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Abstract—The physical-world adversarial patch attack poses
a security threat to AI perception models in autonomous vehicles.
To mitigate this threat, researchers have designed defenses with
certifiable robustness. In this paper, we survey existing certifi-
ably robust defenses and highlight core robustness techniques
that are applicable to a variety of perception tasks, including
classification, detection, and segmentation. We emphasize the
unsolved problems in this space to guide future research, and
call for attention and efforts from both academia and industry
to robustify perception models in autonomous vehicles.

I. INTRODUCTION

The functionality of autonomous vehicles (AV) relies on
the ability to accurately perceive their physical surroundings.
Nevertheless, security researchers have discovered vulnerabili-
ties in AI-powered AV perception models. For example, in the
physical world, attackers can attach stickers to a stop sign to
make AV misinterpret it as “speed limit” [9], or place a dirty
patch on the road to interfere with lane detection [30]. A large
number of these attacks [8], [9], [30], [33] fall into the category
of adversarial patch attacks [2], where the attacker can control
a spatially constrained region of the physical world. As part
of the effort to develop safe AV systems, we are motivated to
study defenses against adversarial patches.

Mitigating the threat of adversarial patches is never easy.
Most defenses [12], [22], [27], [34] are heuristics-based and
lack formal security guarantee. This makes them unsuitable for
critical applications of autonomous vehicles, where unexpected
failures are highly intolerable. To overcome this limitation,
researchers are exploring the concept of certifiable robustness.
The objective is to generate robustness certificates that prov-
ably ensure accurate perception outcomes on certain inputs
against certain attack capabilities.

Over the past three years, there has been promising
progress in certifiable robustness against adversarial patches.
For example, state-of-the-art robust image classifier Patch-
Cleanser [36] achieves high certifiable robustness at a minimal
cost of clean accuracy (1%) on the large-scale ImageNet [6]
dataset. However, major limitations, such as large computa-
tional overheads in the magnitude of 10-100×, still remain.

Fig. 1. Examples of Adversarial Patch Attacks (left to right: [2], [8], [28])

What is next for this line of research? In this paper,
we survey 17 existing certifiably robust defenses, distill their
core security techniques, and analyze their strengths and weak-
nesses (Section III). We then share our thoughts and questions
on future research agenda and call for efforts from both
academia and industry to robustify AV perception (Section IV).

II. PROBLEM FORMULATION

In this section, we formulate the adversarial patch attack,
the most representative attack against AV perception, and
discuss the objective of certifiable robustness.

A. Adversarial Patch Attack

Attack formulation. The adversarial patch attack [2] is a
type of evasion attack that aims to induce incorrect predictions
when the system is deployed in the wild.

Formally, we define a perception model as a mapping
F : X → Y from the image space X to a predefined output
space Y (e.g., the class label space for image classifiers). We
further define an oracle O : X → Y that maps an image x ∈ X
to its desired model prediction (e.g., the correct classification
label). An evasion attacker aims to generate an adversarial
image x′ s.t. F(x′) ̸= O(x) while satisfying certain attack
constraints x′ ∈ A(x). The patch constraint allows the attacker
to select a spatially localized image region (e.g., a square
patch) and arbitrarily corrupt pixels within the selected region.
Then, a patch attacker can carry out a physical-world attack by
printing and attaching the adversarial patch to a physical scene;
images captured from that scene are adversarial x′ ∈ A(x).

Attack examples. We provide physical-world attack ex-
amples in Fig. 1. In the first two examples, attackers attach
stickers to a stop sign to make the model misclassify it as
“speed limit 45” [9] or “hide” it from being detected by
object detectors [8]. The third example uses a patch to interfere
with the semantic segmentation predictions [28].These attack

Symposium on Vehicles Security and Privacy (VehicleSec) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-88-6
https://dx.doi.org/10.14722/vehiclesec.2023.23020
www.ndss-symposium.org



examples motivate us to study countermeasures to adversarial
patch attacks for safe autonomous driving.

B. Certifiable Robustness for Perception Models

The defense objective is intuitive: we want to build a robust
model F∗ that can perform correct perceptions against attacks.
Formally, we want: F∗(x′) = O(x),∀x′ ∈ A(x).1

The biggest challenge comes from the quantifier “∀”: we
need a certifiable/provable approach to ensure that robustness
F∗(x′) = O(x) holds for all possible attacks within the threat
model A on a given image x. This requirement distinguishes
defenses with certifiable robustness from heuristics-based de-
fenses, whose empirical robustness might be compromised by
future adaptive attacks. We note that certifiable robustness is
essential for critical systems like autonomous vehicles since
their unexpected failures are highly intolerable. We envision
certifiable robustness as a future standard for the design and
manufacturing of AI-powered vehicles.

III. CURRENT STATE OF RESEARCH

In this section, we survey certifiably robust defenses to
summarize the research progress and unsolved challenges.
In Table I, we listed existing defenses and their perception
tasks (Task), publishing time (Time), robustness techniques
(Technique), robustness performance (Robustness), clean per-
formance (Clean; i.e., model performance in the absence of
attacks), and computational overhead (Overhead). We note
that all defenses are leveraging one/two of the three major
robustness techniques listed below; we will pivot our survey
on these robustness techniques.

• Bound propagation (BP): estimating and propagating
the bounds of neuron activations in each layer to
bound the attacker’s influence on final predictions.

• Small receptive fields (SRF): extracting features from
small image regions to bound the number of features
corrupted by the spatially localized patch.

• Masking (M): masking out adversarial pixels from
input images to neutralize malicious effects.

A. Bound Propagation (BP)

Overview. The bound propagation technique was initially
proposed for robustness certification against global ℓp-bounded
perturbations [10], [26], [41]. The idea is to estimate the upper
and lower bounds of neuron activation in each layer based
on model weights and bounds computed from the previous
layer. Once the bounds of activation of the input layer are
determined by the perturbation threat model, we can propagate
the bounds from the input to the final prediction layer to derive
the robustness certificate. For example, if the computed lower
bound of true class activation in the last layer of a classification
model (on a given image) is larger than the upper bound of
any other class, we can certify model robustness for this input
image.

Defense. There is only one defense in late 2019 using this
robustness technique.

1The robustness evaluation metric is the percentage of images x in a dataset
D ⊂ X that satisfy this condition; we aim to optimize it as high as possible.

TABLE I. LIST OF CERTIFIABLY ROBUST DEFENSES AGAINST PATCHES

Task† Defense* Time Technique‡ Robustness$ Clean$ Overhead$

Cls.

Chiang et al. [5] Oct. 2019 BP Low Low Large
Clipped BagNet [42] Jan. 2020 SRF Low Low Low

De-RS [17] Feb. 2020 SRF Low Low Large
PatchGuard [35] May 2020 SRF Low-Med. Low Low

BagCert [25] Oct. 2020 SRF Low-Med. Low Low
RC [21] Oct. 2020 SRF Low Low Large

PatchCleanser [36] Aug. 2021 M High High Large
Smoothed ViT [29] Oct. 2021 SRF Med. Med. Large

ECViT [4] Nov. 2021 SRF Med. Med. Large
ViP-recovery [19] Mar. 2022 SRF Med. Med. Large

*MR-v1 [24] Apr. 2020 M Med. Med. Large
*PatchGuard++ [38] Apr. 2021 SRF+M Med. Low Low

*ScaleCert [11] May 2021 SRF+M Med.-High Low Large
*MR-v2 [36] Aug. 2021 M High Med. Large

*PatchVeto [15] Nov. 2021 M High Low Large
*ViP-detection [19] Mar. 2022 M High Med. Large

Det. *DetectorGuard [37] Feb. 2021 SRF Low Med. Med.
ObjectSeeker [39] Feb. 2022 M Med.-High High Large

Seg. Yatsura et al. [40] Oct. 2022 SRF/M Low Low Large
† Cls.—Image Classification; Det.—Object detection; Seg—Semantic Segmentation.
* Defenses that only achieve certifiable robustness for attack detection are marked with asterisks (*).
‡ BP—Bound propagation; SRF—Small receptive fields; M—Masking.
$ We host a quantitative leaderboard at https://github.com/inspire-group/patch-defense-leaderboard.

◦ Chiang et al. [5] adopted the simplest BP strategy, Interval
Bound Propagation (IBP) [10], [26], to build a robust model.
Chiang et al. leveraged the computed bounds of the last layer
to train a model to be certifiably robust. They achieved the very
first certifiable robustness (against patches) in the literature.

Analysis. Despite the contributions of being the first certifi-
ably robust defense against adversarial patches, this IBP-based
defense is extremely expensive in its training and cannot scale
to high-resolution images like ImageNet [6]. Moreover, the
training optimization becomes extremely challenging due to
the additional objective of certifiable robustness; trained robust
models have poor clean performance.

B. Small Receptive Field (SRF)

Overview. Using small receptive fields (SRF) is currently
the most popular design choice. The idea is to let models
extract features, or make predictions, on different small regions
of the input images. SRF ensures that only a limited number
of local features/predictions “see” (or, are affected by) the
spatially constrained patch. Then, we can perform secure
aggregation (e.g., majority voting) on partially corrupted fea-
ture/prediction maps for robust predictions.

The certification algorithm depends on the aggregation
technique. For example, the condition of robustness certifica-
tion on a given image for majority voting could be: the count
difference between the true-class predictions and any other
class predictions is twice larger than the maximum number
of predictions that can be affected by the adversarial patch.

Defenses. The idea of SRF was first explored in three
concurrent works in early 2020.

◦ Clipped BagNet (CBN) [42] adopted BagNet [1] for certifi-
able robustness. BagNet achieves SRF by using small convo-
lution kernel sizes and strides and was initially proposed for
interpretable machine learning. The CBN defense uses BagNet
as the backbone for feature extraction and clips extracted
features for certifiable secure aggregation.

◦ De-Randomized Smoothing (De-RS) [17] adapted the ideas
of randomized smoothing against ℓ0 global perturbations [18].
It creates ablated images that only contain pixels from part
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of the input image (e.g., image pixel bands). The model then
makes a prediction on each of the ablated images, and it uses
majority voting to generate the final smoothed prediction.

◦ PatchGuard [35] was the first to explicitly discuss the idea
of SRF. It started with an empirical analysis to demonstrate
that conventional CNNs’ vulnerability to adversarial patches
comes from their large receptive fields (e.g., 483×483 for
ResNet-50 [14]) and insecure feature aggregation (e.g., aver-
age pooling). Then, PatchGuard systematically discussed the
defense framework of using SRF and secure aggregation. For
its implementation, PatchGuard used similar techniques used
in BagNet [1] and De-RS [17] to have SRF, and proposed a
robust masking technique for better secure aggregation

These three early works have inspired a large number of
defenses to use SRF as their robustness building block.

◦ BagCert [25] designed a customized BagNet-like [1] ar-
chitecture, which directly integrates the secure aggregation
operation into the end-to-end classification model and enables
end-to-end “certifiably adversarial” training.

◦ Randomized Cropping (RC) [21] proposed to perform major-
ity voting on predictions made on randomly cropped images.

◦ PatchGuard++ [38] combined the SRF idea from Patch-
Guard [35] and the masking ideas from the Minority Reports
(MR) defense [24] (will be discussed in the next section) to
build an efficient feature-space attack-detection defense.

◦ ScaleCert [11] used SRF of “superficial neurons” to improve
the pixel masking strategy from MR [24] for attack detection.

◦ Smoothed ViT [29], ECViT [4], and ViP [19] leveraged
the advancement in Vision Transformer (ViT) research [7],
[13], [32], and significantly improved the performance of De-
RS [17], in terms of performance, training, and efficiency.

The idea of SRF is not only used for image classification
but also for object detection and semantic segmentation.

◦ DetectorGuard [37], the first defense for object detection
against patch-hiding attacks, took PatchGuard [35] models as
its core robustness module.

◦ Yatsura et al. [40] recently proposed the first certifiably
robust semantic segmentation model via SRF (leveraging De-
RS-like [17] architectures).

Analysis. Despite its popularity, SRF introduces a funda-
mental (and seemingly unresolvable) conflict between robust-
ness and clean performance. While SRF limits the number
of corrupted features for robustness, it also limits the useful
information received by each feature/prediction. As a result,
all SRF defense models only have limited clean performance.
Take image classification on ImageNet [6] as an example.
State-of-the-art undefended classification models usually have
an accuracy of 80+% [7], [16], while the SRF defenses only
have accuracy around 50-70% (marked as low or Med. in
Table I). A large drop in clean performance (e.g., 10+%) is
problematic. First, this implies that models are already partially
broken even without an attack, e.g., an AV makes unsafe
moves in non-adversarial scenarios. Second, clean performance
is the upper bound of certifiable robustness; thus, low clean
performance also limits the achievable robustness.

Next, we discuss the overhead of SRF defenses. From
Table I, some SRF defenses [35], [38], [42] have a small
overhead (∼1× compared to undefended models; marked as
Low), as they use BagNet-like [1] architecture to have SRF
and only require one expensive model feed-forward. On the
other hand, SRF defenses with large overheads use De-RS-
like [17] architecture for SRF: they need multiple expensive
feed-forward predictions on different “ablated images” (usually
dozens or hundreds). Moreover, we note that recent papers [4],
[19], [29] that improve the robustness and clean performance
of SRF defenses are all using De-RS-like architectures and
have large computational overheads.

C. Masking (M)

Overview. The idea of masking is intuitive: we want
to mask out all adversarial pixels from the input image so
that vanilla image classifiers could make safe predictions on
masked images. The main challenges are how to apply the
masks without knowing patch locations, and more importantly,
how to achieve robustness certification.

Defenses. The masking idea was first studied under the
attack detection problem.

◦ The Minority Reports (MR) defense [24] is the first masking-
based certifiably robust defense. MR first conservatively esti-
mates the patch size and selects a mask that is large enough to
cover the entire patch. Then, MR moves the mask across all
possible image locations and evaluates model predictions on
all possible masked images. This exhaustive masking operation
ensures that there exist masked images without any adversarial
pixels, and model predictions on these masked images are
likely to be correct. Then, MR predicts as follows: if all
masked predictions reach “certain agreements”, MR considers
it a clean image and outputs the agreed label; otherwise, MR
issues an attack alert. The robustness certification checks if all
masked predictions on the clean image “agree” on the correct
labels. This condition ensures that any malicious masked
prediction label on the adversarial image will trigger an alert.

This agreement-checking masking strategy for attack de-
tection has been adapted and improved by PatchGuard++ [38]
(more efficient feature space masking), ScaleCert [11] (more
efficient superficial neuron analysis), MR-v2 [36] (better back-
bone and mask design), PatchVeto [15] and ViP [19] (using
ViT [7], [13] as better backbones), and Yatsura et al. [40]
(generalizing it to the semantic segmentation task).

Despite the success of MR-style defenses, robustness for
attack detection does not prevent attackers from forcing the
model to always alert and abstain from making any prediction.
A natural question is: Can we use masking for prediction
recovery without any abstention? The answer is yes!

◦ PatchCleanser [36] proposed a solution to recover correct
predictions without any abstentions. PatchCleanser first uses
MR-style masking to identify an attack (denoted as MR-v2 in
Table I). If PatchCleanser detects a prediction disagreement, it
has to decide which prediction to trust (rather than alert and
abstain). To do this, PatchCleanser applies a second round of
masks to images with one mask and evaluates model predic-
tions on images with two masks. The intuition is that, if the
first-round mask already removes the entire patch, the second-
round mask is applied to a “clean” image, and two-mask
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predictions are likely to reach an agreement. On the other hand,
if the first-round mask does not remove the patch, the second-
round mask is applied to an “adversarial image”, and two-
mask predictions can still have a disagreement. PatchCleanser
then uses the agreement/disagreement in two-mask predictions
to identify the first-round mask that removes the patch and
outputs its corresponding masked prediction. The certification
condition is whether model predictions on clean images with
all possible two-mask combinations are all correct.

Finally, the masking idea has also been used for object
detection, which is a harder but more important task for AV.

◦ ObjectSeeker [39] adapted the masking idea for certifiable
robustness (without abstentions) against patch hiding attacks,
which hide victim objects from being detected. Intriguingly,
unlike other masking-based defenses [11], [19], [24], [36],
[38], [40], ObjectSeeker does not need the knowledge of patch
shapes and sizes to generate masks that can remove the entire
patch. This is the first “patch-agnostic” masking-based defense
with certifiable robustness.

Analysis. Masking has two major advantages. First, the
defense is compatible with different computer vision models,
since the masking operation takes place on the input image.
Second, we are free from the limitation of SRF, and thus have
a chance to build a defense model with high clean performance
(e.g., PatchCleanser [36] and ObjectSeeker [39] achieve ∼1%
clean performance drops from undefended models).

The biggest downside of masking-based defenses is their
large computational overheads, as they need to evaluate model
predictions on multiple masked images (at least dozens).
Moreover, we note that the clean performance of masking-
based attack detection defense is also limited (marked as Low
or Med. in the table); this is because they could issue many
false alerts on clean images.2

D. Progress and Limitations

Progress. We have seen tremendous progress made by the
research community. First, most defenses (except Chiang et
al. [5] and MR-v1 [24]) can scale to large perception mod-
els (e.g., ResNet-50 [14], ViT [7]) and large high-resolution
datasets (e.g., ImageNet [6], COCO [20]), which is in huge
contrast to certifiable robustness research for global ℓp-norm
perturbations. Second, certifiable robustness and clean per-
formance have been significantly improved. Notably, Patch-
Cleanser [36] and ObjectSeeker [39] achieve high clean per-
formance (less than 1% drops from undefended models), as
well as state-of-the-art certifiable robustness. These promising
outcomes encourage us to further explore algorithms that are
deployable in practice.

Limitations. Nevertheless, there are still significant lim-
itations left for future research. First, the overhead of high-
performance defenses is still large (e.g., 10-100× more com-
putations compared to undefended models). This limitation
might prevent their deployments in real-time critical systems
like autonomous vehicles. Second, all 17 different defenses
can be categorized into only three major robustness techniques.

2As of Dec. 2022, the clean performance reported by PatchVeto [15],
ViP [19], and Yatsura et al. [40] is flawed as they do not count false alerts on
clean images as errors.

The field might need a new robustness technique to lead the
next breakthrough. Third, most defenses only study the simpler
task of image classification. However, the perception systems
of autonomous vehicles have more complex tasks such as
object detection, object tracking, semantic segmentation, and
visual localization, as well as multi-modal inputs like 3D point
clouds. Fourth, most defenses focus on certification for one
single patch and small patch sizes (e.g., occupying 2% of
image pixels).3 However, a powerful attacker in the physical
world might place multiple adversarial patches, and the patch
size could increase as the vehicle moves toward the object.

Based on the progress and limitations discussed above, we
will next share our thoughts and vision for future research.

IV. OPEN QUESTIONS AND FUTURE OPPORTUNITIES

How to improve the three-way trade-off between ro-
bustness, clean performance, and computation overhead?
As discussed in Section III, the robustness techniques have
evolved from bound propagation, to small receptive fields,
and to masking. However, each technique has fundamental
limitations that result in a challenging three-way trade-off
between robustness, clean performance, and computation over-
head. For example, the use of SRF hurts the clean performance
and limits the achievable robustness. The masking strategy
requires expensive computation to get model predictions on
different masked images. What is the next major innovation to
improve this trade-off? For example, given that image-space
masking operations are computationally expensive, can we
design an efficient method to compute “approximated” masked
predictions? PatchGuard [35] argues that large receptive fields
hurt robustness, while empirically, the “effective” receptive
fields are much smaller than the “theoretical” ones [23]. Can
we develop robustness certification based on this observation?

How to generalize the certifiable robustness of percep-
tion models to end-to-end AI systems? The autonomous
vehicle is a complex AI system that consists of different
modules such as sensing, perception, and planning while
existing research only derives robustness certification for a
part of perception models [31]. Is it possible to fill this gap
and derive certification for the end-to-end autonomous driving
system? Is the system-level certification easier due to an
ensemble of robust modules (e.g., turning to depth information
when certification fails using RGB images), or harder (due
to higher system complexity)? We might need to generalize
defenses to other perception tasks (e.g., object tracking) and
data modalities (e.g., “patch” for 3D point clouds [3], [33])
and also study the interaction among different modules like
perception, sensing, and planning.

What is the opportunity for academia and industry
to collaborate and evaluate defenses in real deployments?
Current research on certifiable robustness mostly takes place
in academia, though the motivation of this line of research
largely comes from the industrial need for safe autonomous
driving systems. Given recent progress made in the literature,
we believe it is a good time for academia and industry to
start collaborating on transitioning proposed algorithms to real

3Only a limited number of works experimentally demonstrated non-trivial
certifiable robustness against two patches [19], [36], [39] or patches that
corrupt more than 10% of image pixels [11], [15], [35], [36], [39].
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deployments. Evaluating algorithms on real systems allow both
parties to better understand the performance gap to fill: for ex-
ample, how much clean performance drop is acceptable? How
much latency and computation overhead are tolerable? This
collaboration will serve as an opportunity to push certifiable
robustness as a future standard for safe AI-power autonomous
vehicles.

V. CONCLUSION

In this paper, we surveyed certifiably robust techniques
against adversarial patches. We summarized three core robust-
ness techniques (BP, SRF, and M) used in existing defenses.
We highlighted the promising research progress and unsolved
limitations, and shared our vision for future research. Finally,
we call for collaboration between industry and academia on
transitioning research papers to real-world systems (e.g., op-
timizing algorithms for real-world constraints and developing
end-to-end AV security certification).
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