes the
ratio of truly positive values to all positive predictions. This in-
dicates the reliability of the classifier’s positive prediction [91].

Fig. 10: DNN architectures of multi-class (left) and multi-label
(right) formulation of clothing classification task [12].

The recall (or sensitivity) metric shows the proportion of actual
positives that are correctly classified. The formulas to compute
these two metrics are given below:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (1)

F1 Score. The F1 score metric is commonly used in
information retrieval and it quantifies the overall decision
accuracy using precision and recall. The F1 score is defined
as the harmonic mean of the precision and recall:

F1 score =
2 ∗ Precision ∗Recall

Precision+Recall
. (2)

The best and the worst value of the F1 score is 1 and 0,
respectively. The F1 score can be calculated for each class
label or globally [27]. We use the weighted F1 score where
the per-class F1 scores are weighted by the number of samples
from that class [15].

E. Detailed Related Works

Table IV summarizes the qualitative comparison between
ESCORT and representative counterparts. We discuss more
detailed related works below.

1) Static Vulnerability Detection Methods: Static detection
techniques analyze the smart contract in a static environment
by examining its source code or bytecode. Main limitations of
static detection method are expert formalisation of vulnerabil-
ities, code coverage and detection time.

Information Flow Analysis-based. Slither [55] uses taint
analysis [104] to detect vulnerabilities in Solidity source code.
It can find nearly all vulnerabilities related to the user inputs
or critical data flows while the inspection time might be pro-
hibitively long. Dedaub’s Contract-Library by Dedaub [4] pro-
vides multiple different features via an online API. It collects
bytecode of the smart contracts and performs vulnerability
classifications using tool MadMax [59] that performs flow and
loop analysis to detect gas-focused vulnerabilities [44].

Symbolic Execution-based. Oyente [81] detects vulnera-
bilities in the source code or bytecode of Solidity contracts
using symbolic execution. Symbolic execution represents the
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Name Method Capability Extensible Required
Input

This work ML (GRU) + TL Multi-label Yes Bytecode
Oyente [81] Symbolic execution Multi-class No Source and bytecode
Mythril [19] Symbolic execution, TA, and SMT Multi-class No Bytecode
Dedaub [4] Flow and loop analysis Gas-focused vulnerability No Source code

Securify [105] Symbolic analysis Binary decision No Bytecode
Vandal [45] Static program analysis Multi-class No Bytecode

ContractWard [107] ML (bigram model) Binary decision No Opcode
Towards Sequential [101] ML (LSTM) Binary decision No Opcode

NLP-inspried [58] ML (AWD-LSTM) Multi-class No Opcode
Color-inspried [65] ML (CNN) Multi-label No Bytecode

Graph NN-based [114] ML (GNN) Multi-class No Source code
TL: Transfer Learning, TA: Taint Analysis

TABLE IV: Qualitative comparison of ESCORT and existing smart contract vulnerability detection methods.

program’s behavior as built formula and uses symbolic inputs
to decide if a certain path can be reached [71]. As such,
its performance depends on the number of explored paths
and the program’s complexity [47], [97]. Oyente constructs
the control flow graph of the contract and uses it to create
inputs for symbolic execution. Manticore [83] analyzes the
contract by repeatedly executing symbolic transactions against
the bytecode, tracking the discovered states, and verifying
code invariants [13]. Securify [105] first obtains the contract’s
semantic information by performing symbolic analysis of the
dependency graph, then checks the predefined compliance
and violation patterns for vulnerability detection. teEther [73]
searches for certain critical paths in the control flow graph of
the smart contract and uses symbolic execution for vulnerabil-
ity identification.

Logic Rules-based. Vandal [45] is a logic-driven static
program analysis framework. It converts the low-level EVM
bytecode to semantic logic relations and describes the secu-
rity analysis problems with logic rules. The datalog engine
executes the specifications for input relations and outputs the
vulnerabilities. eThor [96] is a static analysis technique built
on reachability analysis achieved by Horn clause resolution.
NeuCheck [80] adopts a syntax tree in a syntactical analyzer
to transform source code of smart contracts to an intermediate
representation (IR). Vulnerabilities are identified by searching
for detection patterns in the syntax tree. SmartCheck [102]
converts the Solidity source code to XML-based IR and verifies
it against detection patterns defined in XPath language [40].

Composite Methods-based. Mythril [19] combines mul-
tiple vulnerability detection approaches, including symbolic
execution, taint analysis, and Satisfiability Modulo Theories
(SMT). SMT solving converts the contract to SMT constraints
to reveal program flaws. Zeus [69] uses symbolic model
checking, abstract interpretation, and constrained horn clauses
to verify contracts’ security. Osiris [103] combines symbolic
execution and taint analysis to precisely identify integer bugs
in smart contracts.

2) Dynamic Vulnerability Detection Methods: Dynamic
testing techniques execute the program and observe its be-
haviors to determine the vulnerability’s existence. The main
disadvantage of dynamic detection is that designing testing
inputs to yield high software coverage is difficult.

Fuzzing-based. MythX [18] combines synthetic execution
and code fuzzing. It provides a cloud-based API for developers

to inspect smart contracts. Fuzzing [57] is a testing method that
attempts to expose the vulnerabilities by executing the program
with invalid, unexpected, or random inputs. The brute-force
nature determines that fuzzing incurs large runtime overhead
and might have poor code coverage due to its dependency
on the inputs [47]. ReGuard [77] is another fuzzing tool
specialized in the Reentrancy bug. It creates an IR for the
smart contract. A fuzzing engine is used to generate random
byte inputs and analyze the execution traces for reentrancy
bugs detection. ContractFuzzer [68] generates fuzzing inputs
based on the ABI specifications of smart contracts. Test oracles
are defined to monitor and analyze the contract’s runtime
behaviors for vulnerability detection. Echidna [60] is a fuzzer
that generates random tests to detect violations in assertions
and custom properties. ILF [62] uses symbolic execution to
generate contract inputs and employs imitation learning to
design a neural network-based fuzzer from symbolic execu-
tion. sFuzz [86] is an adaptive fuzzer for smart contracts
that combines the AFL fuzzer and multi-objective strategy
to explore hard-to-cover branches. Harvey [110] is a greybox
fuzzer that predicts new inputs to cover new paths and fuzzes
the transaction sequence in a demand-driven manner.

Validation-based. ContractLarva [90] is a runtime verifi-
cation tool for smart contracts where a violation of defined
properties can lead to various handling strategies, such as
a system stop. These properties can include undesired event
traces of control or data flow. Maian [87], [88] combines
symbolic analysis and concrete validation to inspect the smart
contract’s bytecode. In concrete validation, the contract is
executed on a fork of Ethereum for tracing and validation. By
passing symbolic inputs to the contract, the execution trace
is analyzed to identify the vulnerabilities. Sereum [93] uses
runtime monitoring and verification to protect existing smart
contracts against reentrancy attacks without modifications or
semantic knowledge of the contracts. It detects inconsistent
states in the contract via dynamic taint tracking and data flow
monitoring during contract execution. SODA [49] is a general
online framework that detects various attacks exploiting differ-
ent smart contract vulnerabilities. SODA can be integrated as a
full node into EVM-compatible blockchains and allows users
to develop attack detection apps using the real-time monitored
information. While SOTA can perform online detection, as
a non-ML based approach, it requires human expertise to
identify insecure patterns. In contrast, our ML-based ESCORT
framework supports runtime analysis and learns vulnerable
features automatically.
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