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Abstract—Backward-edge control-flow hijacking via stack
buffer overflow is the holy grail of software exploitation. The
ability to directly control critical stack data and the hijacked
target makes this exploitation strategy particularly appealing
for attackers. As a result, the community has deployed strong
backward-edge protections such as shadow stacks or stack
canaries, forcing attackers to resort to less ideal e.g., heap-based
exploitation strategies. However, such mitigations commonly rely
on one key assumption, namely an attacker relying on return
address corruption to directly hijack control flow upon function
return.

In this paper, we present exceptions to this assumption and
show attacks based on backward-edge control-flow hijacking
without the direct hijacking are possible. Specifically, we demon-
strate that stack corruption can cause exception handling to
act as a confused deputy and mount backward-edge control-
flow hijacking attacks on the attacker’s behalf. This strategy
provides overlooked opportunities to divert execution to attacker-
controlled catch handlers (a paradigm we term Catch Handler
Oriented Programming or CHOP) and craft powerful primitives
such as arbitrary code execution or arbitrary memory writes.
We find CHOP-style attacks to work across multiple platforms
(Linux, Windows, macOS, Android and iOS). To analyze the
uncovered attack surface, we survey popular open-source pack-
ages and study the applicability of the proposed exploitation
techniques. Our analysis shows that suitable exception handling
targets are ubiquitous in C++ programs and exploitable exception
handlers are common. We conclude by presenting three end-to-
end exploits on real-world software and proposing changes to
deployed mitigations to address CHOP.

I. INTRODUCTION

Although safer programming languages are becoming in-
creasingly popular, C and C++, and Objective-C remain some
of the most dominant languages for mobile, embedded, and
enterprise applications alike [15]. The enduring dependency on
these unsafe low-level languages comes however at a high cost:
classic memory corruption vulnerabilities are still painfully
common [71] and continue to haunt both developers and end
users. High-value targets in this space are stack buffer overflow
vulnerabilities, which have historically enabled “convenient”
backward-edge control-flow hijacking attacks corrupting criti-

cal control (i.e. return address) and non-control (e.g., pointers
in locals and saved registers) data on the stack.

In response, researchers have devised strong mitigations
such as stack canaries [20] and shadow stacks [23] to protect
backward-edge integrity and cripple exploits. This effort has
led attackers to resort to less-than-ideal (e.g., heap-based)
strategies, either towards more elaborate exploitation tech-
niques [64] or to circumvent backward-edge protection [19].
Indeed, the latter is generally assumed to be nontrivial since
deployed mitigations enforce a key invariant: a corrupted return
address cannot directly hijack the backward-edge control flow
upon function return.

In this paper, we show this invariant insufficiently mitigates
backward-edge control-flow hijacking. Our key insight is that
corrupted return addresses and stack frame data cannot only
be abused for exploitation purposes on the return path, but
also on the stack unwinding path executed during exception
handling. The unwinder can act as a confused deputy to mount
backward-edge control-flow hijacks on the attacker’s behalf.

This is possible since the unwinder needs to find an ap-
propriate handler to transfer control flow to when handling an
exception. As we will show, this process largely depends on the
return address and other data located on the stack. As a result,
using a stack buffer overflow, an attacker can control such data,
luring the unwinder into diverting control flow to attacker-
controlled catch handlers. We show that this paradigm, which
we term Catch Handler Oriented Programming (CHOP), can
be used to craft powerful primitives such as arbitrary code
execution or arbitrary memory writes.

Additionally, we show that attacker-controlled critical data
on the stack is only subject to lose sanity checks on the
unwinding path (i.e., the raised exception type), even with
backward-edge protections in place. Indeed, to our surprise,
while Structured Exception Handling (SEH) exploitation is a
well-studied and mitigated attack vector on Microsoft Win-
dows [73], exception handling support on other systems has
been a largely overlooked attack surface—and so did widely
deployed backward-edge protection mechanisms.

Based on these observations, we analyze the resulting
attack surface of CHOP in more detail. More specifically, we
identify the available confusion primitives arising from the
corruption of data used by the unwinder. Then, we discuss
the capabilities of gadgets exploitable by an attacker after
diverting the unwinding logic. Finally, we build on the gathered
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insights to present multiple novel CHOP techniques combining
confusion primitives and gadgets for exploitation.

To demonstrate that these attacks are a realistic threat
to the existing software landscape, we analyze real-world
C++ binaries to assess the prevalence of exception handling
semantics. We further analyze CHOP gadgets using static taint
tracking to gain insights over common attacker capabilities
after successful confusion of the unwinder. Our analysis shows
the usage of exceptions is widespread in C++ software, and
CHOP provides powerful building blocks for exploitation. We
also demonstrate end-to-end CHOP-style attacks on three real-
world vulnerabilities, which, to the best of our knowledge,
would not be exploitable without our techniques. Finally, we
show that even recent defenses, such as hardware shadow
stacks, fail to mitigate CHOP-style attacks. Overall, CHOP
attacks are a valuable addition to the attacker’s arsenal, evi-
dencing an important gap (i.e., the unwinding path) in the cur-
rent mitigation space—as also acknowledged by the vendors in
response to our vulnerability disclosure. Moving forward, we
discuss possible defenses, based on extending the invariants
enforced by state-of-the-art backward-edge mitigations to the
stack unwinding path.

In summary, our paper makes the following contributions:

• We present the unwinding logic deployed in modern
C++ programs, pinpointing operations treating critical,
attacker-targeted data as trusted.

• We demonstrate CHOP, a novel exploitation paradigm
based on unwinding process hijacking and describe re-
sulting attacker capabilities.

• We conduct a large-scale study on popular C++ programs
to assess the potential attack surface of CHOP attacks.

• We show that CHOP applies across all widely used
operating systems and platforms.

• We showcase end-to-end exploits against real-world soft-
ware and argue that unwinders should become aware of
CHOP-style attacks.

II. BACKGROUND

A. Exceptional Control Flow

Exceptional control flow denotes the control flow transi-
tions of a program experiencing a fault condition or other
foreseen or unforeseen exceptional situations, triggering ex-
ception handling [21], [22]. Many modern programming lan-
guages follow the exception handling paradigms introduced in
Ada [7], [51]. In this paradigm, a program may define excep-
tion types, throw1 an instance of such types upon detection of
an exceptional situation, and define Exception Handlers (EHs)
that are executed for a specific exception. Furthermore, EHs are
bound to specific code ranges2, and within the abstract machine
defined by the programming language, exceptional control flow
transitions are only allowed between a try block and its asso-
ciated EH. A raised exception interrupts normal execution and
immediately transfers control flow to the corresponding EH.

1The terms raise and throw are used interchangeably in literature and
programming language implementations.

2The term try block refers to the validity scope of an EH.

1 void bar() {
2 throw std::exception(); ¶
3 return; ·
4 }
5 void foo() {
6 try { ¸
7 bar();
8 ¹
9 }

10 catch ( std::exception &e ) {
11 º
12 }
13 }

Listing 1: C++ example with exceptional control flow.

Exception propagation may cross subroutine calls, in which
case the stack needs to be unwound. Depending on language-
defined semantics, the EH may transfer control flow back to
the site where the exception was raised (resumption semantics)
or to code following the EH (termination semantics). For
the sake of clarity, in this paper we focus on termination
semantics since modern programming languages with Ada-
style exception handling, such as C++, almost ubiquitously
implement these semantics [7].

The C++ program in Listing 1 exemplifies how exceptions
are thrown and propagated. The subroutine foo wraps a call to
bar into a try block ¸, which in turn raises ¶ an instance of
std::exception. This directly transfers the control flow to
the corresponding EH º. Due to C++ termination semantics,
any code following the point the exception is raised (¹, ·)
is not executed. Crucially, the return statement nominally
transferring the control flow back to foo along the backward
edge · is skipped.

B. Backwards-Edge Protections

1) Stack Canaries: A widely deployed [32], [9], [53],
[70] countermeasure against backward-edge control-flow hi-
jacking based on contiguous stack out-of-bounds writes [3] is
StackGuard [20]. StackGuard places stack canaries or cookies
on the stack before the saved return address in the function
prologue and emits a check of the canary value in the function
epilogue prior to the return instruction. This protects nominal
control flow through subroutine returns, since the integrity of
the stack cookie is checked before transferring the control flow
to the return address saved on the stack.

2) Shadow Stacks: A second form of backward-edge pro-
tection is offered by shadow stacks [13], [17], [23], [24],
[76]. The core idea behind shadow stacks is to save return
addresses on a separate stack inaccessible to the attacker via
stack-based buffer overflows. Return addresses are typically
replicated between the main and the shadow stack and either
used for exploit detection or protection by restoring the saved
return address from the shadow stack on return. While different
flavors of shadow stacks have been proposed, a key difference
is how the program stack is mapped to the shadow stack. Direct
mapping schemes replicate the structure of the program stack,
while indirect schemes are designed to be more compact and
only save the return address onto the shadow stack [23].

Stack unwinding—e.g. when transferring the control flow
to an EH—is particularly challenging for indirect shadow
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stacks since the main stack and the shadow stack need to be
kept in sync [13]. In particular, it is crucial that any saved
Instruction Pointer (IP) on the main stack as well as the stack
frame used for unwinding are validated against the shadow
stack. As we will show in section VII-E, failure to perform
such a check can lead to exploitable conditions depending on
the shadow stack implementation.

III. EXCEPTION HANDLING INTERNALS

While nominal control flow (including subroutine returns)
is implemented architecturally, programming languages rely on
runtime support to transition the control flow from the site of
raising an exception to the exception handler. This is generally
implemented with the following components:

• The Exception Handling ABI, which defines the unwind-
ing metadata embedded within the application binaries.

• The language- and implementation-specific personality
routines.

• The unwinder, which implements the Exception Handling
ABI to unwind the stack and invokes the personality
routines.

A. Stack Unwinding on Unix-based Systems

On UNIX-based systems, the Itanium C++ ABI [18]
has found widespread adoption. This ABI describes runtime-
assisted in-process stack unwinding and defines standard in-
terfaces for the unwinder, which must be implemented by
libraries and language runtimes to provide compliant exception
handling. The unwinding process as defined by the Itanium
C++ ABI can be summarized in two phases: the search phase
and the cleanup phase.

Search Phase. Upon raising of an exception, the unwinder
must understand whether the exception can be handled by any
exception handler. The library begins this process by examin-
ing the current IP and by retrieving the associated unwinding
metadata, e.g., the Frame Description Entry (FDE). The latter
contains—possibly through an additional level of indirection—
a pointer to the language-specific personality routine function,
as well as a pointer to a Language-Specific Data Area (LSDA).
Different call frames may use different personality routines if
their relative functions are implemented in different languages.
The unwinder will invoke the personality routine for the
current call frame, which will retrieve and parse the LSDA
to determine whether the current call frame contains a valid
exception handler for the specific exception type thrown. To
achieve this, the current IP is compared against an ordered
list of call-site ranges. These ranges are associated with a
list of exceptions’ types that can be handled, and with their
corresponding landing pads. If no handler is found, the address
of the previous stack frame is calculated using the call frame
size encoded in the unwinding metadata. The saved IP of this
new call frame is retrieved and the process is repeated until
either a call frame with a valid handler is found or the stack
is exhausted. In the latter case, a default handler terminating
the program is usually invoked.

During this first phase, the stack is merely examined to find
a valid exception handler. The existing stack frames are left
unchanged. While this two-step process may seem suboptimal

at first, it allows the default handler to access the original stack
trace or even start a debugger at the exception site.

Cleanup Phase. Similarly to the previous phase, the person-
ality routine is repeatedly invoked during the cleanup phase,
starting from the exception site stack frame. However, this time
the stack frame is unwound at each invocation, that is, the stack
pointer is adjusted. Depending on the LSDA, the personality
routine may transfer control to a “landing pad” after restoring
the previously unwound frame’s callee-saved registers from the
stack. Landing pads are code areas implementing either the
exception handler—which effectively terminates unwinding—
or cleanup handlers which perform frame-specific cleanup,
such as running destructors of local objects before continuing
unwinding.

Exception Application-Binary Interfaces (ABIs). The Sys-
temV AMD64 ABI draft [50] defines the implementation of
the unwinder for AMD64 systems as well as data structures
within the ELF file format. Unwinding information is stored in
FDE elements within the .eh_frame section, which contain
DWARF programs that specify how the previous call frame
can be restored. The FDE elements refer to the personality
routine through Common Information Entry (CIE) elements,
which correspond loosely to compilation units.

On Darwin, the Mach-O file format is used with Apple’s
Compact Unwinding information [5], [8]. The call frame
metadata is defined in table elements in the .debug_frame
section, which may optionally refer to a DWARF program
within a FDE in the .eh_frame section. Finally, ARM
defines Exception Handling Tables in [6] for 32-bit ARM
which are stored in the .ARM.extab and .ARM.exidx ELF
sections, but uses SystemV AMD64 ABI-compatible exception
metadata on AArch64.

Language Runtimes. The language runtimes bundled with the
GNU Compiler Collection (GCC) [32] and clang[43] compil-
ers, contain language-specific personality routines identified
by their function name prefix and suffix for C, C++, Go,
ADA, and Objective C. For each language, different unwinding
methods are implemented:

DW2 uses unwinding information encoded in DWARF [29]
tables. Denoted using a _v0 suffix.

SJLJ uses setjmp(3) and longjmp(3) [2], [1] to restore
frame state. Denoted using a _sj0 suffix.

SEH uses Windows Structured Exception Handling to restore
frame state. Denoted using a _imp or _seh0 suffix.

For example, the DWARF-based personality function for C++
is called __gxx_personality_v0. Without loss of gen-
erality, the analysis presented in this paper is restricted to
exception handling using this personality function, i.e. C++
binaries with DWARF unwind metadata. However, similar
concepts apply to SJLJ and SEH exception handling, as well as
other languages – the only difference between implementations
here is the exact semantics of exception types and matching
against catch clauses.

Unwinding Implementations. For modern Unix systems,
three different unwinding libraries exist: libgcc [32], llvm-
libunwind [46] and nongnu-libunwind [56]. While the internal
implementations of the libraries are different across libraries
(e.g., nongnu-libunwind supports remote unwinding, while
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llvm-libunwind only supports local unwinding), every library
provides the implementation of the Itanium C++ ABI.

B. Unwinding from an Attackers Perspective

Unwinders operate on the call stack to determine which
handlers to invoke and implicitly trust the stack contents. Call
stacks therefore represent an input program for the unwinding
state machine, and an invalid call stack therefore represents a
weird machine [12], [28], [27] in the context of the language
abstract machine. Attackers who are able to (1) corrupt stack
data and (2) manipulate the program to throw an exception can
trick the unwinder to operate on their data both on Windows
and Unix-based systems. In the remainder of the paper, we will
not only showcase the issues arising from exception handling
on attacker-controlled data, but also find that attacks abusing
exception handling are a realistic threat.

IV. THREAT MODEL

We consider an attacker seeking to lift a call stack
corruption (e.g., buffer overflow) vulnerability into powerful
primitives such as arbitrary control-flow hijacking or memory
writes for exploitation purposes. We assume the attacker is
targeting a specific program performing exception handling,
triggering stack corruption and making the program throw an
exception afterwards, either directly in the vulnerable function
or any callee after corruption. We start with an unconstrained
stack corruption primitive allowing the attacker to overwrite
arbitrary data on the stack and later discuss refinements. We
assume backward-edge mitigations such as StackGuard [20]
or shadow stacks [13], [17], [23], [24], [76] are in place to
prevent traditional Return-Oriented Programming (ROP) [66]
or return-to-libc [67] attacks. However, we generally assume
the attacker has orthogonal means to bypass Address-Space
Layout Randomization (ASLR) [25], for instance by means
of traditional pointer leaks [65], side-channel leaks [30], [38],
entropy exhaustion attacks [10], generative approaches [35], or
partial overwrites [68].

V. HIJACKING EXCEPTIONAL CONTROL FLOW

In this section, we introduce the concept of Catch Handler
Oriented Programming (CHOP) attacks, a novel exploitation
technique abusing stack corruptions in conjunction with ex-
ception handling logic. As we will show, such primitive gives
rise to multiple possible exploitation scenarios and strategies,
depending on the particular characteristics of the corruption.

Terminology. For describing CHOP attacks, we introduce
two terms. Confusion Primitives refer to the outcome of an
attacker-controlled stack corruption and describe the capa-
bilities of an attacker to manipulate the unwinding process.
Gadgets are exception and cleanup handlers executed after
unwinding and provide exploitation capabilities to the attacker.
Based on the confusion primitive, this can either be the
legitimate handler operating on attacker-controlled data, or an
illegitimate, attacker-chosen handler.

Attack Overview. At a high level, CHOP attacks typically first
corrupt the saved return pointer to confuse the unwinder and
lure it into transferring control flow to unintended handling
code. In other words, the unwinder is forced to act as a
confused deputy and hijack control flow on the attacker’s

behalf. Next, the attacker forces the execution of attacker-
specified gadgets using controlled data from the stack. In the
following, we present the various confusion primitives and
potential gadget capabilities, as well as provide practical attack
examples.

A. Confusion Primitives

As highlighted in Section III, when an exception is raised
after a stack-based buffer overflow, the unwinder operates
on attacker-controlled data. This allows CHOP attacks to
implement a variety of confusion primitives.

Exception Handler Landing Pad Confusion. By corrupting
the saved return address to point inside a target call-site range
(III-A) and the adjacent stack frame, the attacker can lure
the unwinder into transferring control flow to an arbitrary
exception handler, given the exception types are compatible.
The targeted exception handler will interpret the adjacent
attacker-controlled stack frame as its own stack frame and
be forced to operate on attacker-controlled data. Additionally,
depending on the exception handler, callee-saved registers
may be restored by the unwinder from potentially attacker-
controlled stack locations. As we will show, exception handler
landing pad confusion allows an attacker to craft powerful
exploits by diverting control flow.

Cleanup Handler Landing Pad Confusion. A cleanup han-
dler landing pad confusion primitive is similar to its EH
counterpart, except the attacker corrupts the saved return
address with a value corresponding to a call-site range for a
cleanup handler. As long as a valid exception handler for the
thrown exception is found further up in the unwound stack,
this cleanup handler will be executed during the cleanup phase
of the unwinding process, before the actual exception handler
is called. As most functions with C++ objects on the stack
typically require cleanup handlers, this confusion primitive
drastically increases the amount of available gadgets for an
attacker.

SigReturn Frame Confusion. This primitive lures the un-
winder into executing an intermediate SigReturn handler with
attacker-controlled data. This is possible due to the unwinder’s
necessity to handle SigReturn frames during unwinding. Such
frames are pushed onto the stack by the kernel when a signal
is delivered to, and handled by, a process. To identify those
cases, libgcc’s unwinder dereferences the saved IP of each
call frame during unwinding. If the memory at the target of
the IP matches the encoding of the rt_sigreturn syscall,
the following stack frame is interpreted as a SigReturn frame.
Similarly to SigReturn-Oriented Programming (SROP) [11],
placing a crafted SigReturn frame on the stack and corrupting
the saved return address to memory containing the encoding of
the rt_sigreturn yields control over all registers during
unwinding. In particular, the stack pointer is now controlled,
which allows pivoting the subsequent unwinding to an attacker-
controlled location. This is a powerful primitive if the stack
corruption primitive used is space-constrained or has other
constraints (e.g, character restriction during overflow). The
targeted exception handler is controlled by specifying the
corresponding IP in the SigReturn frame.

Callee-Saved Register Confusion. Depending on the type
of memory corruption, an attacker may further extend their
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main() landing pad

(return)vuln()
StackGuardthrowoverflow

Fig. 1: Sequence diagram of vulnerable code. After overflow-
ing a stack buffer in a vulnerable function, an exception is
thrown, diverting execution to a landing pad higher up the call
stack. The normal return is not executed, and the canary check
of StackGuard is bypassed.

control by corrupting callee-saved registers. Callees typically
preserve a set of registers on behalf of their caller. During un-
winding, callee-saved registers are restored from the contents
of the stack. This means that after corruption, an attacker can
enter the legitimate cleanup or exception handler with registers
under their control, enabling CHOP attacks without a control
flow diversion requiring overflow of a saved return pointer.

Cross-DSO Applicability. Shared libraries often throw excep-
tions without having according handlers registered for it, as
normally the program invoking the library should handle the
exception. While this is a sensible approach from a program-
mer’s perspective, it opens additional possibilities for an at-
tacker, as this behavior has two implications: (1) the unwinder
performs its operations regardless of whether a try/catch block
for a given exception exists, and (2) exceptions thrown in one
shared object in the virtual address space must be catchable in a
different object. This means that the aforementioned confusion
primitives are applicable across the full virtual address space.
In other words, an attacker can confuse the unwinder after
stack corruption by supplying addresses pointing to landing
pads or sigreturn encodings in any shared object mapped in
its virtual address space. We want to stress that this eases
exploitation tremendously, as having access to all catch and
cleanup handlers drastically increases the amount of viable
landing pads for successful attacks.

B. Gadget Capabilities

Similar to more traditional ROP attacks, we refer to chunks
of code abusable by an attacker as gadgets. For CHOP attacks,
these gadgets are exception handlers and cleanup handlers ex-
ecuted during either exception handling or during the cleanup
phase of the unwinding process. In the following, we outline
common capabilities provided by these handlers.

Backwards-edge Control-flow Hijacking. Modern compil-
ers often refrain from embedding stack canaries in every
function for performance reasons—and similar optimizations
are included in common software shadow stack implemen-
tations [16]. Instead, canaries are only deployed when the
compiler deems a function likely to be vulnerable to an
overflow, such as functions containing stack-based arrays. As
a result, exception handlers contain stack canary checks only
if the functions they belong to have such checks. Similarly,
the unwinding process does not check for overwritten stack
canaries. Therefore, using landing pad confusion (Section V-A)
to divert from a throwing function with a stack canary check
to a landing pad without a stack canary check (cf. Figure 1)

1 #include <memory>
2 void func() {
3 std::unique_ptr<char> ptr(new char[20]());
4 vuln(); // stack-based buffer overflow
5 throws(); // throws an exception
6 }

Listing 2: Code vulnerable to arbitrary free through a smart
pointer.

re-enables traditional ROP [66] and return-to-libc [67] attacks,
even with backward-edge protections in place.

Forward-edge Control-flow Hijacking. Exception and
cleanup handlers may perform indirect calls based on values
read from the stack. This happens commonly when destructors
are called for polymorphic objects through a vtable. By craft-
ing a counterfeit vtable holding a target pointer and overwriting
a stack object’s vtable pointer, an attacker can abuse this
mechanism for arbitrary forward-edge control flow hijacks. If
forward-edge (vtable) protection mechanisms are in place, the
attacker can also exploit the ability to control stack data to
mount more sophisticated COOP-style attacks by means of
counterfeit objects reusing existing valid vtables [64].

Arbitrary Free. Cleanup handlers are emitted to invoke de-
structors for objects on the stack. In many cases, this involves
calling the delete operator, which wraps a free call on
addresses stored on the stack. An example of this pattern are
the widely used C++ magic pointers. Consider the code in
Listing 2. The cleanup handler emitted for func contains
a call to std::unique_ptr<char>::∼unique_ptr,
which in turn calls operator delete. With such patterns,
an attacker can easily exploit an arbitrary free to turn a pointer
of choice into a dangling one, escalating to an arbitrary use-
after-free—a powerful exploitation primitive [68].

Arbitrary Write. The direct corruption of the stack frame of
the exception handler, combined with the control over callee-
saved registers oftentimes yields further powerful primitives
depending on the exception handler. In particular, in many
cases, we noticed that exception handlers may use stack
values and callee-saved registers to store values in memory.
As these are again attacker-controlled, such patterns can eas-
ily be exploited to craft arbitrary write primitives. Arbitrary
memory writes are powerful exploitation primitives and can
be exploited to bypass advanced mitigations [72] and mount
data-only attacks [41].

C. Attack Examples

By combining the different confusion primitives with the
different gadget capabilities, an attacker can craft versatile
exploitation strategies. In the following, we discuss:example
attacks showcasing the applicability of CHOP-style attacks
in different scenarios. Table I provides an overview of the
discussed attack scenarios, along with the required attacker
prerequisites and information on effectively bypassed miti-
gations by the attack. Additionally, we visualize the stack
configuration needed to mount each attack in Appendix A.

Golden Gadget. Arguably, the most direct exploitation tech-
nique via CHOP is forward-edge control-flow hijacking, as it
allows an attacker to redirect execution to arbitrary locations,
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TABLE I: Different Attack scenarios, their required corruption primitives, and subsequently bypassed mitigations.

Confusion Gadget Corruption Bypassed Protection
Attack Scenario Primitive Capabilities Saved IP Gadget Stack Canaries CFI ASLR Shadow Stacksa

Golden Gadget Exception Handler Fwd. Control-Flow Hijack 3 3 3 7 7 3
Pivot-to-ROP Exception Handler Bkd. Control-Flow Hijack 3 3 3 7 7 7
Data-Only Callee-saved Reg. Arbitrary R/W 7 7 3 3 3b 3
Cleanup-Hdlr. Chaining Cleanup Handler Gadget-Dependent 3 3 3 3 7 3
SigReturn-to-ROP SigReturn Frame Bkd. Control-Flow Hijack 3 7 3 7 7 3
a we assume a traditional shadow stack implementation, such as ShadowCallStack [49].
b depends on frame layout.

1 void __cxa_call_unexpected (void *exc_obj_in)
2 {
3 /* ... */
4 xh_terminate_handler = xh->terminateHandler; »
5 /* ... */
6 __try
7 { /* ... */ }
8 __catch(... ¼)
9 {

10 /* ... */
11 __terminate (xh_terminate_handler ½);
12 }
13 /* ... */
14 }
15

16 void __terminate (std::terminate_handler handler)
throw ()

17 {
18 __try
19 {
20 handler (); ¾
21 std::abort ();
22 }
23 __catch(...)
24 { std::abort (); }
25 }

Listing 3: Excerpts from libstdc++-v3 showing an example
of a “golden handler”. As xh_terminate_handler is
a local variable », it gets restored from the (attacker-
corrupted) stack after entering the exception handler, passed
to __terminate ½, and finally invoked ¾. In short, this
catch handler allows for an effortless forward-edge control-
flow hijacking, when the attacker controls the stack location
corresponding to xh_terminate_handler.

without the restriction of stitching together exception or catch
handler gadgets. For this purpose, while analyzing the attack
surface in widely used C++ binaries, we found what could
be considered a “golden handler” inside libstdc++, the
standard C++ library for Linux. This handler (see Listings 3)
is a catch-all handler ¼ and allows arbitrary control-flow
hijacking via an indirect call based on the data located on the
corrupted stack. Hence, by corrupting the saved return address
to refer to the golden handler in libstdc++ and providing
a controlled stack frame to the handler, an attacker can divert
execution to any location in memory.

Pivot-to-ROP. As described in Section V-B, backwards-edge
protection schemes such as stack canaries may only protect
functions which are deemed as unsafe. Thus, depending on
application logic, programs may include gadgets—i.e., excep-
tion handlers—on which the otherwise deployed backwards-
edge protection mechanism are omitted. Given that the base

attack primitive for CHOP attacks is a stack-based buffer
overflow allowing an attacker to control stack data, this directly
provides traditional ROP capabilities, even when backwards-
edge protections are present in the vulnerable function.

Data-Only Corruptions. The stack frame of the vulnerable
function contains not only local variables, but also callee-saved
registers just before the saved return address. If any cleanup
handler is registered as a landing pad for the saved return,
such handler will operate on the local data. Likewise, if the
correct landing pad is an exception handler capable of handling
the raised exception, this exception handler will execute with
callee-saved registered restored from the stack. This means that
by overwriting just the local stack frame of the vulnerable
function and keeping the saved return address intact, an
attacker can create data-only attacks forcing valid cleanup
and exception handlers to operate on attacker-controlled data.
Moreover, since the attacker does not need to overwrite the
return address to confuse the unwinder and execute gadgets, an
ASLR bypass may not be necessary. For instance, an attacker
may lure a catch handler into crafting a stack-relative read
gadget and leak randomized pointers. The latter could then be
used in arbitrary memory read or write gadgets to take control
over the binary without ever leaving the boundaries of the
legitimate control flow, in a data-only fashion.

Cleanup-Handler Chaining. If an attacker can corrupt a large
part of the stack, they can also opt for chaining multiple fake
stack frames with saved return addresses referencing call sites
with registered cleanup handlers. As long as one stack frame
further up the call chain is capable of handling the raised
exception, all these cleanup handlers will be executed. This
way, an attacker can stitch multiple gadgets together, similar
to traditional ROP [66] attacks.

Besides potentially providing enough primitives for ex-
ploitation on their own, cleanup handlers can also be helpful
for exploiting landing pad confusions. Since these handlers
are inserted into the call chain specifically to call destructors
for variables with automatic storage (i.e. stored on the stack),
common gadgets obtained are destructor calls of attacker-
controlled objects, leading, as mentioned earlier, to arbitrary
use-after-free primitives. Furthermore, when unwinding over
these stack frames, the callee-saved registers will be restored
from the stack and are thus attacker-controlled, potentially
extending the number of attacker-controlled registers when
entering the exception handler.

SigReturn-to-ROP. Sometimes, an attacker may control the
contents of a large buffer at a known location independently
from the actual corruption. In those cases, a viable exploitation
strategy is to pivot the unwinding logic to this buffer. This
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Fig. 2: Overview over our dataset creation and analysis pro-
cess. Packages are crawled from the main debian package
index and metadata over the extracted files are stored in a
database. For analysis, we select relevant binaries based on
the debian popularity contest and store analysis results back
to the database.

strategy can be easily implemented by means of a SigReturn
frame confusion primitive. This allows an attacker to pivot the
unwinding process from the original stack to the fully attacker-
controlled buffer. This technique is especially powerful when
paired with gadgets that allow an attacker to ROP, as the ROP
chain is now located in the attacker-controlled buffer, rather
than the actual stack.

VI. ATTACK SURFACE & GADGET ANALYSIS

In the previous section, we examined the security im-
plications of unwinding and exception handling on attacker-
controlled data. However, this alone provides little insight into
the actual attack surface present in real-world software, both in
terms of confusion primitives and gadget capabilities. To better
assess the actual impact, we took a closer look at popular C++
binaries.

While investigating the prevalence of exception handling
code would in principle be possible via source-level analy-
sis, we operate on already compiled binary executables and
libraries since the low-level semantics depend on compiler
internals such as register allocation and automatic handler
generation. Most of our automated analyses are based on the
Binary Ninja reverse engineering framework [74]. In total, our
analyses are implemented in roughly 4,000 lines of Python,
3,400 lines of C++, and 900 lines of Rust code, accounting
for both standalone tools and Binary Ninja plugins.

A. Dataset Collection & Processing

Our dataset collection and analysis approach is shown in
Figure 2. For dataset creation, we crawl the main AMD64
repository of Debian Buster ( 1 ). We use the official Debian
packages file3 to obtain download links for all packages.
After downloading the packages, we unpack them and collect
metadata of the extracted files, such as file name, associated
package, file type or original directory location. The collected
metadata is stored in a PostgreSQL database ( 2 ).

3http://ftp.us.debian.org/debian/dists/buster/main/binary-amd64/
Packages.gz (retrieved 2021-10-09).

To prioritize which packages to analyze, we enrich the
metadata with the number of installations for each package,
as reported by the Debian popularity contest ( 3 ). Extracted
files are then forwarded to a Binary Ninja based analysis
pipeline ( 4 ), which we describe in more detail in the following
sections. The analysis results are fed back to the database ( 5 ),
allowing easy cross-correlation of different analysis passes.

B. Identifying Target Binaries

The most intuitive approach to select packages that handle
or throw exceptions is to check whether they list libstdc++
as a dependency. However, we quickly note that this filter
is inaccurate for two reasons. First, packages often bundle
different binaries and libraries together, and a dependency
relation exists as soon as a single one of those requires the
C++ standard library. Second, this library is not only used
by binaries compiled from C++, but also required for binaries
generated from other languages, such as Objective-C and Rust.

Thus, we decide to use a finer-grained method to select
C++ binaries that include exception handling. After unpack-
ing a Debian package, we first of all select only binary
programs and shared libraries. We then analyze these pro-
grams and libraries using Binary Ninja and flag them as
programs with exception handling semantics if they fulfill
either one of the following conditions: 1) the ELF file contains
the .gcc_except_table section or 2) the code calls
any of the libstdc++ functions to raise exceptions (e.g.,
__cxa_throw). The first condition indicates that a binary
catches exceptions or that it has cleanup handlers, while the
second one selects binaries that explicitly throw exceptions.

C. Attack Surface

CHOP attacks pose very explicit requirements to an at-
tacker for launching an attack: (1) the possibility to trigger a
stack-based spatial memory corruption and (2) the capability of
throwing an exception to force the unwinder to operate on the
corrupted data. In the following, we describe our methodology
to estimate the prevalence of such initial primitives in C++
software and later present experimental results.

Memory Corruptions. Stack-based memory corruptions have
been studied extensively in previous research and identifying
them automatically is an orthogonal problem to our work.
To assess the attack surface for CHOP attacks, we are more
interested in the question whether a function is likely to be
corruptible and, thus, serve as an entry vector for an attacker.

As a proxy for this property, we rely on the binary artifacts
produced by modern compilers. To defend against sequential
overflows, compilers embed stack canaries for functions they
deem unsafe. In other words, canaries are only present in func-
tions with potentially vulnerable local variables, such as stack
arrays. Hence, knowledge of which functions deploy canaries
and which do not provides a good estimation for possible
attacker entry points. To identify the functions deploying stack
canaries, our analysis simply checks whether a given function
calls __stack_chk_fail—as generated by gcc.

Raising Exceptions. Evaluating how likely an attacker can
raise exceptions after corruption requires a more sophisticated
analysis strategy. The reason for this is that a hijackable throw
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may occur in any subsequent called function after corruption,
as long as the vulnerable function did not return. We therefore
need to analyze not only whether a function itself can throw
an exception, but also any callee in the call tree with the
potentially vulnerable function as root. Additionally, since
exception handling and unwinding is not local to objects in
the address space, we also need to expand this analysis to
resolve dependencies across Dynamic Shared Object (DSO)
(i.e., considering throws from imported functions).

To account for this, we order binaries topologically based
on the DSO relationship between them and store the analysis
result for each binary in the database. Then, whenever we
encounter a call to an imported function, we fetch the analysis
summary from the previously analyzed DSO. The resulting
information on whether one of the callees of the imported
function can raise an exception is then propagated to the
function under analysis.

To create the exception summaries over a function, we
developed a special analysis pass. For each function in a binary,
it traverses the call graph in a breadth-first fashion, until a
given threshold depth is reached4. While traversing the call
graph, we collect further callees and determine if they can
throw an exception by checking whether a call to cxa_throw
exists. This function is the default interface in libstdc++
for raising an exception and wraps the unwinder’s language-
independent _Unwind_RaiseException function, which
then in turn invokes the unwinder.

D. Gadget Analysis

To characterize the impact of CHOP-style attacks, we also
want to study the corruption primitives that CHOP gadgets
provide to an attacker. Our gadget analysis starts by identifying
all the gadgets available to an attacker, assuming an arbitrary
unwinding-based control-flow hijack. It then leverages static
taint tracking to obtain insights into the primitives provided
by a specific gadget.

Gadgets. To find every CHOP-gadgets present in a binary,
we identify all the catch and cleanup handlers by parsing
the exception metadata contained in the .eh_frame and
.gcc_except_table sections of the binary. These sections
hold the unwinding metadata required to associate landing
pads for catch and cleanup handlers with their parent function
based on the provided call-site information. We note that the
identification of handlers is a one-time pre-exploitation step as
their location is static with regard to the binary base.

Attacker Model. When analyzing the capabilities provided
by individual gadgets, we assume that the attacker is able to
corrupt the stack and overwrite the backward edge to confuse
the unwinder. In our attacker model we assume only the callee-
saved registers to be controlled by an attacker. This model is
practical for two reasons: First, since we don’t assume the
gadget stack is under an attacker’s control, we can loosen the
requirements on the initial memory corruption. Second, callee-
saved registers are restored by the unwinder during the cleanup
phase and stitching together different confusion primitives can
easily provide control over all callee-saved registers.

4In our experiments we limit the analysis to a depth of 7 to guarantee a
timely termination of the analysis.

Taint Analysis. To assess the impact of attacker-controlled
registers in these gadgets, we developed a static taint analysis
engine based on Binary Ninja’s High-Level IL (HLIL) interme-
diate representation. Developing a taint analysis at this level
of abstraction has several benefits, from being able to build
on top of Binary Ninja’s Static Single Assignment (SSA), to
leveraging built-in analysis passes (e.g., constant propagation,
dead-code elimination, etc.). While only highlighting the most
important points of our analysis here, we describe the taint
algorithms in more detail in Appendix B.

When processing a gadget, we taint all callee-saved reg-
isters that have been read before being written, by marking
their corresponding SSA variables as taint sources. Our taint
analysis then follows the path from a gadget’s entry until the
end of its respective parent function without analyzing called
functions. Whenever we encounter an expression marked as a
source or derived from tainted data, we propagate its taint to
its target destination. In case multiple variables are used by a
single expression, we propagate their combined taint to the des-
tination. More precisely, taint propagation happens on the fol-
lowing HLIL abstractions: HLIL_INIT_SSA, which initial-
izes a variable based on an expression; HLIL_ASSIGN, which
models register-to-register and register-to-stack operations;
HLIL_ASSIGN_UNPACK, which propagates a function’s re-
turn to a SSA variable; and HLIL_ASSIGN_MEM_SSA, which
models stores to memory (i.e., memory dereferences).

While the taint propagates through a gadget’s instructions,
our analysis defines the following sinks which model the
gadget capabilities introduced in Section V-B:

1) Arbitrary free sinks, which model the capability to call
a deallocation routine on an attacker-controlled pointer.

2) Forward-edge hijacking sinks, which model a forward-
edge control-flow transfer to an attacker-controlled target.

3) Attacker-controlled write sinks, where an attacker con-
trols either the location of data to be written, the contents
of data to be written, or both.

More precisely, our analysis reports an arbitrary free
primitive whenever it finds a call to the C++ delete operator
or the free function with tainted parameters. Control-flow
hijacking primitives are instead reported when our analysis
finds an indirect call or jump with a tainted target. Finally,
attacker-controlled writes are reported when memory opera-
tions (e.g., HLIL_ASSIGN_MEM_SSA) are performed with a
tainted source and/or a tainted destination. The resulting write
primitives are further classified in three categories based on
the taint assigned to their operands: (a) write-where primitives
when only the destination is tainted, (b) write-what primitives
when only the source is tainted, and (c) write-what-where
primitives when both the destination and the source are tainted.

Gadget Score. Each gadget is augmented with control infor-
mation (e.g., which callee-saved register controls the target
of the forward-edge control flow hijacking gadget) and a
feasibility score that aids an analyst in choosing a gadget. This
score is based on a weighted average of the number of nested
branches, nested loops, basic blocks and function calls that the
taint analysis encountered before reaching the specific gadget.
In other words, the lower the score the higher the chances to
reach the gaget’s sink.
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Our reported sinks are an overapproximation, as we do
not deploy any symbolic reasoning (for scalability reasons) to
assess the constraints of data controlled by an attacker landing
on the taint sinks. However, we manually confirmed that most
sinks reported by our engine indeed provide usable primitives
for exploitation, assuming control over callee-saved registers.
Finally, we want to note that an attacker is likely to also control
the stack frame of the gadget which gives additional attack
surface—conservatively ignored by our methodology.

VII. EVALUATION

In this section, we set out to estimate the prevalence of
exceptions in C++ software and their susceptibility to CHOP
attacks. We also present three case studies demonstrating the
application of our technique to real-world software. Finally, we
study the relationship between recent mitigations and CHOP
attacks, and whether our findings apply to targets beyond x86-
64 based Linux systems. In summary, in the following sections,
we aim to answer the following research questions:

RQ1: How prevalent is the usage of exception handling in
modern software?

RQ2: How large is the attack surface for CHOP attacks?
RQ3: How powerful are the CHOP gadgets available to an

attacker?
RQ4: Can CHOP be used to develop an exploit against real-

word software?
RQ5: Which platforms are affected beyond Linux?
RQ6: Are recent mitigations effective against CHOP?

Unless otherwise specified, we run all our analyses on an
Ubuntu 20.04.04 LTS virtual machine with 32 vCPUs and 64
Gb of RAM.

A. Exception Handling in C++ Software

As discussed in Section VI-B, to answer RQ1 we consider
multiple proxies. Using the most intuitive approach–i.e. check-
ing whether a package lists libstdc++ as a dependency—
would select 6,533 out of 51,626 available packages on the
main Debian buster packet index (~12.5%).

Thus, we apply a finer-grained filter (c.f. Section VI-B) to
better estimate the prevalence of exception handling in the
Debian ecosystem. We unpack the top 1,000 most popular
packages and select all binary programs and shared libraries.
This corresponds to a total of 3,303 files, roughly the 7.5%
of the total number of files. Of these, 56 executable programs
and 266 libraries use exception handling totaling 322 binaries
(~9.5%) which we use as a data set in the following sections.

To summarize: roughly 10% of programs rely on exception
handling. Extrapolated to all software, this shows a significant
number of potential targets for CHOP-style attacks.

B. Attack Surface

Mounting CHOP attacks requires an attacker to first exploit
a stack-based memory corruption vulnerability and then trigger
an exception to be raised. While finding vulnerabilities is a
problem outside the scope of this paper, in this section we
aim to understand the prevalence of the latter condition, i.e.,
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Fig. 3: Histogram of the distribution of functions that can
throw exceptions in 322 popular binaries, along with the cor-
responding inverse cumulative distribution function, showing
the number of binaries that have at least a given number of
potentially throwing functions.

functions that throw an exception after a potential corruption
of data on the stack.

To answer RQ2, we rely on the attack surface analysis
presented in Section VI-C. This analysis explores the call-
graph of a binary, recursively labeling functions that can
throw an exception, along with their use stack of canaries.
The histogram in Figure 3 shows the distribution of functions
that are capable of throwing an exception. An interesting
observation is that exceptions are quite common: half of the
binaries have at least 40% potentially throwing functions. From
manual analysis, we conclude this is partially caused by shared
library functions used in a variety of places. For instance,
the standard method vector::push_back can throw an
exception if the allocation request fails.

To estimate the amount of functions possibly affected by a
stack-based memory corruption, we use the presence of stack
canaries as proxy, as discussed in Section VI-C. On average,
across all binaries under evaluation, 35.4% of all throwing
functions check a canary on the return path and, hence, operate
on stack buffers. We conclude that, while requiring both a
stack-based memory corruption and an exception raising prim-
itive limits the available attack surface, a significant portion of
program logic is at reach of CHOP-style attacks.

CHOP-style Vulnerabilities in Open Source Software. To
further study the prevalence of stack buffer overflows on
applications using exception handling, we investigate all bugs
reported by OSS-Fuzz [37] between May 2016 and June
2022. This dataset consists of 38464 crawled bugs reported
across 344 software projects written in C++. Based on the
bug description in the OSS-Fuzz reports, we select 442 stack-
related bugs found in C++ applications that can potentially be
exploited with CHOP. These bugs are either buffer overflow
writes or buffer overflow reads. While the latter do not directly
lead to CHOP-style exploits, we decided to include these bugs
as recent research shows that reads can lead to writes [77].
This is based on the insight that out of bounds reads can mask
more dangerous side-effects—such as out-of-bounds writes—
but sanitizers are typically configured to panic on the first
erroneous access.

To select only bugs belonging to projects that use ex-
ception handling, we build the vulnerable binary and use
the approach discussed in Section VI-B—i.e., checking for
the .gcc_except_table section and searching for calls
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TABLE II: OSS-Fuzz bugs related to stack vulnerabilities
triaged based on their appartenance to C++ projects that make
use of exceptions.

Category Total C++ C++ w/except-handling
Buffer-overflow write 213 192 80
Buffer-overflow read 276 250 110

to cxa_throw. Where the build process fails, we search
for throw and catch statements in the project’s source code.
Overall, 309 buffer overflows were classified using the first
heuristic, while 133 buffer overflows were classified based on
the second. The results are presented in Table II. In particular,
we find 80 buffer overflow writes (~38%) and 110 buffer
overflow reads (~40%) are present in C++ projects relying
on exception handling. This suggests that OSS-Fuzz stack-
based buffer overflows have a good chance to be exploitable
via CHOP techniques. Finally, we report that in respect to all
C++ projects targeted by OSS-Fuzz, 105 projects (~30.5%) use
exceptions, and 56 projects (~16.3%) had at least one stack-
based buffer overread or overwrite.

C. Gadget Capabilities

To answer RQ3, we run the taint analysis described in
Section VI-D on our dataset of Debian binaries. The results
are summarized in Table III. This table shows, for each gadget
type, the percentage of binaries containing a given number of
gadgets. The first interesting result is that cleanup handlers of-
ten allow arbitrary free–around 79.2% of the analyzed binaries
contain at least one instance of this gadget. On the other hand,
write-what gadgets—allowing an attacker to write controlled
values to an uncontrolled location—are frequently missing in
both cleanup handlers (98.1%) and catch handlers (83.5%).
Forward-edge control-flow hijacks, however, are commonly
found in both cleanup and catch handlers with over 35% of
analyzed binaries containing tens to thousands of them. In
summary, approximately 90% of analyzed binaries contain at
least one arbitrary free, forward-edge control flow hijack, or
write-what-where gadget and are therefore very likely to be
exploitable with CHOP-based techniques.

Moreover, since the exception handlers present in linked
libraries are valid targets to redirect the exceptional control-
flow, the number of available gadgets is likely even larger. As a
matter of fact, the vast majority of binaries (≈ 97.2%) use one
or more libraries with exception handling. The most common
library, used by ≈ 97.2% of binaries, is the standard C++
library (libstdc++) for which our analysis reports 2113 gadgets.
Other common libraries are those included in the uno-libs3 and
ure packages, which are used by ≈ 49% and ≈ 18.3% of the
binaries in our data set, respectively.

Finally, Figure 4 shows the correlation between the size of
the binaries and the number of gadgets. We found a moderate
to strong correlation (ρ = 0.72). On average, a 1% increase in
the size of a binary is expected to add ~1.1% more gadgets.

D. Case Studies

To answer RQ4, we present three case studies to show how
CHOP can be used to exploit bugs in real-world software,
which otherwise would be mitigated by StackGuard. In line
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Fig. 4: Scatter plot showing the correlation between binary
sizes and number of gadgets, along with log-log regression
and Spearman’s rank correlation coefficient.
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Fig. 5: Cumulative distributions of dependencies (i.e., libraries)
and dependencies with exception handling semantics for all
binaries in our data set.

with our threat model, we assume ASLR to be broken, either
via a single pointer leak or other bypassing techniques [30],
[38], [10], [35], [68]. After initial setup of the vulnerable
program, none of the exploits required more than two days
of development or 150 lines of code.

CVE-2009-4009. Our first case study is a vulnerability in
the PowerDNS recursor, and serves as a concise example
for CHOP attacks. We target the Debian Lenny package of
PowerDNS running on an Ubuntu 20.04.4 system. We apply
small modifications to this package to revert the patch fixing
the vulnerability and to enable additional hardening measures
originally not present (i.e., stack canaries).

Listing 4 shows the vulnerable code path within the
questionExpand function. This function is called when
answering a DNS query, which requires forwarding the query
to another DNS server via UDP. When parsing the an-
swer of this second server, stored in the packet variable,
questionExpand is called with a 512 byte fixed-size stack
buffer qname as parameter. The vulnerability resides in the
while loop ¿. The code explicitly checks whether more data
has been written into the buffer than it can hold À and
throws a runtime error if that is the case Á. Unfortunately,
this check happens only after the data was written to the
qname output buffer Â during the next loop iteration. This
allows an attacker to first overflow the buffer and then raise
the runtime_error exception.

To launch the exploit, we initiate a DNS query to the
PowerDNS Recursor causing the vulnerable binary to issue a
request to an attacker-controlled server, which responds with
the exploit payload. After a valid DNS response header, the
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TABLE III: Relative frequencies of counts of detected gadgets in cleanup and catch handlers of C++ binaries in the top 1000
most popular packages.

Gadget type Cleanup Handlers Catch Handlers

0 1 – 10 101 – 102 102 – 103 103 – 104 0 1 – 10 101 – 102 102 – 103 103 – 104

Arbitrary Free 20.8% 24.8% 31.1% 16.5% 6.5% 41.6% 28.6% 20.2% 8.4% 1.2%
Control-flow Hijack 35.4% 19.9% 19.3% 17.7% 6.8% 49.1% 14.0% 14.9% 15.5% 6.2%
Write-What-Where 55.9% 19.3% 15.8% 6.8% 2.2% 53.7% 21.7% 12.1% 7.8% 4.3%
Write-Where 33.9% 31.1% 20.8% 10.9% 2.8% 50.9% 20.2% 15.8% 8.4% 4.3%
Write-What 98.1% 0.3% 0.9% 0.6% 0.0% 83.5% 5.6% 8.1% 2.5% 0.3%

1 void questionExpand(const char* packet, uint16_t len
, char* qname, int maxlen, uint16_t& type)

2 {
3 type=0;
4 const unsigned char* end=(const unsigned char*)

packet+len;
5 unsigned char* lbegin=(unsigned char*)packet+12;
6 unsigned char* pos=lbegin;
7 unsigned char labellen;
8

9 // 3www4ds9a2nl0
10 char *dst=qname;
11 char* lend=dst + maxlen;
12

13 /* ... */
14 while((labellen=*pos++) && pos < end) { ¿
15 if(dst >= lend) À
16 throw runtime_error("Label length exceeded

destination length"); Á
17 for(;labellen;--labellen)
18 *dst++ = *pos++; Â
19 *dst++=’.’;
20 }
21 /* ... */
22 }

Listing 4: Vulnerable code path for CVE-2009-4009. The
contents of packet are attacker-controlled. By supplying
crafted labels and content, a runtime_error can be raised
after overflowing the qname buffer.

payload almost exceeds the 512 bytes buffer by including four
labels with a length of 126 characters each. The following
label of length 255 overflows the stack buffer, overwriting
both the stack canary and the saved return address. We set
the return address to the “golden gadget” (c.f. Section V-C) in
libstdc++, diverting execution to a catch-all handler which
eventually calls __cxxabiv1::__terminate with an
attacker-controlled handler. This provides a powerful forward-
edge control-flow hijacking primitive, as shown in Listing 3.
As a target for the hijack, we use a stack-lifting gadget which
will then point $rsp to our ROP chain, which uses more
traditional technique to open a remote shell for the attacker.

CVE-2018-5809. Our second case study targets a vulnera-
bility in LibRaw [44], a popular image processing library,
demonstrating looser requirements between the overflowing
and throwing code paths. We exploit LibRaw v0.18.8 com-
piled from source without modifications, running on Ubuntu
20.04.4. As a LibRaw consumer, we use the built-in tool
raw-identify, which provides information about an image
passed as command line argument.

The vulnerability lies in the parse_exif function. When
parsing a malicious image with a MakerNote EXIF [69]
tag, an attacker-controlled amount of data is read from the
image into a fixed-size stack buffer in case earlier meta-
data indicated that the image was created with a Rasp-
berryPi camera. Interestingly, no code path reachable under
these conditions in parse_exif throws an exception. How-
ever, for images not created by other cameras, a special-
ized parse_makernote function is called instead, which
throws a LIBRAW_EXCEPTION_IO_CORRUPT exception
under special circumstances.

To exploit this vulnerability, we modified an existing image
created with a RaspberryPi camera. We modify the MakerNote
tag to smash the stack and overwrite the saved return address
with an address pointing to a pivot-to-ROP gadget. To trigger
the exception, we abuse that (a) EXIF tags are parsed in a loop,
and (b) the camera model is stored in a higher stack frame.
Since do not hit any backwards-edge protection mechanisms
in the loop, we extend the overflow to also overwrite the
model, so that a subsequent MakerNote tag is parsed by
parse_makernote. The second MakerNote tag is crafted
such that it triggers the throw, causing the previously corrupted
stack to be unwound. It is important to note that the code path
reaching the throw is only made reachable through corruption
of stack data. Similarly to our first case study, the final ROP
chain opens a shell for the attacker.

SCSSU-201801.5 Our third case study shows the applicability
of CHOP to other platforms than Linux. In particular, we
exploit the Common Access Card (CAC) module of smart-
cardservices [33] v2.1.2 running on macOS Sierra v10.126.

While retrieving a certificate, data is read from the card
into a stack buffer in a loop until the card indicates the end
or a communication error occurs. Although exceptions can be
thrown in the loop, these are not exploitable via CHOP, due
to a catch-all handler within the function, leading to an early
return. To exploit the vulnerability, we use an error condition
later in the function: The certificate may be compressed.
If decompression fails, an exception is thrown, causing the
unwinder to operate on attacker-controlled data.

While the exploit could be implemented on a physical
smart card, we use the Virtual Smart Card Architecture [58]
with virt_cacard [59] for emulation, modified to deliver

5This vulnerability is also referred to as CVE-2018-4300 [4] but does not
match the corresponding CVE entry.

6This version of macOS was chosen for the availability of pre-built smart-
cardservices installers. The macOS version is not required for exploitability
of the bug.
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the exploit payload when responding with a certificate. The
payload overwrites the saved return address with a pointer to
a pivot-to-ROP gadget and the ROP chain executes attacker-
specified commands on the victim system.
Discussion. All of our exploits rely on control-flow hijacking
via CHOP. We note that for every vulnerability, traditional
backwards-edge control-flow hijacking would not be possible
without circumventing StackGuard. Furthermore, due to the
lack of mitigations on the unwinding path, we did not require
any data-only attacks, greatly minimizing attack complexity.
Additionally, we demonstrated that stack corruptions in C++
may enable triggering exceptions in code-paths adjacent to
the actual vulnerability. Overall, we believe that these three
case studies show the versatility and attainability of CHOP
attacks and argue that additional hardening measures for the
unwinding logic are needed.

E. Exploitability for additional Platforms and Mitigations

To answer RQ5, we run the test program in Appendix C on
seven different configurations—Linux (x86_64 and AArch64),
macOS (x86_64 and AARCH64), Windows (x86_64), Android
(AArch64), and iOS (AArch64). The control flow of the
application was effectively diverted on each tested system.

Finally, to answer RQ6, we test whether shadow stacks—
a modern mitigation offering backward-edge control flow
integrity—are vulnerable as well. We select several different
shadow stack implementations, including six schemes pre-
sented by Burow et al. in their SoK on shadow stacks7 [13],
LLVM’s ShadowCallStack implementation for AArch64 on
Android [49], and Intel CET on Windows8. All the tested
implementation failed to mitigate the attack.

Overall, our results confirm that the state-of-the-art un-
winder implementations and backward-edge protection mech-
anisms are insufficient to mitigate the attacks proposed in
this paper. The only exception we could find is LLVM
SafeStack [48], which adopts a split (rather than shadow)
stack design to enforce return address isolation (rather than
replication). This design can effectively hinder CHOP exploits
such as the one presented in Listing 5. Nonetheless, the
split stack design cannot detect attacks and preclude return
address corruption by means of more sophisticated corruption
primitives [34]. Moreover, SafeStack [48] is incompatible with
dynamic libraries, which means it cannot mitigate CHOP
exploits based on dynamic library vulnerabilities such as our
LibRaw exploit. Another avenue to mitigate CHOP exploits
is to rely on forward-edge protection mechanisms. However,
this strategy can only mitigate direct forward-edge control-
flow hijacks through the “golden handler” (Listing 3) or vtable
hijacking (Section V-B), but leave backward-edge hijacks
(Section V-B), data-only attacks (Section V-C), and arbitrary
writes in general a viable option.

VIII. MITIGATIONS

As an immediate mitigation against CHOP-style attacks,
we recommend extending the widely deployed stack canary

7We tested reg, parr, mem_scheme, seg, con and mpx, while mpk did not
compile.

8Note that we exclude tests for ShadowCallStack on x86, which was
deprecated in LLVM 7, as well as CET on Linux, which lacks readily available
kernel and runtime support.

checks to the unwinding path. This strategy can detect stack
corruption at throw time and prevent the execution of unwind-
ing logic over attacker-controlled data. Given that unwinding
should only occur under exceptional circumstances, we esti-
mate the performance overhead of such mitigation to be low.

However, to be fully effective, this strategy would require
every function invoking __cxa_throw to be protected by
a stack canary. Similarly, to address exception handler based
pivot-to-ROP attacks, not only throwing functions but also
other functions deploying exception handlers should be pro-
tected by stack canaries. These changes require updates to
production compiler toolchains.

More advanced hardening strategies assume an attacker
can bypass stack canaries (i.e., either by leaking the canary
value or by means of noncontiguous stack-based corruption
primitives). To limit the attacker in this scenario, an option is
to rely on a context-aware unwinding mechanism. That is, the
unwinder can store information about legitimately registered
exception handlers in a given program context and initiate
the unwinding process only if an exception handler for the
thrown exception is present. Alternatively, in situations where
shadow stacks are available, another option is to modify the
unwinder to operate on the shadow stack data, rather than the
original one. However, both of these approaches collide with
the Itanium C++ ABI and implementing them would likely
require nontrivial updates to the unwinding logic.

Another avenue for reducing the attack surface is to limit
the number of the exploitation-friendly catch-all and other
overly permissive catch handlers. Having every exception han-
dled by a specific handler and reducing the number of handlers
available in widely used libraries (such as libstdc++) would
greatly reduce the capabilities of an attacker. While some
popular C++ style guides (e.g., [36], [47]) disallow the use of
exceptions, we however note that the use of third-party libraries
using exceptions exposes a program to CHOP attacks.

Finally, randomization-based defenses can minimize the
risk posed by CHOP-style attacks. These defenses are based
on the concept of automated software diversity, which raises
the bar for attackers by randomizing certain programs’ as-
pects [42]. For example, function reordering—where the order
of functions in binaries is randomized—and stack layout
randomization belong to this category, and they can protect
against CHOP-style attacks. However, fine-grained code ran-
domization techniques rarely support C++ exceptions [63].
This happens because a defense can violate a key assump-
tion of C++ exceptions, or because a research prototype
fails to update the metadata used during exception handling.
Finally, note that randomization-based defenses (especially
coarser-grained versions such as ASLR) cannot stop more
sophisticated CHOP-style attack variants, e.g., those based on
data-oriented programming [39] or position-independent code
reuse [35].

IX. DISCUSSION

Recovery & Post Exploitation. In this paper, we focused
on confusion primitives as attack entry vectors, and gadgets
provided by cleanup and exception handlers as means for
exploitation. However, for practical end-to-end attack, recov-
ery to the normal program control flow after executing the
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malicious gadgets may be desired. We argue that, for most
cases, this is straightforward, for instance by using a golden
handler to execute the program from start, or by restoring
the program state via a ROP chain after successful pivoting.
However, in other cases recovery may be more complex and
require additional alignment of stack frame sizes, careful
selection of used registers, or manual stitching of gadgets
to fulfill the constraints presented by a specific vulnerability.
While we acknowledge the difficulty of the problem, we leave
the exploration of “exception handler feng-shui” and similar
techniques as future work.

Using taint analysis for exploitation. The taint analysis
allows analysts to assess the feasibility of exploiting a CHOP-
style vulnerability, rather than providing fully automated ex-
ploit generation capabilities. Given a function vulnerable to
stack based overflow, a human analyst can use the analysis’s
detected reachable exception types identify useful gadgets, and
determine attacker-controlled data to guide exploitation.

Applicability to other languages. We focus on unwinding
and exploitability of C++ programs due to their popularity and
their history of memory corruption vulnerabilities. However,
we want to stress that exception handling, and especially
unwinding, are also widely used primitives in other program-
ming languages, often directly adopting the unwinding process
from the Itanium C++ ABI (e.g, Objective-C and Rust [14]).
Assuming an attacker can corrupt the saved return pointer
in those cases (e.g., using cross-language attacks [52]), the
unwinder can be similarly confused as in the C++ case.

Threats to validity. Our attack surface analysis is based on
a dataset obtained from the Debian package index. While
we conduct our analysis at the binary level to obtain the
same view on the program as the unwinder, relying on freely
available software imposes some restrictions for the dataset.
More specifically, much widely used C++ software is not free
(e.g., game engines or complex proprietary desktop applica-
tions). However, we argue that the attack surface for CHOP is
likely comparable to that of free software, as the unwinding
techniques used and the potential for memory corruptions are
the same in both cases.

X. RELATED WORK

Windows SEH Exploitation. Structured Exception Handling
has been a prime target for exploitation on Microsoft Win-
dows in the past. Attacks exploit Windows’ unique excep-
tion handling approach, featuring dynamic exception handling
metadata stored on the stack [45]. Microsoft has implemented
different defenses to counter this exploitation vector, namely
SAFESEH [55] (which operates at the compiler level) and
SEHOP [54] (which is implemented in the runtime). While
SAFESEH restricts the set of valid exception handlers, SEHOP
ensures that the entire exception handler list is a valid linked
list. Both mitigations focus on enforcing the integrity of
exception handling metadata, but do not secure the unwinding
process itself, thereby failing to mitigate the exploitation
strategies we showcase.

The crucial difference between SEH-based exploitation and
CHOP is that the former relies on corrupting exception han-
dling metadata—stored in read-only sections in ELF binaries—
while the latter confuses the unwinder by tampering with the

data it operates on. This makes our techniques more general
since they apply to all the unwinders operating on the call
stack, even on Windows systems equipped with protections
against SEH hijacking.

Malicious Unwind Metadata. Attacks abusing unwind meta-
data have previously been studied by Oakley and Bratus [57].
Their work considered the scenario of a trojanized binary
containing malicious unwind metadata in the form of manip-
ulated DWARF instructions. This allows “hidden” malicious
code to exist in otherwise benign-looking binaries. While these
techniques are relevant for malware obfuscation, manipulating
unwind metadata—normally stored in read-only sections of
the binary—is not of interest for memory corruption exploits.
In contrast, CHOP focuses on abusing the benign unwinding
information already present in the binary in the presence of
memory corruption vulnerabilities.

Capture The Flag Competitions. Examples of attacks closely
related to CHOP can be found in the CTF community. For
instance, prior challenges exhibit the bypass of stack canaries
while using the original, legitimate landing pad [31], [61].
However, to the best of our knowledge, the different confu-
sion primitives, the generalization of according attacks, and
the threats to real-world programs have not been discussed
publicly before. This has been confirmed by the vendors, which
have recognized CHOP as a new attack vector.

Obfuscation and Exception Handling. Quite recently, new
techniques have been proposed to obfuscate the execution
of code using exception handling mechanisms [26], [75].
In a nutshell, these techniques leverage Vectored Exception
Handlers (VEH) as a way to execute single instructions already
present in shared objects. As a result, the entire control flow
of the application is encoded in these handlers, complicating
static and dynamic program analysis. Therefore, despite the
name similarity, these techniques are not related to CHOP.

Unwind Metadata Use in Reverse Engineering. Unwind
metadata can be readily used for reverse-engineering tasks.
Priyadarshan et al. [62] show how EH metadata can help
identify function boundaries, but also how fine-grained code
randomization techniques can be defeated if the attacker is
able to leak EH metadata. Pang et al. [60] further explore
this subject and find that combining recursive disassembly
with exception handling information provides nearly perfect
function identification.

XI. CONCLUSION

In this paper, we explored the overlooked attack surface in
the stack unwinding logic invoked during exception handling.
We demonstrated the ability to lure the unwinder into bypass-
ing backward-edge protection techniques (i.e., stack canaries
and shadow stacks) and derive a variety of Catch Handler
Oriented Programming (CHOP) attacks.

To assess the impact of these attacks, we analyzed a dataset
of popular C++ programs. Our results show that binaries
employing exception handling are likely to provide both prim-
itives for confusing the unwinding logic and usable gadgets for
exploitation. Overall, we conclude that CHOP attacks provide
concrete evidence that additional sanity checks are needed in
production unwinding software.
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AVAILABILITY

To enable reproducibility and foster further research on
this topic, we publicly release every artifact produced dur-
ing this research, including our dataset of Debian binaries,
the source code of our analyses, and the PoC binaries at
https://github.com/chop-project/chop.

COORDINATED DISCLOSURE

We disclosed the issues described in this paper to Apple,
Google, Intel, ARM, LLVM and Microsoft. Google labeled
our findings as “Not Security Bulletin Class” and rather as
issues for the feature team. LLVM, Apple, Microsoft and
Intel acknowledged our findings. Moreover, LLVM plans to
add mitigations as part of feature work. Intel classified our
findings as security-critical and issued CVE-2022-40196 with
mitigations underway [40].

We further reached out to the gcc and libunwind developers
inquiring for a security contact. While libunwind did not
respond, the gcc developers preferred to publicly discuss fixes
after the coordinated disclosure period.
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APPENDIX

A. Stack layouts
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Fig. 6: Stack layouts for the different attacks presented in Section V-C. For each case, the attacker-controlled region is indicated
in red. The positions of overflowed data corresponds to the positions indicated in the Normal Execution case.
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B. Taint analysis algorithm

In this section we present a simplified version of the taint
analysis algorithm. Algorithm 1 depicts the algorithm’s main
function (lines 1-12) and the taint initialization function (lines
14-19). Taint analysis receives as input the binary and a bitwise
mask (i.e., taint_model) representing the user assumed
control model (i.e., which callee-saved registers and stack
relative slots are under the control of the user).

Algorithm 1: Taint analysis algorithm
Input: binary, taint_model
Data: sinks
/* taint analysis main function */

1 Function Main:
2 view ← get_SSA_view(binary)
3 Handlers← exception_handlers(binary)
4 forall handler ∈ Handlers do

/* mount function at landing pad address

*/

5 func← view.add_function(handler.lp)
/* get SSA variables representing the

function parameters */

6 Params← func.get_params()
/* taint parameters specified by model

*/

7 init_taint (Params, taint_model)
8

/* loop over instructions, propagate

taint and report tainted sinks */

9 forall expr ∈ func.instrs do
10 eval(expr)

/* save sinks to database */

11 save_sinks(sinks)
12 return
13

/* loop over function parameters and taint

parameters based on assumed control model

(i.e., what callee-saved registers and

stack slots we control) */

14 Function init_taint(Params, model):
15 forall ssa_var ∈ Params do
16 if fits_model(model, ssa_var) then

/* get taint color: ssa_va is either

a callee-saved register or a

stack slot */

17 color ← taint_color(ssa_var)
18 set_taint (ssa_var, color)

19 return

The algorithm uses Binary Ninja to obtain a view over
the binary’s High-Level SSA IL (line 2) after which it parses
the (.gcc_except_table) section and extracts all catch/cleanup
handlers present in the binary (line 3). Then, the analysis starts
evaluating every exception handler (lines 4-10) for the presence
of gadgets (i.e., taint sinks). For each exception handler we
mount a function (line 5) starting at the landing pad address
of the handler. The landing pad is the address of the first
instruction where the unwinder transfers control to the handler.

Algorithm 2: Taint evaluation function
Data: sinks
/* general eval function */

20 Function eval(expr):
21 switch expr.operation do
22 case SSA_V AR do
23 return get_taint (expr)
24 case V AR_INIT ∨ASSIGN do

/* get taint of source */

25 taint← eval(expr.Src())
/* propagate taint to destination */

26 propagate_taint (expr.Dst(), taint)
27 return taint

28 case MEM_ASSIGN do
29 lh_of_assign← 1

/* destination is a memory

dereference */

30 dst_taint← eval(expr.Dst())
31 lh_of_assign← 0
32 src_taint← eval(expr.Src())

/* if taint on src or dst this is a

w-what, w-where or w-what-where

sink */

33 if dst_taint ∨ src_taint then
34 sinks.add_sink(expr)

/* propagate src taint to the

dereferenced location */

35 propagate_taint (expr.Dst(),
src_taint)

36 return src_taint
37 case PTR_DEREF ∨ARRAY _DEREF

do
38 taint← 0
39 if lh_of_assign ̸= 1 then

/* get the taint of dereferenced

location if we are not in the

left-hand side of a mem-assign

*/

40 taint← get_expr_taint(expr)

/* get pointer taint and combine

with taint of dereferenced

location */

41 taint← eval(expr.Src()) | taint
42 return taint

43 case CALL_INST do
44 return eval_call (expr)

/* Rest of the evaluated operations */

45 ...
46 return 0

Binary Ninja will automatically set as function parameters
all SSA variables that are read before being written by the
function. These variables either point to CPU registers or
to stack relative locations. The function parameters and the
bitwise mask representing the taint model are forwarded to the
initialization function (line 7) which sets taint on all parameters
that fit the user supplied control model. Each parameter will be
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assigned a different bitwise mask representing its taint color
(lines 17-18). The taint color depends on which callee-saved
register the parameter refers to, or it depends on whether the
parameter points to a stack relative location under the control
of the user. After this initialization step, the algorithm loops
over each instruction in the handler function propagating taint
and reporting any sinks discovered in the process (lines 9-10).

Taint Propagation. Algorithm 2 shows the core part of our
taint analysis. This function, depending on the instruction type
received as parameter, evaluates and propagates the taint, and
also reports any matched taint sinks. For brevity, we included
only a portion of the existing propagation rules. Binary Ninja
represents both instructions and (SSA) variables by means of
expressions which themselves might be comprised of multiple
nested sub-expressions. For this reason the evaluation function
is recursive. Taint propagation happens on specific assign and
variable initialization instructions (cases at line 24 and 28)
or on phi instructions (not included in the snippet). During
propagation we evaluate the taint on source sub-expressions
and propagate the taint to the destination part of an expression
(lines 25-26 and 32,35). In most cases the destination is a SSA
variable, case in which propagation simply adds the variable to
the list of tainted variables. For memory assigns the destination
will be a pointer or array dereference expression. In this case
we taint the entire expression representing the dereferenced
location. If taint analysis encounters the tainted dereference as
part of a source sub-expression (lines 37-42) it will combine
the taint of the dereferenced location (line 40) with the taint
on the pointer (line 41), akin to traditional pointer tainting.

Algorithm 3: Call instruction evaluation function
Data: sinks, FREE_FUNCS
/* call instruction eval function */

47 Function eval_call(expr):
48 target← expr.Target()
49 Params← expr.Params()
50 param_taint← 0

/* combine parameter taint */

51 forall p ∈ Params do
52 param_taint← param_taint | eval(p)
53 target_taint← eval(target)

/* if target is tainted we have an icall

sink */

54 if target_taint ̸= 0 then
55 sinks.add_sink(expr)
56 else if param_taint ̸= 0 then

/* if target is a free function with

tainted parameters then we have a

free sink */

57 if target.name ∈ FREE_FUNCS then
58 sinks.add_sink(expr)

/* taint of the call is the combined taint

of all of its parameters */

59 return param_taint

Sinks. Memory assignment instructions are also checked for
arbitrary write sinks. For these instructions, the eval function
evaluates taint on the source and destination and reports the
appropriate gadget depending on the characteristics of the

taint: write_what_where (src_taint ̸= 0, dst_taint ̸= 0),
write_what (src_taint ̸= 0) or write_where (dst_taint ̸= 0).
Algorithm 3 depicts the eval_call function, which evalu-
ates taint on call instructions. If eval_call infers that the
target of the call is tainted then the call is reported as a control-
flow hijacking (lines 54-55). Otherwise, if the parameters of
the call are tainted and the target is a constant pointer to a
free function then the call is reported as an arbitrary free
gadget (lines 56-58).

C. Mimicking CHOP Attacks

1 #include <iostream>
2 using namespace std;
3

4 void catcher() {
5 try {
6 throw 1;
7 }
8 catch (...) {
9 cout << "win" << endl;

10 exit(0);
11 }
12 }
13

14 void vuln() { Ã
15 void* data[1];
16 data[SAVED_RETURN_OFFSET] = (char*) catcher + ((

size_t) TRY_OFFSET);
17 throw 1337;
18 }
19

20 int main() {
21 try {
22 vuln();
23 }
24 catch (...) {
25 cout << "catch" << endl;
26 }
27 }

Listing 5: Test code used to evaluate mitigation efficacy.

We show our program for testing mitigations in Listing
5. The preprocessor macros SAVED_RETURN_OFFSET and
TRY_OFFSET are chosen based on the implementation’s stack
layout and offset of the try block. On ARM architectures, we
further insert an additional call into vuln to force the link
register to be spilled onto the stack.

This program effectively mimics a CHOP attack. The
crucial part of the code is the function vuln Ã, since it
effectively mimics a CHOP exploit: this function overwrites its
own saved return address with an address pointing inside the
try block of function catcher and then throws an exception.
On systems where the unwinding library is vulnerable to
CHOP exploits, this will divert the execution to the exception
handler of catcher.
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