
Demo: Discovering Faulty Patches in Robotic
Vehicle Control Software

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

{kim2956, mozmen, zcelik, antoniob, dxu}@purdue.edu
Video 1: https://youtu.be/TWK5lFPlLB4 Video 2: https://youtu.be/htnWzS4hoCs

This demo is based on PATCHVERIF [2], an automated
patch verification framework for robotic vehicle (RV) software
(e.g., ArduPilot and PX4). Faulty patches that we target occur
for three main reasons: (i) partially fixing a bug, i.e., the
buggy behavior still happens in another context (e.g., differ-
ent location), (ii) patching an incorrect behavior but hurting
another correct behavior, and (iii) adding new functionality
but introducing a bug. The faulty patches can cause two types
of bugs: (1) memory-safety bugs that violate memory access
rules and (2) logic bugs that make the RV software behave
incorrectly without any memory access violations [1], [3], [4].
PATCHVERIF mainly aims to discover logic bugs caused by
faulty patches. Discovering such faulty patches is challenging,
as there is (i) no clear definition of an RV’s “correct behavior”
and (ii) a huge “input space” of RV software.

We explain a faulty patch (Listing 1) discovered by
PATCHVERIF. ArduPilot supports a pivot turn for vehicles.
When a vehicle is near a corner, it decreases its speed, turns
towards the next waypoint, and continues the navigation. The
desired_speed at line 2 determines the vehicle’s ground
speed, and g2.wp_nav.get_speed() returns a limited
speed so that the vehicle slows down before reaching a
corner, as shown in Figure 1-(a). Yet, g2.wp_nav.get_-
desired_speed() at line 3 always returns the constant
value set by WP_SPEED configuration parameter, even when
the vehicle is near the corner. As a result, the vehicle deviates
from the planned navigation path due to the high speed at the
corner, as shown in Figure 1-(b). The deviated vehicle might
collide with another vehicle in the opposite lane.

To discover such a faulty patch, PATCHVERIF conducts the
following steps: (1) Identifying the RV’s physical states that
are affected by the patch and the environmental conditions
that impact the patch by analyzing the removed/added code
and developers’ comments in the patch, e.g., the patch code
in Listing 1 changes the RV’s speed, and wind affects the patch
(i.e., speed); (2) Inferring the inputs that affect the identified
RV states and environmental conditions, e.g., WP_SPEED con-
figuration parameter and WIND_SPEED environmental factor
change the RV’s speed; (3) Finding inputs triggering the patch
code, e.g., adding waypoints and setting AUTO mode trigger
the patch code in Listing 1; (4) Mutating the identified inputs
to generate test cases that are highly likely to make the
incorrectly patched software deviate from normal behaviors,
e.g., PATCHVERIF assigns a large value to WP_SPEED to make
the vehicle deviate from the planned navigation path due to the
high speed at the corner, as shown in Figure 2a; (5) Concluding
that the patch is faulty because the patched software shows

1 void Mode::navigate_to_waypoint() {
2 - float desired_speed = g2.wp_nav.get_speed();
3 + float desired_speed = g2.wp_nav.get_desired_speed();

Listing 1: A faulty patch [5] removes line 2 and adds line 3.

10 m/s

10 m/s

2 m/s

Waypoint i

When WP_SPEED is 10

Waypoint i

When WP_SPEED is 10

10 m/s

(a) (b)

Fig. 1: (a) Normal behavior during a pivot turn and (b)
abnormal behavior after deploying a faulty patch.

2.5 5.0 7.5 10.0
Ground speed (m/s)

0

25

50

75
De

vi
at

io
n 

(m
et

er
s)

Unpatch version
After deploying
a faulty patch

(a) Deviation from a path.

2.5 5.0 7.5 10.0
Ground speed (m/s)

3000

4000

5000

6000

W
/s

ec
on

d Unpatch version
After deploying
a faulty patch

(b) Battery consumption.
Fig. 2: Abnormal behaviors after deploying the faulty patch.
huge increases in position error and battery consumption, as
shown in Figure 2.

We used PATCHVERIF to analyze 1,000 patches. As a
result, PATCHVERIF discovered 115 previously unknown bugs.
Demonstration Plan. We provide videos to demonstrate two
faulty patches discovered by PATCHVERIF. The first one is
detailed above (Listing 1). The second one makes an RV
navigate too close to a static object and eventually causes the
RV to get stuck near the object. Our project website includes
(1) details of the discovered 115 bugs and (2) previews of the
demo videos: https://github.com/purseclab/PatchVerif.

REFERENCES

[1] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Policy-
based Discovery and Patching of Logic Bugs in Robotic Vehicles,” in
Proceedings of the Workshop on Automotive and Autonomous Vehicle
Security (AutoSec), 2022.

[2] H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, “PatchVerif:
Discovering Faulty Patches in Robotic Vehicles,” in Proceedings of the
USENIX Security Symposium, 2023.

[3] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “PGFUZZ:
Policy-Guided Fuzzing for Robotic Vehicles,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2021.

[4] H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, “PGPATCH:
Policy-Guided Logic Bug Patching for Robotic Vehicles,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2022.

[5] “Fix speed nudge,” https://tinyurl.com/x9hwzvfx, 2023.
ACKNOWLEDGMENT

This research is partially funded by the Secure Systems
Research Center (SSRC) at the Technology Innovation Institute
(TII) and ONR under Grants N00014-20-1-2128. The views
expressed are those of the authors only.

Symposium on Vehicles Security and Privacy (VehicleSec) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-88-6
https://dx.doi.org/10.14722/vehiclesec.2023.23015
www.ndss-symposium.org

https://youtu.be/TWK5lFPlLB4
https://youtu.be/htnWzS4hoCs
https://github.com/purseclab/PatchVerif
https://tinyurl.com/x9hwzvfx

	References

