
Exploiting Transport Protocol Vulnerabilities in
SAE J1939 Networks

Rik Chatterjee
Colorado State University

rik.chatterjee@colostate.edu

Subhojeet Mukherjee
Colorado State University

subhojeet.mukherjee@colostate.edu

Jeremy Daily
Colorado State University

jeremy.daily@colostate.edu

Abstract—Modern vehicles are equipped with embedded com-
puters that utilize standard protocols for internal communication.
The SAE J1939 protocols running on top of the Controller
Area Network (CAN) protocol is the primary choice of internal
communication for embedded computers in medium and heavy-
duty vehicles. This paper presents five different cases in which
potential shortcomings of the SAE J1939 standards are exploited
to launch attacks on in-vehicle computers that constitute SAE
J1939 networks.

In the first two of these scenarios, we validate the previously
proposed attack hypothesis on more comprehensive testing se-
tups. In the later three of these scenarios, we present newer
attack vectors that can be executed on bench test setups and
deployed SAE J1939 networks.

For the purpose of demonstration, we use bench-level test
systems with real electronic control units connected to a CAN
bus. Additional testing was conducted on a 2014 Kenworth T270
Class 6 truck under both stationary and driving conditions. Test
results show how protocol attacks can target specific ECUs. These
attacks should be considered by engineers and programmers
implementing the J1939 protocol stack in their communications
subsystem.

I. INTRODUCTION

Medium and heavy-duty (MHD) vehicles are a part of
the US critical infrastructure, transporting goods, supporting
emergency services, and so on. Modern MHD vehicles are
electronified: most mechanical operations being controlled
through embedded computers referred to as Electronic Control
Units (ECUs). Within the vehicle, ECUs form networks to
communicate mission critical information with each other on
a bus topology. For MHD vehicles, the primary choice of
communication specifications within these networks is the
SAE J1939 standard. SAE J1939 documents [1] are organized
in layers much like the ISO/OSI [2] standards for traditional
IT networking. At its lowest layers, the SAE J1939 standards
utilize the Controller Area Network (CAN) specifications [3]
to facilitate the in-vehicle information exchange.

CAN is used widely in automotive networking and aspects
of its (in)security has be thoroughly demonstrated. For exam-
ple, it has been shown, with access to remote and local entry

points (vulnerable ECUs) to the CAN network, one can launch
attacks on the vehicle to control or disrupt its operations. MHD
vehicles also expose similar entry points [4] and, aside from
CAN specific attacks, it has been shown that attacks can also
be launched on the SAE J1939 protocols. Even so, the number
of demonstrated attacks is still limited: Burakova et al. [5]
have demonstrated a couple of attacks on the application layer
specification of the SAE J1939 standards, Murvay et al. [6]
have focused on weaknesses at the network management layer,
and Mukherjee et al. [7] have targeted specific protocols at the
data-link layer of the specifications.

While the application and network management layers are
critical to the cyber-physical operations of the vehicle, im-
portant message transportation specifications are made in the
data-link layer standards. As such, in this work we demonstrate
newer attacks at the data-link layer of the SAE J1939 specifica-
tions that broaden the horizon of cyber threats already created
by Mukherjee et al. [7]. Moreover, we validate two attacks
that Mukherjee et al. demonstrated to work on laboratory
test benches. For our validations we use more comprehensive
testing setups, as well as a 2014 Kenworth T270 truck; the
goal being to demonstrate the applicability and impact of the
attacks on different platforms.

The overarching goal of this paper is to enhance the
threatscape for in-vehicle networking applications in MHD
vehicles. To that end, the rest of the paper is organized as
follows. In section II we present a brief overview of SAE
J1939, as required to clearly comprehend the contributions
made in this paper. In section III we briefly cover the related
work in this area. In section IV, we present a description of
the testing setup used in this work. In section V, we describe
the attack experimentation carried out during the course of
the work. Finally, in section VI, we finish with concluding
remarks and a brief introspection of the future work.

II. BACKGROUND ON SAE J1939

In-vehicle communication in medium and heavy-duty vehi-
cles is mostly guided by the SAE J1939 standards. SAE J1939
messages carry operational parameters like engine speed,
vehicle speed, switch status, etc. These parameters are bundled
into logical groups referred to as Parameter Groups (PG). Each
PG is identified by a unique number called a Parameter Group
Number (PGN), which is also embedded in the message.
Information in the J1939 message is carried in a J1939

Symposium on Vehicle Security and Privacy (VehicleSec) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-88-6
https://dx.doi.org/10.14722/vehiclesec.2023.23053
www.ndss-symposium.org



Fig. 1: Logical Point-to-Point or Destination Specific Message
using the Transport Protocol

Protocol Data Unit (PDU). A J1939 PDU also bears a source
address (SA) identifying the sender, a destination address (DA)
identifying the receiver, the priority of the message, the PGN
and up to 1785 bytes of data. The priority, PGN, SA, and DA
are embedded into the identifier (ID) part of a CAN frame
for PDUs with 8 or less bytes. For PDUs that have more than
8 bytes, a transport protocol (TP) is used, and the PGN is
located in the last 3 bytes of the TP Connection Management
(CM) message data. The TP message has a PGN of 560416
(0x0EC00). The CAN ID is used at the time of bus arbitration
in case of transmission collisions. As such, the CAN frame
identifier with the lowest numerical value wins the arbitration
and occupies the bus.

CAN allows a maximum of 64 bits of data transfer in one
frame. However, SAE J1939 messages are allowed to carry
parameter data equivalent of 64 bits or greater. For message
data that is greater than 64 bits, SAE J1939 specifies the trans-
port protocol. Depending on the recipient of the information,
SAE J1939 specifies two types of message transport protocols:
destination-specific (i.e. from a specific source address to a
specific destination address) and broadcast (i.e. from a specific
source address to the entire network).

As shown in Fig. 1, in a destination specific transfer, the
sending party attempts to open a connection by sending a
Request to Send (RTS) message. An RTS message carries
information about the total number of packets and the number
of bytes to be sent. In response to the RTS, the receiver sends
a Clear to Send (CTS) message. CTS messages enforce flow
control by limiting the number of packets that can be sent
after they are transmitted. CTS messages also aid in missing

Fig. 2: Transport Protocol for a Broadcast Announce Message
(BAM)

packet retransmission by indicating the next packet number to
be sent. Upon receiving the CTS, the sender can send message
data using data transfer (DT) messages until all data bytes are
sent. The PGN of a DT message is 60160 (0x0EB00). The
first byte of this message is reserved for a sequence number.
Sequence numbers are used to reassemble the incoming data
bytes. The remaining seven bytes of data in a DT message
are used to transport the data bytes from the multipacket
message being transferred. The flow of DT messages can be
aborted by optionally sending an Abort message that includes
information stating the reason for the abort. On successful
completion of the transfer (i.e. if not aborted), an End of
Message Acknowledgment (EoMA) is sent by the receiver to
indicate closure of the connection.

As shown in Fig. 2, the sending party initiates a broadcast
message transport by sending a broadcast announcement mes-
sage (BAM). Similar to the RTS message, the BAM message
carries information about the total number of packets and the
number of bytes to be sent. Soon after, the message data is
transported in data transfer or DT packets that are formatted
the same way as in the destination-specific data transfer. No
EoMA is required at the end of a broadcast announce message.

Both destination-specific and broadcast message transport
can be initiated by sending an SAE J1939 specified request
message. This message has a PGN of 59904 (0x0EA00) and
carries the requested PGN in the last 3 bytes of the data field.
Requests can be directed to a specific device or to the global
address of 255 (0xFF).

III. RELATED WORK

Security aspects of the SAE J1939 Protocol have been
largely overlooked. Prior research has demonstrated vulner-
abilities at different layers of the SAE J1939 standards. Miller
et al. [8] demonstrated that by rapidly injecting frames with
CAN ID 0, network bandwidth available to the ECUs can be
consumed completely leading to network overload. However,
this affects the whole network and is easy to detect.

Burakova et al. [5] demonstrated vulnerabilities in the
application layer of the SAE J1939 Protocol. Their research
demonstrated that continuous control over the engine can be
established by sending an SAE J1939 defined ad hoc message
with PGN 0. Additionally, they have demonstrated that the

2



(a) Testbed 1 (b) Testbed 2

(c) Testbed 3 (d) Testbed 4

Fig. 3: Four bench test setups to include an engine control module (ECM) and an electronic brake controller (EBC).

truck’s ability to use engine braking (retarder) can be disabled
by commanding a zero percent torque request to the engine
retarder in a message with PGN 0 at speeds below 30 mph.
Furthermore, they have demonstrated the driver’s input to
the accelerator pedal can be effectively cut off by sending
a command for minimal torque to the engine controller in a
message with PGN 0. Murvay et al. [6] focused majorly on
weaknesses at the network management layer. Their research
demonstrated that an ECU can be rendered defunct on the
network by repeatedly sending address claim messages with
the target’s address in the SA field and all zeros in the data field
until all addresses in the ECU’s pool are claimed. Additionally,
they demonstrated that an attacker can send an abort message
during an ongoing multi-packet data transfer and close the
connection thereby causing a denial of service. This attack was
confirmed by Campo et al. [9] and a potential network level
mitigation was proposed. Mukherjee et al. [7] have targeted
specific protocols at the data-link layer of the specifications.
Their research showed that sending rapid request messages to
an ECU can increase its processing load to a point whereby it
cannot perform normal functions. Additionally, they showed

that connections established with an ECU can be left open,
thus denying legitimate connections from being used.

IV. EXPERIMENTAL TESTING SETUP

To ensure the uniformity of the experiment results, we
conducted our experiments on multiple testbed configurations.
All experiments were performed on different variations of a
local testbed as well as on a research truck. In this section, we
describe the different configurations of the local testbed and
the research truck.

A. Bench Testbed

The local testbed setup on the bench consisted of four
different configurations (Testbed 1, Testbed 2, Testbed 3, and
Testbed 4) as shown in Fig. 3. Each of the four testbed con-
figurations hosted a different Engine Control Module (ECM):
Testbed 1 had an older generation Cummins 870 ECM, while
Testbed 2 had a newer Cummins 2350 ECM. Testbed 3 had
an older Caterpillar ADEM 3 ECM while Testbed 4 had a
newer generation Caterpillar ADEM 4 ECM. Each ECM had
two different controller applications (CA) running on them,
one was a CA for Engine #1, and the other was a CA for the

3



Fig. 4: 2014 Kenworth T270 Research Truck

engine retarder, which is commonly known as the jake brake.
Each testbed setup also included a Bendix electronic brake
controller (EBC). A CAN backbone connected the ECM to
the EBC and a Linux laptop was used to capture and transmit
CAN messages through a CAN to USB device accessed by
SocketCAN and the can-utils software. The laptop was also
used as the attacker’s pivot point and, in some cases, as nodes
participating in the attack(s). One or more power supplies were
also included.

B. Research Truck

Our research truck is a PACCAR PX-7-powered 2014
Kenworth T270. There is a Cummins CM2350 engine ECU
(same as Testbed 2), a Bendix EC-60 brake ECU, and an
Allison RDS-2000 transmission ECU on the truck. These
ECUs communicate with each other on a 250 kbps CAN bus.
A picture of this truck along with its dashboard is provided in
Fig. 4.

V. ATTACK EXPERIMENTS

In this section we describe our attack experiments. For each
experiment we first provide the research hypothesis. We follow
with a description of the hypothesis testing and a description
of the results. Finally, we provide a small discussion of the
possible mitigation techniques. All tests were conducted from
a black-box perspective and access to the source code or run-
time debug information was not possible.

A. Validation of the Request Overload Attack

The first of the five attacks was called the ”Request Over-
load” as it involves overloading a target ECU with request
messages for attacker-chosen PGNs.

1) Hypothesis: The SAE J1939-21 document specifies that
all directed requests to an ECU must be processed. An attack
can thus be constructed to send a high volume of J1939 request
messages, PGN 59904 (0xEA00), to the target ECU with
the expectation that, in an attempt to serve the sent requests,
the ECU fails to perform regular, more critical tasks like the
transmission of periodic messages.

2) Testing: Mukherjee et al. [7] tested the attack by sending
a high volume of requests to a target engine control module
(ECM). We did the same, albeit across multiple testbed config-
urations. Additionally, we also addressed a few shortcomings
of the previous experimentation process. Firstly, it was not
investigated if the drop in count was because of a request
overload or messages losing arbitration to higher priority
request messages. Secondly, it was not investigated if the rate
of injection of the request messages had any relation with the
success of the attack. Thirdly, not all PGNs are utilized in
a controller application. Therefore, it was not investigated if
requesting a Parameter Group Number (PGN) that is not used
had any effect on the network traffic.

While conducting our experiments on the local testbed,
we addressed the aforementioned shortcomings. We sent four
different types of messages on the CAN network with varying
intervals of transmission: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1 milliseconds. The first type of message had a CAN
ID of 0x00000000. This is the lowest-valued CAN ID and
is expected to flood the entire bus by winning transmission
arbitration. If the CAN bus is saturated with these high
priority messages, no other message can gain access to the
network. The second type of message had the lowest SAE
J1939 priority (7), but 0 for the PGN, DA, and SA, which
produced an extended CAN ID of 0x1C000000. The third
type of message had the same SAE J1939 priority (7) but
was the request PGN 59904 from the engine controller to
itself. The equivalent CAN ID was 0x1CEA0000. The engine
controller responded to this request. Also, this request was
for the Component Identifier PG (PGN 65259), which was
present with all the ECMs used in the experiment. This is a
valid request and is often part of a diagnostics routine. Finally,
we sent a request for PGN 0xFFFF, which was not present
in any engine controller, so this was an invalid request. The
purpose of sending the invalid request was to address the final
shortcoming in [7]. The first three types of messages were
sent to address the first shortcoming. Messages with CAN
ID 0x00000000 were sent to demonstrate network overload
and the removal of all normal traffic from the bus. Messages
with CAN ID 0x1C000000 were sent to demonstrate that
lowering the SAE J1939 priority from 0 to 7 (causing a change
in ID from 0x00000000 to 0x1C000000 had no effect on
normal traffic. As such, our goal was to observe if messages
with CAN ID 0x1CEA0000 (SAE J1939 priority = 7) had any
effect on ECM traffic only. If so, we could conclude request
overload had an effect on the traffic emanating from the target
ECM and not the brake, thereby demonstrating two things: 1)
request overload is indeed a targeted attack on broadcast CAN
and 2) it works even at the lowest SAE J1939 priority (7).

We conducted five experiments for each type of message
transmitted at each interval mentioned in the previous para-
graph. The average of the results from the five experiments
is plotted. Note that, due to bus contention, CAN controller
delay, frame collision, etc., the transmission interval on the
CAN bus may not be equal to the exact intervals set for the
experiments through the can-utils software.

4



(a) Request Overload Results on Local Testbed 1 (b) Request Overload Results on Local Testbed 2

(c) Request Overload Results on Local Testbed 3 (d) Request Overload Results on Local Testbed 4

Fig. 5: Request overload experimental results on different configurations of the local testbed

Fig. 6: Comparison of the request overload attack on the
Research Truck in other situations

3) Results and Observations: As can be seen from Fig. 5,
for all the test cases a drop in message count was observed
from all sources when the network was flooded with messages
with CAN ID 0x00000000. Then again, in all the cases of

Fig. 7: Request overload attack on the Research Truck

flooding with messages of CAN ID 0x1C000000, almost
no normal traffic was removed. However, when the request
overload attack was conducted, a certain percentage of normal
messages transmitted by the ECM was removed. Albeit, the
traffic volume from the brake controller remains constant
during request overloads, thus indicating that it only affected
the performance of the target. On Testbed 1, about 50 percent
of both high and low-priority traffic were removed by valid
request overloads up to 0.3 milliseconds, but invalid request
overloads did not have any effect. On Testbed 2, all traffic
transmitted by the ECM was removed by both valid and

5



invalid request overloads up to 0.3 milliseconds. On Testbed
3, greater than 20 percent of both high and low-priority
traffic were removed by valid and invalid request overloads
up to 0.2 milliseconds. On Testbed 4, about 75 percent of
high and 25 percent of low-priority traffic was removed by
invalid request overloads up to a millisecond but valid requests
had no effect. We noticed that it handled all valid requests
promptly, initiating a multi-packet transfer in all cases. For
invalid requests though, it transmitted a series of negative
acknowledgments. Overall, we noticed that, in general, a
request overload attack launched at 0.3 milliseconds or below,
had an effect on the target ECM, even when launched with
the lowest priority.

We conducted this attack on the Kenworth T270 research
truck. This truck had the same ECM as used in the local
Testbed 2. As such, when a request overload attack was
conducted at 0.3 milliseconds, all transmissions from the
ECM stopped. The physical effect could be seen in Fig. 7
where the truck’s dashboard displays erroneous information.
Furthermore, the transmission did not shift gears and the
engine speed remained high while moving forward. We also
compared the effects of the request overload attack to normal
bus conditions and a network flood attack(where the J1939
bus is flooded with high priority messages with CAN ID
0000000016). As shown in Fig. 6, we can see that a network
flood attack referred to as a denial of service (DOS) removes
traffic from all ECUs at 0.3 milliseconds while the request
overload attack on the engine controller removes all traffic
only from the engine while other ECUs continue to broadcast
data. This validates the request overload attack as a targeted
denial of service attack.

4) Possible Mitigation: A potential solution to defend
against this kind of attack is for ECUs to ignore request
messages if they are received faster than a certain rate.

B. Connection Exhaustion Attack

The second of the five attacks was named “Connection
Exhaustion” as it exhausts the ability of the ECU to establish
legitimate connections for multi-packet data transfer.

1) Hypothesis: According to the J1939-21 standards, there
can only be one established connection for multi-packet trans-
fer between a source ECU and a destination ECU at a time.
It also states that after data has been transmitted a connection
can be kept open for a maximum of 1250 milliseconds by not
sending the end-of-message acknowledgment. In addition, a
CTS message can be sent to request one or more packets that
may have been sent already, but not received by the destina-
tion ECU. Using these three specifications, an attack can be
crafted to deny legitimate connection attempts to an ECU by
creating multiple spoofed connections and keeping them open
periodically (typically for less than a second) sending a CTS
message but not the end of message acknowledgment.

2) Testing: The attack was carried out on the local testbed
as well as on the research truck. A valid connection was
established with the ECMs by sending requests and CTS
packets from a spoofed source address. After the data packets

are transferred by the ECM, the connection is maintained by
sending a periodic CTS message every second. After a while,
an honest connection is attempted to be established from the
same source address.

3) Results and Observations: Fig. 8 shows the ”Connection
Exhaustion” attack was demonstrated on three of four of our
local testbench setups. The attack did not work on testbench
4. From Figs. 8a, 8b and 8c, we can observe a malicious
CTS message was sent every second to keep the connection
alive. A legitimate node on the network could not receive an
RTS message for valid requests it sent. Thus, a legitimate
connection could not be established as long the connection
was maliciously occupied.

Even though the attack works on the Kenworth T270 truck,
it did not have a physical impact. Albeit, a quick investigation
of the SAE J1939 digital annex reveals that transport sessions
are critical for diagnostic and proprietary communication over
SAE J1939. An example of hampering diagnostics is shown
in Fig. 9 where the manufacturer diagnostics software tool
failed to connect to the ECM. This can also be detrimental
to the vehicle if data obtained from the session is used for
control purposes. For example, PGN 65251 carries engine
configuration information that may be required by more than
one legitimate ECU. If this information is not received, those
ECUs may malfunction.

4) Possible Mitigation: The apparent solution to this kind
of attack is for ECUs to terminate open connections after a
certain amount of time if connected ECUs are not exchanging
data packets.

C. BAM Block Attack

The third of the five attacks is coined the name ”BAM
Block” as it blocks broadcast announcement messages (BAMs)
and subsequent data packets for multi-packet data transfer
from a targeted ECU.

1) Hypothesis: ECUs periodically transmit BAMs which
are multi-packet data frames to relay information globally
to other ECUs on the network. The SAE J1939-21 standard
suggests that an ECU must respond to destination-specific
requests. Given this, an attack can be constructed whereby
an attacker sends destination-specific requests for PGNs that
an ECU broadcasts globally as BAMs with the expectation
that this might force the ECU to respond to such a request
and, in turn, the global broadcast communication halts denying
information to all ECUs on the network.

2) Testing: The attack was tested on the testbed setup. We
wrote a bash script that sends a destination-specific request for
a PGN the target ECM was broadcasting globally and a CTS
message after successfully receiving an RTS message from the
target. This process was iterated over a loop for the duration
of the attack.

3) Results and Observations: We noticed that this attack
was only successful on Testbed 3 and did not have any impact
on the other testbeds or the research truck. On execution
of our script on Testbed 3, we observed that the Caterpillar
ADEM3 ECU responded to the malicious destination-specific

6



(a) Connection Exhaustion Results on Local Testbed 1 (b) Connection Exhaustion Results on Local Testbed 2

(c) Connection Exhaustion Results on Local Testbed 3 (d) Connection Exhaustion Results on Local Testbed 4

Fig. 8: Connection Exhaustion Experiment Results on Different Configurations of the Local Testbed

Fig. 9: Connection Exhaustion Attack on Research Truck

Fig. 10: BAM Block Attack Demonstration

requests by redirecting data packets to the specific destination
we requested the data. The ECU did not transmit any BAMs
or multi-packet data globally as long as the malicious CTS
were being sent by our attack script. This is shown in Fig. 10.

4) Possible Mitigation: The apparent mitigation against this
attack is to keep transmitting BAMs for specific PGNs even
if destination-specific requests for the same are received.

D. Malicious Clear to Send (CTS) Attack

The fourth of the five attacks is coined the name ”Malicious
CTS” as it involved sending a malicious CTS packet to hinder

Fig. 11: Malicious CTS Attack Demonstration

J1939 transport protocol communication from a targeted ECU.
1) Hypothesis: The SAE J1939-21 document specifies that

an RTS message communicates information about the total
number of data packets that an ECU can send over multi-
packet data transfer for a requested PGN. Additionally, it
specifies that a CTS message should contain information
indicating the packet number of the next data packet to be
sent. If the value in the CTS message exceeds the total number
of data packets in the RTS message for a multi-packet data
transfer, it is possible that an ECU may not to be programmed
to handle this erroneous information. Given this, an attack
can be constructed to send a malicious CTS message with an
erroneous value of the next packet to be sent that exceeds
the total number of packets that can be sent indicated by the
RTS message. This may cause the targeted ECU to enter an
unknown state and thus hinder normal operations.

2) Testing: The attack was tested on the testbed setup. We
wrote a shell script that sends a destination-specific request
for a valid PGN to the target ECU and waits for an RTS.
On receiving the RTS message a malicious CTS message is
constructed with the value of the next packet to be sent in the
CTS message exceeding the total number of packets indicated
by the RTS message. This crafted CTS is then sent to the
targeted ECU.

3) Results and Observations: We noticed that this attack
was only successful on Testbed 3 and did not have any

7



Fig. 12: Memory Leak Attack Demonstration

impact on the other Testbeds or the research truck. On
execution of our script on Testbed 3, we observed that the
Caterpillar ADEM3 ECM stops responding to any further
request messages as shown in Fig. 11. Additionally, all multi-
packet communication from the ECM ceases until the ECM
is rebooted.

4) Possible Mitigation: The apparent mitigation against this
attack is to ensure invalid CTS messages as used in the attack
are ignored.

E. Memory Leak Attack

The final of the five attacks is coined as the ”Memory Leak”
attack as it leads to receiving data from an ECU that was not
intended to be sent.

1) Hypothesis: The SAE J1939-21 document specifies that
a CTS message should contain information about the number
of packets that can be sent over multi-packet data transfer. In
theory, this value should not exceed the maximum number of
packets indicated by the RTS message. As such, an attack can
be constructed by sending a crafted CTS message with the
value of the number of packets that can be sent larger value
indicated by the RTS message with the expectation this may
cause the targeted ECU to leak data packets it never intended
to send.

2) Testing: Similar to the Malicious CTS attack, we wrote
a script that sends a destination-specific request to the target
ECU and waits for a valid RTS. On receiving an RTS from the
ECU, a CTS message is crafted with the number of packets
to be sent set to a value much larger than indicated by the
previous RTS message. This crafted CTS message was then
sent to the targeted ECU.

3) Results and Observations: We noticed that this attack
was only successful on Testbed 3. As shown in Fig. 12, we
look a dump of the J1939 traffic using the ’candump’ feature
of can-utils. The ASCII representation of the data was also
obtained using the ’-a’ delimiter. The traffic was also filtered to
show only multi-packet data leaked from the ECU. This ECU
was supposed to send on 6 packets for this specific transfer.
Nevertheless, it leaked 255 data packets as requested in the
CTS message. The attack did not succeed on the Kenworth

T270 research truck carrying a different ECU. The contents of
the leaked data has not been investigated as yet; it is reserved
for future work.

4) Possible Mitigation: The apparent mitigation against this
attack is to ensure invalid CTS messages, as used in the attack,
are ignored. This may be implemented as part of the ECU
firmware or as a centralized network security solution.

VI. CONCLUSION AND FUTURE WORK

This paper presents five different scenarios where ECUs on
SAE J1939 networks are subjected to different types of attacks.
First, two of the five scenarios demonstrate validations of at-
tacks discovered in prior literature. The validation incorporates
a more comprehensive testing setup. The latter three scenarios
demonstrate new attack cases. Each of these attacks exploits
specifications from the SAE J1939 protocol standards.

At its core, this paper helps in enhancing the existing
threatscape of vehicle security for medium and heavy-duty
vehicles. Even so, a large part of the networking specifications
still remains unexplored for security loopholes. In the future,
we aim to investigate these opportunities, the focus still
being medium and heavy vehicles. Additionally, we want to
explore defense mechanisms to prevent these attacks using a
centralized network-based solution.

ACKNOWLEDGMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Naval
Information Warfare Center Pacific (NIWC Pacific) under
Contract No. N66001-20-C-4021. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of DARPA or NIWC Pacific.

REFERENCES

[1] Society of Automotive Engineers, “SAE J1939 Standards Collection.”
[Online]. Available: https://www.sae.org/standardsdev/groundvehicle/
j1939a.htm

[2] International Organization for Standardization, “Information technology
— Open Systems Interconnection — Basic Reference Model:
The Basic Model,” Standard ISO/IEC 7498-1:1994. [Online].
Available: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/
data/standard/02/02/20269.html

[3] Robert Bosch GmbH, “CAN Specification,” Robert Bosch GmbH, Stan-
dard 2.0, 1991.

[4] S. Stachowski, R. Bielawski, and André Weimerskirch, “Cybersecurity
Research Considerations for Heavy Vehicles,” University of Michigan,
Ann Arbor, Transportation Research Institute, Tech. Rep., 2019.

[5] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, “Truck Hacking:
An Experimental Analysis of the SAE J1939 Standard,” in Proceedings
of the 10th USENIX Conference on Offensive Technologies. Austin, TX,
USA: USENIX Association, 2016, pp. 211–220.

[6] P. Murvay and B. Groza, “Security Shortcomings and Countermeasures
for the SAE J1939 Commercial Vehicle Bus Protocol,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 5, pp. 4325–4339, 2018.

[7] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical
DoS Attacks on Embedded Networks in Commercial Vehicles,” in Inter-
national Conference on Information Systems Security. Jaipur, Rajasthan,
India: Springer, 2016, pp. 23–42.

[8] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Passenger
Vehicle,” in Blackhat USA. Las Vegas, NV, USA: Blackhat Press, 2015.

[9] M. T. Campo, S. Mukherjee, and J. Daily, “Real-Time Network Defense
of SAE J1939 Address Claim Attacks,” SAE International Journal of
Commercial Vehicles, vol. 14, no. 3, Aug. 2021.

8




