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Abstract—Platooning is an upcoming technology which aims
at improving transportation by allowing a leading human-driven
vehicle to automatically guide multiple trucks to their respective
destinations, saving driver time, improving road efficiency and
reducing gas consumption. However, efficient linkage of trucks to
platoons requires the centralization and processing of business-
critical data which truck operators are not willing to disclose. In
order to address these issues, we investigate how homomorphic
encryption can be used at the core of a protocol for privately link-
ing a vehicle to a nearby platoon without disclosing its location
and destination. Furthermore, we provide experimental results
illustrating that such protocols achieve acceptable performances
and latencies at practical platoon database scales (serving around
500 simultaneous clients on a single platooning server processor
core with sub second latency over databases of up to ~60000
platoons scattered among over 250 destinations).

I. INTRODUCTION

During the last decade, transportation systems have been
evolving toward autonomous driving. In addition, they will
soon benefit from wireless vehicle-to-vehicle and vehicle-to-
infrastructure communications within Intelligent Transporta-
tion System (ITS) architectures. The combination of wireless
connectivity and autonomous driving capabilities is creating
new services not only for increasing vehicle safety but also
improving traffic management as well as drivers and passen-
gers comfort. However, most of these services collect data
about drivers and their vehicles, challenging their privacy. In
this work, we discuss privacy and confidentiality issues for the
special application of platooning.

Platooning achieves a trade-off between autonomous and
regular driving. It allows vehicles to automatically follow a
leading vehicle driven (or not) by a human. One single driver
can therefore drive a platoon of multiple vehicles towards
their respective (and possibly different) locations. Currently,
autonomous driving is easier to implement on highways rather
than in more complex urban areas, and platooning tests are
focusing on trucks more than on small vehicles. Indeed,
putting several trucks in a common convoy reduces air drag
and fuel consumption as well as improves safety, especially
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in freight corridors. Then, platooning grants truck drivers the
possibility to find a nearby platoon when they need to have a
break. Truck drivers can rest while the platoon is advancing
towards its destination. Nevertheless, providing such a linkage
service for a trucking company (or many trucking companies)
requires accessing trucks locations and destinations which
are sensitive data possibly leaking information about their
business.

In this work, we propose a privacy-preserving protocol for
platoons setup using Homomorphic Encryption (HE), one of
the mainstream cryptographic techniques for computing over
encrypted data thus preserving data confidentiality by design.
More specifically, we propose a linkage service that does
not need to access in clear form the sensitive data of trucks
location or destination in order to provide sets of nearby
platoons. In particular, the service relies on a central server
referred to as the Platooning Service Provider (PSP) which
makes computations over the clients encrypted data and then
provides, as an encrypted output, adequate nearby platoons.
As such, the PSP has no access to the clients clear data.
However, Homomorphic Encryption is known for its intrisincs
computational cost, and using it at practically relevant scales
and latencies generally needs careful crafting of its integration
in terms of using specific optimizations and minimizing as
much as possible the footprint and complexity of encrypted
domain calculations. With this in mind, we designed a protocol
requiring only a few homomorphic operations per query (de-
pending on the flavor) relying heavily on batching, a technique
which allows using certain HE scheme in Single Instruction
Multiple Data (SIMD) mode [26].

The remainder of this paper is organized as follows. Sec-
tion [lI| presents the state of the art regarding ITS privacy
in general and location privacy in particular. Section [II|
introduces Fully Homomorphic Encryption (FHE) and batch-
ing. Section describes the platooning use-case. Section
details our proposed protocol for privacy-preserving platoons
selection. Section [V]] presents experimental results. Finally,
section discusses perspectives and possible improvements
for our protocol.

II. STATE OF THE ART
A. Privacy in the ITS Context

The main privacy concern in the ITS context is remaining
anonymous and untraceable at the network level [23]]. A usual



solution to this issue is signing vehicle-to-vehicle or vehicle-
to-infrastructure communication with pseudonym certificates
which are managed by a dedicated Public Key Infrastructure
(PKI). Vehicles then periodically change their pseudonym
certificates. Other solutions were proposed to ensure location
privacy [2], [18], [27], [28]]. These approaches consist mainly
in using anonymization and obfuscation techniques. As an-
other approach, Ghane et al., [13|] relied on a Differentially
Private Data Streaming (DPDS) system to ensure vehicles’
data privacy when they are shared with untrusted Edge servers.
Kargl et al., [[17] also used differential privacy techniques to
protect Floating Car Data (FCD). Hofer et al., [15]] proposed
a privacy-preserving charging for electrical vehicles called
POPCORN. They relied on group signatures and anonymous
credentials.

Rizzo et al., [[24]] trained a decision tree to classify drivers’
behavior (as aggressive or defensive), while preserving the
privacy of collected data and the confidentiality of the de-
cision tree computed by the insurance company. They used
a secure version of the ID3 algorithm to build the decision
tree by using the homomorphic properties of Paillier’s cryp-
tosystem [22]]. They also relied on Paillier’s cryptosystem
homomorphic properties during the classification phase. In
2019, El Ormi et al., [21] proposed a privacy-preserving k-
means clustering for driving style recognition. They relied on
multiparty computation for computing the distances to clusters
centroids. Meanwhile, they used Paillier’s cryptosystem during
the computation of the new centroids. That is, as Rizzo et
al., [24] they only needed a homomorphic additive scheme.
Another approach using semi-private function evaluation and
based on Yao’s Garbled circuits was proposed in [14] for
the calculation of tariff of car insurance companies while
hiding users data as well as the insurance’s private data.
Boudguiga et al., [3]] proposed to use homomorphic encryption
for driver classification as concentrated or not with a small
neural network of 4 layers.

B. HE Application to Location Privacy

In this paper, we focus on the problem of location privacy. In
[1], An et al., proposed a COVID-19 contact tracing algorithm
that checks whether a user has been in contact with a patient
who had COVID-19 while ensuring that the users location data
remains encrypted while the patients history of locations needs
to be accessible by the authorities. The results showed that
one comparison between a user and up to 8192 data points
simultaneously was taking between 3 and 7 seconds on a
smartphone, as well as needing 1 MB of data sent through
the server (both ways). In [7], Carpio et al., combine additive
homomorphic encryption with opportunistic networking to
provide a protocol ensuring market equity for car-sharing
applications.

III. PRELIMINARIES ON HOMOMORPHIC ENCRYPTION

In 2009, Gentry [11] made a breakthrough in cryptography
by specifying the first Fully Homomorphic Encryption (FHE)
scheme. He proposed a homomorphic encryption scheme F

that computes F(m; + mg) and E(m; x ms) from encrypted
messages F(m;) and F(ms) (and keep on doing so indefi-
nitely). Then, many leveled HE and FHE schemes have been
proposed in the literature [4]-[6]], [8]-[10].

In this work, we use BFV [4]], [10]] or CKKS [8]] encryption
schemes from the Microsoft SEAL library. They are two
leveled homomorphic encryption schemes that allow to com-
pute many additions and a bounded number of multiplications
of ciphertexts. BFV and CKKS rely on the Ring Learning
With Errors (RLWE) as the underlying hard problem [20].
BFV encrypts integers with RLWE samples, so it introduces
some noise during the encryption. However, it provides a
mechanism for noise removal during decryption which allows
for recovering the exact result of the applied homomorphic
computation.

On the other hand, CKKS considers the encryption noise as
a part of the message, like when approximating real numbers
using floating-point arithmetics. Note that this encryption noise
does not disturb the most significant bits of the plaintext m
as long as it remains small enough. That is, CKKS decrypts
the encryption of m as an approximated value m + e where
e is a small noise. CKKS authors propose to scale plaintexts
by a factor § before encryption to reduce precision loss due
to noise increase during computation.

Let us suppose that we will use the following cyclotomic
polynomial (X +1), where N is a power of two, for defining
our plaintexts and ciphertexts rings, for BFV or CKKS respec-
tively. The plaintext space will be the ring Z;[X]/(XY + 1)
for BFV, and Z[X]/(XY + 1) for CKKS. Meanwhile, the
ciphertext space will be Z,[X]/(XY + 1).

BFV can encode a vector of integers as a single plaintext
polynomial if ¢ is prime and t = 1 mod 2N. This plaintext
polynomial is then encrypted. Meanwhile, CKKS encodes a
vector of Gaussian integers as a single polynomial in the
ring Z/(z™ + 1) before encryption. Indeed, BFV and CKKS
support batching, a Single Instruction Multiple Data (SIMD)
encoding.

With batching, each entity F; can encode a vector of d
messages (m;1,...,M; q) in a single plaintext polynomial p;.
d is equal to N with BFV or & with CKKS. Then, p; is
encrypted either with BFV or CKKS to obtain a ciphertext
polynomial ¢;. Let us consider two batched ciphertexts c;
and ¢y encrypting (mg1,...,m14) and (ma71,...,M24),
respectively. Adding c; to cy outputs cuqq, a batched ci-
phertext of (mi1 + maa1,...,m1,4 + Ma4). Meanwhile,
multiplying c¢; by c2 outputs c¢,,,;, a batched ciphertext of
(m1,1 XM21,...,M1 4 X mz,d)-

One interesting application of batching is Private Infor-
mation Retrieval (PIR) [12], a technique which allows to
extract a record from a database without revealing which one.
A PIR request consists of sending an array of ciphertexts
with the same size as that database. This array contains
encryptions of 0 in all positions, except for that corresponding
to the information that we want to retrieve where it contains
encryption of 1. When using RLWE-based schemes, PIR can
be implemented more efficiently with batching. For example,



we consider the batched ciphertext ¢; encoding (my, ..., mq)
(where d is even). We suppose that we want to obtain a
batched ciphertext c3 encoding only message with odd index.
In this case, we have just to multiply c¢; with the batched
ciphertext co encoding (1,0,1,...,1,0), to get c3 encoding
(mq1,0,ms,...,mg_1,0).

In the following, we will rely on batching with BFV and
PIR when describing our protocol for private platooning. That
is, d will be equal to N.

IV. PLATOONING LINKAGE DESCRIPTION

Suppose that a truck driver on the road is about to reach a
time when (by law) he has to rest. He would normally have to
drive until the next highway station where he would rest for
prescribed period. Platooning offers this driver the possibility
to join and automatically follow a nearby convoy rather than
stopping for a while. To find a nearby platoon, a driver installs
an application on his truck ADAS to search for a nearby
platoon. An example of simple protocol for platoons linkage
is as follows:

1) The driver indicates to the platooning application that

he/she wants to join a platoon.

2) The application sends the driver location and destination

to a remote Platooning Service Provider (PSP).

3) The PSP compares the driver location and destination

with a platoons database.

4) The PSP sets a meeting point for the driver and the

platoon.

5) The driver joins the platoon at the meeting point.

This protocol can be easily implemented when drivers lo-
cations and destinations are provided in clear to the PSP.
However, these are sensitive information that a transportation
company is not willing to share mainly due to business
restrictions. This issue can be overcome by making the PSP
compute the platoon choice over encrypted data. Amongst
other techniques, this can be achieved by means of Homo-
morphic Encryption (HE) techniques as we investigate in the
sequel.

In the following sections, we refer by client to a truck
driver using the platooning application for joining a platoon.
This application manages the platooning linking requests and
answers for every driver. This local app is also in charge of
messages encryption, decryption and key management.

V. PRIVACY-PRESERVING PLATOONING LINKAGE

In this section, we first describe our considered threat model
in section Then, we detail our proposed protocol for a
private selection of platoons in sections and [V-C| We
discuss key management in section[V-D|and HE scheme choice
in section [V-E

A. Threat Model

In this work, we consider that all clients are honest entities.
Meanwhile, we consider that the PSP is honest-but-curious.

In the honest-but-curious model, many entities
(Fy,...,E,), having as secret information (s1,...,5,),

Follower 1

Follower 3 Follower 2

Fig. 1. Platooning linkage example

participate to a protocol P to compute a function
F(s1,...,8,). EBach entity FEj;c[1,, is assumed honest
and must follow each step of P. However, E;;c[1,] is
curious. That is, E;;c[1,,) Will try to extract information
about other entities secrets s; j-;. P is secure in the honest-
but-curious model if each E; ;c(1 ) has no other information
than F'(s1,...,s,) at the end of the protocol. In our case,
the PSP will try to recover information about the location
and destination of the clients when processing their requests.

In addition, we focus here on ensuring the confidentiality
of data in use on the server and do not consider other security
properties such as entities authentication or message integrity
validation. We can extend our protocol by “off-the-shelf”
cryptography algorithms to provide such propertiesﬂ

At this stage, it should be emphasized that the honest-but-
curious threat model is too weak for real-world deployment
scenarios and, as such, that it is not reasonable to rely on
homomorphic encryption alone in such a context. In the real-
world, homomorphic encryption should therefore be consid-
ered only as what it is: a countermeasure to confidentiality
threats from the server doing the calculations. Therefore,
in real-world deployment scenarios, homomorphic encryption
must always be embedded in a higher level protocol resorting
to additional off-the-shelf techniques e.g., for strong authen-
tication of all parties or confidentiality and integrity on all
exchanges.

B. Protocol Description

Figure [I] presents the privacy concerns addressed by our
protocol. First, we assume that the PSP has a clear database
for the locations of the platoons leaders. We suppose that
platoons locations are public knowledge as opposed to trucks
locations. The platoons leaders can be either special vehicles
dedicated for platooning (in which case they have no privacy
requirements, especially if they obey a fixed schedule), or
normal trucks that will get a retribution in exchange of their
leadership (and privacy loss). As such, the leaders will update

'We refer, for example, to message authentication codes to provide message
integrity



Vehicle PSP Platoons

1. HE.Keygen = (pk, sk)

1. Q= GenQuery()
2.Q={,c)

DB = Up
3. RES = HE.Eval(FindPlatoon(DB, Q)) = {c'}

Database()

4.P, = HE.Decrypt(RES)
5. ContactPlatoon(P,)

6. AcceptMember()

Fig. 2. Privacy-Preserving Protocol for Platoon Linkage
Time of Road 1 Road 1 Road R
prediction (min) Segment 1 Segment 2 Segment N
5 P1, P14, P17 P9, P13 P47, P4
10 P1 P9, P14, P17 P6
15 2 P1 2
P19, P15
Non encrypted database
Time of Road 1 Road 1 Road R
prediction (min) Segment 1 Segment 2 Segment N
5 (1 ] [
10 ] [P9, P14, P17] ]
15 [ [ [

[l
Encrypted output

[1 : FHE encryption under the key of the client

Fig. 3. Platoons Database Structure

the platooning database, without disclosing information about
the members of their respective platoons.

We present an example of a platooning database in Figure 3]
This database gathers platoons with respect to their locations
using a time-step of 5 minutes. The database is organized in
two dimensions with rows and columns indexed by time and
location, respectively. Note that a location corresponds to the
current road segment of a platoon leader. Every platoon leader
is identified by a number P.

When a client wants to join a platoon at a certain time-
step, it generates a request () to the PSP. The latter contains
the time-step ¢; and a PIR request ¢; encrypted with the
client homomorphic public key. ¢; is a batched ciphertext
with almost all the slots equal to 0 except for the index that
corresponds to the target platoon location. For example, let
us assume that a client wants to retrieve the identifiers of the
platoons at the road segment indexed by j for j € [1, N].

Original set {3 11 7 1}
Output binary set {0011 1011 0111 0001}

Fig. 4. Example encoding of a set of platoons with & = 4, M = 16

The client encrypts in ¢; a plaintext encoding the following
slots: (03,1,.--,0;5-1,155,0i j41,- -, Oi’N)ﬂ Then, the client
sends @ = {t;,¢;} to the PSP.

The PSP runs FindPlatoon() from step 2 in Figure 2| The
PSP gets the database row corresponding to the time-step t;
and converts it to a plaintext p; encoding (s; 1, .., s;,n ). Each
s;,; 1s a set of identifiers for platoons that can be joined
in a time-step t; at road segment (or location) j. Then, the
PSP multiplies ¢; by p; (as described in section to get a
ciphertext ¢} associated to the plaintext encoding the following
slots: (01’17 N 701"]',1, Si,55 Oi’jJrl’ NN 70i,N)- Finally, the PSP
sends RES = {c}} to the client.

The client decrypts ¢} to recover the set of platoons identi-
fiers s; ;. He has only to choose one of the platoons in order
to join it. The client can contact this platoon directly to check
whether he can join it at the given time or not. That is, given
a platoon identifier Py, we assume that the client is able to
privately retrieve additional data about the platoon in order to
contact it. This step requires an additional privacy-preserving
interaction because the client cannot disclose to the server the
platoon it wants to join. This interaction can be performed for
example with a PIR request, a direct low-range communication
with the platoon, or any other adequate solution.

We give in Figure [3] an example of a result obtained after
a client asked for the element of index [i = 2,j = 2], where
the brackets mean that s; ; are encrypted under the FHE of
the client.

C. Platoons Identifiers Encoding in Slots

We describe in this section how we encoded the platoons
identifiers associated to one road-segment (i.e., location) into
one slot. We remind that when using batching with BFV (as
presented in section , a slot is an element of Z; and so has
a value between 0 and ¢ — 1. In practice, ¢ can be quite high,
for example with Microsoft SEAL library [25], ¢ can be up to
60-bit long.

We propose to encode at one slot a set of up to E platoons
(meaning that a set in one cell of [3] contains a maximum of
E platoons identifiers). If for example ¢ = 220 and E = 4, we
have 20 bits to encode up to 4 platoons identifiers. Therefore,
one platoon identifier must not exceed 5 bits so the maximum
platoon ID is here 2° = 32. More generally, we can encode
M platoon identifiers in a slot of size ¢, where M = L%j

We give in Figure an example of a set of platoon
encoding.

D. Key management
As we will see in Section the protocol easily scales to
practically relevant dimensioning and is naturally suited to a

2N is the number of slots (described in section and the degree of the
cyclotomic polynomial as we are using the BFV scheme.



multi-client setting where each client can use its own FHE
keys obliviously to the PSP. The reason for that is because the
platoons database is not encrypted (or at least, not encrypted
under FHE [°) and the only operation necessary from the PSP
are plaintext-ciphertext multiplication. Therefore, we do not
require the PSP to use a public key nor an evaluation key for
LWE-based homomorphic cryptosystems (this claim would not
be valid for other additive-only schemes such as the Paillier
cryptosystem). Still, this observation would not be valid if the
database were encrypted in FHE, as a client request would
have to interact with a database encrypted under the same
FHE key. In that latter case, the PSP would have to resort to
the more complex machinery of homomorphic key switching
or a full-blown multi-key FHE solution. So, being able (from
a confidentiality point of view) to let the platoon database in
clear form and using xXLWE-based HE schemes leads to multi-
key support “for free” which is an interesting property. Under
that assumption, the PSP can simply receive a ciphertext from
any client (encrypted under that client FHE key) and multiply
it with its database to produce the result without having to use
any public data or key linked to the client.

E. Choice of the HE Scheme

As already emphasized, we designed our protocol so as
to minimize the footprint of encrypted-domain computations.
First, we avoid multiplications between ciphertexts as it is the
most costly homomorphic operation. However, we do not use
an additive homomorphic encryption scheme like Paillier [22]
because the use of the BFV schemeﬂ allows large gains in
efficiency due to its SIMD-like homomorphic computations
abilities [[16]. Besides, the choice of RLWE-based schemes
allows for straightforward plaintext-ciphertext computation
which does not require explicit knowledge of any public or
evaluation key from the server. Thus, the PSP does not have
to store any client homomorphic public key as would be
needed when using the Paillier scheme for example. Another
class of homomorphic encryption schemes exists, providing
only bitwise operations (XOR/AND). The most famous such
scheme is the gate flavor of TFHE [9]], which has the benefit
of allowing for unbounded sequences of operations thanks to
an efficient bootstrapping procedure. However, as TFHE does
not support batching, the operations it provides do not allow
an efficient implementation of our protocol (contrary to BFV,
BGV or CKKS, as already discussed).

VI. EXPERIMENTAL RESULTS
A. Realistic System Dimensioning

In this section we propose a set of parameters along with
an implementation of the protocol aiming for a full scale
deployment in a moderate size country such as France. In
particular, we need a service able to handle a sufficient number
of platoons with reasonable latency (say less than 10 s). For

3Symmetric encryption techniques can be used to encrypt the platoons
database but this deserves more investigation. See also discussion in

4As would be the case for other RLWE-based scheme such as, for example,
BGV.

example, 100000 trucks is a conservative upper bound on the
daily truck traffic on the French highway system and 10%
of that number is a conservative upper bound for the number
of platoons per day. To instantiate our protocol, we propose
a set of parameters which achieve an appropriate trade-off
between efficiency and scale. We choose N = 8192 so a
ciphertext has 8192 slots exploitable with batching. In each
slot, we can encode a number up to a plaintext modulus ¢
which we define to be a 60 bits numbe]E] (which has to be
congruent to 1 mod 2N). Therefore, we have 60 bits that we
can split as explained in Section [V-C| (actually 1 bit has to be
removed because all the 60-bit numbers are not accessible as
we perform operations modulo a 60-bit number but we omit
this detail as it only requires to add one more bit which has
very little impact on performances). We split those 60 bits in 4
15 bits entries, meaning that a set in the database in Figure [3]
will be of size 4. Then, we are left with 15 bits for each
platoon to represent its ID composed of a destination ID on 8
bits and a platoon number on 7 bits. This means that we can
encode up to 255 destinations (0 stands for no platoon), and
128 platoons per cities. With these settings, we can have 128
different platoons for every 256 destination (note that a country
such as France counts around a 100 districts, each with 3 to 4
large cities, so the orders of magnitude roughly match). Note
that some destinations may expect more platoons than others
and the encoding can be adjusted accordingly. For example,
halving the encoding space of the least common destinations
can free some space that we can use to handle more platoons
in the most common destinations.

B. Performance Results

We implemented the most computationally expensive part,
the multiplication between the request and the platoons
database where the client asks for one time interval. We did
our tests on a Intel(R) Core(TM) i5-1145G7 @ 2.60GHz 1.50
GHz (with only one core activated) and 8 GB of RAM. We
used the Microsoft SEAL library with the default coefficient
modulus (218 = 43 + 43 + 43 + 44 + 44 bits) for 128
bits of security. The following table gives the average time
per homomorphic operation of 10000 experiments under the
parameters set above.

Operation Time (ms)

Encryption 2.84
Plaintext/Ciphertext Multiplication 1.99

Decryption 1.10

Note that the coefficient modulus can be lowered to improve
performances as well as security (see [19]). This is because
we perform non costly operations and the larger ¢ is, the
more clear equivalent operations we can achieve per homo-
morphic ones. As such, these unitary performances lead to
very practical perspectives: in particular they are consistent
with a system able to reply with a sub second latency (still
of course depending on the delays of the wireless telecom

5Larger modulus can be used, however 60 bits is a common limitation of
concrete librairies due to machine word constraints.



infrastructure). From the infrastructure point of view, it is the
homomorphic computation on the PSP side which defines the
critical path and dimension the computing resources (i.e., the
single homomorphic multiplication which runs in about 2 ms).
Therefore, a single PSP processor core can serve about 500
simultaneous clients in a second. Therefore, we expect that a
10 to 20 core server is enough for handling up to 100000 daily
clients. Provided current multi-core server costs, this is clearly
reasonable. Having said that, since both the query and response
ciphertexts takes up to 446 KB (i.e. less than a 400 x 400
resolution image), it is likely that the critical latency path
is on the wireless telecom infrastructure as wireless network
often provides lower bandwidth in the more rural parts of the
highway system.

VII. PERSPECTIVES AND EXTENSIONS

As already emphasized in Sect. in real-world de-
ployment scenarios, homomorphic encryption must always be
embedded in a higher level protocol resorting to additional
techniques for mitigating threats not covered by the baseline
honest-but-curious model underlying FHE. In this section, we
present some possible extensions.

A. Preventing Database Cloning

In this section, we provide a countermeasure to the threat of
a client that tries to clone the platooning database. He sends
a PIR request encoding many slots equal to 1. As such, he
recovers different platoons’ identifiers associated to different
road segments.

We remind that for a certain time-step, a legitimate client
will put 1 only in one slot of his PIR request. Indeed, a client
is not supposed to be at two different road segments at the
same time-step, except when multiple paths are possible but
we omit this case as a matter of simplicity. As such, for a
legitimate client, the sum of all the slots will always be equal
to 1 and all but one slot will be encoding a zero.

First, the PSP receives an input ciphertext ¢; and runs the
PIR request as described in section to get an encrypted
answer c;. We propose to make the PSP compute an additional
ciphertext cg:

¢s = Sum(MultNext(Shuffle(c;))) x rand

where,

o Shuffle() randomly shuffles the slots of a ciphertext. In
practice, shuffling requires slots rotation which is an
operation provided by homomorphic encryption schemes
supporting batching.

o MultNext() multiplies each slot of the entry with the next
one.

e Sum() computes and returns the sum S of all the slots.
That is, it returns a ciphertext encoding a plaintext with
a value of S in each slot.

e rand is a random batched plaintext i.e., a plaintext
encoding random values in each of its slots. Each random
value is sampled in [1,¢ — 1].

cs is equal to 0 whenever a client performs a correct
query namely c; encodes O in all but one slot. If multiple
slots encode non zero numbers, the chances that ¢, outputs
a random number in every slot increases with the amount of
slots encoding a non zero number. Indeed, ¢, outputs a random
number in every slot if MultNext() outputs at least one non
zero slot. This happens when Shuffle() outputs at least two
consecutive non null slots.

¢ is then added to the response ¢} (i.e., ¢; = ¢} +c) before
returning the result to the client. The client then gets (after
removing the FHE layer) an unusable answer i.e., encrypted
by a one-time mask it does not know. This technique adds a
cost of a ciphertext/ciphertext multiplications which is doable
as long as the client shares a public relinearization key to the
PSP (although we may consider sending back non relinearized
ciphertexts to avoid this, yet with a larger communication
overhead). However, the Shuffle() procedure is more costly
to perform when using a batched ciphertext (as it involves
slot rotation operators).

B. Handling of query timings

In our protocol, the PSP has access to the estimated future
locations of the platoons and the client sends requests to which
the PSP answers with a set of (encrypted) potential platoons.
The main information our protocol aims at preserving is
the location and destination of the clients. With data being
encrypted at all times, what the PSP (or an attacker with
access to the database) has access to is the platoons database
and the time when the client performed the request. The
remaining threat is any inference attack associating the non
encrypted platoons database with the encrypted query timing
which should not reveal to the PSP which platoon has been
followed by a given client. For example, if the PSP disposes
of a database of a thousand platoons predicted locations and
one client performs an encrypted query over this database to
find a nearby platoon, if a few moments later the predicted
locations from the thousand platoons do not change except for
one precise platoon, we can assume that this platoon changed
its path so that the client could join it. In this scenario, the PSP
(or any attacker) could associate the non encrypted platoons
database with the timing of the queries to obtain the platoon
which the client has joined. To prevent this kind of inference
attack between the platoons database and the timing of the
queries, we can delay the updates on the platoons database
such that a minimal amount of queries has to be done before
that they update their upcoming locations. This amount of
queries can be enforced for example by sending the update
every 5 minutes (or any other relevant time scale), assuming
that an attacker would then only have the information that
some amount of clients asked for a platoon, and some amount
of platoons changed their path within the 5 minutes. The attack
therefore cannot target specific clients when the amount of
clients becomes too high. Another countermeasure, of course,
would be to encrypt the database homomorphically which
prevents anyone from accessing it. However the update of the



database should be handled carefully and the simple multi key
support discussed in becomes jeopardized.

VIII. CONCLUSION

Privacy enhancing tools can unlock new possibilities for the
intelligent transportation systems environment. In this paper,
we have proposed a first protocol which allows for a client of a
platooning solution to access a nearby platoon through a PSP,
while ensuring the client location privacy. The client sends an
encryption of its predicted future location to the PSP, which
delivers, by means of encrypted-domain calculations, in return
an encrypted set of adequate platoons. The performances of
the protocol scale easily to practical levels: the homomorphic
operations run in around 6 ms in total (with 2 ms on server
side), and it naturally expands into the multi-client settings
without the addition of any specific mechanisms. The protocol
can be further improved by encrypting platoons locations, in
exchange for the simplicity and the performances of the native
multi-user protocol we have proposed.
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