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Abstract— All vehicles must follow the rules that govern traffic
behavior, regardless of whether the vehicles are human-driven
or Connected, Autonomous Vehicles (CAVs). Road signs indicate
locally active rules, such as speed limits and requirements to
yield or stop. Recent research has demonstrated attacks, such
as adding stickers or dark patches to signs, that cause CAV sign
misinterpretation, resulting in potential safety issues. Humans can
see and potentially defend against these attacks. But humans can
not detect what they can not observe. We have developed the first
physical-world attack against CAV traffic sign recognition systems
that is invisible to humans. Utilizing Infrared Laser Reflection
(ILR), we implement an attack that affects CAV cameras, but
humans can not perceive. In this work, we formulate the threat
model and requirements for an ILR-based sign perception attack.
Next, we evaluate attack effectiveness against popular, CNN-
based traffic sign recognition systems. We demonstrate a 100%
success rate against stop and speed limit signs in our laboratory
evaluation. Finally, we discuss the next steps in our research.

I. INTRODUCTION

All vehicles must obey traffic signs, whether those vehicles
are human-driven, connected, autonomous vehicles (CAVs), or
semi-autonomous vehicles. Failure to do so can have severe
legal and safety consequences. Recent studies [1]–[3] focused
on the security of traffic sign recognition systems. In these
studies, physical adversarial attacks degrade the accuracy of
traffic sign recognition systems. Examples of these attacks
include modifying signs using stickers [2], visible light projec-
tion [1], or shadow projection [3] in order to cause autonomy
stacks to classify traffic signs incorrectly. For example, these
attacks may cause a stop sign to be misclassified as a yield
sign or speed limit sign, resulting in potential accidents.

These attack studies have several important limitations.
First, the attacks are detectable by human drivers. A human
may notice the presence of stickers or illumination inconsistent
with the surrounding environment on a sign. This limits appli-
cability to semi-autonomous vehicles, such as Tesla’s, whose
drivers may see the attack’s effects and assume complete
vehicle control. Additionally, the studies do not address the
scenarios where attacks are invisible to humans, such as those
using Infrared (IR) light.
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Fig. 1: Overview of our Infrared Laser Reflection (ILR) attack.
Infrared laser light is invisible to humans but is visible to CAV
cameras that lack infrared filters. The resulting altered images
may be misclassified by CAV autonomy stacks such as [4] as
the wrong type of sign, or as entirely different objects.

We develop and implement a novel adversarial attack using
IR laser light. While invisible to humans, this light can be seen
by CAV cameras that lack an IR filter (demonstrated in Fig. 1).
The output from a victim camera is an image altered at the
pixel level, which may be crafted to cause misclassification by
the CAV’s perception stack.

Camera sensors count the number of photons that hit each
sensor photosite. These sensors are typically sensitive to both
visible and infrared spectrum light. To reduce image noise,
an infrared filter can be placed between the lens and the
sensor. However, some CAV sensors, such as those used in
the front cameras of the Tesla Model 3, lack these filters.
While improving nighttime sensitivity, this leaves those sen-
sors vulnerable to IR attacks such as the I-Can-See-the-Light
(ICSL) attack [5], which projects an IR laser directly onto
camera sensors. ICSL has not been demonstrated against traffic
sign recognition systems. Moreover, ISCL requires that the
laser beam be aimed continuously and precisely at a moving
target camera. These limitations motivate our novel IR Laser
Reflection (ILR) attack.

Our attack causes CAV perception stacks to misclassify
images of traffic signs. Our attack alters the sign appearance
for IR-sensitive cameras by illuminating parts of the signs
with an IR laser. Unlike ICSL, our attack does not require
the attacker to aim at a camera on a moving vehicle. In
addition, by projecting onto signs, ILR can fool perception
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Fig. 2: Overview of variables
and parameters of ILR attack

TABLE I: Definition of Variables
Symbol Description Type

dvs Distance: victim ↔ sign V
θvs Angle: victim ↔ sign V

(xv , yv) Position of victim V
das Distance: attacker ↔ sign A
θas Angle: attacker ↔ sign A
D Diameter of attack beam A

(xa, ya) Position of laser emitter A
(xb, yb) Position of attack beam A

Ia Laser beam power A,S
L Intensity of ambient light S

(xs, ys) Position of traffic sign S

V: Victim’s variable, A: Attacker’s
parameter, S: Scenario parameter

module classifiers using significantly less effort than attacks
that target camera sensors directly, making implementation
easier in real-world scenarios. Additionally, we designed a
methodology that generates optimized, simulated traces of IR
laser reflections. This optimization allows us to create effective,
real-world adversarial examples that cause target models to
misclassify traffic signs.

In this work, we present the initial results of our ILR attack
design and evaluation. We evaluate the attack using a CNN-
based classification model trained on US and European traffic
sign data sets: GTSRB and LISA [6], [7].

In §III, we formulate our ILR threat model variables and
parameters and introduce our work to design the most effective
ILR attack through the simulation and optimization of both the
IR laser reflection itself and the position of the reflection on
the sign. In §IV, we demonstrate our ILR attack under indoor
conditions, achieving a 100% attack success rate against both
stop sign and speed limit sign targets. We consider the attack
successful when the perception stack’s classification is changed
from a correct sign to an incorrect sign.

We compare our results against the baseline random attack
in which an IR laser beam hits random portions of the
target signs. The ILR attack’s success rate on the stop sign
is approximately 15 times higher than the baseline. Against
speed limit signs, the attack performs 3 times better. We also
perform preliminary evaluations of attack robustness versus the
resulting first-state object detection inaccuracy and differences
in sign background. Finally, we characterize ILR attacks and
discuss our next steps in §V.

II. BACKGROUND AND RELATED WORK

Vision-Based Traffic Sign Recognition. Vision-based traffic
sign recognition detects signs in real-time using inexpensive
camera sensors, combined with fast neural networks, to pro-
vide object recognition and classification [8]. These cost and
capability advantages have led to wide-spread adoption in
commercially available Level 2 autonomy systems such as
Tesla and OpenPilot. Unfortunately, real-time sign perception
is vulnerable to attacks that affect what the camera sees. Our
novel work addresses perception attacks because these systems
are both vulnerable, and available, in production vehicles.

IR Laser Light and Human Perception. Humans see only
visible light, but some IR camera sensors used in vehicle vision
systems can see both visible and IR light. Their lack of IR-cut
filters allows IR light to reach the sensor, improving nighttime

vision and object detection [9]. Unfortunately, this also creates
a gap between what humans and sensors can see, as shown
in Fig 1. Our attack projects a spot onto a target sign using
IR light. While invisible to humans, the IR projection is seen
by the unfiltered sensor, becoming part of the sensor output
image.1 We demonstrate that adversaries can use this effect to
create invisible (to a human) adversarial shapes on the target
sign that induce traffic sign misclassification.

Adversarial Attacks Against Traffic Sign Recognition. Prior
research showed that Deep Neural Network (DNN) models are
generally vulnerable to adversarial examples and adversarial
attacks [10]. These attacks have been explored in the physical
world [1]–[3]. For traffic sign recognition, DNNs are known to
be vulnerable to attaching small stickers [2], projecting visible
patterns [1], and shading shadows [3]. However, none of these
prior efforts consider invisible attacks as the one proposed in
this analysis.

Wang et al. [5] utilized IR LEDs to attack cameras in
the Tesla Model 3. Their attack fools Tesla’s traffic light and
front vehicle recognition systems, as well as its vision-based
localization system. An IR light is projected directly onto
the vehicle’s camera, causing the perception of a fake traffic
signal. Their solution distinguishes between IR light sources,
which do not reflect off roadways, and active street lights,
which do. They also distinguish the difference in color between
the reflected, valid light and the non-reflected attack light.
Their solution cannot be applied to detect our attack because
street signs do not use active illumination, and because our
IR laser reflects off street signs rather than hitting the camera
directly. They also do not evaluate the attack against traffic
sign recognition systems nor validate their attack for realistic
scenarios involving moving vehicles.

III. METHODOLOGY: IR LASER REFLECTION ATTACK

A. Threat Model and Attack Goal
Fig. 1 shows an overview of the ILR attack. The attacker

selects a traffic sign to attack and places the IR laser emitter
3–10 meters away from the traffic sign, as in prior work [1].
The attacker’s goal is to cause the victim’s perception stack
to misclassify the target sign (such as a stop sign to a yield
sign). We assume the attacker can use public information such
as manuals and teardown documents [11] to obtain camera
specifications. The attacker can (pre-) compute attack IR traces
for each potential target vehicle. We also assume that the
attacker has a basic understanding of IR light and optics. The
attack is remote and does not require any firmware access or
information about the images captured by the camera.

B. ILR Attack Model
We formulate the ILR attack as in Fig. 2, with variables

shown in Table I. The victim’s parameters change dynamically
as the victim CAV moves. These include: (1) the position
of the victim’s camera, dvs, and (2) its orientation, θvs –
both with respect to the stop sign. The attacker’s parameters
include: (1) the position of the attacker’s laser, das, and (2)

1The IR light appears white and purple in the output image, but can not
be seen by humans. The sensor is monocolor, and uses color filters to filter
the light that will hit each photosite, allowing through red, green, or blue
wavelengths. However, the sensor can only sense intensity (photon count) at
each photosite. Because the filters are not perfect, a false color representation
of the photon count where IR light hits each photosite is generated.
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its orientation, θas – both with respect to the stop sign; (3)
the resulting laser beam’s power (in mW), Ia, (4) the beam
diameter, D, and (5) the beam spot position on the traffic
sign surface, (xb, yb). The attacker can select parameters to
maximize attack effectiveness. We determine viable attack ca-
pabilities by mapping the feasible range of attacker parameters
given the IR laser’s capabilities. Scenario parameters represent
environmental factors, including ambient light intensity and
traffic sign position.

Our model accounts for temporal image noise, meaning
random fluctuations in the output image pixel intensity (pho-
ton count) values [12], as stray photons hit different sensor
photosites across consecutive image frames. We thus evaluate
the attack effects on CAV sign classification over multiple,
consecutive camera image frames. Note that our attack formu-
lation has not been finalized in this work – we continue to
improve both our attack formulation and model. We present
our preliminary attacker capability model in §III-C.

CAV cameras generate image streams as output. We refer to
the set of output image pixels altered by ILR attacks as attack
traces (see Fig. 3). Each parameter above independently affects
the camera’s perception, resulting in different attack traces.

C. Optimization Problem Formulation for ILR Attack
Attackers can use attack formulation (§III-B) to determine

the best parameters to achieve traffic sign misclassification.
While testing all possible attack scenarios in the physical world
is infeasible, an offline digital-space simulation allows the
evaluation of a large number of attack parameter combinations.
There are two technical challenges to doing so: (1) Gener-
ating an IR laser reflection model that accurately simulates
attack effects; (2) Creating an effective black-box optimization
method to explore a large set of parameter variations. For (1),
we present our initial laser attack trace model in §III-D. For
(2), we explore the best attacker position (xb, yb) under static
indoor scenarios. The detailed setup is discussed in §IV-A. Our
future work plan is discussed in §V.

In our initial work, we used the Tree-structured Parzen
Estimator algorithm [13] (a black-box optimization method) to
minimize the target sign classification accuracy. In other words,
we consider the ILR implementation a black-box misclassifi-
cation attack. To determine attacker capability, we assume the
attacker can change the position of the attack trace on the target
traffic sign, (xb, yb). We measure attack success by whether
the traffic sign recognition module’s second-stage classifier
generates different classifications for benign and attack images.
The results of this analysis are shown in Section §IV-B.

D. Image Difference-based IR Trace Modeling
Optimizing ILR for a given target sign requires finding

the best position for the IR beam on the sign to maximize
its effects. We optimized the attack beam position (xb, yb),
while holding all other attacker parameters constant. We first
modeled the attack trace by calculating the color differences
between corresponding RGB pixel values of the trace in the
benign and attack output images. These pixel differences are
then applied to the benign traffic sign image to simulate IR
beams targeted at different sign locations. See Fig. 4.

Experiment Configuration. We generated attack traces using
a laser power, Ia, of 51.4 mW. This was the power level where

we observed average trace pixel saturation when using a 15
cm spot diameter, D. The distance from the laser to the sign,
das, was set to 3m, and ambient light was set to 100 lux using
the attack model in §III-B. The angles θvs and θas were set
to 0◦ by placing the victim camera and the laser diode next
to each other, in front of the traffic sign. To reduce temporal
image noise in the target camera, we modeled and averaged
10 consecutive frames for each benign and attack case.

Results and Observations. We observed that the RGB pixel
values in the trace difference image depend on the camera’s
perceived surface color for the traffic sign. This required trace
re-modeling for each color on the sign surface. As each traffic
sign has two surface colors (red and white for the stop sign and
white and black for the speed limit sign), we collected four
total attack traces. We then created individual attack traces for
each surface color by interpolating and adjusting RGB values.
Fig. 4 in the Appendix shows an overview of the modeling
and simulation process. This modeling was used to optimize
the attack on the sign classification model. We evaluate the
consistency between our model and real-world attacks in §IV.

IV. EVALUATION

A. Evaluation Setup
As in our modeled attack, we evaluated our attack on

real-world aluminum stop and 25 mph speed limit signs in a
controlled indoor environment, as shown in Fig 3. We placed
the victim camera and IR laser diode at dvs = das = 3 m
in front of the target sign with angles θvs = θas = 0◦. We
configured the attack beam to project a D = 15 cm spot
using 51.4 mW laser power. Ambient light, L was stable
at 100 Lux. To increase scenario diversity, we evaluated 4
different background colors (room wall, green, black, and
white). We observe that changing the background changes the
camera’s measured scene brightness, which causes the camera
to automatically change the exposure.2

Evaluation Models. We evaluated two classification models,
one trained on European traffic signs and the other on US
signs. For the European traffic signs, we trained a CNN
classification model on the GTSRB [6] dataset using a 30×30-
pixel image size. For the US traffic signs, we train a CNN
model on the LISA [7] dataset using a 60×60-pixel image
size. We doubled the input image size of the US signs because
the US sign classifier requires a higher resolution to correctly
classify each sign, even in benign cases. To focus on the
analysis of the second-stage classification model, we manually
generated a square crop for each sign, as in Fig. 3, and resized
it to match the model’s input size.

Evaluation Metrics. We selected two evaluation metrics based
on our threat model (§III-A) and attack design: the attack
success rate (ASR), and the simulation consistency rate (SCR).
ASR measures the percentage of cases in which a sign is
misclassified, thus satisfying our attack goal, as shown in
Fig. 2. Conversely, SCR, which is defined as the percentage
of cases in which the classification is the same as in our
simulated attack process, is used to evaluate attack beam
modeling (§III-C) quality. While ASR is our primary metric,
SCR is necessary to evaluate the validity of our attack design
and select the most effective attack beam model in future work.

2Most auto-exposing cameras use average brightness to set exposure.

3



TABLE II: Comparison between success rates for our ILR
attack and random attacks. Note that random attacks are tested
physically, so SCR does not apply to the random attack.

Stop Sign 25 mph Speed Limit

Random Attack ILR Random Attack ILR

ASR 6.75% 100% 34% 100%
SCR N/A 100% N/A 80%

ASR: Attack Success Rate, SCR: Simulation Consistency Rate

B. Attack Effectiveness Evaluation
We observed a 100% traffic sign classification accuracy for

both traffic sign types in the benign case. We first evaluated
the effectiveness of the ILR attack through comparison with a
simple baseline attack named random attack. In random attack,
we manually aim the laser beam at the sign and collect the
resulting camera images without any optimization process. We
then conducted a preliminary robustness evaluation of the ILR
attack to measure the effects of first-stage object detection and
differences in sign backgrounds on our attack.

Results and Observations. Table II lists the evaluation results
of the random (baseline) and ILR attacks. We evaluated the
attacks against the stop sign using a simple CNN model
trained on the GTSRB dataset, and against the 25 mph speed
limit sign using the CNN model trained on the LISA dataset.
To evaluate the ILR attack, we collected 40 images with 4
different backgrounds and 10 image frames each for each
traffic sign. For random attacks, we collected 10 random beam
positions across the same 4 backgrounds and traffic signs with
10 image frames for each. The ILR attack has a significantly
higher attack success rate (100%) than the random attack.
Moreover, the observed class labels are generally consistent
with the labels simulated when SCR is ≥80%. These results
indicate that the second-stage classification model is vulnerable
to manipulation with circular IR laser reflections when the
attacker has control over IR beam spot position on the sign.

Preliminary evaluation of attack robustness. We evaluated
attack robustness to differences in sign background and first-
stage object detection inaccuracies. We initially evaluated the
attack results on three backgrounds in an indoor setting and
observed that the ASR and SCR were always 100%. We also
observed that regardless of the background tested, the optimal
IR beam spot position on the sign remained constant. This
indicates robustness to sign background differences.

We also evaluated how inaccuracies in first-stage object
boundary detection can affect the input of the second-stage
classification model and, consequently, the classification re-
sults. To do this, we manually apply random translations to
the annotated bounding boxes. We evaluated 100 random cases
for each attack and observed that ASR and SCR for stop signs
decreased with the noise level. For speed limit signs, on the
other hand, we observed that ASR is always 100% and that
SCR remains constant for low noise levels while gradually
decreasing for higher noise levels. Appendix A provides a
preliminary analysis of attack robustness.

V. CONCLUDING REMARKS AND FUTURE PLANS

In this work in progress, we present our ILR attack
and provide initial results on the vulnerability of traffic sign

Simulated Real

Bicycle Crossing (100%) Bicycle Crossing (96%) Yield (95%) Yield (43%)

Simulated Real

Fig. 3: Comparison of the simulated trace with our modeling
and the real ILR attack results on the stop and speed limit sign.
The classification results of the simulated and real attacks are
consistent in ≥80% cases and always different from the correct
class. Note that the size of the beam is always 15 cm diameter,
i.e., the stop sign is larger than the speed limit sign.

recognition systems to ILR attacks. We show that the ILR
attack has a significantly higher attack success rate (100%)
than the random attacks in our indoor test environment and
that ILR attacks are robust against first-stage object detection
inaccuracy and traffic sign background.

Laser Safety. All the experiments in this work were conducted
in controlled environments, using appropriate eye and skin
protection. Note that we set our laser output power to 51
mW (class 3B laser), and used lenses and an iris to create
the diverging beam suitable for the experiments (an optical
power reduction of more than 9% ).

Future Work. Next, we will investigate the attack capabilities
of the ILR attack in real-world autonomous driving scenarios
in a variety of environmental conditions. The ILR attack
is highly effective in lab conditions, as shown in §IV, but
real-world environments are more challenging. Environmental
factors, such as dynamic lighting and weather, as well as
differences in victim vehicle cameras and software, affect how
traffic signs appear in camera data.

To address these limitations, we plan to improve attack
optimization and trace modeling accuracy. For trace modeling
improvements, we are considering two strategies: (1) Function-
fitting modeling: This technique consists of using function
fitting (e.g., f(Ia, L, xa, ya, θvs, θas, ...)) to model the RGB
pixel differences caused by the IR laser. While this is ro-
bust against environmental changes, function fitting requires
a careful design of the functions to reflect complex depen-
dencies among parameters. (2) Ray-tracing-based modeling:
Ray-tracing-based shading [14] can simulate the reflection of
visible light very accurately and is typically used in rendering
engines such as Blender [15]. In our case, the model needs to
be modified to match our IR laser reflection parameters.

We also plan to systematically evaluate and discuss coun-
termeasures to ILR. While ILR attacks are invisible to hu-
mans, attack traces are visible in camera images. Thus, the
existing defense methods against adversarial patch attacks
are theoretically applicable. Generally, two types of defenses
against adversarial patch attacks have been proposed: empirical
defenses, such the as detection of anomalous patterns in attack
patches [3], [16]), and certified defenses that can provide theo-
retical guarantees [17], [18]. Although theoretically applicable
to the ILR attack vector in this paper, the former is known to
be vulnerable to adaptive attacks [17], and the latter suffers
from low accuracy and high computational overhead, which
is especially critical in autonomous driving settings. Further,
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since IR laser traces are not the same as human-visible adver-
sarial patches studied in these prior works, the effectiveness
of these defenses against ILR attacks are unknown. Thus, an
exploration of mitigating defenses against ILR are both novel
and necessary.
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APPENDIX A
ATTACK ROBUSTNESS EVALUATION

1) Robustness Against Inaccuracy in First-Stage Object
Detection: While we focused on attacking the second-stage
classification model of traffic sign recognition systems, as
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Fig. 4: Overview of Image Difference-based IR Trace Model-
ing (Left). The IR Laser module with two lens optical setup
(right-top). The ILR Attack trace, the calculated Difference
trace, and the corresponding Simulated trace (right-bottom).
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Fig. 5: Evaluation results of bounding box position noise
detected in the first stage. Given noise level δ, the resulting
perturbation, U , obeys: U(−δ, δ) = percentage of bounding box
width or height.

discussed in §II, we also observed how inaccuracies in the first
stage can change the automatic bounding cropping and conse-
quently alter the input of the second-stage classification model.
To evaluate the impact of the inaccuracy on the classification
results, we apply vertical and horizontal translation noise to
our manually annotated bounding boxes. Fig. 5 shows the
ASR for random vertical and horizontal displacement. Since
the bounding box sizes are different for each image, we use
the percentage over the width and height of the bounding box
as a displacement level, δ, instead of the corresponding sizes
in pixels. Given δ, we generate a random number under the
uniform distribution U(−δ, δ) and displace the bounding box
based on the result. For example, a 10 pixel displacement
will be applied on a bounding box with 100 pixel height and
width if the random number is 10%. As shown, bounding box
inaccuracy has a greater impact for the stop sign than the speed
limit sign. The ASR and SCR for the stop sign decrease with
increasing noise levels. In contrast, the ASR for the speed
limit sign is always 100%, while the SCR eventually starts to
decrease around a noise level of 8%.

We hypothesize that these results are due to the shape, and
the resulting pixel RGB values, of the attack beam traces. For
example, the majority of attacks against the speed limit signs
are classified as stop signs as shown in Fig 3. This suggests
that the beam and stop sign may have similar features, which
result in similar classifications. Thus, small translations of the
IR spot can negate adversarial attacks, resulting in the correct
stop sign classification. We are not able to precisely control
the RGB pixel value generated by the IR laser because this
depends on the CMOS image sensor and camera lens used.
However, in the future, we will evaluate the impact of various
IR spot shape changes on the effectiveness of the attack.
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