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Abstract—Implementations of stateful security protocols must
carefully manage the type and order of exchanged messages and
cryptographic material, by maintaining a state machine which
keeps track of protocol progress. Corresponding implementation
flaws, called state machine bugs, can constitute serious security
vulnerabilities. We present an automated black-box technique
for detecting state machine bugs in implementations of stateful
network protocols. It takes as input a catalogue of state machine
bugs for the protocol, each specified as a finite automaton which
accepts sequences of messages that exhibit the bug, and a (possibly
inaccurate) model of the implementation under test, typically
obtained by model learning. Our technique constructs the set of
sequences that (according to the model) can be performed by the
implementation and that (according to the automaton) expose
the bug. These sequences are then transformed to test cases on
the actual implementation to find a witness for the bug or filter
out false alarms. We have applied our technique on three widely-
used implementations of SSH servers and nine different DTLS
server and client implementations, including their most recent
versions. Our technique easily reproduced all bugs identified by
security researchers before, and produced witnesses for them.
More importantly, it revealed several previously unknown bugs in
the same implementations, two new vulnerabilities, and a variety
of new bugs and non-conformance issues in newer versions of the
same SSH and DTLS implementations.

I. INTRODUCTION

Implementations of network protocols must conform to
their specifications in order to avoid security vulnerabilities
and interoperability issues. Even seemingly innocent deviations
from the standard specification may expose implementations
to security attacks. Protocols that establish secure connections
(e.g., SSH, TLS, DTLS, QUIC, etc.) must carefully manage
the type and order of exchanged messages and cryptographic
material, by maintaining a state machine which keeps track
of how far the protocol has progressed. Any deviation from
the order prescribed in the protocol’s specification may con-
stitute anything between an inconsequential error to a serious
vulnerability. Corresponding implementation flaws, called state
machine bugs, may be exploitable, e.g., to bypass authentication
steps or establish insecure connections [, [13]], [18].

An approach that has proven effective for finding state
machine bugs is state fuzzing [5l, [13], [18]. It automatically
infers state machine descriptions of protocol implementations
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using model learning [36l], [44]. Model learning is an automated
black-box technique which produces state machine models
describing how an implementation handles message flows, by
observing how the implementation responds to sequences of test
inputs. The learned model is then analyzed to spot state machine
bugs that result from flaws in the implementation’s control
logic. In previous works on state fuzzing, the detection of flaws
has been performed (i) by ocular inspection of the learned
model using expertise about the protocol’s rules for ordering of
messages [13], [12], [34], [18]], or (ii) by pairwise comparisons
between models of different implementations, whereby deviant
behaviors (input sequences for which the compared models
produce different outputs) are first extracted automatically, and
then manually analyzed against the protocol’s standard [29,
Sect. 3.3]. Such manual inspections of models or analyses of
deviant behaviors require effort and expertise. Since learned
models can be both approximate and big, containing tens or
even hundreds of states (as e.g., we report in Table [[V), and
since state machines of different implementations of the same
protocol often differ significantly, ocular inspection of models
can miss errors (as we show in Section [VIII). Moreover, after
the errors that were detected have been fixed, such manual
steps must be repeated on a model (or a trace from the model)
of the updated implementation, which can be rather different
from the original one (and now might contain other errors).
Given the importance of detecting state machine bugs, it would
be desirable to have an automated technique for identifying
them (e.g., one that does not require any ocular inspection of
learned models).

In this paper, we present a black-box technique for detecting
state machine bugs in implementations of stateful network
protocols, which is fully automated if supplied with a (possibly
inaccurate) model of the implementation and a catalogue of
state machine bugs for the protocol in the form of DFAs. One
way to obtain a model of the implementation automatically is
by model learning, as we do for the protocols on which we
have applied our technique. The construction of DFAs is not
automated, but in Section|V|we present a systematic approach to
assemble such a bug pattern catalogue for a protocol. Advances
over previous work include the following.

1) Bug Specification: Instead of ocularly inspecting
models, we automatically verify the model against specifications
of allowed message orderings, encoded by finite automata. Each
automaton “observes” the sequence of messages exchanged
during a protocol interaction and reports whenever that sequence
violates the requirement that it encodes. By their flexibility,
automata can encode ordering requirements in several styles.
In the typical case, a specification is provided as a catalogue



of so-called bug patterns. A bug pattern is a (typically small)
automaton specifying a particular error in an implementation’s
control logic, for instance sending two specific messages in the
wrong order, or omitting an authentication step. Dually, bug
patterns can also be seen as encoding specific requirements,
for instance specifying the order of sending two messages.
A rather complete set of bug patterns can be assembled by
extracting requirements from the RFC, by considering bugs
that have been previously reported for other implementations
of the protocol, or by using knowledge about the protocol
and exercising common sense. An alternative approach is to
provide a (typically not so small) general automaton which
encodes the set of allowed sequences of exchanged messages
during a protocol session, and reports whenever the observed
sequence deviates from this set. This approach in principle
allows detection of any state machine bug for a protocol, but
violations can be difficult to diagnose, and subtle bugs may be
shadowed by other bugs. In the paper, we describe how we
have assembled automata using both of these approaches.

2) Bug Detection and 3) Bug Validation: In black-box
testing, a main problem is to search for input sequences that
induce violations of requirements. As in previous works, our
technique needs a state machine model of protocol behavior
to constrain the search for requirement-violating inputs; such
a model can be obtained automatically using model learning,
or be available from a different version of the implementation.
By adapting existing techniques from model checking, we
combine such a model with a bug pattern to obtain a set
of candidate requirement-violating inputs. If the model M
accurately represents the implementation’s behavior, then any
input in this set will expose a state machine bug. However,
often M is only approximate, e.g., because learning was not
given enough time or because M was obtained from an older
version of the implementation. Our technique therefore applies
the candidate inputs until an actual requirement violation is
observed (or a threshold is reached). The overall approach is
then an effective search for requirement violations that typically
converges after a modest number of tests.

To evaluate our technique, we have applied it to the detection
of state machine bugs in three SSH (Secure SHell) server
implementations as well as in nine DTLS server and nine
DTLS client implementations. The DTLS (Datagram Transport
Layer Security) protocol is a variation of TLS over UDP. It is
widely used in wireless networks, and is one of the primary
protocols for securing IoT applications. Implementing a state
machine for DTLS is complicated by the fact that DTLS’s main
challenge is to support the stateless and unreliable transport of
UDP, which allows for messages to arrive out of order and/or
fragmented. Unsurprisingly, this can result in various subtle
implementation bugs.

Our evaluation shows that our technique, using the same
models obtained by model learning and used in prior works of
state fuzzing SSH [21]] and DTLS [18] server implementations,
is able to detect, in most cases within seconds, all bugs and
security vulnerabilities that these two works have reported.
Moreover, our technique automatically produces bug witnesses
for all these bugs (something that these works did not do).
Finally, our technique is able to detect a significant number of
previously unknown state machine bugs in the same implemen-
tations, both using bug patterns that we have created following

the systematic approach we describe in Section [V| but also
using bug patterns for state machine bugs that prior work has
verbally described as a bug in some server implementation but
which ocular inspection has failed to spot as a bug in some other
server implementation. We hold that these results demonstrate
the effectiveness of encoding protocol ordering requirements
using finite automata and the additional power that automated
bug detection and validation offer to state fuzzing techniques.

In summary, this paper makes the following contributions:

e Proposes a new fully black-box technique for detecting
vulnerabilities and bugs in implementations of stateful
network protocols, whose starting point is a model and a
set of protocol state machine bugs encoded as automata.
From this point onward, the technique is fully automated.

e Provides evidence for our technique’s (i) generality by
applying it to widely-used implementations of two dif-
ferent network security protocols (SSH and DTLS), and
(ii) effectiveness in automatically detecting vulnerabilities
and bugs which were previously unknown and/or missed
by ocular inspection of the learned models.

e Describes various ways that a reasonably complete cata-
logue of state machine bug patterns can be assembled.

Responsible Disclosure: We have reported the bugs to the
respective projects complying with their security procedures.

Outline: In the next section we review related work, and then
provide background on model learning and the SSH and DTLS
protocols (Section [[I). In Sections [[V] and [VI| we give a high-
level overview of our general technique, and provide formal
definitions of its key concepts and algorithms. We describe
our implementation (Section and evaluate its effectiveness
(Section [VIII). The paper ends with some final remarks.

II. RELATED WORK

Stateful security protocols and their implementations have
been thoroughly analyzed for different kinds of vulnerabilities
and bugs. In the case of TLS, previously discovered security
vulnerabilities include cryptographic attacks (e.g., Bleichen-
bacher’s attack [7] and CBC padding oracle attacks [45]), and
the Heartbleed [40] bug in OpenSSL caused by a buffer over-
read. State machine bugs include the Early CCS injection
vulnerability [46]. An effective framework for testing TLS
implementations is TLS-Attacker [41l], which lead to the
discovery of numerous security vulnerabilities. Detection of
state machine bugs in TLS implementations was done using
a combination of automated testing and manual source code
inspection [6], uncovering previously unknown vulnerabilities.

State Fuzzing: Systematic state fuzzing through analysis
of protocol state machines obtained by model learning was
pioneered by de Ruiter and Poll [[13]], uncovering new vulnerabil-
ities. For DTLS, corresponding work was performed by Fiterdau-
Brostean et al. [[18], who developed a state fuzzing framework,
DTLS-Fuzzer, based on TLS-Attacker, and applied it to DTLS
server implementations discovering several vulnerabilities. Both
these works rely on manual analysis of the state machine model
in order to find bugs. Not only is this process time-consuming,
owing to the (typically large) size of the models, but it may
easily miss bugs (as we show in our evaluation). Moreover, it
requires deep knowledge of the protocol, and has to be repeated



for every new implementation tested. Last but not least, it is
very difficult to produce bug witnesses by a visual examination
of a model of the implementation. Our work addresses these
shortcomings by automating the analysis of models.

State fuzzing has also been applied to other stateful
protocols including TCP, SSH, OpenVPN, the 802.11 4-Way
Handshake, and IPsec. In the works on OpenVPN [12] and the
802.11 4-way Handshake [34]], the detection of state machine
bugs is through ocular inspection of models. In the works on
TCP [17], SSH [21] and IPsec [24]], protocol requirements were
encoded in linear temporal logic (LTL) and model checked
against the learned models. In contrast, in our work, protocol
requirements are supplied as finite automata, which are strictly
more expressive than LTL formulas for safety properties [48]].
Moreover, our technique validates witnesses of model bugs
automatically, whereas in these prior works violating sequences
were either not validated, or were applied manually against the
implementation.

Another black-box approach for detecting state machine
bugs uses model learning to generate models of several different
implementations of a protocol, and then compares these models
to find discrepancies in them. This approach, which has been
applied to TCP [4], MQTT [42], QUIC [15] and 4G LTE [_29]
protocol implementations, can be regarded as differential testing,
but with differences detected in models rather than in output
to individual test input. DIKEUE [29] is notable among these
works because it can automatically produce a set of input
sequences that induce deviant behaviours in the learned models
(i.e., input sequences for which different models result in differ-
ent outputs). However, differential testing approaches require
an oracle to determine whether the differences detected in the
models are actual bugs, are benign due to underspecification
in the standard, or are simply false positives caused by e.g.,
inaccuracies in the learned models. Existing differential testing
approaches, including DIKEUE, perform this classification of
the differences manually (e.g., by comparison with the protocol
standard). Also, unlike our approach, some of these works [13],
[29] do not come with any automated step to check that the
differences also exist in the tested implementations and not
only in their learned models. This can be a burden, as the
number of model differences or deviant-behaviour-inducing
input sequences to investigate can be quite large, especially if
they are not diverse enough. The DIKEUE paper [29] notes
this as an issue to tackle, and proposes a scheme for grouping
deviations into diversity classes and limiting the number of
elements produced for each class. In general, compared to
our approach, the main advantage of an approach based on
differential testing of models is that it can be performed
without requiring to be supplied with automata that encode state
machine bugs. On the other hand, differential testing requires
the existence of at least two protocol implementations and,
fundamentally, cannot detect bugs that exist in all (pairs of)
models which are diffed.

Model Checking: Our approach combines techniques
from model learning and model checking [[11]. This combina-
tion was first proposed as black box checking [35]] and adaptive
model checking [23], an adaptation of model checking to a
black-box setting, and applied to simple finite-state systems.
In our approach, protocol requirements or their violations
are represented by automata. (In model checking works,

requirements are often represented as a temporal logic formula,
which are then converted to automata, as e.g., done in the model
checker SPIN [25]].) Most model checkers also require a model
of the analyzed system, which is typically provided manually,
e.g., from some design specification. The intersection of this
model with an automaton representing a requirement is then
explored for bugs. This approach is often used for analyzing
protocols, e.g., to find attacks on the 4G LTE protocol [28]],
on TCP [32], [31]], or on vehicle protocols [27]. Models can
also be obtained using whitebox techniques (recall that our
approach is black-box) from source code, e.g., using symbolic
execution of manually instrumented source code [26], [47] or
static analysis [9].

Model Based Testing: Model-based testing [8], [43] is
a related black-box approach, which differs from the above
works in that the model (typically manually supplied) reflects
the desired (as opposed to actual) behavior of the system under
test (SUT); a goal of testing is to check that the SUT conforms
to the model, and/or to use the model to guide test generation.
Combinations of model based testing and model learning are
surveyed by Aichernig et al. [2]. In contrast to model-based
testing works, our approach regards models as reflecting actual
behavior of the implementation; by using the implementation
to validate the requirement-violating input, we can compensate
for inaccuracies in the (learned) model of the SUT.

III. BACKGROUND
A. Model Learning

Model learning is an automated black-box technique which
needs to know the input and output alphabets of the SUT. In
most cases of learning models of protocol implementations,
some form of abstraction is also needed, i.e., a way to map
concrete protocol packets to abstract alphabet symbols, and
vice versa, in order to interact with the SUT [[1]]. Most model
learning algorithms (e.g., the classic L* algorithm [3]] or the
more recent TTT algorithm [30]) produce a deterministic Mealy
machine as a model by operating in two alternating phases:
hypothesis construction and hypothesis validation.

During hypothesis construction, sequences of input symbols
(Is) are sent to the SUT, observing the sequences of output
symbols (Os) that are generated in response. When certain
convergence criteria are met, the learning algorithm constructs
a hypothesis, which is a minimal deterministic Mealy machine
that is consistent with the Os. Thus, at this point, for all Is
that have been sent to the SUT, the constructed hypothesis H
produces the same output as the output sequences Os observed
from the SUT. For the remaining inputs, H predicts corre-
sponding outputs by extrapolating from the observed Os. To
validate that these predictions agree with the behavior of the
SUT, learning then moves to the validation phase, in which
the SUT is subject to a conformance testing algorithm which
aims to validate that the behavior of the SUT agrees with H. If
conformance testing does not find any counterexample, learning
terminates and returns the current hypothesis as the inferred
model M of the SUT. If a counterexample (i.e., an / on which
the SUT and H disagree) is found, the hypothesis construction
phase is re-entered to build a more refined hypothesis H' which
also takes that I (and its observed output) into account. If
the loop of hypothesis construction and validation does not



terminate, this indicates that the behavior of the SUT cannot
be captured by a deterministic Mealy machine whose size and
complexity is within reach of the employed learning algorithm.
Still, even in these cases, the last constructed hypothesis can
be used as an approximate model of the SUT.

B. Secure Shell (SSH)

The SSH protocol is a client-server protocol which enables
accessing network services securely over an unsecured network.
Our work is concerned with version 2 of SSH, also known as
SSH-2. The protocol is structured in three layers. The Transport
layer is responsible for securing communication between the
client and the server using symmetric keys. The Authentication
layer operates over the Transport layer and enables the client to
authenticate with the server. On top of the Authentication layer
operates the Connection layer, mediating access to network
services. These layers correspond to the three phases of a typical
SSH session, for which an illustration is shown in Fig.

Key Establishment: The client and server begin their
interaction using the SSH transport layer protocol [S1] by
establishing the keys that will be used to secure the higher
layers. The two sides begin by sharing their preferences
for cryptographic algorithms, which they communicate by
exchanging KEXINIT (KI). Using the negotiated algorithm,
they then perform the actual key exchange in order to establish
fresh session keys. A Diffie-Hellman key exchange, which
all implementations are required to support, involves the
client sending KEX30 (K30) to which the server responds
by KEX31 (K31). Key exchange ends with the two sides
exchanging NEWKEYS (NK). With this message, a side informs
the other that it will deploy the generated session keys and
use them to encrypt follow-up messages. At this point, the
client requests the user authentication service by sending
SERVICE_REQUEST _USERAUTH (SReqAuth). If the server
grants the request, it responds with SERVICE_ACCEPT (SAcc),
allowing the authentication phase to begin. In SSH, key
exchange can be performed later in order to renew session
keys, in a process we will refer to as rekey.

Authentication: To authenticate, the client sends a user
authentication request message with the desired authentication
method, and method-specific arguments [49]]. Implementations
must support authentication using public keys (UARegPK).
The server checks the request and responds accordingly with
USERAUTH_SUCCESS (UASucc) or USERAUTH_FAILURE
(UAFail). Upon successful authentication, the protocol can enter
its last phase.

Connection: The authenticated client is now able to
open a channel with the server, over which it can run various
services such as a remote terminal. The client first sends
CHANNEL_OPEN (COpen) to request opening a channel with
the server. On receiving a positive response (COpenSucc), the
client can request a remote terminal to be run on this channel by
sending CHANNEL_REQUEST_PTY (CReqPty) and receiving
CHANNEL_SUCCESS (CSucc) if the request is granted. Once
operation on the channel is over, the client can close it by
issuing CHANNEL_CLOSE (CClose.), to which the server
responds with its own CHANNEL_CLOSE (CCloseg). SSH
allows for multiple channels to be opened simultaneously [S0].

Client Server

Transport Layer

KEXINIT (KI,)

>
KEXINIT (KI,)
<
KEX30 (K30) L
KEX31 (K31)
P NEWKEYS (NK,)

NEWKEYS (NK.)
SERVICE_REQUEST_USERAUTH (SReqAuth),
>

P SERVICE_ACCEPT (SAcc)

’ Authentication Layer ‘

USERAUTH_REQUEST _PUBLIC_KEY (UAReqPk)
p
P USERAUTH_SUCCESS (UASucc)

’ Connection Layer

CHANNEL_OPEN (COpen) o
_, CHANNEL_OPEN_SUCCESS (COpenSucc)

CHANNEL_REQUEST_PTY (CReqPty)

CHANNEL_SUCCESS (CSucc)
CHANNEL_CLOSE (CClose,)
P CHANNEL_CLOSE (CClose,)

»
P

Fig. 1: Sequence diagram of an SSH session using Diffie Hellman key
exchange and public key authentication. The Transport and Authentication
layer exchanges are mandatory.

C. Datagram Transport Layer Security (DTLS)

DTLS is an adaptation of the cryptographic Transport Layer
Security (TLS) [37]] protocol for use with Datagram-based
transport protocols, such as UDP. Our work is concerned with
DTLS version 1.2 [38], noting that at the time of writing,
version 1.3 [39] has only recently been standardized. The DTLS
protocol is divided into two parts, a Record Protocol and a
Handshake Protocol. The Record Protocol encrypts messages to
be transmitted using symmetric key encryption, based on a pre-
negotiated secret between the peers. This secret is negotiated
using the Handshake Protocol when the connection is first
established. DTLS extends the TLS protocol to allow for
messages to arrive out of order or fragmented.

Figure [2] shows the flow of a DTLS handshake. The first
flight of the handshake begins with the client sending a
ClientHello (CH) message to the server. Note that we will
introduce all messages with their full names, but we will
subsequently refer to them with their abbreviations, which
are shown in parentheses. This message contains, among other
things, a random nonce and a list of the cipher suites supported
by the client. In DTLS, a server may respond to this with a
HelloVerifyRequest (HVR) message, which contains a stateless
cookie. The client must respond to this message with a second
CH message, containing the same cookie. This cookie exchange
is there to help prevent Denial of Service attacks from spoofed
IP addresses.

After the cookie exchange, the server starts flight 4 by
sending a ServerHello (SH) message. This message contains
the cipher suite chosen by the server from those supported by
the client. If the chosen cipher suite requires a certificate to be
used for the key exchange, the server sends a Certificate (Certs)
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Fig. 2: TLS/DTLS handshake. Messages unique to DTLS are colored blue,
optional messages are in [square brackets] and encrypted messages are marked
by an asterisk*. Inside parentheses, we show the abbreviations we will use.

message carrying the certificate and public key. Some cipher
suites, such as Diffie-Hellman, require additional information
which the server then provides in a ServerKeyExchange (SKE)
message. The server may also request client authentication by
sending a CertificateRequest (CertReq) message. This message
contains a list of supported certificate types. Finally, the server
marks the end of this flight by sending the ServerHelloDone
(SHD) message.

The next flight contains the client’s responses to the server.
If the server requested client authentication, the client sends
a Cert, message. This message must conform to one of the
certificate types requested by the server. If it does not, the
client must send an empty Cert, message. After this, the client
creates a premaster secret, which it communicates to the server
with a ClientKeyExchange (CKE) message. If the client sent a
Cert, containing a certificate, the client now sends a signature
in the CertificateVerify (CertVer) message.

After sending the CKE message (and the optional CertVer),
the client deploys the cipher suite. At this point the client sends
a ChangeCipherSpec (CCS.) to inform the server that all future
messages will be encrypted. Finally, the client marks the end of
the flight by sending its Finished (Fin.) message. This message
contains a digest: a hash of all handshake messages sent to and
received by the client, excluding those involved in the cookie
exchange. If this digest does not match with the messages the
server has sent and received, the handshake is terminated by the
server. Otherwise, the server also deploys the cipher suite and
sends a CCS;, followed by a Fins. This last message contains
a digest of the messages sent to and received by the server. At
this point, the handshake is established. Application (App) data
can now be exchanged by the two peers.

It is possible for a client and server to renew cryptographic
key material, using a process known as renegotiation. A client
can request a renegotiation at any point by sending a CH
message. If the server accepts the request, it will respond with
a SH (or a HVR, if it wishes to do another cookie exchange).
A server may only request renegotiation after successful
completion of a handshake, by sending a HelloRequest (HR).
If the client accepts the request, it will respond with a CH,
starting a new handshake.

IV. BUG DETECTION FRAMEWORK

In this section, we describe a general technique to detect
vulnerabilities and bugs in implementations of protocols which
are explicitly or implicitly defined via state transitions. We
refer to the implementation to analyze as the system under
test (SUT) and treat it as a black box. To interact with the
SUT, support from a test harness is required. Sometimes, this
protocol-specific test harness is available in a model learning
tool for the protocol.

A. Obtaining the SUT’s State Machine Model

Our technique takes as input the model of the SUT’s state
machine. Sometimes, such a model is already available and
can be supplied directly. In these cases, the model learning
step we describe here is skipped. However, in most cases, the
model is constructed automatically using model learning. We
will illustrate model learning and the supporting infrastructure
that it requires using an example from DTLS.

DTLS-Fuzzer [16], the tool we use for learning models of
DTLS implementations and will describe in Section is
often effective in constructing exact and relatively small models.
For example, for OpenSSL 1.1.1b DTLS servers, learning
converges in five to six hours, and the constructed models
contain only between 14 and 22 states (depending on whether
authentication is disabled, optional, or required). But there
also exist DTLS implementations for which learning does not
converge. An example of such an implementation is JSSE.
After running DTLS-Fuzzer for two days on a JSSE 12.0.2
server using ECDH, the hypothesis that has been constructed
by DTLS-Fuzzer consists of 124 states, and learning has still
not converged. We stress that the technique we describe in
this section will perform its steps on this big and approximate
model of a JSSE 12.0.2 server. However, because a Mealy
machine with 124 states is unreadable, Fig. E] shows a reduced
version of it, consisting of only twelve states. Let us explain
how to read this Mealy machine. Its edges are labeled with
elements of the alphabet(s) on two sides of a slash (‘/*), with
inputs on the left and outputs on the right. At its initial state (0),
the server either accepts application data (App) and does not
output any response, or accepts a ClientHello (CH) message
and responds with a HelloVerifyRequest. At state 1, besides
App, the server also accepts a CH and then replies with a
sequence of five messages (SH, Certs, SKE, CertReq, and SHD,
in this order). The remaining states are similar, but we also use
a shorthand notation (on the self-edges of states 6, 7, and 11)
to denote a union of inputs and corresponding outputs. We can
also notice the path that correctly completes the handshake,
colored in blue, starting from the initial state and ending in
state 7. The remaining paths, colored red, will be explained

in Section [V-C}

B. Encoding Vulnerabilities and Bugs

Given a model of the SUT, M, the idea is to search M for
paths that violate the security and correctness requirements of
the protocol or look suspiciously like bugs. There are three
issues that need to be addressed to realize this simple idea
and make it effective in practice: (1) How do we capture
what a requirement violation or bug looks like in M? (2) How
do we efficiently search for buggy paths in M? (3) How do
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Fig. 3: Reduced model of a JSSE 12.0.2 DTLS server.

we demonstrate that the actual SUT contains bug(s) that are
triggered when executing the code that corresponds to a buggy
path in M? Let us first answer the first of these questions.

Every network protocol specifies security and correctness
requirements in its specification (e.g., in its RFC). Naturally,
we can go over this specification and extract (a complete set of)
these requirements. The second input that our technique gets
supplied is a catalogue of bug patterns, each of them encoded
as an automaton that accept sequences of messages that expose
the state machine bug. Let us illustrate this encoding by an
example from DTLS. Assume that we are testing a DTLS
server which is configured to require a valid certificate from
the client. It is obviously an error —in fact, a vulnerability—
for the server to request a certificate (with a CertReq message)
and then enter the phase that completes the handshake without
receiving a certificate message from the client (Cert.). To make
this more concrete, recall from Fig. [2 that the server sends
a CertReq in flight 4 and enters handshake completion by
sending a CCS; message (flight 6). We can therefore capture
this vulnerability with an automaton that accepts sequences of
messages that expose it. Such an automaton is shown in Fig. ]

% U — {Certc}

CertReq

SH

Fig. 4: DFA capturing the vulnerability of completing a handshake without a
Certificate message from the client.

Let us explain this Deterministic Finite Automaton (DFA)
and also the notation that we use. The possible paths from
the initial to the final “bug” state express the vulnerability
we explained above: there is a CertReq followed by a CCS;
message from the server, without any Cert, message from the

client in between. We use the symbol %/ for what is often
known as the set of all “other” symbols of the alphabet ¥ of a
DFA (i.e., all symbols except those that are shown as labels in
the other outgoing transitions from a state). So, for the initial
state % denotes ¥ — {CertReq}, and for the middle state %
denotes X — {SH, CCS,}. By including a SH transition back to
the initial state, we allow our DFA to avoid false alarms (due
to renegotiation). In DTLS, a client can restart the handshake
process at any point by sending a ClientHello message to the
server. Some DTLS servers will respond with a HVR at this
point and the handshake will be restarted. However, there also
exist DTLS implementations that skip repeating the cookie
exchange step and restart the handshake from flights 3 and 4
instead (cf. Fig. [2). It is therefore safer and more uniform to
use the second message that a server sends (SH) to denote that
the handshake is restarting, and may be completed correctly
with another CertReq from the server.

Related to the fact that all our automata are deterministic,
we note that for all symbols in X for which there is no outgoing
transition from a state, there are implicit transitions for these
symbols to a “sink” state, which we do not show in order not
to clutter the pictures. For example, for the automaton in Fig. §]
there are implicit transitions out of the final “bug” state for all
symbols in X, and there is also a transition for Cert, out of the
“certreq” state to the sink state, signifying that if a certificate is
sent from the client, then we do not reach the accepting state
of our DFA (i.e., there is no bug).

The second vulnerability we capture with a DFA (Fig. [5) is
similar. In a server configured to require a certificate from the
client, a client is authenticated (i.e., handshake is completed)
with the client sending a certificate (Cert,) but without sending
a CertificateVerify to the server. Note that this is a serious
security hole. It may indicate that an attacker can authenticate
using someone else’s certificate without proving ownership of
the certificate with a CertVer.

U — {CertVer}

U — {CertVer}

Fig. 5: DFA capturing the vulnerability of authenticating a client without it
sending a CertificateVerify message.

Besides vulnerabilities, note we can also employ DFAs
to capture other kinds of protocol state machine errors. For
example, the DFA of Fig. [6] captures the bug that, in a valid
handshake with a server that uses ECDH, the server cannot
consume a CKE before the Cert, message from the client. In
fact, we can generalize the CKE(ECDH) edge in the DFA
of Fig. [6] to work for all key exchange algorithms that a
server supports and which require the client to provide a

U —{Certc} U —{CCSs} v

Fig. 6: DFA capturing a server completing handshake, but consuming a
ClientKeyExchange before a client Certificate.



Fig. 7: DFA capturing a server completing handshake, but consuming a
Certificate Verify before ClientKeyExchange.

certificate. For example, we can specify as label of that edge
the set { CKE(DH), CKE(ECDH),CKE(RSA)}. We will use the
shorthand CKE” " to refer to such a set.

Our last DFA example (Fig.[/) is similar. It captures another
case of invalid sequencing of messages: a server completing
the handshake while consuming a CertVer before the CKE
message from the client.

Having explained how to encode requirements into automata,
let us consider how to obtain such requirements in the first
place. There are several possibilities: DFAs can be directly
constructed and refined from i) specific requirements in a
protocol’s specification (e.g., “The Cert. message is sent by
the client only if the server requests a certificate.” [37, p. 55]),
i) from any previously reported state machine bug for protocol
implementations, or iii) by using our knowledge about the
protocol and exercising common sense. We note that the set
of DFAs capturing requirements, vulnerabilities, and common
bugs of a protocol implementation can be specified offline and
incrementally. In addition to this, in Section |V| we present
a complementary approach, which systematically constructs
bug patterns from a description of the allowed sequences of
exchanged messages in a protocol session.

C. Detecting Bugs in the Model of the SUT

We are at the point where we have a model M of a
SUT in the form of a Mealy machine, and we also have
a set of bug patterns expressed as DFAs. How do we find
whether M contains state machine bugs or not? First, note that
the two formalisms (Mealy machines and DFAs) look similar
but technically they are different. Mealy machines specify input-
output relations of the symbols in their transitions, while DFAs
define a language: the set of words that the DFA accepts. Also,
note that searching or enumerating all paths in M will not work.
Most models, besides having many paths due to many states,
may even have an infinite number of paths. For example, notice
the self edges in all states of Fig. 3] We need to do something
more effective than a search.

In a nutshell, what our technique does in this step is
convert the Mealy machine model of the SUT to a DFA
and intersect it with each of the DFAs describing the bug
patterns. We will describe the algorithms of this step formally
in Section By applying those algorithms on our running
example, the JSSE 12.0.2 server, our technique will detect that:
i) the vulnerability described by the DFA of Fig. @] (completing
a handshake without a Cert message) is present in the path
0—1—2—8—11—7; ii) the vulnerability described by the DFA
of Fig. [§] (authenticating a client without a CertVer) appears
in the path 0—1—2—8—10—6—7; iii) the bug captured by
the DFA of Fig. [6] (CKE before Cert.) appears in the path
0—1—-2—8—10—5—6—7; and iv) the bug captured by the
DFA of Fig. [/| (CertVer before CKE) appears in the path

0—1—-2—3—-9—-5—-6—7. Also, our technique will discover
that the CertVer before CKE bug also exists on the 0 to 7 path
which passes via the edges 2—8 and 8—10 (thick red lines).

D. Validating the Model Bugs in the SUT

Alas, automatically detecting vulnerabilities and bugs in
the model of the SUT does not suffice. As explained in Sec-
tion learning may not have converged, and the inferred
model may be approximate. So, the previous step may report
bugs that do not exist in the SUT, and of course we want to
filter them out automatically. But even in the cases where the
model is precise, reporting a bug without providing a test case
that exhibits it makes reproducing and fixing the bug very hard.
Thus, the last step of our technique uses the DFA produced by
the DFA intersection step sketched in the previous section and
the test harness to construct sequences of protocol packets that
it then runs against the SUT in order to validate the presence of
the bug in the actual system and return them as bug witnesses
in the reports to the developers. We will present this step as
Algorithm [I] in Section But we note that the existence
of this step explains why our technique will not report any
false positives even if the SUT’s model is approximate. Our
technique will automatically validate all bugs on the SUT.

V. SYSTEMATIC ASSEMBLY OF BUG PATTERNS

The effectiveness of our technique depends on the set of
bug patterns. In Section we described how to construct
bug patterns to detect violations of ordering requirements.
Such bug patterns can be extracted from specific requirements
in a protocol’s specification, from any previously reported
state machine bug for protocol implementations, or from any
other (violation of a) property of interest. In practice, these
sources suffice for producing a rather complete set of bug
patterns. In some cases, it is desirable to have a complementary
recipe for systematically deriving bug patterns from a general
description of allowed protocol behavior, e.g., when there is
no source of previously reported bugs, or to make the set of
bug patterns more complete. In this section, we will describe
one such general recipe. We used it for creating bug patterns
for DTLS clients, since there we started from an empty set of
bug patterns, and also for the DTLS and SSH servers in order
to add additional bug patterns that we might have missed.

Most network protocols constrain the kinds of messages
that may be sent and received at each state, and also their
order for establishing a connection. For example, the RFC for
the DTLS handshake protocol specifies that messages must
be exchanged in the sequence shown in Fig. 2] Furthermore,
it specifies the following two requirements: (i) a client must
never send a message which deviates from the given sequence,
and (ii) upon receiving an unexpected message from the server,
the client should end the session, either by ignoring subsequent
server messages or by responding to them by Alerz.. Combining
these two requirements with the sequence diagram of Fig. [2]
we can construct the general bug pattern shown in Fig.

In this DFA, the allowed sequence of messages corresponds
to the horizontal path from the initial state to the final state. The
states in this path are all non-accepting, since no requirement is
violated by remaining in this sequence of states. In fact, there
are typically several allowed sequences, depending on the key
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Fig. 8: (Simplified view of) DFA capturing violations of DTLS handshake
sequencing. %, and %, denote all “other” client, respectively, server messages.

exchange algorithm, client authentication setting, etc., turning
the “middle path” into a graph with several outgoing transitions
from some states. For the sake of readability, Fig. [§] shows only
one allowed sequence of transitions. The DFA also contains
two additional states, and transitions that capture violations of
the above RFC requirements (i) and (ii).

e Violations of requirement (i) are captured by the transitions
from a state in the “middle path” to the bottom accepting
bug state. They are labeled by %, which denotes the set
of disallowed client messages for which there are no other
outgoing transitions. Such an %,-transition will be taken
whenever the client sends a deviating message, and the
bug pattern will report a requirement violation.

e Violations of requirement (ii) are captured by the tran-
sitions to the top end state, together with the transition
from that state to the accepting bug state. The transitions
to the end state are labeled by %;, denoting the set of
deviating server messages. Such a transition will be taken
whenever the server sends a deviating message; if the
client thereafter responds with anything else than an Alerz,
message, a requirement violation occurs, which is captured
by the transition labeled %, to the bug state.

General bug patterns, like the one in Fig. [8] capture most
protocol state machine bugs that implementations contain. Thus,
in principle they suffice. However, they have two drawbacks:
1) their size is big and bug detection using them can be
slow; 2) whenever a violation is found, besides a bug witness
they provide no other indication of what specific protocol
requirement is violated. For these reasons, when starting from
such a general bug pattern, it is a good idea to add specific
bug patterns to the bug pattern catalogue whenever the general
one(s) detect some bug in an implementation. These specific
bug patterns are tried first (and detect bugs very fast, as we
will show in our evaluation) and only then the more general
bug patterns are used. For example, we have identified four
general classes of such violations for DTLS, corresponding to
four types of specific bug patterns: an expected message is not
received (e.g., the missing Cert, vulnerability), an expected
message is received in the wrong order, before another required
message (e.g., CertReq before Cert), an expected message
is received multiple times (e.g., multiple CertReq), and an
unexpected message is generated (e.g., unexpected CH). Thus,
even without any knowledge about prior bugs reported for
a protocol, a quite extensive bug pattern catalogue can be
assembled starting from a general bug pattern, like the one in
Fig.[8] and creating specific bug patterns for classes of common
state machine bugs.

VI. ALGORITHMS

We provide formal definitions of concepts and formalisms
used in Section and of the algorithms we employ.

Mealy Machines: Models of protocol implementations
are assumed to be given as Mealy machines describing how the
implementation generates output messages in response to input
messages. Mealy machines are finite state automata with finite
alphabets of input and output symbols. They are widely used
to model the behavior of protocol entities [33], [10]. Starting
from an initial state, they process one input symbol at a time.
Each input symbol triggers the generation of a sequence of
output symbols and brings the machine to a new state, from
which the next input symbol can be processed. An example
Mealy machine was shown in Fig. [3]

Formally, a Mealy machine .# is a tuple (I,0,0Q,q0,6,1),
where I and O are alphabets of input and output symbols,
respectively, Q is a set of states, containing an initial state gy,
where 0 : Q x I — Q is a transition function, which for each
state ¢ € Q and input symbol i € I gives a next state 6(q,i),
and where A : Q x I — O* is an output function, which for
each state g € Q and input symbol i € I gives an output A(q,i),
which is a (possibly empty) sequence of symbols.

DFAs: Bug patterns are formulated as DFAs that
characterize the set of sequences of symbols that exhibit the
described bug. Formally, a deterministic finite automaton (DFA)
over an alphabet X is a tuple <7 = (X, 0,qo,A,F), where ¥ is
a finite set of symbols, Q is a set of states, containing an initial
state gg, where A: Q XX — Q is a transition function, which
for each state g € Q and symbol [ € ¥ gives a next state A(q,[),
and where F C Q is a set of accepting states. The transition
function is extended from symbols to sequences of symbols in
the standard way, by defining

Alg.e) =gq
A(q,wa) = A(A(g,w),a)

where € is the empty sequence. A sequence of symbols w
is accepted iff A(qo,w) € F. The language accepted by <7,
denoted £ (), is the set of accepted sequences of symbols.

In DFAs for our bug patterns, the alphabet ¥ is the set of
input and output messages received and generated. Drawing
conventions for bug patterns were described in Section [[V-B]

Transforming a Mealy Machine to a DFA: In order to
combine a protocol model .# of the SUT with bug patterns,
we must first transform .#, which is in the form of a Mealy
machine, to a DFA & ,. We do this in the natural way,
by letting <7, accept all sequences of inputs and outputs
that can be exhibited by letting .# first read input, then
produce the corresponding sequence of outputs, then read
input, etc. Formally, a Mealy machine .# = (1,0,0,qo,0,1)
is transformed to the DFA <, = ((IUO),Owm,q0,Am,0m),
where Oy = QU Quuy, 1.€., On extends Q by a set of auxiliary
states Qu.x, Which is defined as follows: For each ¢ € Q and
i € I with A(q,i) # €, letting A(g,i) = 01 -0y, the set Quux
contains the set of states {pg.o,...o, : 0 <k <n}. The transition
function A is defined as follows: for g € Q and i € I, whenever
A(g,i) = €, then

A(q7i) = 6(q7i)



and whenever A(g,i) =o0;---0, with 1 <n, then
A(g, i) = Pq.i
A(pq.,i,0|~-~ok,1 70k) = Pq,i,01 0 for 1 <k<n
A(pqﬁi,olmonfl ,0n> =6(q,i)

As an illustration, the transition from state 6 to state 7 in the

model of Fig. [3] is transformed to the following transitions.

Note that all the states are accepting.

Intersecting the DFA of the Model with each Bug Pattern:
As the next step, for each bug description <7,, we construct the
DFA &/ (< 4, 47,) which accepts the intersection of £ (<« 4)
and Z(<7). We will denote this DFA by 4. This DFA
accepts the set of sequences that (according to the model)
can be performed by the implementation, and which expose
the bug specified by 7, Letting 4, = (£,0,q0,A,F) and
Ay = (E,0m,90m,2u,0m), the DFA o/ can be constructed
as the cross-product (X, Oy X Q, (qoum,q0), A',Qu X F), where
AN ((gm,q),1) is defined as (A(gm,1),A(g,1)) for each gy € Op,
g € Q and [ € X. This cross-product can then be polished by
removing unreachable states and states from which no accepting
state is reachable. If no states remain, i.e., £ (/) = 0, then
(if the model .# is accurate) the implementation does not
exhibit the bug represented by 7,. Otherwise, i.e., if £ (oh)
is non-empty, we extract test sequences from 27 as follows.

Extracting and Applying Bug-Exposing Test Sequences:
In the final step, sequences that, according to <74 will expose
bugs, are extracted and used to construct test cases, which are
applied to the SUT. Recall that <7 accepts the set of sequences
that (according to the model) can be performed by the SUT,
and which expose the bug specified by .«%,. For a sequence w of
input and output symbols, let inputs(w) denote its subsequence
of input symbols. We hope that sequences w in £ (o) will
expose the bug as follows: Apply the sequence inputs(w) to the
SUT. Let w,ps be the sequence of observed input and output
messages, where the outputs appear after their triggering input
symbol and before the next input. If w,, € £ (47,), then we
have a witness for the bug, consisting of the input inputs(w)
and the observation w,,. If the model faithfully represents the
possible behaviors of the SUT, then any sequence w in .Z (/)
will expose the bug. If not, then only some (and possibly
none) of them will expose the bug. Therefore, we iteratively
generate sequences in £ (/) and apply them to the SUT
until a bug is found, or until some threshold is reached. In our
implementation, we generate accepting sequences of increasing

length, using breadth-first search (BFS) from accepting states.

We restrict the generation to sequences that cause the DFA
to visit each state at most K times for some suitable K. One
advantage of using BFS as the generation strategy is that the
SUT’s response to short input sequences, which visit each state
only a few times, is more likely to be accurate in a model
obtained from model learning. Another advantage is that shorter

sequences are easier to understand when used as bug witnesses.

Algorithm (1| shows a realization of this testing strategy.

It maintains a work queue WQ of pairs (g,w) of states and
sequences, such that A(g,w) is accepting, initialized by the
pairs (g,€) where ¢ is accepting. Each iteration of the loop

Algorithm 1: Extraction and application of test sequences.

Inputs: A DFA an = (Z, Q,qQ,A,F); // intersection between
A bug pattern <7j; // SUT’s model and <),
A threshold K for maxStateVisits.

Result: An exposed bug in the SUT with a witness
(inputs(w),w), if one exists within the threshold K.

WQ:={(q,€):q€F}
while WQ is nonempty do
(g,w) := dequeue(WQ);
if ¢ = qo then
apply inputs(w) as test input to SUT;
let w,ps be the sequence of observed messages;
if wops € Z () then return (inputs(w), wops);
foreach (¢’ € 0,/ € X) such that A(¢',l) =g do
if maxStateVisits(q',Iw, /1) < K then

| insert (¢',Iw) into WQ

extracts a pair (g,w) from WQ. If ¢ is the initial state, then
w is a sequence accepted by .o/, which should be tested by
supplying the sequence of inputs of w to the SUT. If the
observed sequence of messages w,p 1S accepted by 7, a
witness for the bug has been found and the algorithm returns.
Otherwise, the current loop iteration continues by constructing
the pairs of form (¢’,Iw) such that g is reached on symbol [
from ¢, implying that A(g’,Iw) is accepting, and inserting into
WQ those pairs for which the corresponding accepting run visits
each state at most K times. We use maxStateVisits(q,w, <) to
denote the maximal number of times that some state is visited
on a run of &7 on input w, starting from state g.

VII. IMPLEMENTATION

Let us now present how the framework and the algorithms
of Sections and are realized. To analyze a SUT for
vulnerabilities and bugs, our implementation needs a Mealy
machine model of the SUT’s behavior, which can either be
provided by the user or can be learned. For model learning we
need an abstraction mechanism that maps concrete protocol
packets to abstract alphabet symbols, and vice versa. The
implementation of this mechanism also serves as our test
infrastructure, leveraging its ability to translate sequences of
input symbols into concrete packets, send them to the SUT,
and generate corresponding output symbols from the response.

A. Learning and Testing SSH Servers

To learn models for SSH server implementations we used
the publicly available artifact [20] of prior work on model
learning and model checking SSH implementations [21]]. That
work checked the learned models against properties that were
extracted from the protocol’s RFC and formulated in LTL.
We could reuse the artifact’s infrastructure with only minor
changes that improve its conformance testing algorithm. Its
infrastructure comes equipped with an implemented abstraction,
or MAPPER, responsible for mapping from symbols to packets
and vice versa. The MAPPER operates as a test harness. It
receives (e.g., from the learner) input symbols over a socket
connection, sends corresponding packets to the SUT and returns
output symbols generated by abstracting the responses. The
MAPPER supports input and output symbols for common types



of SSH messages; refer to Fig. [T} In particular, since user
authentication requests are parameterized by the method and
validity of credentials, separate symbols are defined for each
parameter combination. The MAPPER stores in variables the
sender-side and receiver-side session keys generated after every
Diffie-Hellman exchange. It respectively deploys the sender-
side keys after sending NK, to the SUT, and the receiver-side
keys after receiving NK; from the SUT. The algorithms used
are those negotiated after the last KEXINIT exchange. The
MAPPER also keeps track of the number of open channels.
To make learning easier, it allows at most one channel to be
open at a time. Upon receiving a COpen input symbol when
a channel is already open, it responds by the special output
symbol CMax, without relaying the corresponding message to
the SUT. Similarly, it responds with the symbol CNone upon
receiving a channel input symbol other than COpen, when there
is no open channel.

We defined bug patterns for each of the eleven correctness
properties for SSH servers that prior work [21] encoded in
LTL. We also extended this set with five new bug patterns.
The first three of them check that state does not change in the
Connection and Authentication layers following a rekey (i.e.,
the rekey procedure should be transparent). For example, Auth
Fail After Rekey is used to check that authentication is still
possible after rekey if valid credentials are provided. The fourth
bug pattern (Missing NEWKEYS) captures key exchanges and
rekeys completed without an NK;. The bug was identified in
the witnesses generated for other bug patterns, based on which
a corresponding pattern was constructed. Finally, the last bug
pattern (Missing SERVICE_REQUEST_USERAUTH) captures
the server performing authentication without requesting the
authentication service (SRegAuth). In addition, we constructed
a general bug pattern for the SSH transport layer, similar to
the general bug pattern of Fig. [§] for DTLS clients. Applying
this general bug pattern enabled us to derive the Missing
SERVICE_REQUEST_USERAUTH bug pattern.

B. Learning and Testing DLTS Servers and Clients

For learning and testing DTLS implementations, we used
DTLS-Fuzzer [16]]. DTLS-Fuzzer supports input and output
symbols for common types of DTLS messages, such as the
messages in Fig. Some of these symbols (e.g., CH, SH,
SKE, CKE) are parameterized by the key exchange algorithm
used, Cert by the type of certificate contained, etc. In order to
translate between symbols and concrete packets, DTLS-Fuzzer
maintains the state of its interaction with the SUT. For each
input symbol, DTLS-Fuzzer creates the corresponding DTLS
message and uses variables in its state to configure message
fields. The message is then packaged and sent to the SUT. From
the SUT’s reply, DTLS-Fuzzer assembles DTLS messages,
generates corresponding output and updates its state again. A
key state variable is cipherState, which stores the symmetric
keys used for encryption/decryption. This variable is initially set
to null meaning there is no encryption/decryption, and updated
on sending/receiving CKE based on the key material exchanged
in the last CH-SH exchange. The keys are deployed whenever
CCS is sent. Other variables regard the maintenance of the
digest, cookie, etc. We extended DTLS-Fuzzer to also handle
DTLS clients by reusing existing functionality for the input
and output symbols that clients and servers have in common.
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CertReq(CTset)
Certc(kt) where
cert_type(kt) ¢ CTSet
HR

Fig. 9: DFA capturing the Wrong Certificate Type bug.

To check whether a SUT exhibits a bug, our implementation
takes a formulation of the bug as a DFA 4, from a file in
DOT format. In the DOT file, we can compactly encode finite
sets of alphabet symbols using parameterization, appropriate
set notation, and a fixed set of pre-defined functions over small
domains. Loading this file involves expanding notation repre-
senting sets of symbols (e.g., %,CKE”, etc.) and handling
these functions. We illustrate the use of a pre-defined function
using a bug pattern for DTLS clients. According to the TLS 1.2
specification [[14, p. 53], the “certificate provided by the client
MUST contain a key that is compatible with certificate_types”
in a CertReq message by the server. Alternatively, the client
may send a Cert, message containing no certificates. The
DFA of Fig. [9] captures (the violation of) this requirement
using the parameter kt to denote the key type of an included
certificate, CTset to denote the set of certificate types in a
CertReq message, and function cert_type, which, for a key
type, returns the compatible certificate type. Note that the
domains for available key types and certificate types are small
(less than five elements). If the message Cert, from the client
contains a certificate key of type kt whose compatible certificate
type is not included in the certificate types requested by the
server, the client bug is detected. Thus, on loading this bug
pattern from a file, the loader has to map cert_type to the
appropriate function in our implementation which returns the
compatible certificate type for a given key type.

Our implementation realizes the algorithms in Section
by a general-purpose function for converting a Mealy machine
to a DFA. For DFA intersection, we use functionality available
in Automatalib [22]. The extraction and application of test
sequences from @74 is performed according to Algorithm

VIII. EVALUATION

In this section, we evaluate our technique in terms of
its effectiveness in detecting vulnerabilities and bugs in the
SSH and DTLS implementations we use as SUTs. The main
questions we want to address are: 1) Is our technique capable
of detecting and validating the same set of bugs that ocular
inspections of SSH and DTLS server models by security
researchers have previously identified? 2) Does automation
pay off in terms of being able to detect additional bugs in the
same protocol implementations? 3) Has manual inspection of
the models missed any bugs and, if so, how many? 4) Is our
technique effective also in newer versions of SSH and DTLS
servers? 5) How does it perform on DTLS clients, on which
state fuzzing has not been applied before? We provide answers
to these questions in the subsections below.

SUTs: Our evaluation considered the most recent ver-
sions of three widely-used SSH servers (BitVise, Dropbear and
OpenSSH) and a total of nine different DTLS implementations
(GnuTLS, JSSE, MbedTLS, OpenSSL, PionDTLS, Scandium,
WolIfSSL, and two variants of TinyDTLS). In addition, we
experimented with several different versions of all these systems.
However, in the tables, we report results for only two (or



three) of them: the DTLS server versions used by Fiterau-
Brostean et al. [18] in their paper, and the most recent version
of these implementations at the time of this writing. GnuTLS,
MbedTLS, OpenSSL, and WolfSSL should be well-known.
JSSE is the Java Secure Socket Extension. PionDTLS is a Go
implementation of DTLS 1.2 for WebRTC. Scandium is the
DTLS implementation which is part of Eclipse’s Java CoAP
implementation. The two TinyDTLS variants are lightweight
implementations specifically designed for IoT devices. We refer
to Eclipse’s variant as TinyDTLS?, and to Contiki-NG’s as
TinyDTLSC.

To test DTLS implementations, we used the server/client
programs executable via utilities that come packaged with the
implementations (e.g., gnutls-cli for GnuTLS). Exceptions
were JSSE, PionDTLS and Scandium, for which we wrote our
own programs. To test DTLS clients, we needed to ensure that
client programs produced observable behavior when completing
the handshake. This was done by making them echo any App
messages they received via the standard DTLS send/receive
method calls.

A. Effectiveness in Detecting Known Bugs in Servers

As mentioned, we defined bug patterns for all eleven LTL
properties that previous work for SSH [21] checked. Our
technique quickly confirmed that all seven properties that were
violated in older SSH server implementations are still violated.

Fiterdu-Brostean et al. [[18] used model learning and pro-
tocol state fuzzing to analyze DTLS server implementations
for state machine bugs. Their approach consisted in using
DTLS-Fuzzer to learn (sometimes approximate) models of
DTLS implementations, manually scrutinizing these models for
state machine bugs, and then confirming them by studying the
relevant source code. Can our black-box technique automatically
detect the same set of bugs, and if not, why? Our experiment
started from the publicly available artifact of their paper. What
we did was the following: We studied the vulnerabilities and
bugs that they reported [18]], classified them into categories,
and defined fifteen bug patterns for them. Refer to all white
columns/cells of Table [lIl which shows tick symbols for the four
vulnerabilities (¢') and the eighteen bugs (¢) in the ten versions
of DTLS server implementations for which problems were
reported. We then took the models that DTLS-Fuzzer generated
for these versions of DTLS servers (focusing on models
whose alphabets only use PSK, or use a certificate-enabled key
exchange algorithm and were generated for a setting where
the certificate was required), and applied the technique we
have described in this paper. Our implementation detected,
automatically, all 22 vulnerabilities and bugs. Moreover, it
generated and validated witnesses for all of them.

In short, we can answer the first question of our list
positively. On a wide variety of two different network security
protocol implementations, our technique is able to automatically
detect and validate the same set of state machine bugs that
security researchers were also able to ocularly identify.

A reasonable concern about what we have done in this first
set of experiments for SSH and DTLS is that perhaps we have
tweaked the bug patterns we defined to be effective just for
these experiments. In the next two subsections (Sections [VIII-B]
and [VIII-C), we will show that this is not the case.
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TABLE I: Bugs detected in various SSH server implementations. Everything
colored in cyan background and blue color is new w.r.t. prior work [21].

BitVise Dropbear OpenSSH

8.8pl

Bug Pattern 8.49 v2020.81

Early Service Accept

Unauthenticated Client

Rekey Fail Before Auth

Rekey Fail After Auth

Continue After Disconnect

Invalid Response Before Newkeys

Invalid SERVICE_REQUEST_USERAUTH Response
Invalid Auth Rejection Response

Multiple USERAUTH_SUCCESS

Unignored Auth Request After USERAUTH_SUCCESS
Invalid CHANNEL_CLOSE Response

Auth Fail After Rekey

Channel Open Fail After Rekey

Channel Request Terminal Fail After Rekey
Missing NEWKEYS

Missing SERVICE_REQUEST _USERAUTH

[ N |

B. Detecting New Bugs in SSH Servers

As mentioned in Section for SSH servers, we
extended the set of eleven bug patterns of prior work (whose
names are shown in black in Table [) with five additional
ones (whose names are shown in blue). We then applied this
extended set of bug patterns to the most recent versions of SSH
server implementations. As models we used the hypotheses
generated after two days of learning. We note that learning
converged to a final hypothesis only for Dropbear v2020.81.

Our technique was able to find eleven bugs in total. Of
these, seven confirm violations also identified in older versions
of these SSH servers [21]. In contrast, the remaining four (the
Invalid CHANNEL_CLOSE Response bug in OpenSSH 8.8pl
and those in the last two rows of Table [I) were previously
unknown. We analyze these bugs below.

Invalid CHANNEL_CLOSE Response: Upon receiving
a request to close an open channel via a CClose message,
implementations are required to respond with a CClose of their
own [50, p. 9]. We found both Dropbear and OpenSSH to
violate this requirement. Dropbear appears to always respond
with CHANNEL_EOF (CEOF), which expresses a party’s
intention to no longer send data to a channel, instead of CClose;.
In contrast, OpenSSH defies the requirement in a very specific
scenario, right after it has generated NK; to complete its side of
the rekey. At this point, OpenSSH will readily process messages
encrypted using old keys, which is problematic in itself. It will,
for example, process COpen to open a channel, responding
with COpenSucc. However, it stays silent if it then receives
CClose,, and only produces CCloseg; upon receiving NK,. from
the client. We reported the bugs for both implementations.
Dropbear’s main developer acknowledged the bug, and fixed it
in Dropbear’s next release (v2022.82).

Incomplete Rekey: During the rekey procedure, both
OpenSSH and BitVise process upper-layer messages received
after sending NKj, but before receiving NK.. The processed
messages are encrypted using old session keys. Strictly speak-
ing, the RFC does not explicitly disallow this behavior. It only
restricts parties from sending upper layer messages during the
rekey procedure [S1, p. 19]. That said, intuitively, a rekey is
meant to renew keys in both directions. By not waiting for
NK_. before processing upper layer messages, OpenSSH and
BitVise essentially allow communication to proceed with old
keys used in one direction. This partially defeats the purpose
of the rekey procedure.



TABLE II: Vulnerabilities ('), known bugs (¢), and new bugs (¢/) detected in various DTLS server implementations. Crosses (%) denote bugs that our technique
found, but could not validate. Everything in cyan background and with blue text are bug patterns (rows) and DTLS versions (columns) that were not considered

by Fiterdu-Brostean et al. in their paper [18].

GnuTLS JSSE MbedTLS

OpenSSL PionDTLS Scandium TinyDTLS®  TinyDTLS? ‘WolfSSL

Bug Pattern 3.5.19 3.6.7 3.7.1 12.0.2 16.0.1 2.16.1 2.26.0

1.1.1b L.1.1Ik  e4481fc 2.09  2.0.0-Ml6 262 53a0d97 8414f8a 4.0.0 4.7.1r

Certificate-less Client Authentication
Certificate Verify-less Client Authentication
ChangeCipherSpec before CertificateVerify
ClientKeyExchange before Certificate
Continue After Closure Alert

Continue After Fatal Error Alert

Early Finished

Finished before ChangeCipherSpec
HelloVerifyRequest Retransmission
Insecure Renegotiation

Internal Error on Finished

Invalid DecryptError Alert

Invalid Finished as Retransmission

Invalid HelloVerifyRequest

Multiple Certificate

Multiple ChangeCipherSpec
Non-conforming Cookie

Unauthenticated ClientKeyExchange

[ N N NN NN
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Service Request Not Needed: Dropbear allows authen-
tication to proceed immediately after it receives NK. from
the client. It does not require for the authentication service
to be first requested (via the SReqAuth — SAcc exchange).
We inquired Dropbear’s lead developer about this behavior
and were told that it is intentional. Dropbear is designed to
disregard SReqAuth messages, as they are deemed to not make
a difference to the overall flow of a session. This design choice
also removes the need of keeping track of these messages.

C. Detecting New Bugs in DTLS Servers

The DTLS server results are shown in Table [IIl Cells with
cyan background are new. As can be seen, even in the ten
versions of DTLS servers that were considered in the previous
section (white columns), our technique was able to detect seven
additional bugs that were missed by visual inspection of their
models. Two of these bugs (the Multiple ChangeCipherSpec
bug in JSSE 12.0.2 and the Invalid DecryptError Alert bug
in Scandium) concern bug patterns for bugs that had been
detected in some other implementation. This proves that manual
inspection of (complicated) models can easily miss bugs.

Regarding the newer versions of these DTLS server im-
plementations (cyan columns), our technique was able to
automatically detect eight bugs in them. In addition, on
Scandium 2.0.0-M16, whose learned model is approximate,
our technique detected one bug that it was not able to validate,
which we touch on later in this section. We remark, in passing,
that Table [II] also shows which implementations have fixed
vulnerabilities and bugs in their latest versions. For example,
we can see that JSSE, PionDTLS and Scandium have improved.

In a nutshell, we can answer the next three questions in
our list also positively: 2) automation is effective in detecting
additional bugs, 3) the number of bugs which have been missed
by ocular inspection is significant, and 4) our technique remains
effective in recent SSH and DTLS implementations. It should
be clear that automation pays off.

Below, we briefly analyze some of the more notable
previously unknown bugs found in DTLS servers.

Multiple Invalid Handshakes: On JSSE 12.0.2, we
detected two bugs (Multiple Certificate and Multiple Change-
CipherSpec) that were missed by visual inspection of its model.
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These bugs involve the server completing a handshake during
which it receives multiple instances of these messages. The bug
witnesses that our framework generates indicate variations of the
same non-conforming behavior. Sending the input sequence CH,
CH, CKE, CCS,, Cert, and Fin,, in this order, will not complete
the handshake. It will, instead, bring the JSSE server to a
state that is close to handshake completion. Our two witnesses
continue this sequence in two ways, both of which prompt the
server to complete the handshake and await application data.
The continuations are: CCS,, Cert. for the Multiple Certificate
bug, and CCS,, CH for the Multiple ChangeCipherSpec bug.
The CCS,; message appears to be required for triggering this
bug; replacing it by a different message prevents handshake
completion.

InternalError on Finished: Prior work found this bug to
affect OpenSSL. We found it also affects Scandium 2.0.0-M16.
Implementations should reject messages such as Finished
when these messages are received in unexpected orders, and
either respond with UnexpectedMessage (the correct Alert
message for these cases [14, p. 30]), or not at all. Executing
the bug witness reveals that upon receiving a Fin., which
comes after two CH(PSK) messages, a Scandium 2.0.0-M16
server implementation tries to process it and fails in doing
so, generating a NullPointerException. The new bug was
reported and quickly addressed by Scandium’s developers.

Non-conforming Cookie Computation: According to the
DTLS RFC [38| p. 17], the cookie included in HVR should be
computed over fields in the initial CH, including the supported
cipher suites field. Hence, the server should not accept a second
CH which uses different supported cipher suites from the first
(and respond to it with SH). Yet, this is exactly the case for
DTLS servers such as GnuTLS, MbedTLS, and OpenSSL,
which ignore the RFC requirement. Both older and newer
versions of these servers are affected from this bug.

Buffered Alert before Finished: Alerts that are fatal
or are of type close_notify should cause termination of the
session, irrespective of whether they are received or sent. Non-
compliance to this requirement is captured in the Continue
After Closure Alert and Fatal Error Alert bug patterns. We
found these bugs to affect both versions of OpenSSL, which
buffer alerts (along with App.) sent by the client between the
CCS, and Fin. messages. The OpenSSL server does eventually
process these alerts upon receiving Fin,.



TABLE II: Previously unknown vulnerabilities (¢') and bugs (¢/) detected in various DTLS client implementations.

GnuTLS JSSE MbedTLS

OpenSSL

PionDTLS Scandium TinyDTLS®  TinyDTLS? WolfSSL

Bug Pattern 3.6.7 3.7.1 12.0.2 16.0.1 2.16.1 2.26.0

L.1.1b L.1.1k

e4481fc 2.09  2.0.0-M16 2.6.2 53a0d97 8414f8a 4.0.0 4.7.1r

v v
v v
4 v

CertificateRequest before Certificate
Continue After Closure Alert
Continue After Fatal Error Alert
Early Finished

Finished Before ChangeCipherSpec
Invalid DecryptError Alert
Multiple Certificate

Multiple CertificateRequest
Multiple ChangeCipherSpec
Multiple ServerKeyExchange
Premature HelloRequest
ServerHello Flight Restart
Switching Cipher Suite
Unexpected ClientHello
Unrequested Certificate

Wrong Certificate Type

v v
v v
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Bugs that cannot be validated can still indicate problems:
For Scandium 2.0.0-M16, there is a single case where a model
bug could not be validated. In such cases, our framework still
generates a failed bug witness (a witness that does not manage
to expose the presence of the bug on the SUT). Investigating
failed bug witnesses can yield some notable findings. For
example, by executing the failed witness for the Multiple
Certificate bug, we found that the Scandium 2.0.0-M16 server
comes close to completing a handshake when it receives
multiple Cert, messages, one after the other. What stops it
from doing so is the fact that the Fin. we sent it at the end
does not have the digest the server expects. Tweaking manually
what is included in the digest allowed us to complete this
invalid handshake and demonstrate the existance of the bug.

D. Detecting New Bugs in DTLS Clients

We extended DTLS-Fuzzer with the ability to learn models
of DTLS client implementations. We also defined a set
of 16 bug patterns for DTLS clients. The automation of our
approach allowed us to also analyze DTLS client libraries for
vulnerabilities and bugs, something which was done for the
first time as far as we know. Refer to Table [III} showing results
from analyzing 16 different DTLS client versions. In total, we
were able to detect two new vulnerabilities and 64 previously
unknown bugs. Below, we analyze some of the more interesting
client bugs we found.

Multiple Certificate, CertificateRequest and ServerKey-
Exchange: The TLS 1.2 specification [14] does not allow for
multiple messages of the same type to be sent. The proper
behavior by a client when it receives more than one message
of the same type is to terminate the handshake. However,
for specific messages, JSSE, both versions of TinyDTLS and
Scandium 2.0.0-M16 may instead continue to process messages,
and eventually generate the messages from flight 5. We reported
the bugs, prompting fixes in JSSE and TinyDTLS®.

These bugs also exists in OpenSSL, but only in renegotiated
handshakes. Upon receiving a second message of the same type
in the first handshake, OpenSSL will terminate the handshake
with a fatal alert (usually Unexpected Message). However, in
some cases, OpenSSL will continue a renegotiated handshake
upon receiving multiple Cert; or SKE messages. For several
of these cases, it is also required that the cookie exchange
be omitted from the initial handshake, while for others the
cookie exchange must not be omitted. The Multiple Certificate,
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Multiple CertificateRequest and Multiple ServerKeyExchange
bugs in OpenSSL have been reported and confirmed. Given
the size of the model (over 350 states) and how specific these
message sequences needed to be for this buggy behavior to
appear, finding these bugs without an automated approach
would have been very difficult.

Early Finished: The PionDTLS e4481fc and Scandium
2.0.0-M16 clients both exhibit the Early Finished vulnerability,
which allows a handshake to complete without a Change-
CipherSpec from the server (CCS;). This causes the client
to process future messages sent to it in plaintext. However,
the client still requires a valid Fin;, message to complete the
handshake, with a valid digest. This means that an attacker
cannot simply block a CCS;, as that would lead to an invalid
verify_data segment in the Finy message. But if a bug in a server
would cause it to not send a CCS; message, and thus not deploy
the cipher suite, this bug in the client would enable an attacker
to observe an established plaintext connection. (Introducing
such a bug to a server could be done by injecting a backdoor
into a DTLS library.) In both PionDTLS and Scandium, this
client vulnerability was fixed in later versions.

Wrong CertificateRequest Type: Interestingly enough,
this bug was detected in all implementations except Scandium
2.0.0-M16 and WolfSSL. As explained in Section [[II-C] if the
client does not have a certificate which conforms to the type
requested by a CertReq message from the server, the client must
send an empty Cert message. The DFA describing this bug
was shown in Fig. [0 Our analysis for Scandium 2.6.2 client
found it to exhibit conforming behavior. The same analysis also
discovered that the Scandium 2.6.2 server expects conforming
behavior from clients. This leads to a potential interoperability
problem between a Scandium 2.6.2 server and non-conforming
clients. This bug has been reported, and has been confirmed
by MbedTLS and OpenSSL developers.

Unexpected Certificate: Another issue with renegotiated
handshakes in OpenSSL is that the client can perform client
authentication without it being requested by the server. This
requires a CertReq to be sent by the server prior to the HR which
starts the new handshake. This, and the bugs described in the
previous paragraph, indicate that, in handshake renegotiation,
OpenSSL uses messages received before the renegotiation has
started, which it should not do. We have reported this bug to
OpenSSL developers who confirmed it.



TABLE IV: Quantitative measurements for experiments on DTLS client implementations.

GnuTLS JSSE MbedTLS OpenSSL PionDTLS Scandium TinyDTLS® TinyDTLS? WolfSSL
3.6.7 3.7.1 1202 16.0.1  2.16.1 2.26.0 1.1.1b 1.1.1k  e4481fc 2.0.9  2.0.0-M16 2.6.2 53a0d97 8414f8a 4.0.0 4.7.1r
Mealy Machine Nodes 27 39 133 113 34 40 387 387 49 26 38 12 22 17 13 17
DFA Nodes (Minimized) 52 77 166 146 59 71 621 621 82 45 94 25 44 32 27 29
Validated Bugs 3 3 7 7 2 2 9 9 10 1 7 0 2 2 1 1
Input Sequence Messages 8 8 48 48 6 6 89 89 54 5 42 0 8 8 1 2
Test Sequences Tried 3 3 7 7 2 2 9 9 10 1 7 0 2 2 1 1
Time (ms) 2611 2637 35595 35534 1994 1983 10880 11113 11020 1543 28405 61 2267 2315 1211 1641

Premature HelloRequest: This is a conformance bug
present in MbedTLS. According to the TLS 1.2 specifica-
tion [14} p. 38], a client should ignore any HR message sent by
the server before the handshake has been concluded. However,
the MbedTLS clients will always respond to a HR with a CH,
and then continue with the ongoing handshake. This bug has
been reported and confirmed.

Switching Cipher Suite: 1f a DTLS server sends to
an OpenSSL client a SH followed by a HVR, the client will
respond with a CH, allowing a new SH to be sent. With this
second SH, it is possible for the server to switch to a different
cipher suite, even a different key-exchange algorithm. This is,
in effect, a renegotiation not supported by the DTLS RFC.

Continue After Fatal Error Alert: Some server messages
will cause the client to send a Handshake Failure alert.
Upon sending this fatal alert, the client should terminate the
handshake. However, PionDTLS e4481fc will instead continue
to consume server messages of flight 4, and even generate the
messages of flight 5. This is a bug which was fixed in later
versions. The Continue After Fatal Error Alert bug, and the
similar Continue After Closure Alert, were also captured in
JSSE and OpenSSL where this was caused by alerts being
buffered. GnuTLS also exhibits behavior captured by these two
bug patterns: the client will ignore an alert sent by the server,
if it is sent before the SH.

E. Responsible Disclosure and Impact

We responsibly disclosed all the new bugs we found using
appropriate channels. The developers’ feedback is summarized
below, with more details provided in the Appendix. With five
exceptions, all the bugs found in DTLS libraries have already
been confirmed. All the new bugs reported for JSSE, Scandium
and TinyDTLS® have been fixed in later versions of these
libraries, as is the case for the bug involving CHANNEL_CLOSE
we reported for SSH Dropbear. Regarding the JSSE bugs,
which are for properties not considered in prior works, they
were marked as “security in depth”, meaning they are security
vulnerabilities resulting in significant modifications to the
library’s source code. The bugs are fixed in JSSE 18.0.1. The
fact that most bugs have been confirmed and four libraries have
been fixed speaks for the relevance of our findings.

FE. Quantitative Measurements

We also provide some quantitative measurements. For
model learning DTLS implementations, we used the same
learning and test algorithms as, and parameters suggested by,
the artifact of paper [18]. Learning models of DTLS clients
and servers took roughly the same amount of time as that
reported in [18]], with most experiments finishing in a day or
less. We stopped model learning after two days if it did not
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appear to converge to a final model, in which case we used
the last generated hypothesis as the approximate model. With
the learned models, bug detection using specific bug patterns
was performed relatively quickly, with the majority of the time
spent in validating the bugs on the SUT. For that purpose, we
used a maxStateVisits value of one in Algorithm [I]

Table shows that checking all 16 client bug patterns
took less than one minute to finish in all SUTs. The most
time-consuming experiments were for PionDTLS e4481fc,
Scandium 2.0.0-M16 and the two tested versions of OpenSSL
and JSSE. These are the implementations for which most bugs
were found. With the exception of PionDTLS, these are also
implementations for which model learning did not converge.
As a result, their models captured coarser approximations of
their behaviors. Even with such models, only one test sequence
was required to validate each bug.

Effectiveness on Inaccurate Models: To assess how
model accuracy affects the effectiveness of our technique,
we conducted an experiment using the implementations for
which model learning did not converge after two days of
learning: these are the JSSE 12.0.2, OpenSSL 1.1.1b and
Scandium 2.0.0-M16 client implementations. We used models
with increasing accuracy, generated for these implementations
after each hour of model learning up to one day. We then
collected the number of bugs found, bugs validated, and the
number of test sequences validation required. Results show
that our technique can find and validate all the bugs reported
in Table using models generated early in the learning
process, after one (Scandium 2.0.0-M16), four (JSSE 12.0.2)
and twelve (OpenSSL 1.1.1b) hours of model learning. When
using a less accurate model, bug validation may require the
generation and execution of more test sequences. For example,
the model generated after twelve hours for OpenSSL 1.1.1b
required 52 test sequences to validate the nine bugs found in
that implementation. By contrast, the model generated after
two days of learning, only needed nine test sequences (cf.
Table [[V). Another trade-off is that a less accurate model is
more likely to validate false positives. For example, the models
generated for OpenSSL 1.1.1b using between two and 24 hours
of model learning all contained the Early Finished and Multiple
ChangeCipherSpec bugs. These bugs could not be validated,
even after spending an entire day of testing. In contrast, these
bugs do not appear in the model generated after two days,
used in our evaluation, indicating that they are a result of
inaccuracies in model learning.

Effectiveness of Using Models of Old Versions: In two
separate experiments, we applied our technique to test server
implementations of JSSE versions 11.0.1 through 11.0.9. In
the first experiment, to test a version we used a model learned
for it after two days. In the second experiment, the model for
JSSE 11.0.1 was used to test all subsequent versions. From our



first experiment we noticed a gradual decline, from nine to two,
in the number of bugs validated for each subsequent version,
with no new bugs introduced. Comparing the results of our
two experiments, we remark that for each release, the number
of bugs validated was the same, irrespective of the model used.
However, using the model of an old version to test a newer
version sometimes required more test sequences (e.g., 22 vs
six to validate six bugs in 11.0.6). This suggests that, if we
want to test a new version quickly (e.g., to check if some bug
is fixed), we may use the model of the old version instead of
learning a model anew, which may take several hours. Doing
so may, however, miss bugs introduced in the new version.

Effectiveness of Specific vs. General Bug Patterns: We
also performed an experiment where we used just one general
bug pattern similar to that of Fig. [§] for bug detection, instead
of using the 16 specific bug patterns for DTLS clients. For
Scandium 2.0.0-M16, our technique managed to generate and
validate witnesses for all seven client bugs (cf. Table but
only after trying 26,965 test sequences and spending half a
day in this process. In contrast, bug detection and validation
using specific bug patterns requires only seven test sequences
and finishes in less than 30 seconds (cf. Table [[V). There were
also SUTs (e.g., JSSE 12.0.2 and OpenSSL 1.1.1b) for which
using only the general bug pattern for DTLS clients managed
to detect some of the bugs quickly but also failed to produce
witnesses for all bugs after running for a day. In short, these
experiments show that bug detection with a general bug pattern
is inferior to using specific (and small) bug patterns.

Scalability: Our implementation is able to handle non-
trivial models. The client model for JSSE 12.0.2 has 133 states,
while the OpenSSL models have 387 states each. Such models
would have been very difficult to effectively analyze ocularly.

The overall conclusion that can be drawn is that, in the
presence of a learned model, bug detection using specific bug
patterns can be done quickly, in a matter of minutes if not
seconds. Still, our framework benefits from accurate models.
A more accurate model reduces the time bug detection takes,
as fewer tests have to be run for bug validation. Finally, our
framework can be applied on models with hundreds of states
that would be challenging to analyze manually.

IX. DISCUSSION

The effectiveness of our automated technique depends on its
two inputs: the model of the protocol implementation and the
DFAs encoding protocol bugs. In this section, we briefly discuss
how the quality of these inputs may affect our technique.

Dependence on the Model: In most cases, the model
of the protocol implementation is obtained by model learning.
When this model is inaccurate, for example because learning
did not handle the implementation’s non-determinism properly
or because it did not converge within the given time limit,
witnesses for bugs that are identified in the model may fail to
validate on the SUT. We note that our experience with such
cases is limited: we have encountered only a single model
bug that failed to validate (for Scandium 2.0.0-M16 servers).
In general, however, when witnesses of a model bug fail to
validate, it is difficult to determine whether the bug exists in
the SUT and a witness for it could have been produced by a
better test harness component or with more witness generation
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attempts, or whether the model bug is instead caused by model
inaccuracy, in which case it would not be present in a more
accurate model. Another reason why bug witnesses may fail
to validate in the SUT is when the abstraction employed to
obtain the model is different from the one implemented by the
test harness used for validation. In our work, we avoid such
cases by using the same test harness for model learning and
witness validation.

Dependence on the DFAs: The DFAs that encode
protocol state machine bugs form the specification of our
technique. Naturally, if the specification of what protocol
interactions to consider as bugs is erroneous, our technique will
flag as bugs situations which are not. For this reason, the bug
patterns must be accurate. As a concrete example, bug patterns
for DTLS servers should allow the possibility to restart the
handshake when receiving a CH message, which is why the
DFAs of Figs. [ to [7] contain SH edges back to the init state.
Our experience is that although manually constructed specific
bug patterns are often slightly inaccurate at first, it is also quite
easy to correct them with small local changes and turn them
into accurate ones.

X. CONCLUSIONS

We have presented an automated black-box technique for
detecting state machine bugs that can be encoded using finite
automata in implementations of stateful network protocols. Our
technique takes as input a catalogue of bug patterns, each
encoded as a finite automaton which accepts sequences of
messages that exhibit a bug or violate a requirement, and a (not
necessarily accurate) model of the implementation, obtained by
model learning. We have applied this technique to the detection
of state machine bugs in nine different DTLS server and client
implementations, including their most recent versions, and to
three SSH server implementations. Our evaluation shows that
our technique can automatically detect all bugs and security
vulnerabilities that previous researchers have reported, as well
as detect a significant number of previously unknown state
machine bugs in the same implementations, including bugs
that ocular inspection missed in spite of having detected an
analogous bug in some other implementation. We hold that
these results demonstrate the effectiveness of encoding protocol
ordering requirements using finite automata and the additional
power that automated bug detection and validation offer to state
fuzzing techniques.

We provide a virtual machine [[19]] with source code, the results
of our experiments, and instructions on how to reproduce them.
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TABLE V: Status of bugs reported for DTLS implementations. For each bug,
the status is a clickable link to the curresponding issue unless the bug was
privately disclosed, in which case its status is marked with “*’.

Implementation Bug Status
Server Bugs
GnuTLS 3.7.1 Non-Conforming Cookie confirmed
MbedTLS 2.26.0 Non-Conforming Cookie wontfix
OpenSSL 1.1.1k Continue After Closure Alert confirmed
Continue After Fatal Alert confirmed
Internal Error on Finished confirmed
Invalid Finished as Retransmission confirmed
Non-Conforming Cookie confirmed
Scandium 2.6.2 Internal Error on Finished fixed
Client Bugs
GnuTLS 3.7.1 Continue After Closure Alert reported
Continue After Fatal Alert reported
Wrong Certificate Type confirmed
JSSE 16.0.1 CertificateRequest before Certificate fixed*
Continue After Closure Alert fixed*
Continue After Fatal Error Alert fixed*
Multiple Certificate fixed*
Multiple CertificateRequest fixed*
Multiple ServerKeyExchange fixed*
Wrong Certificate Type fixed*
MbedTLS 2.26.0 Premature HelloRequest confirmed
Wrong Certificate Type confirmed
OpenSSL 1.1.1k Continue After Closure Alert confirmed
Continue After Fatal Error Alert confirmed
Multiple Certificate confirmed
Multiple ServerKeyExchange confirmed
Multiple CertificateRequest confirmed
Switching Cipher Suite confirmed
Unexpected ClientHello confirmed
Unrequested Certificate confirmed
Wrong Certificate Type confirmed
PionDTLS 2.0.9 Wrong Certificate Type confirmed
TinyDTLS® 53a0d97 Invalid DecryptError Alert reported
Multiple CertificateRequest reported
TinyDTLS? 8414f8a  Invalid DecryptError Alert fixed
Multiple CertificateRequest fixed
WolfSSL 4.7.1r Unexpected ClientHello reported

Section [A] details how bugs were reported to developers
and the bugs’ status, while Section [B| reports results from an
experiment with inaccurate models.

APPENDIX A
REPORTING BUGS

In this appendix, we explain how bugs were reported, and
what has been the developers’ reaction to them at the time
of this writing. All new bugs mentioned in our paper were
reported to developers using standard channels, which vary
depending on the implementation. For most implementations,
we communicated the bugs by creating issues on the imple-
mentation’s public repositories. Before doing so, we made sure
that the bug did not present a security risk, meaning it could
be safely disclosed to the public. For BitVise and Dropbear,
we contacted the developers by their private email addresses,
while for OpenSSH we used the developer mailing list. In the
case of JSSE, bugs were reported by submitting a bug report
following the procedure specified in the Java website.

For reported bugs, we closely monitored their status. A
reported bug is confirmed if we get an acknowledgement
from developers. Some confirmed bugs have been subsequently
fixed. Others were judged to be a result of an intentional design
choice. We mark these bugs as wontfix. In what follows, we
detail on the status of the bugs reported for DTLS and SSH
implementations.
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A. DTLS Implementations

Table [V] shows the status of reported bugs for DTLS
implementations. With a few exceptions, all the bugs have
been confirmed by developers. In general, this was done not
only by changing the status of the issue (e.g. from ’bug report’
to ’bug’), but also by developers providing a confirmatory
message. This message occassionally included an explanation
on the potential cause of the problem.

The bugs reported for JSSE, Scandium and TinyDTLS?
have lead to fixes in the respective implementations. We tested
these fixes by re-running the witnesses our technique generated,
and ensuring they were no longer valid. Bugs found in JSSE
bugs were assigned the "Security in Depth" marker. According
to Oracle, this makes them:

Security vulnerability issues that result in significant modifi-
cations of Oracle code or documentation in future releases,
but are not of such a critical nature that the modifications
would be distributed in Critical Patch Updates.

The bugs have been addressed in JSSE 18.0.1. Bugs confirmed
for MbedTLS clients were added to the implementation’s
backlog. The Non-Conforming Cookie bug found in MbedTLS
servers was also confirmed, however, developers told us they
would not fix it, since this would lead to an undesirable increase
in MbedTLS’s code size.

B. SSH Server Implementations

We also reported all the new bugs found in SSH servers.
The Invalid CHANNEL_CLOSE Response and Missing SER-
VICE_REQUEST_USERAUTH bugs found in Dropbear were
both confirmed. Dropbear’s developer said they planned to
issue a fix for the former, while the latter is a result of a design
choice (i.e., it is a wontfix bug). BitVise’s head developer
also confirmed our bugs, however, they said no fix would be
planned, as the bugs do not represent security vulnerabilities.
We have not received feedback from OpenSSH developers at
the time of this writing.
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Fig. 10: Number of bugs found/validated and number of input sequences
required to validate bugs for OpenSSL, Scandium and JSSE clients, with
increasingly accurate models.

APPENDIX B
EFFECTIVENESS ON INACCURATE MODELS

To assess how the accuracy of the models affects the
effectiveness of our technique, we applied it to three implemen-
tations, JSSE 12.0.2, OpenSSL 1.1.1b and Scandium 2.0.0-M16.
We extracted from the learning process a hypothesis each hour,
and applied our technique using the hypotheses as models.
Figure [I0] shows the number of bugs found during, number of
bugs validated, and number of input sequences for the validated
bugs, as time (and therefore accuracy of the models) increases.
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