
Trellis: Robust and Scalable Metadata-private
Anonymous Broadcast

Simon Langowski
MIT CSAIL

Sacha Servan-Schreiber
MIT CSAIL

Srinivas Devadas
MIT CSAIL

Abstract—Trellis is a mix-net based anonymous broadcast
system with cryptographic security guarantees. Trellis can be used
to anonymously publish documents or communicate with other
users, all while assuming full network surveillance. In Trellis,
users send messages through a set of servers in successive rounds.
The servers mix and post the messages to a public bulletin board,
hiding which users sent which messages.

Trellis hides all network-level metadata, remains robust to
changing network conditions, guarantees availability to honest
users, and scales with the number of mix servers. Trellis pro-
vides three to five orders of magnitude faster performance and
better network robustness compared to Atom, the state-of-the-art
anonymous broadcast system with a similar threat model.

In achieving these guarantees, Trellis contributes: (1) a
simpler theoretical mixing analysis for a routing mix network
constructed with a fraction of malicious servers, (2) anonymous
routing tokens for verifiable random paths, and (3) lightweight
blame protocols built on top of onion routing to identify and
eliminate malicious parties.

We implement and evaluate Trellis in a networked deploy-
ment. With 64 servers located across four geographic regions,
Trellis achieves a throughput of 220 bits per second with 100,000
users. With 128 servers, Trellis achieves a throughput of 320
bits per second. Trellis’s throughput is only 100 to 1000× slower
compared to Tor (which has 6,000 servers and 2M daily users)
and is therefore potentially deployable at a smaller “enterprise”
scale. Our implementation is open-source.

I. INTRODUCTION

Communication on the internet is prone to large-scale
surveillance and censorship [14, 38, 42, 51, 73, 93]. Peo-
ple trying to hide their communication from powerful (e.g.,
state-sponsored) adversaries rely on anonymity tools such as
Tor [32] or I2P [98] to hide their identities [99, 100, 105].
With Tor, users proxy their traffic through a chain of servers
which breaks the link between the identity of the user and
the traffic destination. With I2P, users proxy traffic through
a chain of peer nodes. While these tools serve an important
role, and help obfuscate the identity of the user, they can be in-
sufficient against determined adversaries capable of observing
large swaths of traffic (e.g., malicious ISPs). Such adversaries
(e.g., ISPs or nation states) can easily identify users and the
traffic content through metadata such as packet timing, packet

size, and other identifying features—even when all traffic is
encrypted [9, 13, 37, 45, 49, 58, 77, 82, 84, 96]. State-of-
the-art attacks can deanonymize encrypted Tor traffic with
upwards of 90% accuracy by analyzing the encrypted packet
traffic [9, 45, 82].

This problem has motivated many systems [2, 19, 20, 35,
36, 60, 62, 78, 103, 109] for anonymous broadcast. Anony-
mous broadcast consists of anonymously posting a message to
a public bulletin board and is the most general form of anony-
mous communication possible; it can be used for file sharing
and to instantiate weaker primitives such as anonymous point-
to-point communication [27, 61, 65, 66, 86, 92, 101, 104].
Anonymous broadcast provides sender anonymity: fully hiding
which user sent which message. Most mix-net based systems,
in contrast, only provide relationship anonymity [27, 61, 65,
66, 86, 92, 101, 104] (hiding who is communicating with
whom). Other systems [19, 20, 78, 103, 109] exploit a non-
collusion assumption (which inhibits scalability) to instantiate
anonymous broadcast or just focus on recipient anonymity [6].

As with prior work, Trellis is metadata-private, which
guarantees that sender anonymity is preserved in the face of an
adversary monitoring the entire network. Trellis also provides
horizontal scalability—the ability to increase throughput with
the number of (possibly untrusted) servers participating in the
network. Horizontal scalability is key to real-world efficiency:
Tor and I2P are only capable of handling millions of users [71]
on a daily basis thanks to similar scalability guarantees.
Moreover, horizontal scalability is important for real-world
security: the more users an anonymity system can support,
the more “plausible deniability” each user in the system has.

The state-of-the-art system for anonymous broadcast with
horizontal scalability is Atom [60]. Unfortunately, Atom suf-
fers from practical barriers to deployment even though it is
theoretically optimal. (See Section II-B for overview of related
work.) For example, Atom achieves a throughput of roughly
0.01 bits per second and is six to eight orders of magnitude
slower than practical systems such as Tor [71].

All other systems either focus on weaker anonymity no-
tions (e.g., point-to-point communication [3, 5, 15, 61, 65,
66, 92, 101, 104]) or sacrifice scalability by assuming non-
colluding servers [2, 19, 20, 35, 36, 59, 78, 109].

Trellis is designed for fast anonymous broadcast with large
messages. Trellis is inspired by a long line of work [16, 60,
62, 89] which augments mix-nets to instantiate anonymous
broadcast. Trellis innovates on these works in three important
ways: (1) Trellis decouples the use of expensive cryptography
required for system setup from the broadcasting phase, (2)

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23088
www.ndss-symposium.org



��
��
��
��
��
��
���
��
��
��

�������

Fig. 1: Trellis arranges the set of servers into “layers,” (each
server appears once per layer) to instantiate a mix-net. Users
send messages through a random path which guarantees that all
messages are mixed before reaching the public bulletin board,
even when a subset of servers are malicious (colored in red).

Trellis is robust to malicious parties and server churn, and
(3) Trellis provides message delivery guarantees even when
a majority1 of servers and users are malicious (note that
performance degrades with a larger proportion of adversarial
servers; see Section VIII). With these three key contributions,
Trellis brings metadata-private anonymous broadcast a step
closer to real-world deployment. However, we note that Trellis
is still limited by challenges outside of the system design itself,
such as requiring that all users remain online and contribute
messages to ensure metadata privacy. These limitations will be
present in any anonymous communication system design with
strong anonymity guarantees [42]. Even so, in Section VIII,
we find that Trellis is only 100 to 1000× slower compared
to systems like Tor and I2P, both of which sacrifice strong
anonymity in favor of concrete performance.

Ideas, challenges, and contributions. We start by using a
mix-net topology known as a random routing network [60, 62]
(see Section II for an overview of mix-nets). In such mix-nets,
servers are organized into L layers (all servers appear in each
layer). The user selects a random path through the servers and
sends a message through the path for mixing. Adding more
servers increases the throughput, which satisfies the horizontal
scalability requirement. While this simple idea seems promis-
ing at first (and also proposed in prior work [60, 62]), there
are several practical hurdles associated with it:

• Malicious users or servers might deviate from protocol,
select non-random paths, or otherwise attack the system.
The difficulty is detecting and blaming the responsible
parties while preserving anonymity for honest users.

• Mix-nets that model permutation networks traditionally
require that all servers are honest to achieve mixing guaran-
tees. Atom [60] resolves this by emulating honest “servers”
using random groups of servers. However, this technique is
suboptimal and contributes to slow mixing times in practice.

• Real-world networks consisting of disparate servers are not
perfect: server churn and elimination can occur frequently.
Classic mix-nets are not designed to gracefully handle and
adapt to changing network conditions on-the-fly.

In Trellis, we overcome the above challenges as follows.

Preventing deviation from protocol. To ensure availability and
message delivery, we develop two new tools: anonymous

1In the case of a dishonest majority of servers, Trellis reconfigures itself into
a new network containing a dishonest minority; see Section VI-C2.

routing tokens (Section V-A) and boomerang encryption (Sec-
tion IV-A). Routing tokens force all users to choose random
paths through the mix-net. Boomerang encryption ensures that
all servers along a path route messages correctly and enables
efficient blaming of malicious servers when required. The
combination of these two primitives allows us to port our
mix-net to a setting with malicious users and servers actively
deviating from protocol without compromising on anonymity.

Modeling a mix-net with malicious servers. Kwon [62] de-
velops a novel theoretical mixing analysis for routing mix-
nets constructed with some fraction of adversarial servers.
In Trellis, we use a routing mix-net topology in conjunction
with the analysis of Kwon [62] to avoid the inefficiencies
of “emulating” honest servers (see Section V). Additionally,
we derive a more straightforward analysis and bound on the
number of mix layers required. Our mixing analysis may be
of independent interest to other systems in this area.

Efficient blame, server elimination, and network healing. We
design Trellis so that honest servers can efficiently detect fail-
ures and deviations from protocol, assign blame, and eliminate
responsible parties from the network. Our blame protocols
(described in Section VI) handle malicious servers and users
without ever deanonymizing honest users. Trellis gracefully
handles network changes (e.g., offline or eliminated servers)
using proactive secret sharing (explained in Section VI), which
permits on-the-fly state recovery following server churn.

Contributions. In summary, this paper contributes:

1) the design of Trellis: a novel system for anonymous
broadcast providing cryptographic anonymity guarantees
for users, network robustness, and concrete efficiency,

2) a simpler theoretical mixing analysis for routing mix-nets
instantiated with a subset of mix servers that are malicious
and colluding with a network adversary,

3) anonymous routing tokens: a new tool for anonymously en-
forcing random path selection in mix-nets, with conceivable
applications to other networking systems,

4) boomerang encryption: a spin on onion encryption that al-
lows for efficient proofs of delivery and blame assignment,

5) and an open-source implementation which we evaluate on a
networked deployment, achieving a throughput of 320 bits
per second with 100,000 users and 20 kB messages.

Limitations. Trellis shares the primary limitation of other
metadata-private systems [20, 27, 60–62, 65, 78, 101, 103,
104]: it provides anonymity only among honest online users
and therefore requires all users to contribute a message in each
round—even if they have nothing to send—so as to hide all
network metadata [42]. (Users who stop participating correlate
themselves with patterns or content of messages that stop being
output [24, 25, 110].) Trellis does not, however, preclude the
use of any external solutions to this problem (e.g., [110]).

II. BACKGROUND AND RELATED WORK

We start by describing mix-nets and their guarantees in
Section II-A. We then describe related work and existing use
of mix-nets for anonymous communication in Section II-B.

2



A. Mix networks

In 1981, Chaum [16] developed the first mix network (mix-
net) for the purpose of anonymous email. The idea behind
Chaum’s mix-net is simple. A set of servers is arranged in a
sequence. Each server has a public key. Each user recursively
encrypts the user’s message under the sequence of server
public keys. We call this recursive encryption a sequence of
envelopes (a.k.a. onions [32]), with each envelope encrypted
under all subsequent public keys in the sequence. All users
send the first envelope to the first server in the sequence.
Each server, in sequence, decrypts the envelopes it receives,
randomly shuffles the decrypted envelopes, and forwards them
to the next server in the sequence. This repeats for N layers.
The use of onion encryption prevents intermediate servers from
learning which messages they are routing (a server can only
decrypt one layer of encryption). At the end of the sequence,
the innermost envelope is decrypted to reveal the plaintext
message. The mix-net guarantees that the ordering of the
messages is uniformly random and independent from the input,
which in turn guarantees unlinkability between each user and
their submitted message. As such, classic mix-net architectures
can be used for anonymous broadcast. Unfortunately, this
architecture suffers from security and practicality challenges:

1) Mix-nets do not inherently guarantee metadata privacy: a
network adversary observing all traffic can link messages
to users through metadata, such as timing information.

2) Mix-nets are vulnerable to active attacks (e.g., dropped
envelopes), which can be exploited by malicious servers
to link users to their messages [70, 75, 79, 94, 108].

3) Sequential mix-nets do not provide scalability: adding more
servers does not improve performance since all servers
must process all envelopes.

Scalable mix-nets. Scalable systems built using mix-net ar-
chitectures are designed around parallel mix-nets [44, 89],
where users are assigned to a mix-net instantiated from a subset
of servers in the network. Adding more servers thus propor-
tionally increases the total capacity of the network. However,
naı̈vely parallelizing mix-nets does not provide privacy, since
a message may end up mixed with only a small subset of
other users’ messages. To avoid this, parallel mix-nets must
model a random permutation network [22, 106] (a theoretical
framework for modeling mixing in a communication network)
to guarantee that all messages are mixed [44, 62, 89]. This is
the strategy taken in Atom [60].

B. Related work

In this section, we focus on comparing Trellis to other
systems that achieve anonymous broadcast. We pay particular
attention to mix-net-based systems as other architectures have
incomparable threat models.

Anonymous broadcast using parallel mix-nets. Rackoff and
Simon [89] put forth the idea of anonymous broadcast using
parallel mix-nets based on permutation networks but do not
build or evaluate their approach. Kwon et al. [60] are the first
to use their ideas to build a prototype system called Atom. A
problem with mix-nets instantiated as permutation networks is
that they only guarantee mixing if all servers are honest. The
insight in Atom is to use anytrust groups—sets of random

servers such that at least one server in each set is honest with
high probability—to emulate a trusted network from groups of
possibly malicious servers. That is, each “server” in the mix-
net is emulated by an anytrust group selected at random. In-
stantiating the mix-net in this way comes at a high cost in terms
of concrete performance. The problem is that Atom requires
expensive zero-knowledge proofs to ensure servers in each
group behave correctly. These quickly become computational
bottlenecks limiting the throughput and preventing scaling to
large message sizes (Kwon et al. [60] only evaluate Atom on
up to 160 byte messages). Another problem is that emulating
honest servers with anytrust groups wastes resources and
introduces large communication overheads. These performance
barriers make Atom impractical to deploy.

Quark is a followup proposal for anonymous broadcast
that appears in Kwon’s PhD thesis [62] but is primarily of
theoretical interest. Like Atom, Quark is designed on top of
a random routing mix-net. However, Quark avoids emulating
honest servers by developing a novel theoretical mixing analy-
sis for a network containing malicious servers. Unfortunately,
Quark does not prevent disruption attacks: any malicious user
or server can cause the entire protocol to restart by dropping
(or not sending) a message. Moreover, we find that Quark
may not be secure: the blind Schnorr multi-signatures around
which Quark is designed can be forged using parallel signing
attacks [33, 80] (these attacks were discovered after Quark).
In Trellis, we salvage the theoretical underpinning of Quark
and use a routing mix-net as a starting foundation. We also
contribute an improved mixing analysis for this routing mix-
net when instantiated with malicious servers, inspired by the
ideas of Kwon [62] (see Section V-E ). Apart from the mix-net,
all other components of Trellis are different.

Anonymous communication using mix-nets. Chaum [16],
cMix [15], MCMix [5], Karaoke [65], Stadium [101], Vu-
vuzela [104], XRD [61], are all anonymous point-to-point
communication systems built on top of mix-net architectures.
Of these, Karaoke, Stadium, and XRD provide horizontal scal-
ability. However, only XRD provides cryptographic privacy.
Karaoke, Stadium, and Vuvuzela provide differential privacy,
which introduces a host of practical challenges (see discussion
of Kwon et al. [61, Section 1]). Other systems, such as
Loopix [86], Streams [27], and Tor [32] are examples of free-
route mix-nets [26, 40, 68, 76, 90], i.e., parallel mix-nets where
users asynchronously route messages via a small subset of mix
servers. Free-route mix-nets do not achieve metadata privacy
in the face of network adversaries and are susceptible to traffic
analysis and active attacks [9, 45, 82].

Other architectures. Other anonymous broadcast systems [2,
5, 7, 19, 20, 35, 72, 78, 109] are instantiated under different
threat models. Dining cryptographer networks (DC-nets) and
multi-party computation [2, 5, 35, 72] require two or more non-
colluding servers to process messages and prevent malicious
users from sending malformed content. Because of this, these
techniques inherently do not provide horizontal scalability
and impose high overheads on the servers. Other anonymous
communication systems [4, 6, 17, 41, 59, 66, 67, 69, 92] focus
on specific applications (e.g., group messaging [17] and voice-
communication [4, 66, 67]) or focus on one-sided anonymity

3



(e.g., only recipient anonymity [6]). We refer the reader to the
excellent survey of systems in Piotrowska’s PhD thesis [85].

III. SYSTEM OVERVIEW

In Section III-A, we describe the core ideas and intuition
underpinning the overall design of Trellis. In Section III-B, we
describe the threat model and guarantees achieved by Trellis.

A. Main ideas

Following other mix-net based systems [15, 27, 60, 62,
65, 66, 89, 92, 101, 104], Trellis is instantiated using a set
of N servers and M users. The servers are organized into a
network of L layers and users’ messages are routed by servers
from one layer to the next (see Figure 1). Trellis is organized
in two stages. A one-time path establishment stage followed by
a repeated message broadcasting stage. In both stages, Trellis
resolves failures and attacks by malicious users and servers
through on-demand blame protocols (see Section VI).

Do once: Path establishment. We reference the steps in
Figure 2. Path establishment proceeds layer-by-layer. 1 Users
obtain signed anonymous routing tokens (Section V-A) from an
anytrust group of signers, which guarantees the resulting path
assigned to the user is uniformly random. Each token issued for
a layer determines the server at the next layer and contains all
the necessary routing information needed to route messages
between the two layers (details in Sections V and V-A). 2

Users distribute the L tokens anonymously using boomerang
encryption (Section IV-A). All servers obtain the necessary
routing tokens without learning the full path.

����� ������� ������� ��������

����������������������������
��������


�	����������

������������������
�����������������

1

2

Fig. 2: Users are assigned a server in each layer through a one-
time setup protocol involving an anytrust group of signers.

Repeat: Anonymous broadcasting. We reference the steps
in Figure 3. Anonymous broadcasting repeats indefinitely on
the pre-established path. 1 Each user sends their envelope
(containing the user’s message) through the server assigned
by the routing token, for each of the L layers. 2 Servers
collect all the envelopes, decrypt one layer of encryption, and
group the resulting envelopes based on their destination server
in the next layer. Servers shuffle and pad each group with
dummy envelopes as necessary. Each group is then sent to the
destination server in the next layer. 3 Once envelopes reach the
final layer, they are guaranteed to be shuffled and unlinkable
to the users that sent them, at which point the final layer of
encryption is removed to reveal the plaintext message.

On-demand: Blame, elimination, and recovery. It could be
the case that a server goes offline or acts maliciously, both
during path establishment and the broadcasting stages. To deal

����� ��������������������� ������� ��������

��������
��������������
�����	�����������������������������

31 2

Fig. 3: Users send messages through the layers, based on their
paths. Users can repeat this process indefinitely to broadcast
many different messages.

with such failures (intentional and otherwise) we develop on-
demand blame and recovery protocols that automatically reas-
sign affected paths. Importantly, failure resolution is handled
locally on the link between two layers and does not involve the
users. (Failures caused by a malicious user cause the user to
be eliminated by other means; see Section VI.) We follow the
steps of Figure 4. Blame and recovery is invoked whenever an
error is detected (e.g., wrong signature, dropped envelopes).
1 A server detects an error in the received batch of envelopes

in layer (i+2) and proceeds to blame the server in layer (i+1)
that sent the batch. 2 Servers evaluate evidence from both
parties to decide which of the two is malicious and 3 vote for
the honest party by providing a secret share of the malicious
party’s secret state. The state is used by replacement server to
take over the duties of the eliminated server.

�������������������������������������������

������i ������i+1 ����� i+2

�����
1

2

3

����


Fig. 4: On-demand blame and recovery protocols are invoked
by servers to automatically reassign affected paths and elimi-
nate malicious servers from the network.

B. Threat model and assumptions

The threat model and assumptions underpinning Trellis
mirror those of existing anonymous broadcast [60, 62] (and
communication [5, 15, 61, 65, 66, 101, 104]) systems based
on mix-nets that provide metadata-privacy guarantees.

Assumptions and adversarial model.

Observed network. We assume that all communication on
the network is observed by a passive network adversary but
that the communication content is encrypted using standard
authenticated public key infrastructure (PKI)—e.g., TLS [91].

Malicious users and servers. We assume that a fixed fraction
0 ≤ f < 1 of servers and any number of users are malicious,
may arbitrarily deviate from the protocol, and collude with the
network adversary. Note: in the case of a dishonest majority
(f ≥ 0.5), our blame protocols in Section VI cause successive

4



network reconfigurations which converge to an honest majority
(details in Section VI-C2).

Cryptography. We make use of standard cryptographic assump-
tions. We require digital signatures, symmetric-key encryption,
and the computational Diffie-Hellman (CDH) assumption [31]
(and variants of the CDH assumption for gap groups [56].
We also require pairings on elliptic curves [12, 53] and hash
functions modeled as random oracles when constructing our
routing tokens (Section V-A).

Liveness. We require two liveness assumptions: synchronous
communication and user liveness. Both assumptions are stan-
dard in all prior work on metadata-private anonymous com-
munication [2, 5, 6, 19, 20, 35, 60–62, 78, 101, 104, 109].

• Synchronous communication: Servers are expected to be
able to receive all envelopes for each layer before process-
ing the next layer. This is equivalent to assuming all servers
have access to a global clock [95].

• User liveness: We assume that all users submit a message
for every round—even if they have nothing to send—
to prevent the risk deanonymization via intersection at-
tacks [24, 25, 110]. We do not assume server liveness.

Non-goals. Trellis does not aim to prevent denial-of-service
(DoS) attacks on the network or handle infrastructure fail-
ures. However, Trellis is fully compatible with existing so-
lutions [18, 21] for network availability and reliability.

Trellis guarantees. Under the above threat model and as-
sumptions, Trellis provides the following guarantees.

Robustness and availability. No subset of malicious servers or
colluding users can disrupt availability for honest users.

Message delivery. All messages submitted by honest users are
guaranteed to be delivered and result in a “receipt” that can
be efficiently verified by each user.

Unlinkability. Fix any small ϵ > 0 and any subset of honest
users. After mixing, no message (or set of messages) can
be linked with any honest user (or set of honest users) with
probability ϵ over random guessing by the adversary.

Metadata privacy. The unlinkability guarantee holds even
when all network communication is visible to the adversary
who is controlling the malicious users and servers.

IV. BUILDING BLOCKS

In this section, we describe the cryptographic tools and
concepts that we use to instantiate Trellis in Section V.

Cryptographic foundations. We briefly describe classic cryp-
tographic primitives that we use as building blocks in Trellis.
We point to excellent textbooks for more details on these
standard primitives [11, 43, 55].

Diffie-Hellman key agreement. The Diffie-Hellman key agree-
ment protocol [31] allows two parties to establish a shared
secret key over an authenticated communication channel. Let

G be a suitable group of prime order p with generator g.
DHKeyGen(G, g)→ (A, a):
1: Sample a ∈ Zp.
2: Output (A := ga, a).

DHKeyAgree(A, b)→ sk:
1: Output sk := (A)b.

Observe that for all (A, a) and (B, b) sampled according to
DHKeyGen(G, g), DHKeyAgree(A, b) = DHKeyAgree(B, a).
Thus, two parties derive the same secret key sk.

Digital signatures. A digital signature (DS) scheme consists of
three algorithms (KeyGen,Sign,Verify) satisfying correctness
and unforgeability. Informally, correctness requires Verify to
output yes on all valid signatures and unforgeability states
that no efficient adversary should be able to produce a forged
signature under vk that is accepted by Verify.

Symmetric key encryption. An encryption scheme (e.g.,
AES [23, 81]) consists of three algorithms (KeyGen,Enc,Dec)
satisfying correctness and IND-CCA security. Informally, cor-
rectness requires that Decsk(Encsk(m)) = m for all messages
m and secret keys sk sampled according to KeyGen. IND-CCA
security requires the distribution of ciphertexts induced by any
pair of messages to be computationally indistinguishable and
authenticated (see Boneh and Shoup [11] for definitions).

Anytrust groups. Let κ be a statistical security parameter. Given
a set of servers where some fraction 0 ≤ f < 1 are malicious,
there exists an integer s such that the probability that any
group of s random servers contains at least one honest server is
1−2−κ (proof: it is enough to pick s such that fs < 2−κ) [60].

A. New tool: Boomerang encryption

A core challenge in a mix-net is ensuring that all envelopes
get to the appropriate server on the path. A user complaining
of protocol deviation (e.g., dropped messages) runs the risk of
deanonymization. Boomerang encryption—a simple extension
of onion encryption [16]—solves this problem by providing
“receipts” that can be used by servers to anonymously blame
on a user’s behalf. Boomerang encryption is designed to (1)
ensure that all servers on a path receive messages addressed to
them and (2) allow honest servers to trace the source of active
attacks and assign blame accordingly.

Onion encryption and routing. Onion encryption [16, 32]
involves recursively encrypting a message under a sequence of
keys. Only the corresponding secret-key holders can recover
the message by “peeling off” the layers of encryption one by
one. Formally, given any symmetric-key encryption scheme
with algorithm Enc, onion encryption is defined as:
−−−→
onion(sk,m) := Encsk1(Encsk2(. . .Encskℓ(m) . . . )),

where sk := (sk1, . . . , skℓ) and m is the message.

Onion routing. Onion encryption is the backbone of onion
routing, where a chain of servers route onion-encrypted mes-
sages, removing one layer of encryption at a time. Onion
routing prevents any intermediate server from learning the
plaintext message. We will use the term envelope to describe
the intermediate ciphertexts of an onion-encrypted message.

5



Boomerang encryption and routing. Onion routing works in
one “direction:” routing envelopes forward through the chain
of servers such that only the destination server learns the plain-
text message. In contrast, boomerang routing is bidirectional:
it applies onion encryption twice, once in the forward direction
and once in reverse (hence the name, boomerang). If we define
reverse-onion encryption as:
←−−−
onion(sk,m) := Encskℓ(Encskℓ−1

(. . .Encsk1(m) . . . )),

then boomerang encryption is defined as:
←−−−−−→
boomerang(sk,−→m,←−m) :=

−−−→
onion(sk,−→m ∥ ←−−−onion(sk,←−m)),

where −→m is the forward message and ←−m is the returned
message. We note that the ←−m cannot be returned without first
decrypting all envelopes in the forward onion chain.

Boomerang decryption as an anonymous proof-of-delivery.
We make the following somewhat surprising observation: a
successful boomerang decryption can be turned into a proof of
message delivery when applied to onion routing.2 Specifically,
letting ←−m (the returned message) be a random nonce acts as a
message delivery receipt: it guarantees that every server along
the path decrypted the correct onion layer and forwarded it to
the next server. To see why this holds, observe that in order
to successfully recover ←−m , all envelopes in the forward onion
must be decrypted to recover −→m ∥ ←−−−onion(sk,←−m). Therefore,
message −→m must have been delivered to the server at the end
of the path (i.e., the last envelope in the forward onion chain
must have been decrypted).

V. THE TRELLIS SYSTEM

In this section, we provide further details on the path
establishment and broadcasting protocols (overviewed in Sec-
tion III). The formal protocol descriptions are provided in the
full version [64]. We start by describing anonymous routing
tokens (Section V-A), which are integral to the design of
Trellis.

A. New tool: Anonymous routing tokens

Anonymous routing tokens (ARTs) are used in Trellis
to determine and verify routing paths. Our construction of
ARTs is inspired by anonymous tokens based on blind signa-
tures [28, 34, 56], but has two key differences: namely, ARTs
are signed by a group of signers and are publicly verifiable.
Specifically, tokens are signed by an anytrust group. This
guarantees that at least one honest signer is present when
signing each token and forms the basis for integrity in Trellis.
The blind signature serves two purposes: ensuring that (1) the
payload encapsulated by the ART comes from an (anonymous)
user, and (2) the path through the mix-net, as determined by
the ART, is uniformly random (even for malicious users).

How our routing tokens work. Routing tokens are generated
by users. Each token encapsulates the necessary information
a server requires to route envelopes on a link in the mix-
net. Each signer (a server in an anytrust group) holds a

2Note that proof-of-delivery requires the underlying encryption scheme to be
IND-CCA secure (such as Encrypt-then-MAC [11] with AES).

partial signing key xi associated with a global public signature
verification key tvkℓ for the ℓth layer. The user has each
group member provide a partial signature for the blinded
token. The user then unblinds and recovers the multi-signature
with respect to tvkℓ by combining the partial signatures. If at
least one signer is honest, then the signature is unforgeable
and cannot be traced to the tokens seen during signing. The
randomness of each token signature—which is uniform and
independent provided at least one signer is honest—determines
how envelopes are routed through the network.

Definition 1 (Anonymous Routing Tokens; ARTs). Fix a
security parameter λ, integers s,N > 1, a common reference
string crs generated using a trusted Setup process, and a set S
of N server identifiers. An ART scheme consists of algorithms
KeyGen, NextServer, Verify, and an interactive protocol Sign
instantiated between a user and s signers.

• KeyGen(crs) → (tvk, x1, . . . , xs): takes as input the crs;
outputs a public key tvk and s partial signing keys.
• Sign⟨User(tvk, payload),Signers(x1, . . . , xs)⟩ → ⟨t,⊥⟩.

The user inputs a payload consisting of the server identity
S ∈ S, a new Diffie-Hellman message and a new digital
signature verifcation key. The ith signer provides as input
the partial signing key xi. The user obtains a (signed)
routing token t committing to the payload. The signers
obtain no output (⊥). See Figure 5 for an overview.
• NextServer(tvkℓ, tℓ) → (Sℓ+1): takes as input the layer

public key tvkℓ, the token tℓ; outputs the identity of the
next server Sℓ+1 deterministically chosen based on tℓ.
• Verify(tvkℓ, Sℓ+1, payloadℓ, tℓ)→ yes or no: takes as input

the public key for layer ℓ, the payload payloadℓ, identity
of the next server Sℓ+1, and signed token tℓ; outputs yes if
(Sℓ+1 and payloadℓ are valid under tℓ and no otherwise.

�����������

����������������

�
���������������������


�������������������������������

	���
�������������

Fig. 5: Overview of the ART signing protocol (Sign).

The above functionality must satisfy the standard properties of
blind digital signatures [87] (and anonymous tokens [28, 56]):
completeness, unforgeability, unlinkability, in addition to a
new property we call unpredictability. Unforgeability ensures
that if the ART verifies under the public key tvk, then the
encapsulated payload came from some user and was not
tampered with. Unlinkability for ARTs guarantees that the
encapsulated payload is random and independent of any user
(thus the Diffie-Hellman message and a signature verification
key are sampled randomly). Finally, unpredictability requires
that Sℓ+1 (as output by NextServer) be unpredictable given the
payload. We formalize these properties in the full version [64].

1) ART construction: We realize an ART scheme satisfying
Definition 1 following the blueprint of BLS signatures [12]
and anonymous tokens [28, 56]. In the full version [64],
we prove security of our construction under a variant of
the computational Diffie-Hellman (CDH) assumption in gap
groups [10, 12, 56]. Let G and GT be groups of prime order p
with generator g and equipped with an efficiently computable
non-degenerate bilinear pairing e : G×G→ GT [11]. We let
crs := (Zp,G, g)← Setup(1λ) for a security parameter λ.

6



KeyGen(crs):
1: x1, . . . , xs ←R Zp

2: x←
∑s

i=1 xi

3: tvk← (gx1 , . . . , gxs , gx)

4: return (tvk, x1, . . . , xs)

NextServer(tvkℓ, tℓ):
1: Sℓ+1 := HashZN (tvkℓ||tℓ)
2: return Sℓ+1

Verify(tvkℓ, Sℓ+1, payloadℓ, tℓ):
1: parse tvkℓ = (gx1 , . . . , gxs , gx)

2: y ← HashG(payloadℓ)

3: S′
ℓ+1 ← NextServer(tvkℓ, tℓ)

4: return e(tℓ, g) = e(y, gx)

and S′
ℓ+1 = Sℓ+1

Token signing protocol. We instantiate the token signing
protocol in one round between the user and each signer. The
user begins by generating a fresh Diffie-Hellman key exchange
message that will later be used to derive the encryption key for
its ℓth link. The user also generates a fresh digital signature key
pair, which will be used to verify integrity of its encryptions
on the ℓth link.

Step 1 (user):

1: (Aℓ, aℓ)← DHKeyGen(G, g); (vkℓ, skℓ)← DS.KeyGen(1λ).
2: r ←R Zp; Tℓ ← HashG(Sℓ||Aℓ||vkℓ

payloadℓ

)1/r .
3: send Tℓ to all signers.

Step 2 (ith signer): Upon receiving Tℓ, the ith signer partially
signs the blind hash using their share xi of the signing key:

1: Wℓ,i ← T xi
ℓ .

2: send Wℓ,i to the user.

Step 3 (user): The user combines the partial signatures and
outputs an unblinded token:

1: t←
(∏s

i=1 Wi

)r .

The user then checks that tℓ was signed correctly:

2: Sℓ+1 ← NextServer(tvkℓ, tℓ).

3: Verify(tvkℓ, Sℓ+1, payloadℓ, tℓ)
?
= yes.

If Verify outputs no, then the user discards the token and
outputs ⊥. Otherwise, the user stores (payloadℓ, tℓ, skℓ, aℓ).

Generalization. We remark that our construction of ARTs
can be generalized to support more generic anonymous tokens
such as the ones described in Kreuter et al. [56] and Davidson
et al. [28] but instantiated with a set of signers rather than just
one signer as in previous work [28, 56, 102]. Additionally,
unlike prior constructions, ARTs are publicly verifiable. These
features make ARTs potentially of independent interest. For
simplicity, we restrict our definition of ARTs to Trellis.

B. Putting things together

We decouple the expensive cryptographic operations from
the lightweight ones (similarly to cMix [15]). During key
generation and path establishment, all necessary cryptographic
key material is distributed via the ARTs to servers on the
path. During the mixing phase, messages are routed through
the established paths. This is a lightweight procedure: each
server only needs to decrypt and shuffle envelopes. The mix-
ing phase can be repeated indefinitely (with many different
messages) and does not involve the setup overhead of the path
establishment phase.

Key generation. Each server uses DHKeyGen and publishes
the Diffie-Hellman public key to the PKI. Each server uses
Feldman’s verifiable secret sharing (VSS) scheme [39] to
share the Diffie-Hellman secret, for state recovery purposes
(Section VI-C1). In addition, we use proactive secret shar-
ing [48, 74] to generate shares of a common ART secret
signing key for each anytrust group. With proactive secret
sharing, multiple independent sets of shares are generated for
the same secret. This ensures that each anytrust group holds
shares of the secret key while preventing subsets of colluding
servers across different groups from recovering the secret key.

ART generation. Each user is issued one ART per layer by a
random anytrust group. Each user can only send (boomerang
encrypted) messages through the network according to the path
dictated by the ARTs. All invalid or duplicate envelopes are
discarded by the honest servers. Servers that improperly route
envelopes are blamed by the next honest server on the path
(blame protocols are described in Section VI).

Routing tokens and path selection. During the path estab-
lishment protocol (described in further detail in Section V-C),
each server (anonymously) receives ARTs for the links it is
responsible for. Each token determines the next server on a
link (and can be checked with ART.NextServer) which allows
each server to (1) determine where to send envelopes in the
subsequent layer and (2) anonymously verify path adherence
(without knowledge of the full path, only the local link).

Boomerang routing on a path. We use boomerang encryption
to route envelopes through the mix-net. We assume that the
boomerang encryption scheme is instantiated using IND-CCA
secure encryption (where the shared encryption key is derived
from the Diffie-Hellman message in the ART payload). Each
intermediate layer ciphertext (i.e., envelope) is signed and
can be verified by the server using the signature verification
key given in the corresponding ART payload. See the formal
protocol in the full version [64] for details. This gives us
authenticated boomerang routing which ensures that: (1) each
server receives every envelope for each link and (2) all en-
velopes on a link are valid authenticated encryptions under the
associated link public keys. Any failure of these two properties
(e.g., failed decryption, bad signatures, or missing envelopes)
triggers a blame protocol (described in Section VI-A4).

Dummy envelopes. To prevent leaking how many messages
are passed between servers in each layer (required to avoid
leaking parts of the mixing permutation applied on the mes-
sages to the network adversary), each server batches the
envelopes (intermediate boomerang ciphertexts) it sends to the
destination server(s) in the next layer, padding the batch with
“dummy” envelopes as needed. The dummy envelopes are then
discarded by the receiving server(s).

Assigning blame. All communication between parties is ad-
ditionally signed using a digital signature (DS) scheme for
lightweight blaming of malicious parties. See Section VI for
details on our blame protocols.

C. Do once: Path establishment

We now describe how we resolve the first challenge:
anonymously establishing random paths. The difficulty is that

7



paths must be created in a way that (1) does not reveal the
path to any party other than the user and (2) guarantees
that all paths are uniformly random, even when generated by
malicious users. Each server on the path must receive an ART
associated with the path link but must not learn which user
provided it. We solve this with an incremental approach: we
inductively extend an existing path from one server to another
while simultaneously forcing all users to choose random paths.
Each user starts with a random path of length one, with the
choice of this first server assigned by the first ART. This base
case does not yet provide anonymity since the first server
knows the user’s identity. We then proceed by induction as
follows. Given a path of length ℓ ending at server Sℓ, the
user extends the path to length ℓ+1 using boomerang routing
through S1 → S2 → . . . → Sℓ to communicate with the
new server Sℓ+1. The user sends the routing information Sℓ+1

needs: the ART tℓ for the link (Sℓ → Sℓ+1), the ART tℓ+1

for the link (Sℓ+1 → Sℓ+2), and the associated Diffie-Hellman
messages and signature verification keys. (The user also sends
a signature on the ART tℓ+1 under the verification key tℓ to
prove that tℓ and tℓ+1 are part of the same path.) Because
the user communicates exclusively through the existing path
and because ARTs are unlinkable, the path extension pro-
cedure reveals no information to any server. After receiving
and verifying the tokens, Sℓ+1 routes the reverse boomerang
envelopes backwards along the path. Each server verifies the
authenticated encryption, which implicitly ensures that the user
and all servers Sℓ → Sℓ−1 → . . . → S1 know that Sℓ+1

received (and validated) the tokens. This process is repeated
L times until the full path to SL is established.

Anytrust group bookends. The Trellis mix-net consists of L
mix-net layers “bookended” between two layers of anytrust
groups (see Figure 6). The anytrust groups at the entry and
exit layers ensure that the start and end of a mix-net path are
always processed by an honest server, which prevents dropped
messages and denial-of-service attacks. The anytrust group
at the entry layer verifies the boomerang receipts on behalf
of the user: when the boomerang receipt comes back, each
member of the group can check the attached signature and
ensure that the receipt was correctly decrypted. Additionally,
the entry group stores the envelopes it is given so as to prevent
denial-of-service attacks: if the first k servers in the mix-net
are malicious and drop messages, the entry group can resend
the envelopes after the adversarial servers are eliminated. The
anytrust group at the exit layer outputs the messages to the
world (the “broadcast” part of anonymous broadcast), ensuring
that all messages make it out. During path establishment, these
exit groups are at the “peak” of the boomerang and use a group
decryption protocol to decrypt the Lth boomerang envelopes.
In this protocol, each group verifies the ART for layer L
and retains the included signature verification key. (Note that
the verification keys are unlinkable to the start of the path
because of the mixing guarantees provided by the mix-net.)
Then, during the repeated broadcast rounds, these exit groups
check that one message is received for each of the verification
keys they have, ensuring delivery of all messages. See the
formal protocol in the full version [64] for details.

Why path establishment works. Both the incremental path
extension and the boomerang message receipts are required
to prevent dropped messages. The incremental approach to

���������������������������������������

�����
�����������

��
��������������

	������������������������������
��������
���
���������

����������
���������������������
�
���
����
�������������
��������������������

������
��������

������
��������

������
��������

������
��������


������

������
��������������
��������

Fig. 6: Detailed overview of the Trellis mix-net “bookended”
by anytrust groups to prevent denial-of-service attacks at
the entry and exit points. Users send boomerang-encrypted
messages through a pre-selected random path in the network.
The anytrust group at the last layer ensures that all messages
get published to the bulletin board.

path establishment enables immediate blame assignment and
prevents errors from propagating. The message receipt is
designed to allow servers on the existing path to assign blame
on a user’s behalf if the new server deviates from protocol.
Specifically, each server expects to receive an envelope for
each established key, in both the forward and reverse direction.
This gives rise to a simple blame protocol in the case of a
dropped envelope: blame the previous server. The previous
server, if innocent, should have reported the envelope missing
during the last synchronous layer; because it did not do so, it
must be malicious (see Section VI for details).

D. Repeat: Mixing rounds

The repeated broadcasting rounds use the established paths
to mix (different) message anonymously and quickly. Mes-
sages in Trellis are of fixed size (e.g., 10kB), and all users
must submit a message of that size, padding if necessary.
Because mixing rounds can be repeated many times, users
with larger messages can split their broadcasts across several
rounds. The random routes guarantee that all messages are
mixed before reaching the final layer (see mixing analysis in
the next section).

E. Number of layers required

We now turn to analyzing the number of layers required
to achieve a random permutation on the delivered messages.
This analysis forms the crux of our security argument in Sec-
tion VII. Previous theoretical work [46, 89] performs similar
analyses in the context of permutation networks. Unfortunately,
such analyses are only applicable to networks consisting ex-
clusively of honest servers. The analysis of Kwon [62] is the
first to consider networks containing a fraction of malicious
servers. We improve the mixing analysis of Kwon [62]. We
give a simpler analysis of mixing guarantees to bound the
number of layers required in a random routing mix-net.

Modeling the network. We consider an information-theoretic
view of an adversary observing the network and learning a
fraction f of the permutation applied to the messages in each

8



Number of users
100 K 500 K 1 M 5 M 10 M

f = 0.1 56 58 58 60 60
f = 0.2 86 88 89 92 93
f = 0.3 124 128 129 133 134
f = 0.4 179 184 186 191 194
f = 0.5 266 273 277 284 288
f = 0.6 419 431 436 448 453
f = 0.7 736 757 767 787 796
f = 0.8 1603 1649 1668 1715 1734
f = 0.9 6069 6244 6319 6494 6569

TABLE I: Number of layers required for mixing as a function
of the malicious server fraction f and the number of users.
See full version of the paper [64] for derivation.

layer (obtained from the servers that collude with the adversary
in Trellis). We construct a Markov chain where each state
consists of the server each message is in and a deck of M
cards, where each card uniquely corresponds to a message.
We make one step in the Markov chain with each layer-
to-layer transition. The servers are chosen randomly, which
corresponds to the random path assignment dictated by the
ARTs. We shuffle the deck according to the hidden part of
the permutation, summarized by the following observation:
only messages sent between two honest servers (in adjacent
layers) are mixed, meaning that messages passing between two
malicious servers are not mixed.

We model the adversary’s view as a probability distribu-
tion over all possible permutations of the deck and message
locations. At the start, the adversary knows who submitted
each message, and can choose the starting state. We determine
the probability distribution for subsequent layers through the
Markov process. We note that the above process operates on
the entire group of permutations, and so eventually converges
to the uniform distribution where each deck permutation is
equally likely (see [8, Lemma 15.1]). This corresponds to a
uniformly random permutation of the messages.

Determining the number of layers. To determine the number
of layers required, we need to find the “time” to convergence.
Computing this value requires some additional analysis. This
analysis, while straightforward, is somewhat tedious to derive
(and is similar in nature to the analysis of Kwon [62]). For
details, see the full version of the paper [64]. We report the
number of layers as a function of the corruption fraction f
in Table I. We note that the number of layers is logarithmic
in M (the number of users) and is not dependent on N (the
number of servers). This is because the probability of being
routed through an honest server only depends on f [62].

VI. BLAME, ADVERSARY REMOVAL, AND RECOVERY

If all parties behave honestly, then all envelopes are present
and well-formed. In this case, boomerang routing and mixing
analysis (Section V-E) ensure that all messages are delivered
and mixed (see security analysis; Section VII). However, an
adversarial user or server may deviate from the protocol in
arbitrary ways. To prevent system disruption, or worse, user
deanonymization following active attacks, each (honest) server
is expected to verify all envelopes it receives for layer ℓ before
sending the shuffled batch of envelopes to layer ℓ+1. If any of

the checks do not pass, the server must notify (all) the other
servers before the protocol finishes layer ℓ (note that this server
will not send messages for ℓ+1 until the error is resolved,
and so layer ℓ should not complete). This prevents errors
from propagating through honest servers; honest servers blame
immediately in the layer where a check fails and recovery
protocols are initiated to eliminate the blamed server(s).

Blaming without deanonymization. We make an important
observation which allows us to maintain the anonymity of
honest users when blaming malicious servers: if we can show
that at least one of the two servers on a link misbehaved,
then we can reveal the envelopes along that link without
compromising user anonymity. We formalize this in Claim 1.

Claim 1 (Malicious links provide no anonymity). Links be-
tween two servers, where at least one of the servers is an
adversary, can be revealed without compromising anonymity.

Proof: Consider the view of an adversarial server on a
link consisting of at least one malicious server. The adversary
knows all encrypted envelopes on the link. Revealing any of
this information (to all of the servers) does not further the
adversary’s knowledge. Our analysis of Section V-E relies only
on links between pairs of honest servers for this reason.

A. Blame protocols

In order to illustrate our blame protocols, we provide more
details about what exactly is sent between servers (see the full
version [64] for a formal description). First, all signatures sign
the round, layer, source server (which may be different from
the signer), destination server, protocol, length, and direction
of travel. This will allow anyone to publicly verify which
step of which protocol a message corresponds to. Second,
servers sign the batch of envelopes and corresponding ART
keys. Signing the concatenation of the batch ensures that no
server can equivocate on the number of envelopes it sent for a
given round and layer. These signatures can use any standard
public-key signature scheme [11, 55].

We assume that all blame messages are sent to all servers
(e.g., using a standard gossip protocol [63, 83]). If we assume
an honest majority of servers (f < 0.5; see Section VI-C2
for why this assumption is without loss of generality), the
majority vote assigns blame and selects a replacement server.
In Section VII, we cover how blame protocols support our
delivery guarantees. In short, we ensure that no honest server
or honest user can ever be blamed through a blame protocol,
and thus only adversaries are blamed. The blame protocols
ensure that the tokens, signatures, and envelopes are present
and well-formed, which will imply successful delivery.

1) Arbitration protocol: Our first blame protocol deals with
a missing or incorrect server signature of the concatenated
envelopes. The arbitration protocol begins when a server Sℓ+1

reports that the signature given by Sℓ is missing (including if
no envelopes were sent at all) or incorrect. In this case, we have
either that Sℓ is adversarial or Sℓ+1 is maliciously initiating
the blame protocol. An anytrust group randomly chooses an
arbitrator from the other servers (the honest member will con-
tribute true randomness and ensure the selection is random).
We then require Sℓ to send messages to the arbitrator, denoted

9



Aℓ,ℓ+1, who forwards them to Sℓ+1. The arbitrator also checks
that the signature on the batch is correct (using Sℓ’s public
verification key). If messages are delivered successfully (from
Sℓ to Sℓ+1) through Aℓ,ℓ+1, then Aℓ,ℓ+1 continues to arbitrate
for future rounds. The performance of Trellis is only minimally
impacted by arbitration, as it simply adds an extra forwarding
and signature check for one layer.

If the arbitrator itself has a dispute with Sℓ or Sℓ+1, then
it can determine which server is honest from its perspective.
When the arbitrator is honest, it will never have a dispute
with the honest server. Once an arbitrator decides who the
malicious server is (because it has a dispute), a new arbitrator
is randomly selected by an anytrust group. If there is an honest
majority of servers, then there will be more disputes involving
the dishonest server than there are involving the honest server.
For a dishonest majority, we can track all server disputes with
a trust graph [107]: a graph in which each edge represents if
two servers trust each other. Although the initial disagreement
breaks only one trust graph link, we can choose arbitrators who
trust both parties. Then, each dispute between the arbitrator
and a party breaks another trust graph link. Wan et al. [107]
prove that such an algorithm eventually converges to the honest
clique, who can then reform without the troublesome members.

Because of the synchronous communication assumption,
messages are always delivered between honest parties in a
timely manner, and so the arbitration protocol is only invoked
with adversaries. Arbitration introduces a maximum overhead
of 2×, as each message is forwarded one extra time.

2) Duplicate envelopes corresponding to the same ART:
There should be exactly one message per ART per round and
layer. A server can blame a user by producing as evidence
two different signed envelopes for the same round and layer.
This evidence is submitted to all of the servers, who vote to
remove the user if the evidence is valid (or to remove the server
if the evidence is invalid). We set N(1− f) as the minimum
threshold of votes required to remove a server, as described in
Section VI-C1. All of the protocols below follow this format:
a party will produce some publicly verifiable evidence, which
the servers will check and vote on accordingly.

3) Envelope decryption failure: If an envelope fails to
decrypt, then a server Sℓ+1 can request that the previous server
Sℓ be blamed. This means that we are in one of three cases:

1) a malicious user sent an ill-formed envelope,
2) Sℓ tampered with the envelope, or
3) Sℓ+1 is maliciously invoking the blame protocol.

Since the potentially malicious user, Sℓ, and Sℓ+1 all know
both the envelope and the verifying ART token, Sℓ+1 can
reveal these to prove the envelope is ill-formed (in a similar
argument to Claim 1). In response, Sℓ may claim it never sent
the ill-formed envelope and token. It then requests that Sℓ+1

reveal the signed concatenation of envelopes on the link to
prove that the ill-formed envelope and ART were sent by Sℓ.
In this case, either Sℓ or Sℓ+1 is blamed.

Otherwise, Sℓ agrees that the envelope was ill-formed with
respect to the corresponding ART, and we won’t blame Sℓ+1.
We still need to decide if the user sent the ill-formed envelope,
or Sℓ tampered with it. If Sℓ is honest, then it will be able
to present a proof that it acted correctly. This proof involves

revealing each step taken by Sℓ and proving that each step
was executed correctly. To prove this, Sℓ first reveals the ART
tℓ and the encapsulated payload (containing a partial Diffie-
Hellman message and verification key). Using a discrete log
equivalence proof [28, 50, 56], Sℓ proves correct decryption
(without revealing its long-term secret key). Finally, it provides
the user’s signature on tℓ+1 under the key from tℓ to show that
tℓ+1 is the correct next token. With these elements the other
servers can verify the following:

• Sℓ received an envelope that was well-formed (signed), and
therefore Sℓ was not required to blame earlier.
• The decryption of said envelope was computed correctly,

but the output of the decryption was an ill-formed envelope.
• The keys are correct and came from the user who created

both of the ARTs, as tℓ signs the payload.

With this information, it can only be that the user is to blame,
and we apply the protocol in Section VI-C3 to deanonymize
and remove the malicious user. This well-formed envelope is
signed (anonymously) by the user under some key vkℓ, and
so could only have been created by them. Similarly, the token
tℓ+1 is signed by vkℓ and so is the correct next token, and
the correct vkℓ+1. Therefore, the server has produced a proof
that the decryption was performed correctly, but the decryption
output is ill-formed.

4) Missing envelope: Each server expects to receive one
envelope corresponding to each ART pair it received. In the
event that an envelope is missing, Sℓ+1 blames server Sℓ

for not sending the envelope (and not reporting the envelope
missing in the previous layer). We have two cases to consider:

• Sℓ+1 is maliciously invoking the blame protocol, or
• Sℓ is malicious and dropped an envelope.

Again, by Claim 1, Sℓ+1 can reveal the signed concatenation of
the envelopes on link (Sℓ → Sℓ+1). Specifically, Sℓ+1 provides
the signed batch (with the missing envelope) that it claims
to have received from Sℓ in addition to a signed batch from
a previous round showing that Sℓ sent an envelope with the
ART in question. We can then apply the protocol described in
Section VI-C1 to remove the offending server.

Remark 1 (An edge case). At the peak of the boomerang
during path establishment, note the pattern of sending (Sℓ →
Sℓ+1 → Sℓ). Because Sℓ+1 does not know which tokens it is
supposed to receive, it cannot blame Sℓ for not sending them.
Therefore, we allow Sℓ+1 to respond to claims by Sℓ (that
it dropped a receipt) by complaining that Sℓ never sent the
ART in the first place. It does this by presenting the signed
concatenation from (Sℓ → Sℓ+1) which is secure by Claim 1.

B. Malicious anytrust group member

First, if one of the signers in an anytrust group incorrectly
signs the ART during the signing protocol described in Sec-
tion V-A, the user receives an invalid signature (which it locally
determines is invalid using ART.Verify). In this case, the user
can request that each signer (publicly) proves it computed the
partial signature correctly. In our construction, each signer
can do so efficiently by providing a zero-knowledge proof
of discrete log equivalence [28, 50, 56], proving that Wℓ,i

was calculated correctly with respect to gxi . Second, during

10



path establishment, we require the anytrust group to compute
a group decryption at the last layer. If decryption fails, each
signer can prove it computed the partial decryption correctly
with a zero-knowledge discrete log equivalence proof. Any
signer that does not comply is eliminated (see Section VI-C1).

C. Removal and recovery protocols

Once we have identified the adversarial party, we can pro-
ceed to remove them from the system. To remove adversarial
servers, we ensure that each server’s secret keys are t-out-of-n
shared, using a verifiable secret sharing [88] (VSS) scheme,
with t > Nf at setup time. Blame decisions are made as a
group, using the t-out-of-n secret key shares as votes. Using
the shares allows the server receiving t (or more) shares (i.e.,
votes) to recover the offending server’s secrets and replace it.

1) Server removal and state recovery: When servers vote
to blame a malicious server, a replacement server is chosen
randomly from among the remaining servers by an anytrust
group (as the arbitrator was in Section VI-A1). Each server
sends its share of the blamed server’s secret key sk to the
replacement server, who can use the VSS scheme to recon-
struct sk if at least t servers agree that the server is at fault.
Next, to reconstruct the routing information, the ARTs and
corresponding information can be resent by the other servers.
We note that the replacement server may additionally need to
show that it did not receive an ART during this replay and
pass blame for a missing message accordingly, which it can
do using the signature of the replay batch. With the keys, the
replacement can decrypt and forward the messages encrypted
to the old server. Note that the replacement server does not
recover the batch signature key. Instead, it signs batches with
a new signing key which lets other servers know that envelopes
came from the replacement rather than the eliminated server.

Remark 2 (Server churn). In the event of server churn, where
an (honest or adversarial) server leaves the network and stops
responding, we can also apply the state recovery protocol to
select a replacement and continue.

2) Server removal and state recovery with a dishonest ma-
jority: If there is a dishonest majority, then the vote described
in Section VI-C1 can deadlock, with neither side meeting the
threshold required to find a replacement. However, note that
all honest servers will vote together, and only adversaries will
vote incorrectly. If we partition into a new instance along the
voting lines, then the partition with the honest servers (who all
voted together) will have a higher fraction of honest servers
than before. If we let h := 1 − f be the fraction of honest
servers, then we will require no more than ⌊1/h⌋ − 1 restarts
after voting deadlocks in order to achieve an honest majority.
For example, if 1/2 < f < 2/3, we will need at most 1
restart. This is because in order to deadlock the vote, at least
1/3 of the servers must vote incorrectly (all servers that vote
incorrectly are adversaries), who will form one partition. The
other partition will then consist of at most 2/3 of the servers,
including all of the (at least 1/3) honest servers, giving it an
honest majority. Since the evidence is publicly verifiable, it can
also be verified by the users, who can decide which partition to
join. The honest users will evaluate the evidence the same as
the honest servers, and so they will choose to send messages
to the honest partition.

3) Blocking malicious users: Once a user has been blamed,
we can revoke their keys by having each server on the user’s
path reveal the user’s ARTs. Specifically, a server can produce
both of the user’s ARTs and the signature binding them
together. Then, we can repeat this for each server on the path
(by following the identities committed in the ARTs), to remove
all of the user’s tokens from the servers’ lists. We assume that
the set of users is fixed, as users who join late are inherently
hard to anonymize due to statistical disclosure attacks (see
Section III-B). Users that are late must wait until the next
restart of the protocol to join.

VII. SECURITY ANALYSIS

In this section, we analyze the security properties of Trellis.
We show that (1) messages are mixed and no metadata is
leaked in the process, (2) messages are guaranteed to be deliv-
ered, and (3) blame protocols eliminate adversarial parties—
users or servers—without compromising anonymity.

Claim 2 (Path establishment). All honest users establish a
random path through the layers and each server on the path
obtains a decryption key and a signature verification key.

Proof: Boomerang encryption verifies that the anonymous
routing tokens are delivered to each server along the path. The
blame and recovery protocols (Section VI) ensure this process
completes. In particular, note that the user establishes a key
with the final anytrust group.

Claim 3 (Path adherence). All messages submitted by honest
users are routed through all honest servers along the chosen
path determined by the ARTs.

Proof: Each honest user follows the ART signing protocol
and obtains valid ARTs for each link. Suppose, towards
contradiction, that the envelope sent by the user does not travel
through an honest server, say Sℓ, as dictated by the ART on
the ℓth layer. The presence of a correctly signed message in the
final anytrust group at the last layer implies that all preceding
onion layers were decrypted correctly. In turn, this means that
Sℓ decrypted a layer, which is a contradiction.

Claim 4 (Metadata-private shuffling). All envelopes sent be-
tween two honest servers on a link appear indistinguishable to
an external observer.

Proof: The dummy messages ensure that each batch of
envelopes exchanged between two honest servers is of fixed
size B (and TLS prevents the network adversary from seeing
the contents of the batch). Crucially, no malicious server or
user can overload an honest-honest link such that there are
more than B envelopes. This holds because (1) the envelopes
expected by each server are uniquely associated with ARTs
provided during path establishment and (2) no honest server
would forward any envelope not uniquely associated with an
ART. By (1) and (2), the size of the batch sent to the second
honest server is always B (padded with dummies as needed).

Claim 5 (User anonymity). All messages contributed by
honest users are mixed, resulting in a random permutation of
all messages being output to the public bulletin board.

11



Proof: We combine Claim 3 and Claim 4. Since all honest
messages travel through all honest servers, they travel through
all honest-honest links. Since the messages travel along honest-
honest links, these messages are shuffled. Then, by Section V-E
all honest messages become unlinkable with their senders as
the total variation distance of the applied permutation is ϵ-close
to a truly random permutation of all messages.

Claim 6. An honest user is never blamed as a result of any
blame protocol described in Section VI, except with negligible
probability in the computational security parameter λ.

Proof: A user is only blamed if either (1) there exist two
envelopes for the same round and layer (Section VI ) or (2) if
there is an ill-formed envelope at some layer ℓ (Section VI-A3).
Because an honest user’s envelopes are always well-formed,
(1) and (2) do not apply to honest users. Furthermore, a user
cannot be blamed by a malicious invocation of Section VI-C3
(user removal) because each ART used to trace back the path
to the user is signed by the verification key in the next ART,
and an honest user would never sign a different user’s ART.
Hence, if an honest user is blamed then a malicious party was
capable of forging the honest user’s signature, which can only
happen with negligible probability.

Claim 7. An honest server is never blamed as a result of a
blame protocol described in Section VI, except with negligible
probability in the computational security parameter λ.

Proof: A server is only blamed if (1) there is a (signed)
batch of envelopes showing deviation from the protocol or
(2) the server refuses to produce a valid proof of correct
decryption. (1) and (2) do not apply to honest servers who
follow the protocol. Hence, if an honest server is blamed then
a malicious party was capable of forging the honest server’s
signature, which can only happen with negligible probability.

VIII. IMPLEMENTATION AND EVALUATION

Implementation. We implement Trellis in Go 1.17. Our im-
plementation is open source [1] and consists of approximately
11,000 lines of code. We implement distributed key genera-
tion [54] and proactive secret-sharing [30] using the Kyber
library [29]. We use the BLS12-381 [12, 111] elliptic curve
to implement ARTs. Symmetric-key encryption is instantiated
using AES [23, 81] and digital signatures using EdDSA [52].
Diffie-Hellman key agreement is performed over the ed25519
elliptic curve to match EdDSA. For our empirical comparison
to Atom, we use their open source implementation [57].

Environment. We distribute the servers evenly among four
geographic regions: Oregon, Virginia, Frankfurt, and Stock-
holm, to roughly match the distribution of Tor servers [71]. We
use the general purpose m5.xlarge instances (quad-core; 16
GiB of RAM). We measured median round trip ping times of
around 150 ms, with rare latency spikes of up to one second.

Due to high international networking costs, we run most of
our evaluations on a simulated network environment informed
from a real network deployment. In Figure 7, we report the
latency of Trellis (broadcast round) under a 100 Mbps and
200 Mbps real network and compare latency to our simulated

0

200

400

La
te

nc
y 

(s
)

100 Mbps network

10K 25K 50K 75K 100K
Number of users

0

200

La
te

nc
y 

(s
)

200 Mbps network

Real Simulated

Fig. 7: Comparison between broadcasting round latency on
an international (Oregon, Virginia, Frankfurt, and Stockholm)
network and our simulated network. Top: 100 Mbps bandwidth
connections. Bottom: 200 Mbps bandwidth connections.

network deployment. We ensure that the simulated network
accurately approximates the real network by evaluating the
broadcasting rounds (on pre-established paths). We observe
modest differences in latency (less than 20%) between the real
and simulated networks.

We use the Linux NetEm [47] tool to model latency and
packet loss rates for each geographic region. We apply a
Pareto distribution to simulate the infrequent, but large, latency
spikes observed in the real network. Properly simulating these
latency spikes is important because the all-to-all nature of the
mixnet in Trellis is sensitive to the highest latency observed
across all links. As such, tail latencies can significantly impact
performance and lead to high variance in broadcast latency.

Systems optimizations. In the full version, we describe a
few basic system-level and network optimizations that we
incorporate into our implementation [64].

Parameters. We set ϵ := 2−64 for the total variational distance
of the mixing. (We also set the size of each anytrust group so
that the probability that any anytrust group has all adversaries
is at most 2−64.) Note that both of these parameters set the
statistical security of Trellis. To simplify our evaluation, we
fix the message size to 10 kB (over 60× larger compared to
the 160B messages evaluated in Atom [60]). We vary the
number of users M , number of servers N , and the fraction
of malicious servers f (which influences the number of layers
L and anytrust group size s).

A. Evaluation

The goals of our evaluation are to:

• determine the processing overheads of Trellis on the user
and on the servers through microbenchmarks,
• measure the network overhead as a function of the number

of users and fraction of malicious servers in the mix-net,
• evaluate the overhead of dummy envelopes between layers,
• evaluate how Trellis scales with additional servers, and
• compare Trellis to Atom—the state-of-the-art mix-net based

system for metadata-private anonymous broadcast.

Computational and network overheads. The computational
overhead of the broadcasting round is minimal given the rel-
atively lightweight cryptography required: AES-decryption of

12



10K 25K 50K 75K 100K
Number of users

100

200

300
La

te
nc

y 
(m

in
)

Adversary fraction f
0.1 0.2 0.3

10K 25K 50K 75K 100K

100
200
300
400
500
600

La
te

nc
y 

(s
ec

) f = 0.1

10K 25K 50K 75K 100K
Number of users

100
200
300
400
500
600

f = 0.2

Message size
1 kB 5 kB 10 kB 20 kB

10K 25K 50K 75K 100K

100

200

300

400

500

600
f = 0.3

Fig. 8: Left: Path establishment with different fractions of malicious servers (f ). Right: Broadcast round scaling with number
of users M (messages), message sizes, and different adversary fractions. Both experiments are run on a simulated 200 Mbps
network configuration with N = 128 servers. Shaded regions represent a 95% confidence interval (mostly invisible).

32 64 128 192 256
Number of servers

2000

4000

6000

La
te

nc
y 

(s
ec

) Adversary fraction f
0.1 0.2 0.3

Fig. 9: Latency decreases with the number of servers added
to the network (until reaching a constant overhead) with
200Mbps bandwidth cap. Number of messages is M =
2, 000, 000 and message size is set to 1 kB. Shaded regions
represent a 95% confidence interval.

10K 25K 50K 75K 100K
Number of users

100

200

300

La
te

nc
y 

(s
ec

) With dummies
Without dummies

Fig. 10: Dummy envelopes between layers incur a large
overhead due to increased bandwidth requirements. Broadcast
round (with and without dummy envelopes) evaluated on the
real network with 200Mbps bandwidth cap, f = 0.2, and
message size set to 10 kB. Shaded regions represent a 95%
confidence interval.

envelopes and digital signature verification. All the computa-
tionally expensive cryptographic operations (e.g., pairings and
token generation) are precomputed during path establishment.
These computational workloads scale with the number of
servers, as we show in Figure 9. However, the network latency
incurred by routing through L layers does not scale with the
number of servers and thus the scalability (for a given number
of users) eventually plateaus. Furthermore, as N2 approaches
M , the overhead of dummy envelopes increases, as we must
always send at least one dummy envelope between each pair
of servers. This results in a limit on the horizontal scalability
of Trellis. To illustrate this point further, in Figure 10, we
compare a broadcast round in Trellis on a real network deploy-
ment with and without dummy envelopes. We find that dummy
envelopes account for roughly 2.5× in latency overhead.

Path establishment. Path establishment can be seen as running
consecutive broadcasting rounds with ℓ = 1, 2, . . . , L layers in
each consecutive round. Therefore, the asymptotic time com-
plexity for path establishment is O(L2), and the concrete time
it takes follows accordingly (see Figure 8). Path establishment
can take one to five hours, depending on parameters. We note
that path establishment depends only on the number of users,
and not on the message size or number of subsequent broadcast
rounds. We report micro-benchmarks for ARTs below:

• ART.PartSign: 0.08 ms (per token). // Overhead on each signer.
• ART.Verify: 1.09 ms (per token). // Token signature verification.

Broadcasting rounds. Once the path establishment completes,
broadcasting rounds can be run indefinitely to broadcast
messages (even following server churn and elimination). In
Figure 8, we report the latency of the broadcasting rounds on
four different message sizes (ranging between 1 kB and 20 kB)
and fraction of adversarial servers. The broadcasting rounds are
10-120× faster compared to a path establishment round. With
f = 0.2 and 100,000 users, broadcasting a 10 kB message
incurs approximately four minutes of latency. We report micro-
benchmarks for the decryption and signing (performed by
servers on each link):

• AES.Dec: 16 µs for 10 kB. // Envelope decryption.
• DS.Verify: 71 µs for 10 kB. // Signature verification.

Blame protocols. The primary computational overhead of
blame protocols is generating a proof-of-decryption. In Trellis,
this is done using a discrete-log equivalence proof (DLEQ),
as explained in Section VI. We run a microbenchmark to
determine the proving (and verification) time of each DLEQ:

• DLEQ.Prove: 152 µs. // Proving signing and correct decryption.
• DLEQ.Verify: 310 µs. // Proof verification done by server (or user).

The low overheads of the DLEQ proofs make our blame pro-
tocols lightweight. Similarly, arbitration (in case of a dispute)
incurs one extra hop, which translates to an overall latency
increase of 150ms (in our network configuration).

Throughput. In Table II, we report the throughput (in bits per
second) with 32, 64, and 128 servers and 100,000 users. The
throughput decreases with more users and increases with more
servers but eventually plateaus (see Figure 9 for scaling). In
comparison, Tor achieves around 400,000 bits per second [71].

13



Trellis Throughput (bits/s)
32 64 128

f = 0.1 234± 9 435± 6 534± 15
f = 0.2 169± 3 220± 4 324± 8
f = 0.3 84± 1 168± 2 222± 5

TABLE II: Throughput of Trellis’s broadcast as a function
of the adversary fraction f and number of servers for 20 kB
messages. Includes 95% confidence interval.

B. Comparison to Atom

To the best of our knowledge, Atom [60] is the state-
of-the-art system for metadata-private anonymous broadcast.
Compared to Atom, Trellis achieves four orders of magnitude
lower latency (and proportionally higher throughput). Trellis
scales easily to support large message sizes (e.g., in the kilo-
bytes); in contrast, Atom does not, due to the zero-knowledge
proofs and message passing within each anytrust group. We
evaluate Atom on 32B messages and multiply out to obtain
the estimate time required to broadcast a 1MB file (Kwon
et al. [60] explicitly state that latency grows linearly with larger
messages). We report the result for varying number of users
and match Atom’s f = 0.2 in Figure 11.

3.8 years 9.5 years
19.0 years

28.5 years

Atom

10K 25K 50K 75K 100K
Number of users

2.5 hours 3.6 hours
4.9 hours

6.7 hours

Trellis

Fig. 11: Latency of Trellis vs. Atom to broadcast a 1MB
file. We vary the number of users and set f = 0.2 for both
systems (we run Atom on 32B messages and extrapolate) with
200Mbps bandwidth cap.

C. Discussion and practical considerations

By decoupling path establishment and expensive opera-
tions from the message size, Trellis handles large messages
better than all existing metadata-private anonymous broadcast
systems, especially as the number of users increases. While
Trellis is targeted to asynchronous applications (e.g., email,
document uploads, surveys, etc.) due to concrete performance
limitations (notably, high latency), further reducing latency
and bandwidth overheads would require sacrificing security
guarantees. By assuming that an adversary has a full view of
the entire network, guaranteeing metadata privacy is imperative
to preserving user anonymity. All metadata-private systems,
including Trellis, will inherently require high bandwidth over-
heads so as to maintain a uniform view of all network traffic.

In Trellis, to achieve metadata privacy, we must introduce
dummy envelopes between servers and fix the set of partic-
ipating users. Our evaluation in Section VIII demonstrates
that Trellis pushes metadata-private anonymous broadcast to
its limit by being bandwidth—rather than computationally—
bottlenecked. As a consequence, any further improvements in
performance (beyond minor optimizations) will require sacri-
ficing metadata privacy. Specifically, there are three possible

security compromises that can be made: (1) removing dummy
envelopes between layers, (2) allowing user churn, and (3)
reducing the number of layers in the mixnet. All three of these
compromises are made by systems like Tor so as to scale to
millions of daily users and achieve real-time (synchronous)
communication (e.g., web browsing). We briefly elaborate on
the consequences of applying (1) and (2) on the practical
security guarantees of Trellis. Applying (3) would result in
messages not being mixed and therefore voids all guarantees.

• Not using dummy envelopes would maintain all the guar-
antees of Section III-B, except for metadata privacy. In
return, however, removing dummy envelopes would reduce
the bandwidth overhead on the servers and improves the
overall scalability of Trellis (see Figure 10). Of course, in
practice it may be reasonable to assume a weaker adversary
that is only capable of corrupting a subset of the servers and
without a view of the entire network. Under this (weaker)
threat model, the metadata privacy guarantee of Trellis can
be sacrificed in favor of performance (without impacting
the cryptographic anonymity guarantees of Trellis).
• Choosing to let users come and go makes Trellis (and all

anonymous communication systems) vulnerable to intersec-
tion attacks [24, 25, 110]. Online (or offline) users correlate
themselves with the message output patterns, making it
possible to link messages back to the set of users that sent
them. In practice, however, with sufficiently many users and
a high churn rate (e.g., 50% of users churn in each round)
the effectiveness of such attacks can be mitigated. Other
methods, such as buddy sets [110], can also be applied to
reduce the effectiveness of intersection attacks.

Future work. The theoretical mixing analysis of Kwon [62]
and our analysis in Section V-E assumes that the same number
of envelopes are exchanged on each link, hence servers need
to pad each envelope batch with dummy envelopes. One
direction for improving the performance of Trellis would be
to incorporate different sized batches into the mixing analysis
and avoid adding dummy envelopes in Trellis (at the cost of
increasing the number of layers). Doing so may reduce latency
and improve the horizontal scalability of Trellis, as illustrated
in Figure 10. Another avenue could be proving a tighter bound
on the number of layers required for mixing. Additionally,
eliminating the need for digital signatures (currently required
for our blame protocols) would concretely improve efficiency
of mixing by a small factor, which may have a cumulative
impact when the number of layers becomes very large. For
example, it is conceivable that message authentication codes
(MACs) [11] could be suitable replacements to our digital
signatures and result in smaller boomerang envelopes.

IX. CONCLUSIONS

Scalability and support for large messages plays a key role
in many applications. For example, web browsing requires
megabytes of data transfer (the median web page in 2021 was
2MB in size [97]). Additionally, in the real world, scalability
and concrete efficiency play an important role in anonymity as
well: the more users there are, the larger the anonymity set,
and the more plausible deniability each user obtains.

Trellis is the first system to support large messages and
horizontal scalability, advancing the state-of-the-art for anony-

14



mous broadcast. Our prototype of Trellis is potentially efficient
enough to deploy at a small “enterprise” scale with a few
hundred thousand users. In such a deployment, Trellis would
incur a few hours of overhead to broadcast megabyte-sized
files (e.g., PDF documents). There is still an efficiency gap to
bridge in terms of performance when compared to systems like
Tor and I2P, which provide weaker anonymity guarantees but
better performance. However, Trellis is a step toward closing
this gap.

ACKNOWLEDGEMENTS

We thank Jun Wan for helping us come up with the blame
replacement strategy and answering many questions we had
related to consensus. We thank Kyle Hogan, Manon Revel,
and Mayuri Sridhar for reading several drafts of this paper
and giving us insightful feedback on how to improve it. We
thank Albert Kwon for many helpful discussions pertaining
to Atom and Quark as well as giving us useful pointers for
improving the mixing analysis. Finally, we would like to thank
the NDSS 2023 reviewers and our shepherd Qiang Tang for
many insightful comments and valuable suggestions.

REFERENCES

[1] Source code for Trellis. https://github.com/
SimonLangowski/trellis, 2022.

[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der: Scalable, robust anonymous committed broadcast.
In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20,
pages 1233–1252, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450370899.
doi: 10.1145/3372297.3417261. URL https://doi.org/10.
1145/3372297.3417261.

[3] Ben Adida and Douglas Wikström. Offline/online mix-
ing. In International Colloquium on Automata, Lan-
guages, and Programming, pages 484–495. Springer,
2007.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted in-
frastructure. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), 2021.

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous messaging
via secure multiparty computation. In 26th USENIX
Security Symposium (USENIX Security 17), pages 1217–
1234, 2017.

[6] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, 2016.

[7] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan
Zhai, Apostolos Pyrgelis, Bryan Ford, Joan Feigenbaum,
and Jean-Pierre Hubaux. Prifi: Low-latency anonymity
for organizational networks. Proc. Priv. Enhancing
Technol., 2020(4):24–47, 2020. doi: 10.2478/popets-
2020-0061. URL https://doi.org/10.2478/popets-2020-
0061.

[8] Ehrhard Behrends. Introduction to Markov chains : with
special emphasis on rapid mixing. Advanced lectures in

mathematics. Vieweg, Braunschweig/Wiesbaden, 2000.
ISBN 3528069864.

[9] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. Proceedings on Privacy
Enhancing Technologies, 2019(4):292–310, 2019.

[10] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In International
Workshop on Public Key Cryptography, pages 31–46.
Springer, 2003.

[11] Dan Boneh and Victor Shoup. A graduate course in
applied cryptography. Draft 0.5, 2020.

[12] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. In International con-
ference on the theory and application of cryptology and
information security, pages 514–532. Springer, 2001.

[13] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security? In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 92–102, 2007.

[14] Bryan Burrough, Sarah Ellison, and Suzanna
Andrews. The Snowden saga: A shadowland
of secrets and light. Vanity Fair, 2014. URL
https://www.vanityfair.com/news/politics/2014/05/
edward-snowden-politics-interview. Accessed
September 2022.

[15] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,
Anna Krasnova, Joeri De Ruiter, and Alan T Sherman.
cMix: Mixing with minimal real-time asymmetric cryp-
tographic operations. In International conference on
applied cryptography and network security, pages 557–
578. Springer, 2017.

[16] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[17] Raymond Cheng, William Scott, Elisaweta Masserova,
Irene Zhang, Vipul Goyal, Thomas Anderson, Arvind
Krishnamurthy, and Bryan Parno. Talek: Private group
messaging with hidden access patterns. In Annual
Computer Security Applications Conference, pages 84–
99, 2020.

[18] Cloudflare. Comprehensive DDoS protection. https://
www.cloudflare.com/ddos/, 2021. Accessed September
2022.

[19] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceedings
of the 17th ACM Conference on Computer and Commu-
nications Security, pages 340–350. ACM, 2010.

[20] Henry Corrigan-Gibbs, Dan Boneh, and David
Mazières. Riposte: An anonymous messaging system
handling millions of users. In 2015 IEEE Symposium
on Security and Privacy, pages 321–338. IEEE, 2015.

[21] Cybersecurity and Infrastructure Security Agency. Secu-
rity tip (ST04-015): Understanding denial-of-service at-
tacks. https://www.cisa.gov/uscert/ncas/tips/ST04-015/,
2021. Accessed September 2022.

[22] Artur Czumaj and Berthold Vöcking. Thorp shuf-
fling, butterflies, and non-Markovian couplings. In
International Colloquium on Automata, Languages, and
Programming, pages 344–355. Springer, 2014.

15

https://github.com/SimonLangowski/trellis
https://github.com/SimonLangowski/trellis
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.2478/popets-2020-0061
https://doi.org/10.2478/popets-2020-0061
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://www.cisa.gov/uscert/ncas/tips/ST04-015/


[23] Joan Daemen and Vincent Rijmen. The design of
Rijndael: AES — the Advanced Encryption Standard.
Springer-Verlag, 2002. ISBN 3-540-42580-2.

[24] George Danezis. Statistical disclosure attacks. In IFIP
International Information Security Conference, pages
421–426. Springer, 2003.

[25] George Danezis and Andrei Serjantov. Statistical disclo-
sure or intersection attacks on anonymity systems. In
International Workshop on Information Hiding, pages
293–308. Springer, 2004.

[26] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a type III anonymous
remailer protocol. In 2003 Symposium on Security and
Privacy, 2003., pages 2–15. IEEE, 2003.

[27] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Divide and funnel: a scaling
technique for mix-networks. Cryptology ePrint Archive,
2021.

[28] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164–180, 2018.

[29] DEDIS. Dedis advanced crypto library for Go. https:
//github.com/dedis/kyber, 2022. Accessed August 2022.

[30] Yvo Desmedt and Sushil Jajodia. Redistributing secret
shares to new access structures and its applications,
1997.

[31] Whitfield Diffie and Martin Hellman. New directions
in cryptography. IEEE transactions on Information
Theory, 22(6):644–654, 1976.

[32] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[33] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike
Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
On the security of two-round multi-signatures. In 2019
IEEE Symposium on Security and Privacy (SP), pages
1084–1101, 2019. doi: 10.1109/SP.2019.00050.

[34] Saba Eskandarian. Fast privacy-preserving punch cards.
Proceedings on Privacy Enhancing Technologies, 2021
(3):289–307, 2021. doi: doi:10.2478/popets-2021-0048.
URL https://doi.org/10.2478/popets-2021-0048.

[35] Saba Eskandarian and Dan Boneh. Clarion: Anonymous
communication from multiparty shuffling protocols. In
Proceedings of the Network and Distributed Systems
Security Symposium, 2022.

[36] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, and Dan Boneh. Express: Lowering the cost
of metadata-hiding communication with cryptographic
privacy. In 30th USENIX Security Symposium (USENIX
Security 21), Vancouver, B.C., August 2021. USENIX
Association.

[37] Nathan S Evans, Roger Dingledine, and Christian
Grothoff. A practical congestion attack on Tor using
long paths. In USENIX Security Symposium, pages 33–
50, 2009.

[38] Ernesto Falcon. The FCC must update ISP privacy
rules. https://www.eff.org/deeplinks/2016/05/fcc, 2016.
Accessed September 2022.

[39] Paul Feldman. A practical scheme for non-interactive
verifiable secret sharing. In 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987), pages

427–438. IEEE, 1987.
[40] Michael J Freedman and Robert Morris. Tarzan: A peer-

to-peer anonymizing network layer. In Proceedings of
the 9th ACM Conference on Computer and Communi-
cations Security, pages 193–206, 2002.

[41] Nethanel Gelernter, Amir Herzberg, and Hemi Lei-
bowitz. Two cents for strong anonymity: The anony-
mous post-office protocol. In International Conference
on Cryptology and Network Security, pages 390–412.
Springer, 2017.

[42] Yossi Gilad. Metadata-private communication for the
99%. Communications of the ACM, 62(9):86–93, 2019.

[43] Oded Goldreich. Foundations of cryptography: a
primer, volume 1. Now Publishers Inc, 2005.

[44] Philippe Golle and Ari Juels. Parallel mixing. In
Proceedings of the 11th ACM conference on Computer
and communications security, pages 220–226, 2004.

[45] Maohua Guo and Jinlong Fei. Website fingerprinting
attacks based on homology analysis. Security and
Communication Networks, 2021, 2021.

[46] Johan Håstad. The square lattice shuffle. Random
Structures and Algorithms, 29(4):466–474, 2006.

[47] Stephen Hemminger et al. Network emulation with
NetEm. In Linux conf au, volume 5, page 2005. Citeseer,
2005.

[48] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk,
and Moti Yung. Proactive secret sharing or: How to
cope with perpetual leakage. In annual international
cryptology conference, pages 339–352. Springer, 1995.

[49] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-
Tin. How much anonymity does network latency leak?
ACM Transactions on Information and System Security
(TISSEC), 13(2):1–28, 2010.

[50] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model.
In International Conference on the Theory and
Application of Cryptology and Information Security,
pages 233–253. Springer, 2014.

[51] Rebecca Jeschke. Internet advocates call on ISPs
to commit to basic user privacy protections. https:
//www.eff.org/deeplinks/2021/03/internet-advocates-
call-isps-commit-basic-user-privacy-protections, 2021.
Accessed September 2022.

[52] Simon Josefsson and Ilari Liusvaara. Edwards-curve
digital signature algorithm (EdDSA). RFC, 8032:1–60,
2017.

[53] Antoine Joux. A one round protocol for tripartite Diffie–
Hellman. In International algorithmic number theory
symposium, pages 385–393. Springer, 2000.

[54] Aniket Kate and Ian Goldberg. Distributed private-
key generators for identity-based cryptography. In
International Conference on Security and Cryptography
for Networks, pages 436–453. Springer, 2010.

[55] Jonathan Katz and Yehuda Lindell. Introduction to
modern cryptography. CRC press, 2020.

[56] Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mar-
iana Raykova. Anonymous tokens with private metadata
bit. In Annual International Cryptology Conference,
pages 308–336. Springer, 2020.

[57] Albert Kwon. Source code for Atom. https://github.
com/kwonalbert/atom, 2017. Accessed August 2022.

16

https://github.com/dedis/kyber
https://github.com/dedis/kyber
https://doi.org/10.2478/popets-2021-0048
https://www.eff.org/deeplinks/2016/05/fcc
https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://github.com/kwonalbert/atom
https://github.com/kwonalbert/atom


[58] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting at-
tacks: Passive deanonymization of Tor hidden services.
In 24th USENIX Security Symposium (USENIX Security
15), pages 287–302, 2015.

[59] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. Proc. Priv. Enhancing Technol., 2016
(2):115–134, 2016.

[60] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406–422, 2017.

[61] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 759–776,
2020.

[62] Young Hyun Kwon. Towards anonymous and metadata
private communication at Internet scale. PhD thesis,
Massachusetts Institute of Technology, 2019.

[63] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, 2001.

[64] Simon Langowski, Sacha Servan-Schreiber, and Srinivas
Devadas. Trellis: Robust and scalable metadata-private
anonymous broadcast. Cryptology ePrint Archive, 2022.

[65] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 711–725, 2018.

[66] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Yodel: Strong metadata security for voice calls. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 211–224, 2019.

[67] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review, 43
(4):303–314, 2013.

[68] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review, 43
(4):303–314, 2013.

[69] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP
systems. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
pages 639–652, 2015.

[70] Brian N Levine, Michael K Reiter, Chenxi Wang, and
Matthew Wright. Timing attacks in low-latency mix
systems. In International Conference on Financial
Cryptography, pages 251–265. Springer, 2004.

[71] Karsten Loesing, Steven J. Murdoch, and Roger Din-
gledine. A case study on measuring statistical data
in the Tor anonymity network. In Proceedings of the
Workshop on Ethics in Computer Security Research
(WECSR 2010), LNCS. Springer, January 2010.

[72] Donghang Lu and Aniket Kate. Rpm: Robust anonymity

at scale. Cryptology ePrint Archive, 2022.
[73] Ewen MacAskill and Gabriel Dance. NSA files: de-

coded. The Guardian, 1, 2013.
[74] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang,

Andrew Low, Yupeng Zhang, Ari Juels, and Dawn Song.
Churp: dynamic-committee proactive secret sharing. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 2369–
2386, 2019.

[75] Nick Mathewson and Roger Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure.
In International Workshop on Privacy Enhancing Tech-
nologies, pages 17–34. Springer, 2004.

[76] Prateek Mittal and Nikita Borisov. Shadowwalker:
peer-to-peer anonymous communication using redun-
dant structured topologies. In Proceedings of the 16th
ACM conference on Computer and communications
security, pages 161–172, 2009.

[77] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew
Caesar, and Nikita Borisov. Stealthy traffic analysis of
low-latency anonymous communication using through-
put fingerprinting. In Proceedings of the 18th ACM
conference on Computer and communications security,
pages 215–226, 2011.

[78] Zachary Newman, Sacha Servan-Schreiber, and Srinivas
Devadas. Spectrum: High-bandwidth anonymous broad-
cast. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 229–248,
2022.

[79] Lan Nguyen and Rei Safavi-Naini. Breaking and mend-
ing resilient mix-nets. In International Workshop on Pri-
vacy Enhancing Technologies, pages 66–80. Springer,
2003.

[80] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2:
simple two-round Schnorr multi-signatures. In Annual
International Cryptology Conference, pages 189–221.
Springer, 2021.

[81] NIST. Specification for the Advanced Encryption
Standard (AES). Federal Information Processing Stan-
dards Publication 197, 2001. URL http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

[82] Se Eun Oh, Nate Mathews, Mohammad Saidur Rahman,
Matthew Wright, and Nicholas Hopper. GANDaLF:
GAN for data-limited fingerprinting. Proc. Priv. En-
hancing Technol., 2021(2):305–322, 2021.

[83] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[84] Lasse Overlier and Paul Syverson. Locating hidden
servers. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 15–114. IEEE, 2006.

[85] Ania M Piotrowska. Low-latency mix networks for
anonymous communication. PhD thesis, UCL (Univer-
sity College London), 2020.

[86] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The loopix anonymity
system. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1199–1216, 2017.

[87] David Pointcheval and Jacques Stern. Provably secure
blind signature schemes. In International Conference
on the Theory and Application of Cryptology and Infor-

17

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


mation Security, pages 252–265. Springer, 1996.
[88] Tal Rabin and Michael Ben-Or. Verifiable secret sharing

and multiparty protocols with honest majority. In
Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73–85, 1989.

[89] Charles Rackoff and Daniel R Simon. Cryptographic
defense against traffic analysis. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of
computing, pages 672–681, 1993.

[90] Michael K Reiter and Aviel D Rubin. Anonymous web
transactions with crowds. Communications of the ACM,
42(2):32–48, 1999.

[91] Eric Rescorla and Tim Dierks. The transport layer
security (TLS) protocol version 1.3. RFC, 2018.

[92] David Schatz, Michael Rossberg, and Guenter Schaefer.
Hydra: Practical metadata security for contact discovery,
messaging, and dialing. In ICISSP, pages 191–203,
2021.

[93] Adam Schwartz, Andrew Crocker, and Kit
Walsh. EFF to court: Broadband privacy
law passes first amendment muster. https:
//www.eff.org/deeplinks/2020/05/eff-court-broadband-
privacy-law-passes-first-amendment-muster, 2020.
Accessed September 2022.

[94] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analy-
sis in low-latency mix networks: Attacks and defenses.
In European Symposium on Research in Computer Se-
curity, pages 18–33. Springer, 2006.

[95] Robert Shostak, Marshall Pease, and Leslie Lamport.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

[96] Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-
man, and Matthew Wright. Triplet fingerprinting: More
practical and portable website fingerprinting with n-shot
learning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1131–1148, 2019.

[97] John Teague. 2021 Page Weight: The web almanac by
HTTP Archive. https://almanac.httparchive.org/en/2021/
page-weight, 2021. HTTP Archive.

[98] The Invisible Internet Project. I2P anonymous network,
2022. URL https://geti2p.net/en/. Accessed September
2022.

[99] The New York Times. Got a confidential news tip?
https://www.nytimes.com/tips, 2022. Accessed Septem-
ber 2022.

[100] The Wall Street Journal. Got a tip? https://www.wsj.

com/tips, 2022. Accessed September 2022.
[101] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-

haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[102] Nirvan Tyagi, Sofı́a Celi, Thomas Ristenpart, Nick Sul-
livan, Stefano Tessaro, and Christopher A Wood. A fast
and simple partially oblivious PRF, with applications.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 674–
705. Springer, 2022.

[103] Adithya Vadapalli, Kyle Storrier, and Ryan Henry.
Sabre: Sender-anonymous messaging with fast audits.
In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1953–1970. IEEE, 2022.

[104] Jelle Van Den Hooff, David Lazar, Matei Zaharia,
and Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152, 2015.

[105] Von Spiegel Staff. Inside the NSA’s war on
internet security. Der Spiegel, 2014. URL
https://www.spiegel.de/international/germany/inside-
the-nsa-s-war-on-internet-security-a-1010361.html.
Accessed September 2022.

[106] Abraham Waksman. A permutation network. Journal
of the ACM (JACM), 15(1):159–163, 1968.

[107] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas De-
vadas. Expected constant round byzantine broadcast
under dishonest majority. In Theory of Cryptography
Conference, pages 381–411. Springer, 2020.

[108] Douglas Wikström. Five practical attacks for “optimistic
mixing for exit-polls”. In International Workshop on Se-
lected Areas in Cryptography, pages 160–174. Springer,
2003.

[109] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[110] David Isaac Wolinsky, Ewa Syta, and Bryan Ford.
Hang with your buddies to resist intersection attacks.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 1153–
1166, 2013.

[111] Shoko Yonezawa, Tetsutaro Kobayashi, and Tsunekazu
Saito. Pairing-friendly curves. Network Working Group.
Internet-Draft. January, 2019.

18

https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://almanac.httparchive.org/en/2021/page-weight
https://almanac.httparchive.org/en/2021/page-weight
https://geti2p.net/en/
https://www.nytimes.com/tips
https://www.wsj.com/tips
https://www.wsj.com/tips
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html

	Introduction
	Background and related work
	Mix networks
	Related work

	System overview
	Main ideas
	Threat model and assumptions

	Building blocks
	New tool: Boomerang encryption

	The Trellis system
	New tool: Anonymous routing tokens
	ART construction

	Putting things together
	Do once: Path establishment
	Repeat: Mixing rounds
	Number of layers required

	Blame, adversary removal, and recovery
	Blame protocols
	Arbitration protocol
	Duplicate envelopes corresponding to the same ART
	Envelope decryption failure
	Missing envelope

	Malicious anytrust group member
	Removal and recovery protocols
	Server removal and state recovery
	Server removal and state recovery with a dishonest majority
	Blocking malicious users


	Security analysis
	Implementation and evaluation
	Evaluation
	Comparison to Atom
	Discussion and practical considerations

	Conclusions

