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Abstract—Being followed by other vehicles during driving
is scary and causes privacy leakage (e.g., location), which can
make our blood run cold and even make run moves. Moreover,
deliberately following the other vehicles may cause significant
traffic accidents. The following vehicle needs to maintain an
appropriate separation from the following vehicle without getting
lost and uncovered. To put the driver’s privacy and safety
first, it is essential to discriminate between stalking vehicles
(i.e., following abnormal vehicles) and normal following vehicles.
However, there are no infrastructure-free and ubiquitous in-
vehicle systems that can achieve abnormal following vehicle
detection while driving.

To this end, we propose P2D2, a Privacy-Preserving Defensive
Driving system that can detect the abnormal following vehicles
through the sensor fusion. Specifically, we will use the camera
to extract each following vehicle’s following time, and use the
IMU sensors (e.g., Gyroscope ) to extract our vehicle’s critical
driving behavior (e.g., making a left or right turn). We harness
the space diversity of IMU sensing data to remove the artifacts
of road surface conditions (e.g., bumps on the road surface) on
critical driving behavior (CDB) detection. Then, we leverage the
machine learning-based anomaly detection algorithm to detect
the abnormal following vehicles based on the following vehicle’s
following time and our vehicle’s critical driving behavior within
the following time. Our experimental results show the F-1 score of
97.45% for the abnormal following vehicle detection in different
driving scenarios during our daily traffic commute.

I. INTRODUCTION

A. Background and Motivation

1) Background: Are you worried about being followed by
other vehicles during driving? Do you want to have a smart
in-vehicle system that can uncover or detect the abnormal
following vehicles for you during driving? These two questions
drive us to further explore privacy-preserving defensive driv-
ing. As development of modern vehicles, especially connected
and automated vehicles (CAV) have proliferated our daily
lives. Recent study [1] shows that Americans drive about 25
miles and spend about one hour behind the wheel every day.
As we can see, driving a vehicle on the road becomes an
important part of our daily life, which can make our lives
more convenient. At the same time, it is essential to achieve
privacy-preserving defensive driving on the road.

2) Privacy-Preserving Driving: It is very common to see
celebrities getting stalked either on foot or by the car during
driving. Normal people also get stalked in their daily lives due
to different kinds of reasons. For example, the driver hops up
on road rage, creepy admirers, and an ex who’s not ready to
move on. Approximately, 58% of females and 49% of males
have experienced being stalked before age of 25 according
to Centers for Disease Control and Prevention (CDC) [2].
It can be a very frightening situation to endure and cause
privacy leakage (e.g., location privacy, driving behavior, and
daily living habit), when we are abnormally followed by other
vehicles during driving.

3) Defensive Driving: Moreover, it is risky to follow the
other vehicles during driving without maintaining an adequate
separation consistently or intermittently, which would be en-
dangering the followed vehicles and others [3], [4], [5], [6],
[7], [8]. Since the drivers of the following vehicles have the
pressure to follow our vehicle without getting lost and being
uncovered, abnormally following the other vehicles in purpose
may cause significant car accidents. Let alone tailgating, which
is the second most irritating thing drivers do [9].

Therefore, to achieve privacy-preserving defensive driving,
it is essential to detect the abnormal following vehicles during
driving. However, to the best of our knowledge, there are no in-
vehicle smart systems that can uncover or detect the abnormal
following vehicles during driving.

B. Prior Art and Challenges on Vehicle Detection

We have seen some prior works that are related to our
vehicle detection and sensing. For example, FarSight [4] is
a smartphone-based ranging system for safe car following.
Allergie [10] uses commodity passive RFID tags to predict
the relative vehicle location for safe driving. Auto++ [11] can
detect the approaching vehicles for smartphone users through
passive acoustic monitoring. CycleGuard [12] is an acoustic-
based collision detection system for cyclists with smartphones.
However, these smartphone-based vehicle sensing works do
not target the problem of the abnormal following vehicle
detection. Moreover, they only leverage single sensor data (i.e.,
either acoustic or camera sensing data) for the sensing purpose,
thereby failing to characterize the object of interest reliably.

The straightforward idea for the abnormal following vehi-
cle detection is to leverage the large-scale camera monitoring
system on the road to compare the driving trajectory of the fol-
lowing vehicles and our vehicles. However, this infrastructure-
based sensing system will introduce high costs and heavy
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Fig. 1: The workflow of P2D2 for the abnormal following
vehicle detection with the sensor fusion based on the following
vehicle’s following time and our vehicle’s critical driving
behavior within the following time.

workloads due to the large-scale deployment. Therefore, we
aim to design an infrastructure-free system that can detect
the abnormal following vehicles during driving. To uncover or
detect the abnormal following vehicles during driving, simply
comparing the driving trajectory of the following vehicles and
our vehicle will introduce high false positive and false negative
detection. This is because the abnormal following vehicle may
not have the same driving trajectory as us. The abnormal
following vehicles can simply follow us, no matter where and
how we drive. Furthermore, the normal following vehicles may
simply have the same driving trajectory as us due to the single-
track road or same driving destination.

C. Our Design

In this paper, we present P2D2, a Privacy-Preserving
Defensive Driving system that can uncover or detect the stalk-
ing vehicles (i.e, abnormal following vehicles) during driving
with sensor fusion. The abnormal following vehicle will follow
our vehicle, no matter how and where we drive our vehicle. In
other words, the abnormal following vehicles will still follow
us, when we make a left or right turn and detour. So, we can
extract the following time of all the following vehicles with a
camera and sense our vehicle’s critical driving behavior (CDB)
with IMU sensors (e.g., Gyroscope) for abnormal following
vehicle detection. Since the gyroscope readings are the result
of forces introduced by the driver’s control as well as the
road’s horizontal and vertical geometry (e.g., bumpy road),
we need to remove the artifacts of road surface conditions
on gyroscope data readings. Therefore, we propose a road
condition artifact removal approach for accurate critical driving
behavior detection by harnessing IMU sensing data across the
x, y, and z-axis.

After we have extracted the following vehicle’s following
time and our vehicle’s critical driving behavior within the
following vehicles’ following time, we propose a machine
learning-based anomaly detection algorithm to detect the ab-
normal following vehicles with sensor fusion. Specifically, we
leverage Local Outlier Factor (LOF) for anomaly detection,
which can measure the local deviation of the density of a given
sample in comparison to its neighbors and has demonstrated its
superiority over the other anomaly detection algorithms (e.g.,
OC-SVM and Isolation forest algorithms).

Contributions We summarize the contribution of our work as
follows:

• To the best of our knowledge, this is the first privacy-
preserving defensive driving system that can detect the
abnormal following vehicles during driving with the sen-
sor fusion.

• We propose a road condition artifact removal approach
by harnessing the IMU sensing data across the x, y, and
z axis for accurate critical driving behavior detection.

• Our experimental results demonstrate the efficiency of our
system in detecting the abnormal following vehicles for
privacy-preserving driving.

II. P2D2’S DESIGN

A. Following Vehicle’s Following Time Estimation

1) Our Design: To track the following vehicles, we use the
camera to monitor the following vehicles at the rear view of our
vehicle. We aim to identify and track each following vehicle
and further estimate each following vehicle’s following time,
which will be an important feature for abnormal following
vehicle detection.

2) Following Vehicle Tracking and Identification: To track
and identify the following vehicles, we use the You Only
Look Once (YOLO) algorithm [13], which can provide real-
time object detection and identification in videos, images,
and live feeds with high speed and accuracy. It has been
demonstrated its superiority in various real-world applications
such as autonomous driving [14], wildlife monitoring and
detection [15], human identification with camera systems [16].
Specifically, YOLO algorithm mainly uses a deep convolu-
tional neural network to provide real-time object detection
and recognition [13], which mainly consists of residual boxes,
bounding box regression, and intersection over union for real-
time object detection and recognition. The residual boxes are
used to detect the object in the gridded cells of the image,
which is experimentally proven to have a good performance
on object recognition. The bounding box regression is used
to highlight the outline of the detected object in the image.
To have the perfect surrounding outline for each object, the
intersection over the union is used.

3) Following Time Estimation: The YOLO model for ve-
hicle identification is trained on COCO dataset [17], which is
a large-scale object detection, segmentation, and captioning
dataset that has been widely used in computer vision for
object detection. We will use the pre-trained YOLO model [18]
to track and identify the following vehicles. As a result,
each following vehicle’s following time is estimated, which
is defined as the time duration the following vehicle appears
in the rear view of our vehicle. Specifically, we can calculate
each following vehicle’s following time as follows:

TID =
NL −NF

fr
(1)

where fr denotes the frame rate, NL denotes the index of the
frame the following vehicle has disappeared in the rear view
of our vehicle and NF denotes the index of the frame the
following vehicle has first appeared in the rear view of our
vehicle.

After we obtain each following vehicle’s following time,
we can suspect that the vehicles that are following us for a
long period of time are stalking us. However, if we only use
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following time to detect the abnormal following vehicles, it
will have high false positive detection. This is because the
normal following vehicle may simply have the same driving
path as us due to the same driving destination. To further
enhance our detection, we need to consider our vehicle’s
driving behavior. Intuitively, if we make a left/right turn and
the following vehicles still follow us, we can be pretty sure that
the following vehicles are stalking us. So, in the next section,
we discuss how to detect the driver’s driving behavior with the
IMU sensors.

B. Our Vehicle’s Critical Driving Behavior Detection

1) Motivation: One fact about the abnormal following
vehicles is that they will follow us no matter where and
how we drive. Within the following vehicle’s following time,
if our vehicle makes more left/right turns, we can highly
suspect this following vehicle is abnormally following us. So,
it is important to characterize our vehicle’s driving behavior
within the following time for the abnormal following vehicle
detection. To this end, we define the critical driving behavior
(i.e., making left/right turns) of our vehicle, which will be
used to detect abnormal following vehicles together with the
following time.

2) Challenges: We will use IMU sensors (i.e., Gyroscope)
to sense our vehicle’s critical driving behavior. The gyroscope
sensor can indicate the driver’s left/right turn. Note that using
IMU sensors for driving behavior detection has already been
exploited (e.g., V-Sens [19]). However, we cannot directly
apply them to solve our problem for two reasons. First of
all, we do not need to differentiate the different driving
behaviors for anomaly detection, which is computationally
complex due to the time-series data comparison. We will
estimate the number of our vehicle’s critical driving behaviors
within the following vehicle’s following time. Furthermore, the
prior work on driving behavior detection is not practical, since
it does not consider the impact of road surface conditions on
driving behavior detection. The bumps or potholes on the road
surface will pollute the gyroscope readings, which will cause
the wrong detection.

3) Our Design: To this end, we can remove the artifacts
of road surface conditions on our vehicle’s critical driving
behavior detection by analyzing the gyroscope readings across
different dimensions. Specifically, when we drive the vehicle
on a bumpy road, it will mainly affect the gyroscope readings
over the x-axis. However, when the driver makes left/right
turns, it will mainly affect the gyroscope readings over the
y and z axis. Therefore, we can eliminate the effect of the
road surface condition by leveraging the gyroscope readings
across the different axis. This is feasible since we just detect
the critical driving behaviors without discriminating against
them.

To demonstrate this, we drive the vehicle on a smooth road
and make turns during driving. Instead of plotting the raw
gyroscope readings over time, we will first filter out the random
noise to eliminate the effect of the vehicle’s vibration and the
drift of gyroscope readings. We use Savitzky-Golay filter with
a window size of 101 and polynomial order of 3 for the noise
filtering, as it can achieve good performance empirically [20].
Fig. 2 shows the gyroscope readings over time without noise
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Fig. 2: Raw gyroscope read-
ings over time, when we drive
our vehicle and make a left
turn.
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Fig. 3: Gyroscope readings
over time after filtering out
the noise, when we drive our
vehicle and make a left turn.

filtering, when we drive the vehicle and make a left turn. After
applying the Savitzky-Golay filter, we can see the gyroscope
readings are smooth over time, when we drive the vehicle and
make a left turn as shown in Fig. 3. This noise-filtering step
will make our critical driving behavior detection more robust.
Next, we will illustrate how to eliminate the impact of road
surface conditions on gyroscope readings for critical driving
behavior detection.

As shown in Fig. 4, we can see the significant variation
of gyroscope readings across the y and z axis, when we
make turns. However, the gyroscope readings across the x-
axis are stable due to the smooth road surface. Comparably,
we also drive the vehicle over two bumps on the road surface
without making any turns. As shown in Fig. 5, we can see that
gyroscope reading over the x-axis vary significantly, when the
vehicle is driven through the bumps. However, the gyroscope
readings over the y and z-axis are quite stable. So, we can just
analyze the variation of gyroscope readings over the y or z-axis
to detect the critical driving behaviors. Since we do not need
to discriminate each specific driving behavior, we propose to
measure the variation of the gyroscope readings over the y
or z-axis for critical driving behavior detection. To do so, we
empirically set a variation threshold to construct a hypothesis
test for this sake. Fig. 6 shows the CDF of the maximum
gyroscope reading when we make turns. As we can see, the
maximum gyroscope readings take the value from the range
of [0.2, 0.7], which depends on the significance of turns. In
our experiments, we will set the threshold to 0.16 for critical
driving behavior detection.

So far, we have discussed how to extract the following time
of each following vehicle and the critical driving behavior of
our vehicle within the following time, which can be leveraged
to detect the abnormal following vehicles through smartphone
sensing data fusion. Next, we will illustrate the details of our
anomaly detection algorithm for abnormal following vehicle
detection.

C. Sensor Fusion-based Anomaly Detection

1) Overview: After we obtain the following vehicle’s fol-
lowing time and our vehicle’s critical driving behavior within
the following time, we adopt Local Outlier Factor (LOF)
as our anomaly detection algorithm to detect the abnormal
following vehicles, which has demonstrated good performance
on anomaly detection. To do so, we first need to align the
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Making turns

Making turns

Fig. 4: Gyroscope readings over time,
when the driver makes turns during
driving on the smooth road.

Driving through bump

Fig. 5: Gyroscope readings over time,
when the driver drives through two
bumps in a straight line.
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Fig. 6: CDF of the maximum gyro-
scope readings at the detected left/right
turning action.

following vehicle’s following time to our vehicle’s critical
driving behavior (CDB) for accurate CDB extraction within
each following vehicle’s following time. Then, we use LOF
algorithm to derive the anomaly score of the following vehicle,
which will be used to detect the abnormal following vehicles.

2) Sensor Data Alignment: After we obtain the camera
sensing data and over-time gyroscope readings, we first need
to synchronize these two data streams. To do so, before we
start the engine of our vehicle, we let the camera and IMU
sensors record the sensing data. When the vehicle is moving,
the recorded rear view from the camera and IMU sensing
readings will change. So, we can synchronize these two data
streams by detecting their over-time variations.

3) Unsupervised Anomaly Detection Using Local Outlier
Factor: The main idea of LOF algorithm [21] is to compute
the anomaly score of the sample that is called LOF. LOF
measures the local deviation of the density of the given sample
in comparison to its neighbors. The locality is calculated from
k-nearest neighbors (we set k to be 20 in our experiments),
whose distance is leveraged to estimate the local density. Then,
the abnormal objects are identified, whose local density is
substantially lower than their neighbors. LOF of a sample s is
defined as follows [21]:

LOFm(s) =

∑
o∈Nm(s)

lrdm(s)
lrdm(o)

|Nm(s)|
(2)

where m is a parameter specifying the minimum number
of samples around sample s. Nm(s) is denoted as the m-
distance neighborhood of sample s, which is defined as
Nm(s) = {q ∈ D \ {s} |d(s, q) ≤ m− distance(s)}. D de-
notes the dataset. d(s, q) denotes the distance between s and
q. m−distance(s) is denoted as m-distance of sample s, which
is defined as the distance between s and o ∈ D such that (i)
d(s, o′) ≤ d(s, o) for at least m samples o′ ∈ D \ {s} and
(ii) d(s, o′) ≤ d(s, o) for at most m-1 samples o′ ∈ D \ {s}.
lrdm(s) denotes the local reachability density of sample s,
which is defined as follows [21]:

lrdm(s) = 1/(

∑
o∈Nm(s) reach− distm(s, o)

|Nm(s)|
) (3)

where reach − distm(s, o) =
max {m− distance(o), d(s, o)}. As we can see, LOF
of sample s is the average ratio of the local reachability
density of sample s to the local reachability density of

its m-nearest neighbors. The theoretical analysis of LOF’s
advantages over the other anomaly detection algorithms (e.g.,
OC-SVM and Isolation forests) can be found in [21]. Then,
we can derive the anomaly score of each sample for the
abnormal following vehicle detection.

III. IMPLEMENTATION AND EVALUATION

A. Implementation and Experimental Settings

1) Hardware and System Deployment: We do experiments
with the smartphone (i.e., Motorola Moto E) since it has
camera and IMU sensors. It will be deployed on the rear deck
or rear windshield of our vehicle (i.e., Honda Civic, CRV,
Subaru Crosstrek, etc.) to film the rear view of our vehicle for
the following time estimation of the following vehicles and
read gyroscope data streams for our vehicle’s critical driving
behavior detection. Note that the smartphone can capture the
full rear view of our vehicle (like driving recorder). As we
can see from Fig. 8 and Fig. 9, our smartphone’s camera can
detect all the following vehicles behind us.

2) Software and Implementation: To extract the sensing
data from the smartphone, we use two off-the-shelf Android
apps for video and IMU sensing data recording respectively.
Specifically, we use Background Video Recorder (BVR) [22]
for video recording and phyphox [23] for IMU sensing data
recording with a sampling rate of 100Hz. After we record
the data streams, we will extract the following time and
critical driving behavior with Python for signal processing
and data analysis. We use a pre-trained deep neural network
model proposed in [18] to track and identify the following
vehicles. Our LOF-based anomaly detection algorithm is also
implemented with Python using sklearn [24] for the abnormal
following vehicle detection. We use an OptiPlex 7050 Dell
desktop running Ubuntu 16.04 OS on Intel CORE i7 CPU for
video data processing with YOLO.

B. System Evaluation

1) Experimental Details.: To evaluate the performance of
P2D2, we drive the vehicles on the road during our daily traffic
commute, which can cover all our daily activities (e.g., grocery
shopping, going to work, going to the shopping mall, going
out for lunch/dinner, etc.) when we use our vehicle for daily
traffic commute. Fig. 7 shows the driving path in the local area
during the data collection. We set the value of parameter m
in LOF to be 20, and the algorithm used for computing the
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Fig. 7: Driving path in the
local area during daily traffic
commute.

Fig. 8: Tracking and identi-
fying the following vehicles.
The identified following vehi-
cles are outlined by the light
blue rectangular.

nearest neighbors is configured to be automatically decided
based on the data set.

2) Evaluation Metrics.: To measure the system perfor-
mance, we will present the normalized confusion matrix,
accuracy, precision, recall, and F-1 score for the abnormal
following vehicle detection. Accuracy is defined as the ratio
of the correct detection to the total detection. Precision is
defined as the ratio of true positive detection to total positive
detection. Recall indicates the sensitivity that is defined as
the ratio of true positive detection to the total actual positive
instances. The f-1 score is the harmonic mean between preci-
sion and recall. Moreover, we present the receiver operating
characteristic (ROC) curve and precision-recall (PR) curve
to characterize the performance of our anomaly detection
algorithm in comparison to the random guess. We also compare
the LOF-based anomaly detection algorithm with OC-SVM
and Isolation forest algorithms.

IV. EXPERIMENTAL RESULTS

A. Microbenchmark

1) Effectiveness of the Following Vehicle Tracking: To
demonstrate the performance of YOLO on vehicle identifi-
cation and tracking, we drive vehicles on the road and use
the smartphone mounted in our vehicle to monitor the rear
view of our vehicle. Then, we use YOLO [13] to track and
identify the following vehicles. As shown in Fig. 8, we find
that YOLO can accurately identify each following vehicle and
highlight the bounding box of each detected following vehicle.
Furthermore, YOLO can continuously detect the following
vehicles as shown in Fig. 9, we showcase the following
vehicle identification and tracking over the continuous video
frames. The following vehicles are detected and highlighted
with the bounding box accurately over four-time snapshots.
Note that YOLO algorithm can also detect and track other road
infrastructures such as traffic lights, passengers, and cyclists.

2) Effectiveness of Following Time Estimation: The fol-
lowing time of each following vehicle is the time duration
when this vehicle appears in the field-of-view of the camera.
Since we can track each following vehicle, we can obtain each
following vehicle’s following time as discussed in Sec. II. So,
we first show the following time estimation error in Fig. 10.
As we can see, the average following time estimation error
is around 1.1s, and the maximum following time estimation
error is around 2.5s due to the inaccurate following vehicle
tracking with YOLO algorithm. Then, we further estimate the

Accuracy Precision Recall F-1 Score

0.58 1.0 0.52 0.68OC-SVM

Isolation Forest 0.82 1.0 0.79 0.88

LOF 0.95 0.98 0.97 0.97

Anomaly detection 
algorithm

TABLE I: Performance comparison of different machine
learning-based anomaly detection algorithms.

following time of each following vehicle, when we drive the
vehicle on the road during the daily traffic commute. We show
the CDF of the following time of the following vehicles in
Fig. 11. We find that 99% of the following time is less than
50 seconds, indicating that the following vehicles are usually
not following our vehicle for a long period of time due to the
different driving destinations and driving behaviors. However,
there are still some cases, in which the following vehicles are
following us for about 5 minutes due to the one-lane road,
slow traffic, and the same driving path to the same destination
(e.g., grocery store).

3) Effectiveness of Number of Critical Driving Behavior
Detection: To demonstrate the effectiveness of critical driving
behavior detection, we use the approach proposed in Sec. II to
detect critical driving behavior such as making left/right turns.
Fig. 12 shows the gyroscope readings over time and the de-
tected critical driving behavior indicated by the orange circle.
Since these critical driving behaviors (i.e., making left/right
turns) will significantly change the gyroscope readings over
the y or z-axis, we can see that our detection approach can
accurately detect these CDBs. Fig. 13 shows the accuracy of
CDB detection, which is defined as the number of correct
detection over all the number of CDBs during driving. We
can see that the accuracy of CDB detection is around 0.99,
which indicates the efficiency of our CDB detection approach.
This is because our CDB detection approach mainly harnesses
the gyroscope sensing data across different axis to remove road
condition artifacts.

Furthermore, we statistically showcase the number of crit-
ical driving behaviors within each normal following vehicle’s
following time. Fig. 14 shows the CDF of the number of
critical driving behaviors within the normal following vehicle’s
following time period. As we can see, the 95th percentile
number of critical driving behaviors is three. Empirically, this
indicates that the normal following vehicles will not follow
us after we make more than three critical driving behaviors
(e.g., making left/right turns). However, we can see that some
normal following vehicles are still following us after we make
four critical driving behaviors. This is because we may share
the same driving path with the normal following vehicles.

B. Performance of Abnormal Following Vehicle Detection

1) Performance of LOF-based Anomaly Detection Algo-
rithm: To evaluate the performance of the LOF-based anomaly
detection algorithm while varying the threshold (i.e., cut-off
probability), we report the receiver operating characteristic
(ROC) curve and precision-recall (PR) curve of our anomaly
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Fig. 9: Tracking the following vehicles over the continuous time frames. Each figure shows the detected following vehicles at
the rear view of our vehicle.
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Fig. 10: CDF of the fol-
lowing time estimation er-
ror of the following vehi-
cles.

Fig. 11: CDF of the nor-
mal following vehicle’s
following time.

detection algorithm as shown in Fig. 15 and Fig. 16. As we
can see, our anomaly detection algorithm is significantly better
than the reference line (i.e., random guess). Note, the area
under curve (AUC) for ROC and PR curve is 97.88% and
99.69% respectively. Fig. 17 shows the normalized confusion
matrix of our anomaly detection algorithm. As we can see,
our anomaly detection algorithm has a high true positive
rate and true negative rate, which indicates the efficiency of
our algorithm in detecting the abnormal following vehicles.
However, we see that our algorithm has a false negative rate
of 0.03, which indicates that some normal following vehicles
will be detected as abnormal following vehicles. We can see
that some abnormal following vehicles will be detected as
normal following vehicles, as the false positive rate is 0.12.
This is because some normal or abnormal following vehicles
just simply follow us for a period of time due to the same
driving destination, slow traffic flow, single-track road, etc.

2) Comparison with the Other Anomaly Detection Algo-
rithms: We present the performance metrics of LOF, OC-
SVM, and Isolation forest algorithms in Table I. As we can see,
the accuracy, precision, recall, and F-1 score for the abnormal
following vehicle detection using LOF are 0.95, 0.98, 0.97,
and 0.97 respectively, which is better than the performance
of OC-SVM and Isolation forest algorithm. This is because
LOF anomaly detection algorithm measures the local deviation
of the density of the given sample to its neighbors, which
can characterize the two facts about the abnormal following
vehicles that we delineate in Sec. I.

3) Performance across Different Drivers: We measure
the performance of the abnormal following vehicle detection
across two drivers during their daily traffic commute. Fig. 18
shows the accuracy, precision, recall, and F-1 score of ab-
normal following vehicle detection across two drivers. As we

can see, the performance of the two drivers is close (i.e.,
the value of evaluation metrics is around 95%), indicating
our anomaly detection algorithm is independent of different
drivers. This is because the abnormal following vehicles are
distinguished from the normal vehicles on the following time
and critical driving behaviors, which are independent of the
driver’s driving pattern.

C. Case Study

We present a case study of the abnormal following vehicle
detection. We drive the vehicle for grocery shopping with
P2D2 deployed in our vehicle. We aim to uncover the abnor-
mal following vehicle with our anomaly detection algorithm.

As shown in Fig. 19, the left figure shows the driving
path of our vehicle and the abnormal following vehicle in
the green line and red line respectively, when we drive our
vehicle from home to the grocery store. In the right figure, we
show the gyroscope readings along the y-axis over time, which
are collected from the smartphone deployed in our vehicle.
For the sake of simplicity, we just analyze the detection of
the abnormal following vehicles during driving. We find that
there is one vehicle following us starting at the 40s. After we
have detected four critical driving behaviors (i.e., indicated
by the orange circle) of our vehicle, it still follows us. We
check if the following vehicle is stalking us using the LOF
anomaly detection algorithm based on the following vehicle’s
following time and our vehicle’s critical driving behavior
within the following time. As such, we have detected the
abnormal following vehicle at 380s. Intuitively, this is because
this following vehicle has still followed us after our vehicle
has made four turns. Within 380s, we detect this following
vehicle as normal following vehicle due to a small number of
CDBs within its following time.

V. RELATED WORK

With the development of modern vehicles, especially au-
tonomous vehicles, there are many works focusing on the secu-
rity and privacy analysis of autonomous vehicles. These works
mainly target either the vulnerability of the machine learning
models [25], [26], [27], [28] employed by the autonomous ve-
hicles or the LiDAR/Camera sensors’ vulnerability [29], [30],
[31]. For example, Poltergeist [29] exploits the vulnerability
of IMU sensors on acoustic adversarial examples in the mod-
ern camera against vision-based autonomous driving. Sun et
al. [25] and Cao et al. [26] exploit the vulnerability of LiDAR-
based machine learning models employed by autonomous
vehicles. Recently, Cao et al. [27] exploits the vulnerability
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Fig. 12: The orange circle indicates the
detected CDB.
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Fig. 13: The accuracy of CDB detec-
tion across different drivers.
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Fig. 14: CDF of the number of CDBs
within the normal following time.
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Fig. 15: Receiver Operator Char-
acteristic (ROC) curve of LOF-
based anomaly detection algo-
rithm compared with reference
line (i.e., random guess).
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Fig. 16: Precision-Recall (PR)
curve of LOF-based anomaly de-
tection algorithm compared with
reference line (i.e., random guess).
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matrix of LOF-based anomaly de-
tection algorithm.
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Fig. 18: Performance of the abnormal following vehicles
detection across different drivers.

of LiDAR and camera sensor fusion-based machine learning
models employed by autonomous vehicles.

Our work is fundamentally different from these prior
works. First, these prior works focus on what happened at
the front of the vehicle, while we target the privacy issue of
what happened in the rear of the vehicle. Second, these prior
works mainly analyze the vulnerability of autonomous vehicles
instrumented with advanced sensors (e.g., LiDAR and camera)
and deep neural networks, while our work discusses an impor-

Abnormal following 
vehicle is detected

Abnormal following 
vehicle starts to follow us

Starting point

Desination

Fig. 19: The left figure shows the driving path of our vehicle
and one abnormal following vehicle in the green line and red
line respectively. The right figure shows the gyroscope readings
on the y-axis over time. An abnormal following vehicle is
detected as it follows us within the time period indicated by
two dashed lines.

tant and common privacy leakage issue in driving scenarios.
We also notice that driver authentication [32], [33], [34], [35]
has been extensively exploited for privacy-preserving, while
our work mainly focuses on the eavesdropping from the other
vehicles behind us.

VI. CONCLUSION

In this paper, we have presented P2D2, the first privacy-
preserving defensive driving system that can detect the ab-

7



normal following vehicles during driving with sensor fusion.
Specifically, we use the camera to estimate the following time
of the following vehicles and use the IMU sensors to detect
our vehicle’s critical driving behavior with the road surface
artifacts removal approach. Then, we propose an anomaly
detection algorithm to detect the abnormal following vehicles
based on the following time and critical driving behavior.
Our extensive experiments show the effectiveness of P2D2
on uncovering the abnormal following vehicles for drivers.
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