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Abstract—Recently, adversarial examples against object detec-
tion have been widely studied. However, it is difficult for these
attacks to have an impact on visual perception in autonomous
driving because the complete visual pipeline of real-world au-
tonomous driving systems includes not only object detection but
also object tracking. In this paper, we present a novel tracker
hijacking attack against the multi-target tracking algorithm em-
ployed by real-world autonomous driving systems, which controls
the bounding box of object detection to spoof the multiple
object tracking process. Our approach exploits the detection box
generation process of the anchor-based object detection algorithm
and designs new optimization methods to generate adversarial
patches that can successfully perform tracker hijacking attacks,
causing security risks. The evaluation results show that our
approach has 85% attack success rate on two detection models
employed by real-world autonomous driving systems. We discuss
our potential next step for this work.

I. INTRODUCTION

Object detection and object tracking are both important
components of the visual perception pipeline of autonomous
driving (AD) systems, which are often used to detect sur-
rounding obstacles. Due to the development of deep neural
networks (DNNs), DNN-based object detection has become a
mainstream approach.

Since researchers discovered that DNNs are vulnerable to
adversarial example attack [1], [2], [3], some research works in
adversarial machine learning has focused on attacking object
detection models of AD system in the physical world, such as
using malicious patches [4] or camouflage [5] to make object
detection models ignore obstacles or misclassify traffic signs.
While these previous works have shown security threats to
object detection, the fact that the complete visual perception
pipeline of AD builds trackers for detected objects to estimate
their velocities and build moving trajectories called Multiple
Object Tracking (MOT), which provides robustness against
previous object detection attacks. For a completed perception
pipeline, attacks purely targeting object detection need to
succeed over 60 consecutive frames [6], which is infeasible
for current object detection attacks [4], [7], [8].

Unlike previous object detection attacks that focus only on
the confidence or classification scores of the object detection
model, our attack method changes the position of the detected
object to affect the subsequent object tracking process, and
finally successfully hijacks the tracker to move in the specified
direction, called tracker hijacking attack.

In this paper, we propose a novel attack for the complete
visual perception pipeline for AD systems, including object
detection and multiple object tracking. Our preliminary results
show that we can achieve 85% attack success rate on the
YOLO v3 [9] and a camera-based object detection model
in Baidu Apollo [10]. We also have some comparison with
existing attacks on object tracking which is detailed in §II-B.

In the future, we plan to perform more comprehensive
evaluations including the effectiveness and generality, improve
the practicality of the physical adversarial patch, and explore
the defenses, which is detailed in §VI.

II. BACKGROUND AND RELATED WORK

A. Camera-based Object Detection and Physical Attack

Camera-based perception in the AD system leverages DNN-
based object detection algorithms to detect nearby objects
(e.g., cars, pedestrians, and cyclists) including their position
and class. The two mainstream object detection algorithms are
the one-stage architecture, e.g, YOLO [11], [9] and the two-
stage architecture, e.g., R-CNN [12], [13], which all adopt
the anchor-based approach. To improve detection accuracy
and efficiency, the anchor-based approach divides the camera
image into multiple grids with fixed sizes which include a
certain number of priori anchor boxes at different scales to
detect different objects with different sizes. The detection
network outputs the probability of the existence of an object
and the corresponding object positions for each anchor box.

Recently, several existing works [4], [7], [8], [14], [15],
[16] attacking object detectors in the physical space focus
on generating more robust and practical adversarial examples.
Meanwhile, there are many works that have tried more flexible
or stealthy ways of attacking such as SLAP [17] and UPC
attack [5]. However, due to object tracking, AD perception
could be highly robust to these attacks purely against object
detection [18], [19], which makes it difficult to affect the AD
system. Thus, in this paper, we plan to conduct a physical
adversarial attack on object detection with the consideration
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Fig. 1. An overview of an AD perception pipeline (including anchor-based
object detection and tracking).

of the object tracking pipeline to achieve two unique attack
goals (§III) in the physical world.

B. Multiple Object Tracking (MOT) and Attacks

MOT algorithms aim to estimate the velocity of objects in
consecutive video frame sequences in order to predict the
size and position of objects in subsequent frames. Due to
the excellent performance of object detection, tracking-by-
detection [20] has become the mainstream method of MOT,
which is widely adopted in current AD systems [10], [21], and
a more detailed illustration is in Fig. 1. As shown, the tracking-
by-detection method associates the object detection results at
time t with the existing trackers (track|t−1) and predicts the
trackers at current time t (track|t) which contains velocity and
position of every tracked object. To prevent detectors from
false alarms and missed detections, MOT usually creates a
tracker for an object only when it is continuously detected
for H frames, and deletes its tracker only when the object
continuously disappears for R frames [22], [10], [21], [6].
Thus, purely attacking the object detection alone may not be
enough to cause damage to the entired AD system [18], [6].

Recently, several attacks on object tracking are proposed as
well. For instance, Wiyatnm et al. [23] first presented an ad-
versarial attack method for tracking tasks leveraging physical
adversarial textures to cause regression-based tracking models
to break away from their tracked targets. Recent works [24],
[25], [26], [27] focus on the attack against Siamese-based
single object trackers [28], [29], [22], and from them, the
most representative one AttrackZone [27] proposed a physical
attack and demonstrated it in the physical world using a pro-
jector to project adversarial perturbation into the environment.
However, due to leveraging the projector, their attack usually
can be only applied at night, which is less flexible, and to
the best of our knowledge, none of the AD systems directly
apply the Siamese-based single object tracker [10], [21], which
indicates that it is unclear whether their studied targets are
useful or not for AD system. Currently, state-of-the-art AD
systems adopt MOT instead of the single object tracker [10],
[21], [30], [31] since multiple objects must be identified and
tracked concurrently in AD systems [30]. Thus, in this paper,
we leverage the physical adversarial patch to attack the MOT
in the AD system to overcome the two limitations above.

(a) Case I: moving-in attack (b) Case II: moving-out attack

Fig. 2. Illustration of our two attack goals: moving-in and moving-out attacks
(in §III).

III. ATTACK GOAL AND THREAT MODEL

Attack Goal. The persistent adversarial impact of an attack
may cause serious security consequences such as crashing, and
we consider two attack goals that can lead to safety accidents,
i.e., move-in attack (Fig. 2a) and move-out attack (Fig. 2b).
The goal of the move-in attack is to make the AD vehicle
make an emergency stop or change to a wrong road since the
attacker can move the detection results to the lane where the
AD vehicle drives. For the move-out attack, it will move the
target vehicle tracker to the sides of the road to make the AD
vehicle believes that there are no more objects ahead, which
will cause the AD vehicle to crash into the target vehicle.

Threat model. To achieve the attack goals above, in this
paper, we focus on white-box adversarial attack, which al-
lows the attacker to have access to an anchor-based object
detector in the target AD system (including its structure and
parameters) for generating adversarial attacks. This is the same
assumption made in most prior adversarial attacks on AD
perception [8], [14], [32], [33], [34]. To successfully hijack
the tracker, we use dynamic adversarial patches, which means
that the attacker could use different adversarial patches at
different frames. This is feasible in the physical world, e.g.,
by displaying the patch using a monitor placed on the back
side of the object [35] or projecting the patch into the scene
using a projector [17].

IV. TRACKER HIJACKING ATTACK GENERATION

To generate adversarial patches that can achieve our attack
goal in §III, i.e., change the position of the detection bounding
boxes, previous work [6] simply used the difference in shape
and position between the predicted and expected boxes as
a loss function and minimized the loss function using an
optimizer, but they did not evaluate the effectiveness of their
adversarial patch generation method. Since the anchor-based
object detector generates many bounding boxes for each grid
of the image and filters the bounding boxes using Non-
Maximal Suppression (NMS), we investigate these processes
of calculating bounding boxes and propose a novel adversarial
patch generation method.

In order to make the adversarial bounding box satisfy the
attack success condition in §III, the position and shape of the
bounding box of the target object both need to be changed.
Taking YOLO and its variants as an example, the detector
will apply an offset to the upper left corner of the mesh grid
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to get the position of the possible objects of this grid, and
slightly adjust the size of priori anchor boxes to get the size.
Therefore, the position of the bounding box mainly depends on
the position of the grid and the size depends mainly on the size
of the priori anchor boxes. In short, to fabricate a bounding box
that meets the success condition of the attack, the generation
method should be able to generate an adversarial patch by
picking the right anchor box in the right grid and making it
be kept after NMS.

As detailed in Algorithm 1, given a target bounding box
position bt, the algorithm first finds the anchor box that is
closest to its size in the grid to which the target box belongs.
Then, it needs to increase the confidence score of the selected
anchor box so that it can be kept after NMS, and fine-tune
its size and position so that it fits the target box position as
closely as possible. Similar to the existing adversarial attacks
against object detection models [4], [7], [8], we also formulate
the adversarial patch generation as an optimization problem.
The optimization of this attack is a multiple-objective problem
because it needs to optimize not only the score loss of the
selected box but also the size and position loss. Given an
input image x, target bounding box bt, selected anchor box
bs, object detector without non-maximal suppression D(·), the
optimization problem is describe as follows:

argmin
∆

Lr(x+∆, bt, bs, D) such that bs ∈ B′ (1)

where ∆ is the adversarial patch, Lr is the bounding box
regression loss and we adopt the natural logarithm of IOU
as the regression loss, B′ is all detection bounding box after
NMS.

To satisfy the condition in equation 1, the confidence scores
of all bounding boxes whose IOU between the selected anchor
box is greater than the NMS threshold must be lower than the
confidence score of the selected anchor box. So the score of
the selected box needs to be increased and the score of the
other nearby boxes needs to be decreased. Therefore, we define
the score loss as follows:

Ls = λ · Lc(x+∆, bs, D)−
B∑
i=0

1
obj
i · Lc(x+∆, bi, D) (2)

where λ is a fixed weight for the binary cross entropy loss
Lc, 1obj

i identifies all bounding boxes B before NMS, whose
IOU with the selected box is greater than the NMS threshold,
if greater then 1

obj
i ← 1, otherwise 1obj

i ← 0.
To solve the optimization problem, previous adversarial

attack methods use the standard Lagrangian relaxation method,
to sum up different loss functions multiplied by fixed weights
and use gradient descent to find the optimal solution, which
requires tuning weights to work well. This approach doesn’t
work well for our optimization problem, because the gradient
of two losses is not balanced and the presence of mutations
in the score loss optimization makes the regression loss over-
optimized. And the fractional loss is not as low as the better, it
only needs to satisfy the condition in equation 1, i.e all boxes

that satisfy 1
obj
i = 1 have a lower score than the score of the

selected box.
Instead of using the standard Lagrangian relaxation method

to convert the task of minimizing multiple losses to minimizing
the weighted sum of these losses, our approach avoids the
over-optimization of regression loss and score loss being
ignored because the score loss will singly be optimized until
the condition in equation 1 is satisfied. That is, we reformulate
the optimization problem as follows:

argmin
∆

1[bs ∈ B′] · Lr(x+∆, bt, bs, D)

+1[bs /∈ B′] · Ls(x+∆, bs, D)
(3)

This method is that selectively optimizes Ls or Lr depend-
ing on if bs ∈ B′ instead of minimizing the combination of
the two loss functions, ensuring that the box being optimized
is always kept after NMS.

Algorithm 1 Generating Adversarial Patch
Input: Input image x, target bbox position bt, object detec-

tor D(·), attack iterations N , non-maximal suppression
algorithm NMS(·);

Output: Adversarial patch ∆.
1: initial ∆ randomly
2: (cx, cy)← center point of bt;
3: compute grid box id grid id = compute id(cx, cy);
4: B = D(x+∆);
5: compute selected anchor box bs = maxIoU(bt,B(grid id));
6: for n = 0 to N do
7: if bs ∈ NMS(D(x+∆)) then
8: L = Lr(x+∆, t, bs, D)
9: else

10: L = Ls(x+∆, bs, D)
11: end if
12: ∆ = Adam(∆, L)
13: end for
14: return ∆

V. PRELIMINARY EVALUATION

We evaluate our attack method on two different anchor-
based detectors, YOLO v3 [9] (adopted in Autoware.AI, an
industry-grade full-stack AD system) and camera-based object
detection model in Baidu Apollo [10] (we call it Apollo model
later), both of which are representative of models for visual
perception in AD systems. Moreover, we add an adversarial
patch to any two selected image frames of each video frame
sequence, and these two patches with different attack effects
are referred to as dynamic patches in our experiments. Also,
to ensure that the multiple object tracking algorithm has
completed the tracker modeling process for the object, we
avoid selecting the first three frames of the video frames.
Our target MOT algorithm uses the following combination:
the first-order Kalman filter is used to predict the position and
velocity of the object the next time, and the data association
between the bounding boxes takes the widely used Intersection
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(a) Lagrangian relaxation method
used by previous works

(b) our optimization method

Fig. 3. Comparison of losses during adversarial patch generation using
different optimization method

over Union (IoU) as the similarity metric and used Hungarian
matching algorithm to solve the matching problem between the
currently detected bounding box and the existing tracker. Such
a combination of algorithms has been adopted in previous
work [6], [36] and in real-world AD systems such as Baidu
Apollo [10] and Autoware.AI [21], industry-grade full-stack
AD systems. We conduct the experiment on the existing
dataset and our photographed data by applying the adversarial
patch to the back of the target vehicle using a perspective
transformation. The camera used to shoot video is the built-in
camera of iPhone 12, which is set to shoot with 1080p at 30
fps. We use Adam optimizer [37] to generate the adversarial
patch.

Dataset and Detection models. We selected 10 video clips
from the Berkeley Deep Driving Dataset [38] with the criterion
that the victim vehicle approached at a certain speed relative
to the target vehicle for the object move-out scenario, which
could cause a security accident once the tracker hijacking
attack is successfully executed. For each clip, we manually
label the patch area coordinates for each frame according to the
markers of the target vehicle. We take two different detection
models as the target of our attack: YOLO v3 and Apollo
model. And these two models use the anchor-based approach,
where YOLO v3 divides the image into three different size
meshes with 3 different size anchor boxes for each grid, and
the Apollo model divides the image into one mesh with 16
different size anchor boxes for each grid. For NMS, we set
the score threshold at 0.4 and the threshold of IOU at 0.5.

Evaluation Metrics. In line with previous work [6], We
define the success of an attack as when the detection attack
ends and the detection bounding box of the target object
can no longer be associated with any existing tracker. The
effectiveness of the attack depends on the offset distance of
the hijacked tracker before the target object is tracked again.
Therefore, We use dynamic adversarial patches for a two-
frame detection attack to change the target object detection
bounding box, which makes the disassociated tracker move at
a speed enough to cause a safety accident.

Preliminary Results. As shown in Table I, our attack
method achieves 90% success rate on YOLO v3 and 80%
success rate on the Apollo model. YOLO v3 is easier to attack
because we can find the suitable anchor box in different sizes

Fig. 4. Move-in attack result using dynamic adversarial patch

TABLE I
ATTACK SUCCESS RATE FOR DIFFERENT MODELS.

Target Model YOLO v3 Apollo Model
Attack Success Rate 90% 80%

of feature maps, but the Apollo model uses only one size of the
feature map, which makes it difficult to attack by our method.
We also have some preliminary results and analysis compared
with the methodology in the prior work [6]. As shown in Fig.
3a, the Lagrangian relaxation method used in prior works [6],
[7], [4], [8] does not work well in our adversarial patch
generation problem for tracker hijacking for YOLO v3. This is
because the score loss exists as a sudden change phenomenon
shown in Fig. 3b, which is that the gradient of score loss is
small at the beginning, but decreases rapidly over dozens of
iterations in the later optimization. And because there is a
constraint between regression loss and score loss, it is more
difficult to reduce the score loss when the regression loss is
large, which makes the score loss hardly reduce in many cases.
Therefore, the Lagrangian relaxation method will first optimize
the regression loss for larger gradients and finally fail to satisfy
the conditions in equation 1. Our optimization method solves
these problems very well and achieves the results shown in
Fig. 3b.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an adversarial attack against the
complete visual pipeline of real-world AD systems which
hijacks the tracker in multi-object tracking by controlling
the object detection results. In particular, we propose an
effective adversarial patch generation method that exploits
the generation process of detection results for anchor-based
object detection to control the bounding boxes of objects.
Experimental results show that our method yields an average
attack success rate of 85%. In addition, the evaluation results
demonstrate the effectiveness of our optimization method.

In future work, we plan to perform more comprehensive
evaluations including the effectiveness, generality, and com-
parison with baseline, improve the practicality of the physical
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adversarial patch, and explore the defenses. 1) Comprehensive
evaluation: we will evaluate our attack in a large-scale dataset
(currently, we only evaluate in 10 video frames) to show our
attack’s effectiveness. In addition, we also plan to evaluate
the generality of our attack methodology such as evaluate
on other object types, other MOT, and MOT in different
settings. Also, we will compare our work to the state-of-the-art
practical tracking attack such as AttrackZone [27] from both
the methodology side and the evaluation side to show the value
of our work. 2) Practicality: we plan to improve the practicality
and robustness of the adversarial patch to make our adversarial
patch work successfully in the physical world and can have
effects on the end-to-end AD systems, which is our final goal
of this work. 3) Defenses: we hope that our attack can further
guide future MOT designs to improve their robustness. Thus,
in the future, defenses will be also a mainstream of our work.
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