
QUICforge: Client-side Request Forgery in QUIC

Yuri Gbur
Technische Universität Berlin

Berlin, Germany
yuri.gbur@posteo.de

Florian Tschorsch
Technische Universität Berlin

Berlin, Germany
florian.tschorsch@tu-berlin.de

Abstract—The QUIC protocol is gaining more and more
traction through its recent standardization and the rising interest
by various big tech companies, developing new implementations.
QUIC promises to make security and privacy a first-class citizen;
yet, challenging these claims is of utmost importance. To this
end, this paper provides an initial analysis of client-side request
forgery attacks that directly emerge from the QUIC protocol
design and not from common vulnerabilities. In particular, we
investigate three request forgery attack modalities with respect
to their capabilities to be used for protocol impersonation and
traffic amplification. We analyze the controllable attack space
of the respective protocol messages and demonstrate that one
of the attack modalities can indeed be utilized to impersonate
other UDP-based protocols, e.g., DNS requests. Furthermore, we
identify traffic amplification vectors. Although the QUIC protocol
specification states anti-amplification limits, our evaluation of 13
QUIC server implementations shows that in some cases these
mitigations are missing or insufficiently implemented. Lastly, we
propose mitigation approaches for protocol impersonation and
discuss ambiguities in the specification.

I. INTRODUCTION

The QUIC protocol is an innovative development of
transport layer stream abstraction. It combines the capabilities
of TCP and TLS 1.3 to reduce the amount of required
round-trip times (RTTs) during the connection setup. It can
achieve a true 0-RTT connection setup for known endpoints,
improving performance in high-latency networks [1]. With
recent standardization efforts of the QUIC protocol by the
IETF in 2021 [2]–[5] and through the support of many well
known companies like Apple, Cloudflare, Facebook, Google,
and Mozilla, QUIC is gaining more traction. Lastly, QUIC’s
importance increased by choosing it to be the core protocol of
the new HTTP/3 standard. The adoption of QUIC results in
one of the biggest changes to the web’s protocol stack [6] and
spawned the development of various new implementations [7].

In order to achieve compatibility with the Internet protocol
stack, QUIC was built on top of UDP [3]. While providing
transport layer functionality, QUIC is technically an application
layer protocol with its own addressing scheme [1]. QUIC’s
addressing allows the underlying UDP port and IP address
to change, while the connection persists. The QUIC protocol
handles the migration of endpoints. To this end, a server has
to send UDP datagrams to an unknown endpoint. The same

Client-Side Request Forgery

SIRFCMRFVNRF

Protocol
Impersonation

Traffic
Amplification

Attack Concept

(Section II-B)

Attack Modalities
(Section II-C)

Exploits

(Section III and IV)

Fig. 1: Scope of the paper: feasibility analysis of client-side
request forgery (RF) for three RF attack modalities, which can
be used for two different exploits.

holds true for the handshake, where the first message is always
directed to an unvalidated endpoint.

As a consequence, QUIC seems particularly vulnerable
to address spoofing and request forgery. The specification
acknowledges the vulnerabilities and provides first security
considerations [3]. While the importance of QUIC is undeniable,
research on attacks in general and for request forgery in QUIC
in particular is still in its infancy [7]–[14]. In particular, the
manifold new implementations together with a rather new
protocol design require more in-depth security analysis.

In this paper, we take a detailed look at client-side request
forgery in QUIC and provide the first feasibility analysis. To this
end, we focus on request forgery attacks initiated by a QUIC
client (the attacker). In this scenario, request forgery induces
a QUIC server (the victim) to send packets that the attacker
controls. The attacker can use the server’s position in the
network to gain higher privileges (e.g., ambient authority) and to
gain access to greater resources (e.g., bandwidth). Specifically,
we evaluate two request forgery attack modalities introduced in
the QUIC specification [3]. They are based on the connection
migration (CMRF) and version negotiation mechanism (VNRF)
in QUIC. In addition, we introduce a third request forgery
attack modality utilizing server initial messages in the standard
handshake (SIRF). They all result in the QUIC server to issue
an “unintended” request to a target host.

We analyze the feasibility of client-side request forgery in
QUIC for two main exploits: First, protocol impersonation.
Since request forgery happens on the transport layer, it
enables an attacker to mimic protocol messages of other
application layer protocols, similar to cross-protocol request
forgery. Second, traffic amplification. An attacker can utilize
the imbalance of the size between forged messages and the
messages required to trigger the request forgery in amplification
denial of service (DoS) scenarios. A summary of our paper’s
scope is illustrated in Figure 1.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23072
www.ndss-symposium.org

As a result, we provide an analysis of the controllable
attack space. In particular, we show that request forgery
exploiting the version negotiation is indeed vulnerable to
protocol impersonation. To this end, we provide a proof of
concept of the attack vector, which can induce the victim to send
valid DNS requests. We further evaluate 13 open-source QUIC
implementations and show that they are generally vulnerable to
at least one request forgery attack modality. Besides the general
vulnerabilities, we identify pitfalls in the specification that lead
to ambiguities, which are demonstrated by non-compliance
with anti-amplification limits in nine of the 13 implementations.
Lastly, we discuss changes to the specification that can mitigate
the impact of request forgery attacks.

The remainder is structured as follows. In Section II, we
introduce our threat model and describe three request forgery
attack modalities in QUIC. With these modalities in mind,
we analyze the QUIC protocol’s vulnerability to protocol
impersonation in Section III and to traffic amplification in
Section IV. In Section V, we evaluate the attack modalities
against 13 open source implementations followed by a general
discussion in Section VI. Before we conclude our work in
Section VIII, we discuss related work in Section VII.

II. REQUEST FORGERY IN QUIC

In this section, we provide the relevant groundwork on and
describe three client-side request forgery attack modalities in
QUIC. While connection migration request forgery (CMRF)
and version negotiation request forgery (VNRF) are based on
security considerations of the QUIC specification, server initial
request forgery (SIRF) is a new modality, which we introduce
here. We utilize the terms endpoint, QUIC packet, frame,
address, CID, and stream as they are defined in RFC 9000 [3].

A. QUIC Basics

The adoption of QUIC results in one of the biggest changes
to the web’s protocol stack illustrated in Fig. 2. QUIC is a
connection oriented protocol, i.e., the client and server have a
shared state that is used to provide data reliably and in order
to the application. To identify connections, QUIC introduces
connection IDs (CIDs) as endpoint identifiers to allow for
network-path changes of the UDP port and IP address. In the
current version, CIDs are variable in length, but not more
than 20 bytes, and must not contain any information that
can be used to correlate CIDs. Therefore, all CIDs for a
connection have to be generated independently at random.
The length of a CID is communicated in the handshake or
over NEW_CONNECTION_ID frames during the connection.
Regular packets have a short header format containing the
destination CID (DCID) only. Thus, the endpoint needs to
remember the corresponding lengths. A peer can store multiple
CIDs for future use for a connection.

The QUIC handshake(Fig. 3) combines the transport layer
handshake and the TLS cryptographic handshake. The initial
packets resemble the 3-way handshake of TCP, while the TLS
parameters are carried “piggybacked” in CRYPTO frames. All
packets in the handshake use the long header format and contain
a source CID (SCID) as well as a DCID with the corresponding
lengths. As an alternative to a server’s initial packet, the server
can send a retry packet containing a token. This token has

IP

TCP

TLS

HTTP/2

Stream Abstraction

UDP

Multistreaming
QUIC

Stream Abstraction

HTTP/3

Multistreaming

TLS

Network

Transport

"Security"

Application

Fig. 2: HTTP/2 and HTTP/3 Protocol Stack Comparison.

Client ServerInitial[0] : CRYTPTO[CH]

Initial[0] : CRYPTO[CH]
Handshake[0] : CRYPTO[EE, CERT, CV, FIN]

1-RTT[0] : STREAM[1, "..."]

Initial[1] : ACK[0]
Handshake[0] : CRYPTO[FIN], ACK[0]

1-RTT[0] : STREAM[0, "..."], ACK[0]

Handshake[1] : ACK[0]
1-RTT[1] : HANDSHAKE_DONE,

STREAM[3, "..."], ACK[0]

Fig. 3: QUIC 1-RTT handshake [3].

to be mirrored in a second initial packet from the client to
validate the path. The normal handshake without a retry does
also perform path validation implicitly. By using retry packets,
however, the server can avoid sending the significantly larger
cryptographic information to an unvalidated endpoint [3]. If
a server receives an unknown version, it will answer with
a version negotiation packet, providing a list of supported
versions. Version negotiation packets must always have the
version identifier 0x00000000 [3].

One fairly unique feature of QUIC is connection migration.
The usage of CIDs allows connections to survive endpoint
address changes after a connection is established. If a migrated
endpoint is detected by the server, it has to perform a path
validation to the new host. To validate the path, the server sends
a PATH_CHALLENGE frame, containing a token that has to
be mirrored by the client in a PATH_RESPONSE frame [3].

B. System and Threat Model

Request forgery attacks occur when an attacker is able
to trigger a host (victim) to send one or more “unintended”
network requests to another host (target). Generally, this is
achieved by abusing protocol features or by abusing logic flaws
in an application [15]–[17]. In this paper, we explore request
forgery attacks initiated by a client, i.e., client-side request
forgery. Therefore, the words client and attacker as well as
server and victim are used synonymously. An attacker can
leverage the request forgery for achieving two goals, which
are illustrated in Fig. 4: First, utilizing the higher authority
of the victim, i.e., internal/restricted network access or higher
privileges. Second, utilizing the higher bandwidth available
from the server to a target.

For our attacks, we assume that the attacker is able to fully
control the content of packets sent to the victim, including
IP address and port spoofing. We restrict the attacker to
modifications of messages that are still understood by the

2

TargetVictimAttacker

Fig. 4: Threat model showing the advantages an attacker can
obtain through client-side request forgery, i.e., gaining higher
privileges or greater bandwidth.

victim as valid QUIC packets to emphasize that the examined
vulnerabilities stem primarily from the protocol design. While
we assume that the victim server speaks and understands
QUIC [3], we acknowledge that bugs and failures can occur
in the individual server implementations. The target does not
need to be capable of speaking QUIC but at least one UDP
port expects incoming datagrams. While the target might not
be directly reachable from the attacker, the victim must be able
to reach it.

C. Request Forgery Attack Modalities

The following sections introduce three client-side request
forgery techniques, namely server initial request forgery (SIRF),
version negotiation request forgery (VNRF), and connection
migration request forgery (CMRF). If not stated otherwise, we
assume that the model mentioned above holds true.

1) Server Initial Request Forgery (SIRF): SIRF is probably
the most basic request forgery technique for a client in QUIC.
Yet, the described technique is currently not mentioned in the
QUIC specification. Our concept of a SIRF attack follows the
steps depicted in Fig. 5a. The attacking client initiates a QUIC
handshake with the victim server according to the protocol
definition, using a version the server supports. The source IP
and the port, however, are directly spoofed for the first packet.
Therefore, the victim assumes that the new connection attempt
comes from the target host and continues the handshake by
sending a server initial packet or retry packet [3].

2) Version Negotiation Request Forgery (VNRF): VNRF
is similar to SIRF but abuses another variant of the QUIC
handshake: A QUIC server responds with a version negotiation
packet, if an unknown version is contained in the client’s initial
packet. A malicious client can send a non-existing version
identifier to reliably trigger the version negotiation functionality.
If the client furthermore spoofs the source of the datagram, the
version negotiation is sent to the target, similar to SIRF. The
entire message flow is shown in Fig. 5b.

3) Connection Migration Request Forgery (CMRF): This
last request forgery technique utilizes QUIC’s connection
migration functionality. The server is not able to detect if
a migrated address comes from a real migration of a client
or if the source address was spoofed. In both cases, a
PATH_CHALLENGE is sent. This allows an attacker to initiate
the sending of a UDP datagram, containing a QUIC packet
with at least one PATH_CHALLENGE frame to an arbitrary IP
address and port as shown in Fig. 5c. To perform a CMRF,
the attacker needs to initiate a new connection and completes
the handshake as intended. The server has to consume a fresh

CID from the client CID pool for new paths. Therefore, the
original connection needs to stay on the initial endpoints until
the server has received at least one NEW_CONNECTION_ID
frames from the client. When these prerequisites are met, the
attacker spoofs the source address of an arbitrary packet. The
server detecting the new address initiates the path validation,
thereby sending a UDP packet to this address [3].

III. PROTOCOL IMPERSONATION

Since QUIC is technically an application layer protocol, an
attacker can target other UDP-based protocols through request
forgery. If she is able to control a sufficient amount of data in
the forged QUIC packets, she might be able to imitate packets
of other protocols. While in literature the attack itself is also
called cross-protocol request forgery (CPRF) [18], we will use
the term protocol impersonation to distinguish between the
attack modalities (SIRF, VNRF, and CMRF) and the attack
vectors in which they can be utilized.

The unencrypted sections of a packet are the primary attack
surface for protocol impersonation. An attacker might also be
able to modify the ciphertext of encrypted sections [3], but these
cryptographic attacks would surpass the scope of this paper.
There might also be some parts of the packets that will change
based on factors like client-server combinations, versions used,
and networks conditions. However, our focus lies on data that
can be manipulated reliably in most environments.

In the following, we analyze the controllable attack space,
i.e., the controllable bits of short and long headers that relate
to the attack modalities SIRF, VNRF, and CMRF. The results
indicate that the controllable attack space of SIRF and CMRF
are clearly limited. The controllable attack space of VNRF,
however, is sufficient to perform protocol impersonation. We
demonstrate this attack vector by developing a proof of concept
for protocol impersonation, which forges valid DNS queries
using VNRF.

A. Controllable Bits in Short Headers (CMRF)

During a CMRF attack, the path challenge(s) and possible
padding are transmitted in packets with a short header [3].
Therefore, the amount of unencrypted, controllable data is
very limited. Fig. 6 lists the detailed structure for short header
packets. The first bit indicates the short header format and is
fixed [3]. The same is true for the second bit that is required for
interoperability with other transport layer protocols as defined
in [19]. The spin bit is used for passive latency monitoring and
exerts an unpredictable behavior. It can be turned off entirely or
will randomly be turned off to ensure connections with disabled
spin bit are also commonly observed on the network. Thus,
we consider it as not reliably controllable. In the rare case that
this single bit would enable a “real-world” attack, it might still
be possible to utilize it by using multiple attempts to achieve
the correct server mirroring of this bit [3].

Bits four and five are two reserved bits that have to be zero
followed by the key phase bit that is used to identify the packet
protection keys. All three bits are directly set by the server
and not in control of an attacker. The final two bits of the first
byte are interpreted as an unsigned integer and indicate the
variable length of the packet number that comes after the DCID.
The contained value is one less than the actual byte length of

3

Attacker (Client)
192.168.217.129

Victim (Server)
192.168.217.131

Target
123.123.123.123

Send spoofed packet

Initial:
ip.src=123.123.123.123
ver =0x00000001

New connection attempt
Version known

⇒continue handshake

Initial:
ver=0x00000001

(a) SIRF

Attacker (Client)
192.168.217.129

Victim (Server)
192.168.217.131

Target
123.123.123.123

Send spoofed packet

Initial:
ip.src=123.123.123.123
ver=0x13371337

New connection attempt
Version unknown

⇒send version negotiation

Initial:
ver=0x00000000

(b) VNRF

Attacker (Client)
192.168.217.129

Victim (Server)
192.168.217.131

Target
123.123.123.123

Handshake

Send spoofed packet

ip.src=123.123.123.123

Endpoint migration detected
⇒send path challenge

PATH_CHALLENGE

(c) CMRF

Fig. 5: Client-side request forgery techniques in QUIC through spoofed source addresses.

1-RTT Packet {
Header Form (1) = 0,
Fixed Bit (1) = 1,
Spin Bit (1),
Reserved Bits (2),
Key Phase (1),
Packet Number Length (2),
Destination Connection ID (0..160),
Packet Number (8..32),
Packet Payload (8..),

}

Fig. 6: Short header of QUIC packets [3].

the packet number field [3]. Assuming a connection can stay
open as long as the attacker wants, the packet number can be
influenced for CMRF by simply waiting until the packet number
has reached a certain value prior to initiating the migration.
The packet number length bits directly depend on the packet
number, but they will stay the same as long as a value can
be encoded into the same number of bytes [3]. The strong
interconnection and dependencies of these header fields clearly
reduce effective controllability.

The last remaining value is the DCID, which has a variable
length integer between 0 and 20 bytes. The content of the
DCID is fully controllable by the client. An attacker will likely
choose a length of 20 bytes to maximize the controllable space.
As an additional limitation, we need to consider that multiple
CIDs sent to the server cannot contain the same value [3].

B. Controllable Bits in Long Headers (SIRF and VNRF)

SIRF and VNRF utilize message flows that are part of
the QUIC handshake. Both attack techniques are therefore
able to control more data than it is possible with CMRF
as more unencrypted data is transferred. To this end, QUIC
uses long headers. While the long header for initial and
version negotiation packets share similarities, there exist distinct
differences, which we will dissect separately in the following.

1) Initial Packets: Fig. 7 shows the long header for initial
packets. The first bit is set to one indicating the long header
format. The second fixed bit has to be one in order to allow
QUIC to co-exist with other protocols similar to the short
header [19]. The next two bits are used to indicate the different
type of long header packets. Both are set to zero for initial
packets, as are the reserved bits. Once more, the packet number
length corresponds to the packet number variable length integer
that follows later in the packet. They cannot be influenced in

Initial Packet {
Header Form (1) = 1,
Fixed Bit (1) = 1,
Long Packet Type (2) = 0,
Reserved Bits (2),
Packet Number Length (2),
Version (32),
Destination Connection ID Length (8),
Destination Connection ID (0..160),
Source Connection ID Length (8),
Source Connection ID (0..160),
Token Length (i),
Token (..),
Length (i),
Packet Number (8..32),
Packet Payload (8..),

}

Fig. 7: Long header of QUIC initial packets [3].

the SIRF use-case as the first messages of a connection setup
will contain a freshly initialized counter [3]. Therefore, the first
byte as well as two to four bytes at the end of the header are
not controllable by an attacker.

The field following the packet number length encodes
the version identifier in four bytes. Though this value is
dynamic and can be set by the attacker, it has to be a pre-
defined version that the server understands to avoid triggering
version negotiation. Except for the rare occasion, where the
impersonated protocol can contain exactly the same four bytes
at this position in the payload, these bytes will not be usable for
an impersonation attack. The version is followed by the CIDs
for source and for destination. Each will be preceded by the
corresponding length identifiers. During the QUIC handshake,
the server will always send the DCID that was chosen by
the client. If the attacker wants to maximize the amount of
data controlled, she will most likely use the maximum size of
20 bytes, thereby giving the DCID length byte a static value
of 20 (0x14) [3].

Concerning the SCID, sent by the server, there exist two
scenarios. The server either chooses the CID proposed by the
client in the first initial packet or sets its own CID. The first
scenario, from now on referred to as SIRF+, results in the same
amount of controllable bytes for the SCID as for the DCID. In
the second scenario, an attacker will not have any control over
the SCID bytes and length chosen, reducing the versatility of
the attack. Since many of the tested implementations choose a
static length for the SCIDs, the positioning of the surrounding
bytes stays, at least, predictable.

4

Version Negotiation Packet {
Header Form (1) = 1,
Unused (7),
Version (32) = 0,
Destination Connection ID Length (8),
Destination Connection ID (0..2040),
Source Connection ID Length (8),
Source Connection ID (0..2040),
Supported Version (32) ...,

}

Fig. 8: Long header of QUIC version negotiation packets [3].

Server initial packets must always contain a token length of
zero, as tokens are only used by the client (e.g., after a receiving
a retry packet). Therefore, the token field is non-existent,
resulting in both fields being reduced to one uncontrollable
zero byte. Finally, the length parameter encodes the remaining
packet payload length including the packet number. Its length
may vary depending on the payload content (e.g., chosen TLS
parameters) as well as depending on the included padding [3].
Nevertheless, it is also not controllable by the client.

2) Version Negotiation Packets: Version negotiation packets
have a more simple structure than initial packets, shown in
Fig. 8. As before, the first bit indicates the long header format.
The next seven bits are unused in version negotiation packets
and can be set to an arbitrary value by the server [3]. To
adhere to RFC 7983 [19], the most significant bit (MSB) of
the unused bits should be set to one although it is the only
QUIC packet where it can be zero in theory. Nevertheless,
looking from an attacker’s perspective, the whole seven bits
are uncontrollable for protocol impersonation with VNRF. The
four version bytes are all set to zero in a version negotiation
packet (0x00000000). Besides the CIDs, the only remaining
part is an array of four byte values containing the identifiers
for supported versions, which cannot be influenced by an
attacker [3].

Again, the only remaining parts are the CIDs. While the
controllable amount of 20 bytes is quite limited for CMRF and
SIRF, the CIDs are special for version negotiation. To allow
adjustments in the definition of future QUIC versions, the CID
lengths are not restricted to 20 bytes. A future QUIC version
could use the full range of lengths encodable in the eight bit
length identifier resulting in a maximum length of 255 bytes
for each CID. Through the possibility of using the full range
of lengths, the CID length byte can be fully controlled [3]. An
attacker needs to weigh up the advantages of fully controlling
these bytes against controlling more bytes in total.

Another unique requirement for version negotiation packets
is that a server must mirror both the DCID and the SCID
sent by the client (switched for their purpose) [3]. Therefore,
the attacker has the ability to always utilize both CIDs for
protocol impersonation. Considering the extended length bytes,
this results in up to 512 controllable bytes preceded by five
and followed by at least four uncontrollable bytes.

C. Comparison of Controllable Attack Space

Our analysis shows that VNRF is the most versatile modality
to mount an impersonation attack. The full comparison of all
attack modalities is shown in Fig. 9. SIRF,SIRF+, and CMRF
have two primary obstacles when trying to craft a payload. First,

1

5

5

5

20

1

1

1

20

20

4

1 20

255 1 255

 No control

 Limited control

 Limited interval

 Full control

CMRF

SIRF

SIRF+

VNRF

Fig. 9: Comparison of the maximum controllable bytes for
protocol impersonation with CMRF, SIRF, SIRF+, and VNRF.
Limited control means that the value cannot directly be chosen
but can be influenced by actions of the attacker. Limited
intervals means that the value cannot be chosen from the entire
range that is encodable with the given bytes. Variable lengths
that depend on previous values are indicated by arrows.

the overall length of 20 bytes (or in some rare cases 40 bytes)
will not suffice to imitate most protocol messages. Second,
the very limited byte-range and control for the packet length
and CID lengths are not sufficient to manipulate meaningful
bytes in the impersonated context. We, therefore, conclude that
the capabilities of SIRF,SIRF+, and CMRF are clearly limited
for protocol impersonation attacks. In all scenarios, including
VNRF, an attacker has to work around the first few header
bytes. However, as we will show in the next section, this alone
is not enough to prevent impersonation with VNRF.

D. Protocol Impersonation with VNRF

As a proof of concept, our goal in this section is to craft a
datagram that can be sent through VNRF to a DNS server and
triggers a valid DNS response to the victim for the domain
tu-berlin.de. We chose to impersonate the DNS protocol,
as it is one of the most well known UDP-based protocols,
widely used, and allowed in most networks [20]. As we will
see, it can also be utilized around the restrictions by the static
parts of the version negotiation packet.

Fig. 10 shows the beginning of the handcrafted packet bytes
with the QUIC interpretation (above) and DNS interpretation
(below). The first byte of the QUIC packet will start with a one,
to indicate the long header followed by seven bits with random
value. This byte plus the first zero-byte of the version identifier
will be interpreted as the query ID. The next two zero-bytes of
the version number are interpreted as the DNS flags defined in
RFC 1035 [21]. The DNS flags for the two zero-bytes indicate
a standard query that is not truncated with no recursion desired.
This is a valid flag setting for DNS queries. The last version
byte is the first byte of the number of host queries contained
in the DNS query. This static zero bytes limit the maximum
number of queries, but the remaining second byte will be more
than sufficient in most scenarios [21].

The second byte of the number of queries is determined by
the DCID length of the QUIC version negotiation packet. For
our payload, we chose a value of seven to keep the amount of
required hostnames in the query to a minimum, while still being
able to skip the remaining bytes of the answer number (Ans),
the number of authority records (Auth), and the additional
records number (Add). The Ans and Auth bytes should be
zero for a normal query and are not usable to extend the payload.
The number of additional records is usually zero for a standard

5

XX 00 00 00 00 07 00 00 00 00 00

Flags Queries Ans Auth

01

Add

09 74 75 2D

VersionFlags
DCID
Len DCID

Query 1

SCID
Len SCID

ID

QUIC:

DNS:

Fig. 10: Byte mapping of a QUIC version negotiation packet
to a DNS query. Bytes are depicted in hexadecimal notation.

DNS query. We, however, set the two Add bytes to 0x0001
to deal with the remaining version number identifiers of the
version negotiation packet that follow the CIDs [3], [21].

With the chosen DCID length of seven, the SCID length is
the first byte of the hostname tu-berlin.de. The preceding
byte 0x09 labels the number of bytes for the following domain
level. Each domain level is indicated by a length octet and the
top-level domain is terminated by a zero-byte. With the SCID
length set to t (0x74), there are 116 remaining bytes of SCID
that can be utilized for the remaining payload. This size is
sufficient to include the entire query for tu-berlin.de.

Six further queries to the root domain were added to have
the required seven queries in total. The hostnames for padding
can be arbitrary and are only required to adhere to the DNS
specification. The root domain is most suitable to our needs
as it consumes as little payload space as possible. The Add
section query entry was set to the domain root (0x00) and the
type and class was set to zero. The length of the Add entry
is set to the length of the remaining SCID payload plus the
length of the version identifier array in the version negotiation
packet. The amount of version identifiers advertised by the
server is static and can be determined by triggering a version
negotiation without a spoofed address. The length of the array
is multiplied by four, because version identifiers are always 4
byte values and the Add entry length is given in bytes. The
remaining payload space between the beginning of the Add
entry and the version identifiers are filled with random bytes.
By encoding the remaining QUIC payload in the described
manner, the additional record will not make sense to a DNS
server. Yet, the whole packet bytes are covered and the forged
request is a valid DNS request [21].

Fig. 11 shows the packet capture of a VNRF-based
protocol impersonation with a payload as described above.
To demonstrate the validity of the forged packet, the entire
QUIC traffic (left) is also decoded as DNS (right) in Wireshark.
To execute a real DNS query, the spoofed address was set to the
Google DNS server 8.8.8.8:53. Accordingly, Fig. 11a shows the
packet types, Fig. 11b shows the first header byte and version,
and Fig. 11c shows the CIDs in the payload. While the initial
packet is a malformed DNS packet, the right pane shows that
the version negotiation packet is indeed interpreted as a valid
DNS request to tu-berlin.de (Fig. 11d) and results in a
valid DNS response containing the IP addresses (see Fig. 11e).

This approach can be generalized to most domain names.
The only thing that changes is the primarily queried domain
name, which affects the length of the remaining payload. If
a domain begins with a character or number (in ASCII) that
translates to smaller bytes (e.g., 0=0x30) the length becomes
limited. That is, if the the overall length exceeds this value, the

exploit will not work. It, however, can be assumed that domain
names meeting these special conditions are fairly rare.

We include the generalized proof of concept, i.e., forge
DNS requests for arbitrary domain names, in our attack script
which can be found in our accompanied repository [22]. The
only parameter that has to be set manually is the number of
versions supported by the attacked QUIC server. For protocol
impersonation of DNS requests to return the domain’s IP
address, the DNS server must be a recursive resolver or must
have a respective cached domain entry.

The proof of concept above shows that protocol imperson-
ation with VNRF can be used with a “real-world” protocol.
For example, such DNS queries could potentially be utilized
to reduce uncertainty in the timing of DNS cache poisoning
attacks. Due to the uncovered restrictions, creating a payload for
other protocols than DNS will likely require a lot of debugging
and manual tweaking to find a valid combination of bytes. There
will be some payloads that cannot be realized within the existing
boundaries, as described above. Nevertheless, we are convinced
that a number of correct datagrams can be crafted through
multiple iterations and creativity in utilizing the specification
of the targeted protocol. As previously discussed, though, the
additional restrictions of CMRF and SIRF make them unfeasible
in the context of protocol impersonation.

E. Mitigation: Reducing Controllability

As the ability to perform request forgery stems from the
protocol design, there is no inherent mechanism to fully avoid
it. We propose the following protocol changes to reduce the
controllability of the payload for CMRF, SIRF, and VNRF.

1) CID Reflection: A server should always choose a new
CID in the handshake as its own DCID, which does not require
changes to the specification. Besides deploying a fresh CID,
servers should also select the length parameter randomly to
reduce predictability for payload placement. The length has to
remain within the specified limits and has to be large enough
to ensure a sufficient entropy of the CIDs.

As shown, the version negotiation mechanism at its current
state poses the biggest threat to protocol impersonation. While
it is appreciable to provide room for changes in future versions,
i.e., variable CID lengths in version negotiation packets, the
mechanism requires some revision. One could rely on removing
the mirroring of the client-provided DCID as described above.
While this halves the amount of controllable bytes, it does not
entirely mitigate the issue of controllable bytes. Therefore, we
further propose the following approaches in addition to not
mirroring the DCID proposed by the client.

2) Hash-based CID Generation: For the remaining client-
controlled CIDs, we propose a mechanism that gives the server
control over the client-controlled bytes of the DCID. A server
could always (or at least for unvalidated paths) reflect the
return value of a one-way (hash) function for a newly proposed
CID. Thereby, the client could still influence the “randomness”
of the CID but cannot control the content anymore. In order
to utilize such a secured value for protocol impersonation, it
would require an attacker to calculate the inverse for a payload,
which should be infeasible for one-way functions [23].

6

(a)

(b)

(c)
(d)

(e)

Fig. 11: Wireshark traffic capture of a forged DNS request using VNRF-based protocol impersonation; the QUIC interpretation is
shown on the left and the DNS interpretation on the right.

Yet, the mechanism might conflict with routing and load
balancing that is based on CIDs and the ability of a client to
control them. Deployments might require consistency in length
or for certain parts of a CID to route the packets to the correct
endpoint [3]. Mechanisms that rely on static lengths or parts of
a CID should be avoided in our opinion, as they make it easier
to correlate connections. For hashed CIDs, the client is also
able to calculate the value beforehand and use it for certain
routing strategies.

3) Masking: Another approach that does leave control in the
hands of the client is a masking mechanisms. A similar approach
is used for client-to-server masking in Websockets [24], [25].
The QUIC headers need to be extended by a field that contains
a masking value (e.g., 32-bit). This masking value is randomly
generated by the server and the entire remaining header is
XORed with a mask generated form this value. With this
masking strategy, a client is still able to choose the DCID
reflected by the server and it can base routing and load balancing
on the value if required. However, as the masking is chosen
by the server, the resulting payload of a request forgery attack
is no longer controllable by an attacker. The data received by
the target will appear random.

IV. TRAFFIC AMPLIFICATION

Another impact of request forgery attacks can be traffic
amplification, which we will analyze in this section. The condi-
tions for traffic amplification attacks arise if the forged packets
are larger than the ones sent by the attacker. Such amplification
attacks are measured by the bandwidth amplification factor
(BAF), which is usually calculated as follows [26]:

BAF =
bytes from victim to target

bytes from attacker to victim

The QUIC protocol specifies an anti-amplification limit that
requires to not send more than three times the amount of data

received on any unvalidated path [3]. To be able to directly
compare amplification through request forgery with this limit
within QUIC, we define and use a path amplification factor
(PAF) for our measurements:

PAF =
bytes from victim to target

bytes from attacker to victim with spoofed address

For SIRF, the PAF value is similar to the classical BAF
definition. For CMRF, the packets sent by the attacker during
the handshake are not calculated in the PAF. To get the
corresponding BAF these bytes have to be added to the divisor.
In the following, we first describe potential amplification
vectors, before discussing mitigations.

A. Amplification Vectors

1) Minimum Path Requirements: The specification requires
that “QUIC must not be used if the network path cannot support
a maximum datagram size of at least 1200 bytes” [3]. Therefore,
initial packets and packets containing PATH_CHALLENGES
should be padded to 1200 bytes to perform Path Maximum
Transmission Unit Discovery (PMTUD), ensuring that the path
supports datagrams that are large enough to support QUIC.
Despite the requirements of being able to transmit 1200 byte
datagrams, some packets can actually be quite small during
a connection. We have observed datagrams containing only
one QUIC packet with one ACK frame that were as small as
73 bytes. If a server would send a padded path challenge with
1200 bytes for such a datagram on a new path, the BAF will
be 1200

73 ≈ 16.44, violating the anti-amplification rule.

Addressing this issue, the QUIC specification allows a
first initial path validation without or with less padding, if
anti-amplification limits cannot be met under the PMTUD
requirements. In this case, an additional path validation has to
be performed as soon as the path is successfully validated in

7

the sense that the endpoint is a legitimate migrated client. The
second padded validation ensures that PMTUD requirements are
also met [3]. We have identified these varying size checks as an
area that is prone to errors. Besides the padding requirements,
a server is allowed to already start sending data to the new
endpoint before the address is validated. If not checked correctly,
the data sent can also violate the anti-amplification limit.

2) Unbalanced Handshake Sizes: For SIRF and VNRF, the
handshake mechanism can be abused. A server has to send
at least one client-initial packet (or retry) after receiving a
connection attempt. The TLS parameters required by the server
(e.g., certificates) are usually larger than the ones from the client.
If the resulting datagram(s) is/are larger than 3600 bytes, it is
impossible to adhere to the anti-amplification limit even though
the client initial packets are padded to a size of 1200 bytes.
The specification [3] does not explicitly mention how this
situation should be resolved in general. It only states that
during the handshake, the anti-amplification limit has to be
respected. A client implementation that considers this issue
could include supplementary padding into the initial packet in
order to increase the amount of data the server is allowed to
send. Retry and version negotiation packets are always smaller
than the client initial packet due to their limited amount of
content [3] and cannot be used for amplification.

3) Reliability: The impact of the introduced conflicts can be
worsened through reliability mechanisms of QUIC. To ensure
that the path challenge succeeds, a server might send multiple
PATH_CHALLENGE frames in a burst. Alternatively, a server
might re-send the path challenges, if no path response is
received. If all these packets are padded, the amplification
issue increases.

For normal unacknowledged QUIC packets of a connection,
there is a timeout and retry mechanism (not to be confused with
QUIC’s tokenized retry). This mechanism must be disabled
for the server initial packets, because they will nearly always
conflict with the anti-amplification limit. To avoid a deadlock
in such a situation, the client is obliged to implement a
probe timeout (PTO) after which it has to send another initial
message [3]. Yet, if the server performs retries, an attacker can
amplify the issue of unbalanced handshake sizes.

B. Anti-Amplification Mechanisms

The QUIC specification, in principle, contains all necessary
details to prevent traffic amplification as already mentioned
above. However, the conflicts between PMTUD and anti-
amplification limits can become a pitfall. In Section V, we
will show that many QUIC implementations indeed struggle
to avoid them. We therefore advise reorganizing and adjusting
the QUIC specification as follows [3]:

1) The mitigations mentioned in the security considerations
chapter only should be additionally mentioned and empha-
sized in the chapters introducing the related mechanisms.

2) The amount of required decisions during path validation
and during the handshake should be reduced. For example,
the path validation could always be performed in two steps.
The first packet would validate the path without padding,
while the second packet would only ensure the PMTUD
limit by including a PADDING frame.

lsquic / aioquic

client

Parameters

Intercept

Attack script

iptables / netfilter Interface

192.168.217.129

Client / Attacker

Interface Wireshark

192.168.217.131

Server / Victim

aioquic
chromium

kwik
lsquic

msquic
mvfst
neqo
nginx

ngtcp2
picoquic
quic-go
quiche
quicly

Sever Container

123.123.123.123
TargetUDP Application

Interface

TLS Keys

Fig. 12: The evaluation setup, showing the different involved
components. The network traffic flow is shown as dashed lines
and the control flow as solid lines.

3) Client implementations should be “encouraged” to include
padding into initial packets. If a server is not able to
respond to a client initial packet within the amplification
limit, it should be obliged to send a retry to validate the
path first.

Concerning unvalidated paths in the handshake, as exploited
in SIRF, the specification mentions the retry mechanism as
an effective protection against unnecessarily calculating the
(expensive) key exchange information on the server. While
our evaluation supports this statement and we propose the
usage of retries as described above, we do not believe that this
mechanism is preferable in most scenarios, since it introduces
another RTT to the handshake. By doing so, it negates one
of the primary “selling points” of QUIC, which is the latency
reduced connection setup. This opinion is also supported
by other research that comes to the same conclusion about
reasonableness of this mechanism [8].

In summary, we consider the existing anti-amplification
mechanisms sufficient to avoid amplification attacks if and only
if it is also implemented correctly for all edge cases. In the
following we evaluate how existing implementations cope with
the identified amplification challenges and which of them are
vulnerable to SIRF, VNRF and CMRF.

V. EVALUATION

In this section, we evaluate a series of open-source QUIC
implementations In particular, we evaluate their vulnerability
to the outlined attack vectors and, thus, whether they adhere to
the specification sufficiently. We start by introducing our attack
setup (Fig. 12) and evaluating the vulnerability of each server
implementations for each attack technique. For the servers that
show amplification issues we perform a detailed analysis on
their PAF values. Finally, we evaluate benefits and challenges
of the mitigation approaches introduced in Section III-E.

A. Server Selection

We decided to use open source software only as the ability
to comprehend the application logic is essential to detect
vulnerabilities and to understand existing security features.
The implementations are all listed in the QUIC working
group’s GitHub [27]. In our evaluation, we consider all listed
implementations that support QUIC version 1. Unfortunately,
we had to exclude some of the implementations due to
interoperability issues and bugs in the implementations. The

8

remaining 13 implementations were integrated in our attack
setup as described below. We acknowledge that some of the
implementations are experimental or maintained by a small
team, which stands in contrast to some other projects that are
developed and supported by large companies with large teams.
We also acknowledge that some implementations were not
developed to be deployed in production. Nonetheless, we did
include software from all categories as we believe it is important
that they all adhere to the specification. The versions/commits
used for each server are available in the respective docker
containers (see below).

For the implementations that turned out to be not compliant
with the specification, and therefore are prone to exploits,
we informed the developers in a responsible disclosure. The
respective contact persons received a draft version of our paper
in August 2022 in order to give them enough time to address
the issues, before the research will be publicly released.

B. Setup and Attack Implementation

On the client virtual machine (VM), we use a custom
Python attack script that utilizes netfilter queues with
the NetfilterQueue and scapy library to intercept and
spoof packets. This approach allows us to spoof packets for
arbitrary QUIC clients without altering the source code. For
communicating over QUIC, the attack script primarily uses the
lsquic HTTP client in release version 3.0.4. as it provides
various command line options for different settings.

Although VNRF requires less interoperability settings, it
needs some additional adjustments to the client implementa-
tion. Besides the integration of a non-existent version (i.e.,
0x13371337 in our case), the extension of a CID up to a
length of 255 bytes had to be implemented. We implemented the
aforementioned adjustments into aioquic, as Python handles
buffer length natively which minimized the programming efforts
in contrast to the C-base lsquic implementation Please refer
to our GitHub repository [22] for more information about the
attack setup and implementation.

On the server VM, we chose to run the QUIC server binaries
in a containerized Docker setup to avoid package conflicts and
to create a more flexible setup. chromium has a special setup
within the container that it is started in proxy mode and forwards
requests to a simple python backend server. We were forced to
deviate from the other setups as the chromium test server only
supports proxy or cached mode and the cache mode did not
work within our required parameters. All servers are deployed
in their default configuration. The Dockerfiles, can be found
in our GitHub repository [22]. Furthermore, we provide the
used containers in our DockerHub [28] to provide an easy
way to reproduce our experiments. Since most of the QUIC
implementations provide HTTP servers as test binaries only,
we have created large files (≈700MB) for each server that can
be requested to keep a QUIC connection open if needed. The
limitations and abilities of the client and server are in line with
our threat model.

In order to gain more insight into the communication, we
used a development version of Wireshark (v3.7.0) to monitor
network traffic at the server with the latest QUIC packet
analysis capabilities that are up to date with the specification

TABLE I: Evaluation of the three request forgery attacks against
the 13 server implementations.

Client CMRF SIRF VNRF

Vuln. Pad. New CID PAF>3 Vuln. PAF>3 Ref. CID Vuln. CID>20

aioquic ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗
chromium ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓
kwik ✗ - - - ✓ ✗ ✗ ✓ ✓
lsquic ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
msquic ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
mvfst ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗
neqo ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓
nginx ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗
ngtcp2 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓
picoquic ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓
quic-go ✗ - - - ✓∗ ✗ ✗ ✓ ✓
quiche ✗ - - - ✓∗ ✗ ✗ ✓ ✓
quicly ✗ - - - ✓ ✓ ✗ ✓ ✓

Total 9 2 5 6 11(13) 6 0 13 9
∗ Sends retry packet instead of server initial packet

development. If needed, the TLS encryption keys were exported
from the lsquic client and loaded into Wireshark.

C. Vulnerability Analysis of CMRF, SIRF, and VNRF

Tab. I shows relevant factors for the request forgery attacks
for each implementation: The first column for each attack
technique (Vuln.) indicates whether the implementation is
generally vulnerable. The varying impact through protocol
impersonation and traffic amplification is listed in the remaining
columns for each of the three attack techniques. In summary, we
observe that nine out of the 13 implementations are vulnerable
to CMRF, and all 13 implementations are vulnerable to SIRF
and VNRF.

The Padding column (Pad.) lists whether the server enlarges
the first packet containing a PATH_CHALLENGE to 1200 bytes,
as required for PMTUD. We observe three implementations
performing padding up to this size. We will discuss our results
on amplification (PAF > 3) in more detail in Section V-D.

Besides padding and amplification, Tab. I lists the New CID,
Ref. CID, and CID > 20 column. The New CID column
indicates whether a new CID is consumed by the server for
a new path. In order to perform protocol impersonation with
CMRF, an attacker has to know in advance which CID is used
to be able to inject the payload into the correct one. Since
QUIC requires that no CIDs are reused for one connection, it
is not possible to transmit the same payload in the handshake
and in NEW_CONNECTION_ID frames [3]. Only five of the
implementations that support connection migration consume
a new CID as required. This is itself a violation of the QUIC
specification [3].

SIRF can control twice as many bytes if the DCID proposed
by the client is mirrored by the server. The evaluation results
of this behavior is indicated by the Ref. CID column. All
tested implementations use a fresh CID, thereby limiting the
controllable attack space. The last column, CID > 20, indicates
whether the server responds to a client initial packet with
an unknown version identifier and CIDs longer than 20. If
a server does not accept longer CID values, the protocol
impersonation impact of VNRF is significantly reduced, but the
implementation is violating the QUIC specification by doing

9

so (cf. Sec. III-D). Of the 13 evaluated implementations, nine
responded to the unknown version 0x13371337 with CID
lengths up to 255 bytes.

D. Traffic Amplification Analysis

In this section we evaluate the amplification that occurs on
the spoofed paths. The individual amplification factors are
depicted in Fig. 13. We used two PAF measurements for
CMRF. The first value describes the amplification for only
one spoofed packet containing a single ACK frame. For the
second measurements, all pending frames from the client are
also transmitted with the spoofed address. We continue the
sending for up to three minutes or until the connection is
terminated by one of the endpoints, e.g., due to a missing
PATH_RESPONSE. For SIRF, there is one PAF measurement
as the client always sends only one initial packet. If one of the
PAF measurements surpasses an anti-amplification limit of three,
the implementation was marked as vulnerable to amplification
in Tab. I. Since version negotiation packets are always smaller
than the initial packet from the client, no evaluation for VNRF
was performed in regards to amplification. Fig. 13 further
lists the actual BAF values for CMRF if they surpass they
also surpass the anti-amplification limit to indicate “real-world”
DoS viability.

chromium, lsquic, mvfst, neqo, and picoquic do
not adhere to the anti-amplification limit of QUIC for CMRF.
They do not limit the responses to three times the amount of data
on an unvalidated path for a single spoofed packet, initiating
the connection migration. Especially chromium, lsquic,
and mvfst show significant PAF values up to 374.44. While
lsquic launches multiple path challenges for redundancy and
performs the 1200 bytes padding on the initial path challenge,
mvfst already transfers too much stream data before the path
is validated. neqo is the closest to adhering to the specification
by first initiating a path challenge with no padding followed by a
padded one. However, the padded challenge is sent prematurely
without waiting for the response of the first one. Thus, the
second path challenge violates the anti-amplification limit.

chromium induces a very unexpected behavior during
the connection migration. It does not send path challenges
at all but starts sending stream data directly. This results in
significant amplification in both scenarios, as the STREAM
frames are large in comparison to the pending acknowledgments.
During the responsible disclosure process, we were able to
identify the reason for the amplification together with the QUIC
development team from Google. Due to compatibility issues
with certain client implementations, the path validation is turned
off by default and the older gQUIC mechanism is used. Both,
path validation and strictly adhering to the amplification limit,
can be turned on by setting respective compile flags. However,
this does not affect the measured amplification factors as the
compared default configuration stays vulnerable.

For mvfst, which also sends stream data prematurely,
we observe that it also surpasses the anti-amplification limit.
However, for chromium and mvfst, the PAF is lower as
more data is sent through pending ACKs. Amplification does
not occur for the remaining implementations when the pending
packets are also sent, as the servers do not send an additional
path challenge for each received packet.

Fig. 14 compares the sent bytes over time for the implemen-
tations that surpass the anti-amplification limit for CMRF. It
shows that a majority of the data is sent directly after initiating
the connection migrations in one big burst. lsquic addition-
ally transfers retries of the initial path challenge, resulting
in small chunks of additional data over time. This behavior
could be less interesting for attackers utilizing amplification in a
distributed DoS (DDoS) scenario. As not all of the amplification
is performed immediately after the connection migration is
initiated.

The byte rate for the total amplification is plotted in Fig. 14c.
It shows that there is also a significant burst of data sent to the
target but not a lot of data sent over time. The amplification
for chromium happens delayed even though the spoofed
packet was sent at the same time. The reason for this was
not comprehensible for us but it could be an artifact of the
proxy setup. The delay makes chromium less favorable for
attacks as the connections to the victim potentially have to be
kept open for longer.

For SIRF, most implementations stick to the anti-
amplification limit. aioquic, msquic and quicly en-
counter the issue described in Section IV, i.e., the server initial
packet slightly surpasses the allowed anti-amplification limit as
the TLS parameters are too large. mvfst and neqo exert the
faulty behavior concerning reliability in QUIC also introduced
in Section IV. In these implementations, the standard retry
mechanism for ongoing connections is also present for the
handshake messages The server initial packet is sent multiple
times resulting in high PAF (BAF) values for these three
implementations.

quic-go and quiche are also special for the SIRF
evaluation. Both server implementations send a retry packet
instead of the server initial packet for new connection attempts
to verify the path before the server initial packet is calculated.
Retry packets are always smaller than the client initial packet
and do not result in an amplification condition [3].

In total, all 13 implementations were affected by at least
one of the request forgery techniques with varying impact. We
were able to utilize protocol impersonation through VNRF
with nine server implementations. As elaborated above, we
argue that all 13 implementations should be vulnerable to this
attack vector, if they would be compliant with the specification.
The strong suit of VNRF is that it is based solely on the
QUIC protocol definition. To this end, our results challenge
the early perception by the QUIC working group that request
forgery is not that serious [29]. We are convinced that request
forgery in QUIC can have a significant impact. We demonstrated
opportunities for violating the amplification limits within five
of the implementations. The measured PAF values up to 374.44
surpass the anti-amplification limit by a significant amount.
The actual BAF values usable for traffic amplification attacks
were measured up to 18.28 for chromium (CMRF) and up to
22.1 for mvfst (SIRF). Even though the actual BAF values
are surpassed by some other protocols, e.g., NTP or in some
cases DNS [26], they will likely still be very relevant. As a
core web protocol, QUIC will be readily available and widely
admitted by firewalls. These factors make it more feasible for
traffic amplification than other protocols.

10

aioquic chromium kwik lsquic msquic mvfst neqo nginx ngtcp2 picoquic quic-go quiche quicly
1

10

100

—-18.28

—- 11.35

—-3.92

—-5.87 —- 5.81

374.44

136.21

198.96

21.67

3.73

29.09

15.77

3.06 3.02

22.1

14.64

3 3.3

PA
F

CMRF Single Amplification

CMRF Total Amplification

SIRF Amplification

3

Fig. 13: Evaluation of the maximum PAF observed for CMRF and SIRF for each implementation. CMRF is evaluated through
the amplification for only the initial path challenge and for all the packets sent to the spoofed address until the connection is
terminated. The dotted red line at PAF = 3 depicts the anti-amplification limit required by QUIC. For servers where also the
actual BAF values are larger then three, the BAF is depicted as a black line within the respective column.

0 10 20

1k

2k

4k

Time in seconds

B
yt

es

lsquic neqo picoquic

(a) Single amplification for server with 10k bytes
maximum peak.

0 10 20

1k

20k
40k

Time in seconds

B
yt

es

chromium

mvfst

(b) Single amplification for server with more than
10k bytes peak.

0 10 20

1k

20k
40k

Time in seconds

B
yt

es

chromium

mvfst

(c) Total amplification.

Fig. 14: Amplification rate over time with CMRF for server implementations violating the anti-amplification limit. Byte
measurements are accumulated to one second intervals.

E. Removing Control of CIDs

In Section III-E we introduce two major approaches for
reducing the controllabilitly of CIDs. Before evaluating the
pro and cons for both techniques, we acknowledge that both
mechanisms change the protocol significantly and will require
a new QUIC version.

F. Hash-based CID Generation

As a proof of concept, we have implemented a hash-based
CID generation for version negotiation for the aioquic server.
Since version negotiation is separate from other messages
flows, the CID handling could be altered without affecting the
remaining protocol. As a one-way hash function, we decided
to use the SHAKE sponge function. Since sponge functions are
designed to support variable lengths, the are ideal for the QUIC
CID scenario. The generation of 20 byte values is possible,
while preserving the possibility for longer CIDs in the future.
In our test implementation, we utilized SHAKE256 as it is one
of the underlying algorithms for the current SHA3 standard
and as many libraries support it [30].

In an experimental performance test, we compared
aioquic’s CID generation based on os.urandom() with
the hashing performance of hashlib.shake_256(). To
this end, we generated 10,000 CIDs for increasing lengths
up to 255 bytes and measured the the computation time. The
average difference over all values was only around 859ns,
Based on our experience with the aioquic implementation,
we are convinced that the effort to implement the described
mechanisms is reasonable. As we use SHA3, all common
programming languages have libraries that support SHAKE256.
In most places of the codebase, the current CID variables can
be replaced with the hashed value. The major difference is that
the original value has to be passed to the generation of initial
packets and to NEW_CONNECTION_ID frames.

G. Masking

Since masking requires more changes to the header structure,
it is not easily integrable into current implementations. This
makes the hash-based mitigation approach the favorable method
from a development standpoint as it requires only minor changes
to the codebase. A hash-based CID generation, however, has

11

a greater impact on the current capabilities of CIDs than
masking. Certain routing and load balancing strategies using
CIDs becomes impossible. From a performance perspective,
we come to the conclusion that the hash-based CID generation
is favorable as well. To this end, we performed a basic perfor-
mance analysis, masking a common-sized initial header (50
bytes) with the numpy.bitwise_xor() function. 10,000
repetitions resulted in an average masking time of 702ns. While
XOR-ing is clearly faster than hashing, it has to be performed
for every packet and not only on the few generated CIDs.

Unfortunately, both mitigation strategies break direct inter-
operability of the current and the new QUIC version. A final
decision on which method is preferable is subject of future dis-
cussions. In order to maintain backwards compatibility, server
implementations would still need to understand the original
CID usage as part of version negotiation with older versions.
If version negotiation is required to use the controllable CID
design for older QUIC versions, VNRF as described above
persists. Abandoning the current QUIC version to make the
protocol resistant against request forgery comes with huge
implications for integration and development.

VI. DISCUSSION

In the following section, we discuss additional mitigation
approaches through network controls and other possible attack
scenarios through request forgery. In general, if an attacker
wants to utilize the attacks vectors, she needs to determine
which QUIC implementation is used by the server. Therefore,
we also present first thoughts to identify and distinguish the
different implementations.

A. Network Control

The mitigation approaches above are intentionally focused
on in-protocol solutions. While they can drastically reduce the
impact of request forgery, they do not entirely prevent that a
forged UDP datagram can be transmitted to an arbitrary host,
even if it contains uncontrollable data only. To completely avoid
UDP based request forgery through QUIC, the only option for
network operators is to utilize strong network controls. One
approach would be to deploy a rate-liming for packets on
unvalidated paths in order to reduce the impact of amplification
vectors. As a second general measure, it would be advisable to
limit the internal IP address ranges that a server is allowed to
reach. Besides limiting IP addresses, a server could maintain a
denylist of standardized UDP ports to avoid request forgery to
common UDP based protocols. In general, it should be possible
to block port zero up to 1023 as these system ports should
never be used as client source ports. Yet, network operators
should be aware that common stateful transport layer network
controls in QUIC are less effective than they are for TCP
based protocols [12]. Furthermore, many available deep-packet
inspection tools lack maturity in regards of QUIC analysis [9]
and load balancing tools struggle with the limited insights into
packets [7]. Future research about securing networks in the
presence of QUIC will be key to a wide adoption.

B. Server-Side Attacks

The focus of our paper lies on client-side attacks. An
attacker acting as a server cannot utilize CMRF, SIRF, and

VNRF. Connections are always initiated by the client, thereby
SIRF and VNRF are prevented. CMRF is neither possible as
connection migration is currently only allowed for clients.

The specification mentions one server-side attack that
also directly stems from the protocol design. The technique
abuses the preferred_address parameter in the hand-
shake, specifying an address to which the client migrates after
the handshake. For this approach, only the DCID is fully
controllable for protocol impersonation, similar to the CMRF
attack technique. The hash-based CID generation, introduced
in Section III-E, and the anti-amplification limit would also
mitigate the protocol impersonation and DoS attack scenarios
for this server-side attack.

C. Protocol Impersonation via Encrypted Data

An additional protocol impersonation vector that was out
of scope of this paper could be to influence the ciphertext of
encrypted messages. As already mentioned, a server might
already start sending application data after path challenge.
Depending on how much of the cleartext is controllable an
attacker might be able to create a ciphertext that is meaningful
in the context of another protocol. If the cleartext is not
controllable but a priori known, an attacker might still be
able to influence the key-material sufficiently to achieve her
goals for protocol impersonation. While we believe that there
exists some interesting research concerning these cryptographic
attacks, we also think that the “real-world” impact will be
minor. They are often bound to very specific pre-requisites that
might not be present in most scenarios [31]–[33].

D. Victim Detection

As discussed in our evaluation, the 13 implementations
require different client settings and the impact will vary
based on the targeted server software. Therefore, we are
convinced that it would be beneficial to look at server/victim
detection mechanisms in future research. General identification
of QUIC usage can be performed efficiently by scanning IP
addresses with client initial packets that trigger a version
negotiation [34]. Existing fingerprinting approaches that aim
to differentiate between various implementations primarily
incorporate the trivial indicators from the handshake, e.g.,
like packet length, CID lengths, and CID changes [35]. Some
of our evaluation results (cf. Section V-B) could be directly
integrated into fingerprinting mechanisms to improve the
accuracy. The varying interoperability settings and responses to
the attack scenarios create a disjunct set of identifiers for each
of the 13 implementations. Especially connection migration
behavior could be a valuable addition to the existing approaches.
Additionally, the TLS parameters of the handshake may be a
valid extension as long as they are static for implementations
and not configurable by administrators. As more individual
HTTP/3 servers on the same QUIC libraries will be created,
a hybrid approach between QUIC and HTTP/3 will probably
have the most accurate results [36].

In addition to the general detection of a host’s QUIC
implementation, it would be necessary for an attacker to verify
that the identified server is placed in a vulnerable environment.
For our experiments we always had the advantage to have full
insight into everything that happened on the attacker’s, victim’s,

12

and target’s site. In a “real-world” scenario, an attacker would
probably not be able to observe the victim and the target.
Furthermore, the evaluated request forgery attacks are always
blind, i.e., answers by an impersonated protocol will not be
forwarded to the client.

One possibility to decide whether a server is vulnerable
to request forgery is to target an attacker-owned machine. A
successful attack will be visible by watching incoming packets
on this machine. Yet, such an evaluation does not enable an
attacker to evaluate whether mechanisms are in place that
prevent the addressing of other target IPs (e.g., internal IPs).
However, it could be a valid strategy to identify generally
vulnerable servers in the wild.

VII. RELATED WORK

QUIC gained significant attention in the past years, particu-
larly with respect to security aspects. While some contributions
started to investigate early versions of QUIC [37], [38], research
on attacks in the current version is still sparse. Nawrocki et
al. [8] performed an analysis of the current state of DoS attacks
in QUIC. They also touched amplification mechanisms related
to request forgery but discarded them as unfeasible. The general
concepts for two of the attacks vectors that we evaluated, namely
CMRF and VNRF, are considered in the QUIC specification [3].
To the best of our knowledge, however, our work is the first
in-depth analysis of request forgery for QUIC.

The field of cross-protocol attacks for TCP was established
in a paper by Jochen Topf [15]. The whitepaper by Tanner
Prynn [18] is the only occurrence we found that investigates
cross-protocol request forgery (CPRF) (here protocol imperson-
ation) and mentions QUIC. The author concludes that QUIC
is not usable in such kind of attacks as his approach (besides
using an earlier QUIC version) concentrated on the control
over the protocol from within a browser. We instead focus on
a more general attack vector and consider general protocol
alterations that can lead to protocol impersonation.

The fact that QUIC is built on top of UDP, while still
inheriting transport layer functionality, introduces novel request
forgery attacks, which would not be possible in a similar way in
TCP/TLS. Well-researched application layer attacks like server-
side request forgery (SSRF) and cross-site request forgery
(CSRF) are primarily based on application logic flaws. The
forgery capabilities in QUIC directly stem from the protocol
design. UDP is therefore not covered in most request forgery
research in terms of protocol impersonation. However, request
forgery is very prominent with UDP for amplification DoS
attacks. The work by Christian Rossow [26] provides an
excellent overview of known amplification attack vectors in
UDP-based protocols and their DoS impact. Specifically for
QUIC, the results by Nawrocki et al. [8] confirm the feasibility
of resource depletion attacks through client initial flooding by
showing it being utilized in the wild. On-path 0-RTT attacks
that utilize the packets that are not integrity protected are
explored by Cao et al. [39]. In our work, we emphasize the
importance of DoS research by providing a first analysis of
amplification attacks utilizing QUIC.

As previously discussed, network controls play an important
role in reducing the impact of request forgery attacks. Lehlan
Decker [9] shows how common deep packet inspection tools

cope with QUIC. He comes to the same conclusion as we
did in our previous work [12] that the tools struggle in the
presence of QUIC. Thimmaraju et al. [7] demonstrate related
issues while load balancing QUIC traffic. Kühlewind et al. [40]
propose an architectural solution to the transparency issues
experienced by middleboxes. By introducing a “path layer” for
transport independent signaling, middleboxes gain more insight
into transport related information for fully encrypted protocols
like QUIC. These insights in network controls are therefore
orthogonal to our work and key to improve network security.

VIII. CONCLUSION

In this paper, we analyzed the feasibility of client-side
request forgery attacks in QUIC by evaluating the capabilities
and controllable attack space. We showed that the theoretical
request forgery attack strategies, mentioned in the QUIC
specification and introduced by us, can have a significant impact
on the security of networks. The techniques analyzed are server
initial request forgery (SIRF) and version negotiation request
forgery (VNRF) based on the handshake, as well as connection
migration request forgery (CMRF) based on the connection
migration mechanism. We built a custom test environment
and evaluated our attack vectors against 13 different QUIC
server implementations. Our results indicate that all servers
were affected by at least one of the request forgery techniques.

We discovered that protocol impersonation can only be
utilized with VNRF as it enables an attacker to fully imitate
packets of other protocols in the forged payload, e.g., DNS
queries. The high impact through VNRF could be shown
with nine implementations that had the required behavior
implemented. However, the exploited behavior is well-defined
and required by the current QUIC specification making every
implementation vulnerable in theory.

Further discrepancies between the specification and the
implementations were observed in other functionalities too.
In multiple server implementations, the anti-amplification
limits conflicted with network probing requirements or retry
mechanisms were mistakenly used during the handshake. These
issues result in significant path amplification factor (PAF)
values of up to 374.44 for CMRF and 22.1 for SIRF. The
related bandwidth amplification factor (BAF) values of 18.28
for CMRF and 22.1 for SIRF make DoS traffic amplification
attacks feasible.

Based on the issues identified, we propose two mitigation
strategies (hashing and masking) that remove the client’s control
over the forged payloads. In regards of DoS protection, the
QUIC specification already contains sufficient anti-amplification
mechanisms that are effective against the evaluated attack
vectors. Efforts should be made to reduce ambiguity within
the conflicts of packet duplication for reliability and network
requirements.

QUIC is one of the more promising approaches to improve
the network stack of the web. Yet, some features of the protocol
are entirely new concepts and they are not yet scrutinized
sufficiently to ensure that they meet the statements concerning
their security properties. It will be therefore essential to perform
further security research on QUIC before a wide adoption is
advisable.

13

REFERENCES

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic transport protocol: Design
and internet-scale deployment,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM
’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 183–196.

[2] M. Thomson, “Version-Independent Properties of QUIC,” RFC 8999,
May 2021.

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[4] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC 9001,
May 2021.

[5] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control,”
RFC 9002, May 2021.

[6] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),” Internet
Engineering Task Force, Internet-Draft draft-ietf-quic-http-34, Feb. 2021,
work in Progress.

[7] K. Thimmaraju and B. Scheuermann, “Count me if you can: Enumerating
QUIC servers behind load balancers,” Conference on Networked Systems
2021 (NetSys 2021), Sep. 2021.

[8] M. Nawrocki, R. Hiesgen, T. C. Schmidt, and M. Wählisch, “Quicsand:
Quantifying quic reconnaissance scans and dos flooding events,” in
Proceedings of the 21st ACM Internet Measurement Conference, ser.
IMC ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 283–291.

[9] L. Decker, “QUIC & The Dead: Which of the Most Common IDS/IPS
Tools Can Best Identify QUIC Traffic,” SANS Institute, May 2020.

[10] M. Thomson, “QUIC Security,” 2020.
[11] J. Zhang, L. Yang, X. Gao, and Q. Wang, “Formal analysis of quic

handshake protocol using proverif,” in 2020 7th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/2020
6th IEEE International Conference on Edge Computing and Scalable
Cloud (EdgeCom), 2020, pp. 132–138.

[12] K. Y. Gbur and F. Tschorsch, “A QUIC(K) way through your
firewall?” CoRR, vol. abs/2107.05939, 2021. [Online]. Available:
https://arxiv.org/abs/2107.05939

[13] M. Soni and B. S. Rajput, “Security and performance evaluations of
quic protocol,” in Data Science and Intelligent Applications, K. Kotecha,
V. Piuri, H. N. Shah, and R. Patel, Eds. Singapore: Springer Singapore,
2021, pp. 457–462.

[14] K. Elmenhorst, B. Schütz, N. Aschenbruck, and S. Basso, “Web
censorship measurements of http/3 over quic,” in Proceedings of the
21st ACM Internet Measurement Conference, ser. IMC ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 276–282.

[15] J. Topf, “The HTML Form Protocol Attack,” Aug. 2001. [Online].
Available: https://www.jochentopf.com/hfpa/hfpa.pdf

[16] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-
site request forgery,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security, ser. CCS ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 75–88.

[17] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request
forgery attacks,” in 2006 Securecomm and Workshops, 2006, pp. 1–10.

[18] T. Prynn, “Cross-protocol request forgery,” NCC Group Whitepaper,
Oct. 2018.

[19] M. Petit-Huguenin and G. Salgueiro, “Multiplexing Scheme Updates for
Secure Real-time Transport Protocol (SRTP) Extension for Datagram
Transport Layer Security (DTLS),” RFC 7983, Sep. 2016.

[20] B. R. Sanjay and S. D. Pushparaj, “Dns amplification amp; dns
tunneling attacks simulation, detection and mitigation approaches,” in
2020 International Conference on Inventive Computation Technologies
(ICICT), Feb. 2020, pp. 230–236.

[21] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035, Nov. 1987.

[22] Y. Gbur, “QUICforge.” [Online]. Available: https://github.com/yurigbur/
QUICforge

[23] J. Holmgren and A. Lombardi, “Cryptographic hashing from strong one-
way functions (or: One-way product functions and their applications),”
in 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), Oct. 2018, pp. 850–858.

[24] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455, 2011.
[25] L.-S. Huang, E. Y. Chen, A. Barth, E. Rescorla, and C. Jackson, “Talking

to yourself for fun and profit,” Proceedings of W2SP, pp. 1–11, 2011.
[26] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS

Abuse,” Network and Distributed System Security (NDSS), Feb. 2014.
[27] QUIC Working Group, “Implementations,” Aug. 2021. [Online].

Available: https://github.com/quicwg/base-drafts/wiki/Implementations
[28] Y. Gbur, “YuKonSec Dockerhub.” [Online]. Available: https://hub.

docker.com/u/yukonsec
[29] M. Thomson, “Request forgery attacks - Issue 3995,” Aug. 2020.

[Online]. Available: https://github.com/quicwg/base-drafts/issues/3995
[30] W. May and P. Pritzker, “SHA-3 Standard: Permutation-Based Hash

and Extendable-Output Functions,” Aug. 2015.
[31] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”

RFC 8446, Aug. 2018.
[32] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks

on Transport Layer Security (TLS) and Datagram TLS (DTLS),” RFC
7457, Feb. 2015.

[33] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “DROWN:
Breaking TLS using sslv2,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 689–706.

[34] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A first look at quic in the
wild,” in Passive and Active Measurement, R. Beverly, G. Smaragdakis,
and A. Feldmann, Eds. Cham: Springer International Publishing, 2018,
pp. 255–268.

[35] M. Schwarz, “One Protocol, Different Versions: Determining
QUIC implementations Through Fingerprinting,” May 2021.
[Online]. Available: https://docs.google.com/presentation/d/
1ZCsEE7zpPgku-tICPEo53g-i1xrUW8P0Av4XcVJkNrM/edit#slide=id.
p

[36] J.-P. Smith, P. Mittal, and A. Perrig, “Website fingerprinting in the age
of quic,” Proceedings on Privacy Enhancing Technologies, vol. 2021,
pp. 48–69, 04 2021.

[37] C. Pearce and C. Vincent, “HTTP/2 & QUIC - Teaching Good Protocols
to do Bad Things,” 2016.

[38] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How Secure and
Quick is QUIC? Provable Security and Performance Analyses,” 2015
IEEE Symposium on Security and Privacy, 2015.

[39] X. Cao, S. Zhao, and Y. Zhang, “0-rtt attack and defense of quic protocol,”
in 2019 IEEE Globecom Workshops (GC Wkshps), 2019, pp. 1–6.

[40] M. Kühlewind, T. Bühler, B. Trammell, S. Neuhaus, R. Müntener, and
G. Fairhurst, “A path layer for the internet: Enabling network operations
on encrypted protocols,” in 2017 13th International Conference on
Network and Service Management (CNSM), 2017, pp. 1–9.

14

https://arxiv.org/abs/2107.05939
https://www.jochentopf.com/hfpa/hfpa.pdf
https://github.com/yurigbur/QUICforge
https://github.com/yurigbur/QUICforge
https://github.com/quicwg/base-drafts/wiki/Implementations
https://hub.docker.com/u/yukonsec
https://hub.docker.com/u/yukonsec
https://github.com/quicwg/base-drafts/issues/3995
https://docs.google.com/presentation/d/1ZCsEE7zpPgku-tICPEo53g-i1xrUW8P0Av4XcVJkNrM/edit#slide=id.p
https://docs.google.com/presentation/d/1ZCsEE7zpPgku-tICPEo53g-i1xrUW8P0Av4XcVJkNrM/edit#slide=id.p
https://docs.google.com/presentation/d/1ZCsEE7zpPgku-tICPEo53g-i1xrUW8P0Av4XcVJkNrM/edit#slide=id.p

	Introduction
	Request Forgery in QUIC
	QUIC Basics
	System and Threat Model
	Request Forgery Attack Modalities
	Server Initial Request Forgery (SIRF)
	Version Negotiation Request Forgery (VNRF)
	Connection Migration Request Forgery (CMRF)

	Protocol Impersonation
	Controllable Bits in Short Headers (CMRF)
	Controllable Bits in Long Headers (SIRF and VNRF)
	Initial Packets
	Version Negotiation Packets

	Comparison of Controllable Attack Space
	Protocol Impersonation with VNRF
	Mitigation: Reducing Controllability
	CID Reflection
	Hash-based CID Generation
	Masking

	Traffic Amplification
	Amplification Vectors
	Minimum Path Requirements
	Unbalanced Handshake Sizes
	Reliability

	Anti-Amplification Mechanisms

	Evaluation
	Server Selection
	Setup and Attack Implementation
	Vulnerability Analysis of CMRF, SIRF, and VNRF
	Traffic Amplification Analysis
	Removing Control of CIDs
	Hash-based CID Generation
	Masking

	Discussion
	Network Control
	Server-Side Attacks
	Protocol Impersonation via Encrypted Data
	Victim Detection

	Related Work
	Conclusion
	References

