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Abstract—Autonomous vehicles rely on LiDAR sensors to
detect obstacles such as pedestrians, other vehicles, and fixed
infrastructures. LiDAR spoofing attacks have been demonstrated
that either create erroneous obstacles or prevent detection of
real obstacles, resulting in unsafe driving behaviors. In this
paper, we propose an approach to detect and mitigate LiDAR
spoofing attacks by leveraging LiDAR scan data from other
neighboring vehicles. This approach exploits the fact that spoofing
attacks can typically only be mounted on one vehicle at a time,
and introduce additional points into the victim’s scan that can
be readily detected by comparison from other, non-modified
scans. We develop a Fault Detection, Identification, and Isolation
procedure that identifies non-existing obstacle, physical removal,
and adversarial object attacks, while also estimating the actual
locations of obstacles. We propose a control algorithm that
guarantees that these estimated object locations are avoided. We
validate our framework using a CARLA simulation study, in
which we verify that our FDII algorithm correctly detects each
attack pattern.

I. INTRODUCTION

Autonomous driving systems rely on perception modules to
understand their environments, including their own positions as
well as the locations of pedestrians, vehicles, and other obsta-
cles. Perception modules develop this understanding using data
from sensors such as cameras, Global Positioning Systems,
RADAR, and Light Detection and Ranging (LiDAR). LiDARs,
which measure the distances from the LiDAR transceiver to
obstacles, provide 360◦ view and 3D representation, namely
point cloud, of the environment rather than a 2D image as
from a camera, and thus are crucial sensors for perception in
autonomous vehicles (AVs).

Since LiDAR perception has a significant impact on the
safety-critical decisions of AVs, many prior research efforts
have been made to investigate the security of LiDAR percep-
tion. The LiDAR perception can be compromised by relay
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attacks [6] [4] [18] and adversarial object attacks [7] [21].
In relay attacks, a relay spoofer injects adversarial points in
the point cloud, disturbs the outputs of the object detection
algorithms, and either creates the perception of a fake object
or hides an existing objects. In adversarial object attacks, a
well-designed object fools the object detection algorithms and
makes itself undetectable. While sensor fusion based methods
can partially mitigate the impact of LiDAR attacks [5], such
methods can still be thwarted by an adversary who can target
multiple sensor modalities simultaneously.

In this paper, we propose a new approach to detect and mit-
igate LiDAR spoofing attacks on AVs. Our approach leverages
Connected and Autonomous Vehicle [2] paradigms to share
LiDAR sensor data among neighboring vehicles. Indeed, while
techniques such as Collective Perception Message (CPM) have
been proposed to cooperatively perceive the environment [20],
to the best of our knowledge this information sharing has
not been used to detect and mitigate spoofing attacks. Our
approach is based on two insights. First, current demonstrated
LiDAR spoofing hardwares can only target a single LiDAR
sensor, and hence simultaneously spoofing multiple vehicles in
a believable manner would involve a burdensome level of co-
ordination among multiple distributed spoofers. Second, relay-
based LiDAR attacks are fundamentally based on introducing
new points into the LiDAR point cloud. While these spurious
points may fool the targeted sensor, they will be absent from
the scans of neighboring vehicles. We make the following
specific contributions:

• We propose a safe control system for LiDAR-
perception-based AVs based on the point cloud from
neighboring vehicles. In the proposed system, a Fault
Detection, Identification, and Isolation (FDII) module
detects and classifies the attacks, and updates the
unsafe region for the vehicle. A safe controller guar-
antees the safety of the system based on the updated
unsafe region.

• We analyze the correctness of the results from the
FDII module. We show that the FDII module can
detect and classify attacks correctly and output the
unsafe region containing the projection of obstacles.

• Our results are validated through CARLA [9], in
which we show that the proposed FDII procedure
correctly detects multiple attack types and reconstructs
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the true unsafe region. We then show that, under our
control algorithm, the vehicle reaches the given target
while avoiding an obstacle.

The rest of the paper is organized as follows. Section II
presents related work. Section III states the LiDAR observation
model and threat model. Section IV presents the proposed
method. Section V contains simulation results. Section VI
concludes the paper.

II. RELATED WORK

LiDAR sensors have been demonstrated to be vulnerable
to spoofing attacks in [18]. Machine learning-based LiDAR
detection was also shown to be vulnerable in [10]. LiDAR
spoofing attacks focus on falsifying non-existing obstacles or
hiding existing obstacles. Spoofing attacks that aim to create
non-existing obstacles mainly use relay attack [6], in which an
adversary fires laser to the LiDAR measurement unit with the
same wavelength to inject false points. To hide an object from
being detected by LiDAR sensor, methods include adversarial
objects [7] and physical removal attacks [4]. Adversarial
objects are synthesized such that deep neural network based
detection modules fail to detect in a certain range of distance
and angle. Physical removal attacks hide arbitrary objects, such
as pedestrians, by relay attacks.

Countermeasures to LiDAR spoofing have been proposed
in recent years. Defense approaches such as random sampling
and randomizing waveforms focus on robust perception in a
single sensor scenario. Random sampling proposed in [8] uses
robust RANSAC method to randomly sample features from the
point clouds. The approach presented in [12] randomizes the
pulses’ waveforms. However, a shortcoming in practical per-
ception of these approaches is the increase in cost. RANSAC
requires high computational capability to formulate the mo-
mentum model for adversarial detection [8]. The approach
presented in [12] introduces extra modulation components into
the lens system and may decrease the sensitivity of LiDAR
[19]. A vehicle system is usually equipped with more than
one sensors to estimate states and observe its surroundings.
One cost-efficient method to increase robustness of estimation
in faulty and adversarial environments is to use redundant
information. Such a redundancy-based approach includes sen-
sor fusion [25] and multiple sensor overlapping. However,
existing work on fault-tolerant estimation with multiple sensor
overlapping focus more on the case where an agent is equipped
with redundant sensors, but leave the problem of cooperative
robust perception less studied.

With the development of communication and smart city,
the concept of Connected Vehicles (CVs), which connect with
other vehicles, pedestrians, and infrastructures, are often real-
ized with Autonomous Vehicles (AVs) simultaneously [2]. CVs
provide cooperative perception that is necessary to the fully
AVs which do not rely on human supervision [17]. The cooper-
ative perception may also benefit the defense of LiDAR attack
by providing redundant information to neighboring vehicles.
However, existing research focuses on enhancing the vehicle
itself by adding redundant LiDAR sensors, reducing the signal-
receiving angle, transmitting pulses in random directions, and
randomizing the pulses’ waveforms [18] [13] [14], and less
attention has been paid on utilizing cooperative perception in
the CV environment.

Recent work such as [24] proposed a V2X framework that
is robust to adversarial noise perturbation and collaboration
attack. However, the potential of fault tolerance framework of
V2X to mitigate LiDAR spoofing attacks is less studied.

III. OBSERVATION AND THREAT MODELS

In this section, we introduce the LiDAR observation and
threat model that we consider in this paper.

A. LiDAR Observation Model

A LiDAR sensor fires and collects ns laser beams and
calculates the relative distance and angles to objects. For a
laser beam indexed i ∈ [1, ns] ⊆ Z+, we let pi := (sri , s

a
i , s

ϕ
i ),

where sri denotes the range, sai denotes the horizontal angle,
and sϕi denotes vertical angle. A LiDAR sensor observes the
environment by constructing a scan S := {pi, 1 ≤ i ≤ ns}.
We denote the Cartesian translated LiDAR scan S measured
at pose x as O(x, S) := {(oxi , o

y
i , o

z
i ), 1 ≤ i ≤ ns}, where

oxi , o
y
i , and ozi denote the x, y, and z coordinates of pi. We

assume that the vehicle has a default map, containing the
locations of the infrastructure (for example, walls).

B. Threat Model

The purpose of the attacks is to disrupt the output of
object detection algorithms of the LiDAR perception by either
falsifying non-existing obstacles or hiding existing obstacles.
Attacks on the positioning of the vehicle are out of scope. In
this paper, we consider three attacks with different purposes
and implementation methods, as shown in Fig. 1.

Spoofed 
area 𝜀 data 

𝑒!

Agent A Agent B

Spoofer

Occupied area

(a) Relay attacks falsify non-existing obstacles.

Spoofed 
area 𝜀 data 

𝑒!

Agent A Agent B

Spoofer

Occupied areaOccupied area

(b) Physical removal attacks hide the object from the
LiDAR detector.

Spoofed 
area 𝜀 data 

𝑒!Agent A Agent BAdv-Obj

Fail to detect

Occupied areaOccupied area

(c) Adversarial objects can hide from the LiDAR detector.

Fig. 1: Illustration of three attack types against LiDAR-based
perception. Each attack type leaves a trace in the raw data that
can be detected using our proposed approach.

Non-Existing Obstacle (NEO): The spoofer falsifies non-
existing obstacles by introducing relay perturbations (Fig. 1a).
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In a relay attack proposed in [6], the adversary fires laser
beams to inject artificial points e′ into a LiDAR scan S. The
resulting scan has points S∪ e′. Due to the physical limitation
of the spoofing hardware, the injected point can only be within
a very narrow spoofing angle. Hence, in this paper, we assume
that the relay adversary can only spoof one LiDAR sensor. As a
result of the attack, the LiDAR detection algorithm incorrectly
detects an obstacle between the spoofer and the LiDAR sensor.

Physical Removal Attack (PRA): As shown in Fig. 1b, the
spoofer implements the physical removal attacks by sending
a relay signal to the LiDAR receiver. The LiDAR detection
algorithm believes that the true obstacle does not exist. In
the scan S of the compromised LiDAR, there are artificial
points e′ between the true obstacle and the LiDAR. In order
to realize the attack successfully, artificial points e′ will reach
the LiDAR receiver first and obscure the true obstacle. The
true LiDAR signal reflected by the obstacle will be discarded
by the LiDAR receiver. Due to the physical limitation of the
spoofing hardware, only one LiDAR is compromised by the
spoofer.

We further divide Attack PRA into three categories, based
on whether the area containing the artificial points is fully ob-
served by the uncompromised LiDAR sensor (PRA1), partially
observed (PRA2), or not observed (PRA3).

Adversarial Object (AO): Adversarial objects are synthe-
sized to be undetectable to the object detection algorithms of
the LiDAR perception systems in a certain range of distance
and angle (Fig. 1c). The adversarial objects introduce distur-
bance signal e′ in the LiDAR scan S. More than one LiDAR
sensor may be compromised by one adversarial object.

In this paper, we assume that at most one attack occurs.
The attack could be any of attacks NEO, PRA, or AO, and
the autonomous vehicle (AV) does not know the attack type a
priori.

IV. PROPOSED DETECTION AND CONTROL APPROACH

In this section, we propose a detection and control approach
to ensure safety of the vehicle in an adversarial environment.
The proposed approach is illustrated as Fig. 2. The victim
agent leverages LiDAR observations from neighboring agents
to detect and identify faults in two steps, namely, occupied area
identification and the FDII, which are described as follows.

A. Occupied Area Identification

In this subsection, we present our method to identify
and extract the area that either contains obstacles or is not
observable by the LiDAR, which we denote the occupied area.
The detected occupied area will then be combined with the
information from other vehicles to detect attacks and compute
the unsafe region (Section IV-B).

We first prune the raw data of the observation O(x, S) by
removing the points corresponding to the infrastructure (for
example, walls) on a default map. For the rest of the paper,
we use O(x, S) to denote the pruned observation. For Agent
A, denote L := {j : IA ∩ Ij ̸= ∅} as the set of agents
which have an overlapping scan-covered area with Agent A.
We define the vertical projection operation P(O(x, S)) −→ Y,
which takes an observation O(x, S) as input and outputs the

set Y of the projections of the points in O(x, S) onto the
x-y coordinate plane. We define a non-obstacle scan-covered
area Ij = P(Ō(x, S)) as the projection of the observation of
Agent j, where Ō(x, S) denotes the pruned observation within
maximum LiDAR perception range.

We utilize the altitude coordinates of the points to dis-
tinguish the ground and the obstacle as described in [15]
[3]. We let ζz denote the estimation error of the altitude
coordinate. The detection algorithm identifies pi = (oxi , o

y
i , o

z
i )

as belonging to the ground if ozi ≤ ζz and belonging to
an obstacle if ozi > ζz. After ground removal, we use the
3D bounding box provided by the LiDAR-based 3D object
detection algorithms of the autonomous vehicles (AVs) [26]
to cluster the points into a collection of obstacles, denoted
Ob

k(x, S) ⊆ O(x, S). Each obstacle has a corresponding
bounding box denoted Bk ⊆ R3. Here, the index k ranges from
1 to njo, where njo denotes the number of obstacles detected
by Agent j. Note that the set Ob

1(x, S), . . . , O
b
nj
o
(x, S) may

contain fake obstacles introduced by an adversary. We regard
the points that do not belong to any bounding box as the points
introduced by Attack PRA or Attack AO. We further calculate
the oblique projections Op

k(x, S) of the points in Ob
k(x, S),

which consists of the points where a straight line from the
sensor to each point in Ob

k(x, S) intersects the ground. We
have that Op

k(x, S) ⊆ R3.

We let Ujk denote the occupied area corresponding to
Obstacle k observed by Agent j, which consists of the area
that contains the obstacle as well as the area that is obscured
by the obstacle. Formally, the occupied area Ujk is computed
as the convex hull of P(Ob

k(x, S))∪O
p
k(x, S). The convex hull

can be calculated via open-source tools such as Scipy [22]. In
order to compute the convex hull, we first obtain a collection
of pairs of points {(xl1, yl1), (xl2, yl2) : l = 1, . . . , nh

jk} from
the object detection and oblique projection algorithms, where
nhjk is the number of the boundaries of Obstacle k observed
by Agent j. For each pair indexed l, we compute a half-plane
constraint hjkl (x) ≤ 0 with hjkl (x) = ajkl ×x+ bjkl where ajkl
and bjkl are defined as ajkl =

yl
2−yl

1

xl
2−xl

1
and bjkl =

xl
2×yl

1−xl
1×yl

2

xl
2−xl

1
.

The convex hull is equal to the intersection of the half-plane
constraints, i.e.,

Ujk =

nh
jk⋂

l=1

{x : hjkl (x) ≤ 0}.

The occupied area computed by the above procedure
may not fully contain the obstacle due to the fact that the
obstacle location must be interpolated from a finite number
of samples. We enhance the robustness of these sampling
errors by changing the boundaries of the occupied area to
hjkl (x) − ||ajkl ||ζh ≤ 0, where ζh = ζn + ζr, where ζn is
the observation noise bound and ζr is a bound on the distance
between neighboring sample points that can be obtained from
the distance to the object and the angular resolution of the
LiDAR. We assume that the LiDAR resolution is sufficiently
large such that each point on the obstacle that is in the line-of-
sight of the LiDAR is at most ζr distance away from at least
one scan point.

In what follows, we will show that each obstacle visible to
Agent j (including false or adversarial objects) is contained in
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𝑂#$(𝑥! ,𝑆!)

Fig. 2: Schematic illustration of the proposed approach: to identify attacks marked in red, Agent A requests point cloud from
nearby agents, i.e., Agent j. Then, FDII module takes UA,Uj ,Ob

k(xA, SA) and outputs detected attack type and updated safe
region C. Finally, controller output safe control input u.

an occupied region that is computed according to the procedure
described above. Let P ob ⊆ R3 denote the location of an
obstacle. We divide the obstacle into two parts. The first part
is the set of points in P ob that have line-of-sight with the
LiDAR. We denote the first part as P1. The second part, which
is denoted as P2, is the set of points in P ob that do not have
line-of-sight with the LiDAR.

Assumption 1: For Agent j ∈ L with occupied areas
Ujk, k ∈ {1, . . . , nj

o} and Obstacle k′ ∈ {1, . . . , nj
o}

with the set of points P ob
k′ ⊆ R3, we have

P(P ob)
⋂
(∪k∈{1,...,nj

o}\{k′}Ujk) = ∅.

Assumption 1 implies that for any obstacle visible to agent
j, there is no overlap between the obstacle and the occupied
area of any other obstacle detected by agent j.

Lemma 1: Suppose that Assumption 1 holds and we are
given the observation of an obstacle Ob

k(x, S) in a bounding
box and the set of oblique projections Op(x, S). If occupied
area U is computed as the convex hull of P(Ob

k(x, S)) ∪
Op(x, S), then P(P ob) ⊆ U .

The proof is straight forward by proving P(P1) ⊆ U and
P(P2) ⊆ U with details in [28] omitted here.

B. Fault Detection, Identification, and Isolation

The objective of the proposed fault detection, identification,
and isolation (FDII) module is to detect the deviations between
the observations of different agents, identify the spoofed agent,
isolate the corrupted parts of the raw data, and restore the
true unsafe region. The proposed FDII module is illustrated as
Fig. 3. FDII first iterates over all detected obstacles to detect
faults by leveraging LiDAR scan data from other neighboring
vehicles. It then removes points contained in the bounding box
and uses the residual point cloud for false data detection and
identification.

We first describe how Agent A incorporates LiDAR
information from other neighboring agents. At each time,
Agent A collects the current observations of nearby agents
O(xj , Sj),∀j ∈ L, j ̸= A, position xj , and sensor informa-
tion including observation noise bound and resolution bound.
The corresponding observations O(xA, Sj), the observations
of obstacles Ob

k(xA, Sj), and the occupied areas Ujk are
calculated by Agent A by repeating the steps described in
Section IV-A. In O(xA, Sj), Agent A marks the points in its

Detectable obstacles

Undetectable obstacles

Obstacle detected?

T
F

Pass scan match?

T
F

Real Obstacle Attack NEO

Remove points in 
the Bounding box

𝒰! = ∅ ?

No obstacle

T

Pass scan match?

F

Attack 
PRA3/AO

T

Attack PRA1/2

F

Fig. 3: Decision tree of the FDII module: in the blue box,
we iterate over detectable obstacles to detect faults. Then
we remove points contained in bounding boxes and pass the
remaining point cloud to the green box to identify undetectable
obstacles.

bounding boxes as Ob
k(xA, Sj) = O(xA, Sj) ∩ Bk. For each

Ob
k(xA, Sj), Agent A calculates the corresponding Op

k(x, S).
Agent A then calculates Ujk by computing the convex hull of
P(Ob

k(x, S)) ∪ Op
k(x, S).

We define the scan points in observation
O(xA, SA) that is not detected by Agent A as
Ou

A(xA, SA) := O(xA, SA)\
⋃

k Ob
k(xA, SA) and

the undetected points in observation O(xA, Sj) as
Ou

j (xA, SA) := O(xA, Sj)\
⋃

k Ob
k(xA, Sj). We then

compute their corresponding occupied area Uu
A and Uu

j by
calculating their convex hulls.

We now analyze how each of the attacks defined in
Section III-B affects the LiDAR perception and occupied area
identification introduced in Section IV-A. In what follows, we
use A to denote the index of the victim agent and analyze
whether the obstacle observed by Agent A could also be
observed and validated by other agents, i.e. B under each of
the attacks defined in Section III-B.
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For Attack NEO, the artificial points e′ introduce a fake ob-
stacle with points Ob

k(xA, SA∪e′). Since there is no true obsta-
cle, we have UBk = ∅, and as a corollary, P(Ob

k(xA, SA)) ⊈
UBk.

For Attack PRA1, the spoofed obstacle location does
not overlap with the occupied area of agent B. Hence
P(Ou

A(xA, SA∪e′)) ⊈ Uu
B and P(Ou

A(xA, SA∪e′))∩Uu
B = ∅.

For Attack PRA2, there are also fake Ou
A(xA, SA∪e′) and

non-empty Uu
B . However, P(Ou

A(xA, SA ∪ e′)) ⊈ Uu
B and

P(Ou
A(xA, SA))∩Uu

B ̸= ∅ in this case because Agent B could
only observe the partial space of Ou

A(xA, SA ∪ e′).

For Attack PRA3 and AO, P(Ou
A(xA, SA ∪ e′)) is fully

covered by non-empty Uu
B , which means P(Ou

A(xA, SA ∪
e′)) ⊆ Uu

B .

For the true obstacle, there is non-empty Ob
k(xA, SA ∪

e′) and non-empty UBk corresponding to the true obstacle.
According to Lemma 1, we have P(P ob) ⊆ UBk. Since
Ob

k(xA, SA∪e′) ⊆ P(P ob), we have Ob
k(xA, SA∪e′) ⊆ UBk.

The following lemma uses the preceding analysis to de-
scribe how the scan data from agent B can be used to detect
and identify the attack type.

Lemma 2: If P(Ob
k(xA, SA∪e′))\UBk ̸= ∅, then Agent A

is being targeted by an attack of type NEO. If P(Ob
k(xA, SA∪

e′)) \ UBk = ∅, then Obstacle k is a true obstacle. If
P(Ou

A(xA, SA∪e′))\Uu
B ̸= ∅, then Agent A is being targeted

by PRA1 or PRA2. If P(Ou
A(xA, SA ∪ e′)) \ Uu

B = ∅, then
Agent A is under Attack PRA3 or AO.

The proof derived from previous analysis is omitted. For a
detailed treatment, please refer [28].

We check whether P(Ob
k(xA, SA)) \ UBk is empty as

follows. For each point p ∈ P(Ob
k(xA, SA)), we check to see

whether p satisfies hBk
l (p)−||ajkl ||ζh ≤ 0,∀l ∈ {1, . . . , nh

Bk}.
If not, we put p into P(Ob

k(xA, SA)) \ UBk. We name this
operation a scan match.

We design the decision tree as shown in Fig. 3 to detect
each attack. Agent A iterates the bounding boxes to check
whether an object is detected. The points in the bounding box
belong to either the non-existing obstacle from Attack NEO or
the true obstacle. After detecting and identifying the attack or
authenticating that it is the true obstacle, Agent A removes the
points from the observation, then move on to the next bounding
box. After traversing all bounding boxes iteratively, Agent A
checks whether there is still observation of the obstacle. If not,
there is no more attack or obstacle. If there is the observation
of the obstacle, there is an attack and a scan match will be
done to decide the classification of the attack.

After detecting the scan mismatch and identifying the
spoofed agent, the proposed FDII algorithm isolates the cor-
rupted parts of the raw data and updates the unsafe region by
extracting the intersection of the unions of the occupied areas
of the agents indexed in L.

The following theorem shows that the updated un-
safe region (∪k=1,...,nA

o
UAk)

⋂
(∪m=1,...,nj

o
Ujm) contains

P(P ob
k ),∀k ∈ {1, . . . , nA

o }. We note that Assumption 1 is not
required in Theorem 1.

Theorem 1: Suppose we are given the occupied areas UAk

of Agent A and Ujk of Agent j, k ∈ {1, . . . , nj
o} in the

area of IA ∩ Ij . If P(P ob
k ) ⊆ IA ∩ Ij , then P(P ob

k ) ⊆
(∪k=1,...,nA

o
UAk)

⋂
(∪m=1,...,nj

o
Ujm) for any of the attack

types NEO, PRA, or AO.

We omit the proof due to space limit. For a detailed
treatment, please refer [28].

To calculate (∪k=1,...,nA
o
UAk)

⋂
(∪m=1,...,nj

o
Ujm), which

is equivalent to
⋃

k′=1,...,nA
o
(UAk′

⋂
(∪k=1,...,nj

o
Ujk)), Agent A

approximates the set UAk′
⋂
(∪k=1,...,nj

o
Ujk) by computing the

convex hull of all scan points whose projections are contained
in UAk′

⋂
(∪k=1,...,nj

o
Ujk). Then Agent A computes a set of

half-plane constraints hjk
′

l (x), l = {1, . . . , nh
jk′} based on

the vertices, where hjk
′

l (x) − ||ajkl ||ζh < 0 describes the
corresponding half-plane and nhjk′ is the number of half-
planes forming the convex hull Ujk′ . We define h̄jk′(x) =

maxl h
jk′

l (x).

C. Safe Control

In this subsection, we present the safe vehicle controller
based on the unsafe region provided by the FDII. The kine-
matic bicycle model [16] adopted in this paper is defined asϕ̇ẋ

ẏ

 =

[ v
l sinψ

v cos (ϕ+ ψ)
v sin (ϕ+ ψ)

]
(1)

where ϕ is the heading angle between the orientation and the x-
axis, (x, y) is the position of the reference point (at the middle
of the front axle, between the front wheels), v is the forward
velocity at the reference point, l is the wheelbase, and ψ is the
steering angle.

For implementation, we discretize Eq. 1 using forward
differencing method with the sample time dt to obtain

x[t+ 1] =

[
ϕ[t+ 1]
x[t+ 1]
y[t+ 1]

]
= f(x[t],u[t])

=

 ϕ[t] + dtv[t]l sinψ[t]
x[t] + dtv[t] cos (ϕ[t] + ψ[t])
y[t] + dtv[t] sin (ϕ[t] + ψ[t])

 (2)

where u[t] = (v[t], ψ[t])′.

In order to avoid collision between the vehicle and the un-
safe region, we utilize Model Predictive Control with Discrete-
Time Control Barrier Function (MPC-CBF) [27]. The con-
troller solves the following finite-time optimization problem
with prediction horizon T at each time step

min
u[t:t+T−1]

(x[t+ T ]− xr)
TF (x[t+ T ]− xr) (3a)

+

t+T−1∑
t′=t

(x[t′]− xr)
TQ(x[t′]− xr) + u[t′]TRu[t′]

s.t. h̄jk′(x[t+ 1])− h̄jk′(x[t]) ≥ −γh̄jk′(x[t]),

k′ = 1, . . . , nA
o (3b)

x[t′ + 1] = f(x[t′],u[t′]), t′ = t, · · · , t+ T − 1
(3c)
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x[t′] ∈ X, t′ = t, · · · , t+ T − 1 (3d)
u[t′] ∈ U, t′ = t, · · · , t+ T − 1 (3e)

where Eq. (3a) means that we would like the vehicle to
converge to the midline of the lane (xr) with minimal control
effect, Eq. (3b) is the DT-CBF constraints ensuring that the
vehicle avoids the unsafe regions provided by FDII, njo is the
number of the occupied areas of Agent j, Eq. (3c) is the system
dynamics as shown in Eq. (2), Eq. (3d) is the admissible set of
system state x (eg. stationary obstacles shown in the default
map), and Eq. (3e) is the admissible set of control input u (eg.
the upper bounds and lower bounds of the control inputs).

The optimal solution of Eq. (3) is a sequence of control
inputs u∗[t], . . . ,u∗[t+ T − 1]. The first element u[t] = u∗[t]
will be executed. Since u[t] = u∗[t] satisfies Eq. (3b), the
vehicle will not collide with the obstacle at time step t. Then
at time step t + 1, Eq. (3) will be solved based on the new
state x[t + 1]. If FDII provides updated unsafe regions, they
will be incorporated in Eq. (3b). This receding horizon control
strategy guarantees collision avoidance between the vehicle
and the obstacles.

V. CASE STUDY

In this section, we evaluate our approach in CARLA
[9] simulation environment. We first evaluate our proposed
approach to FDII and obstacle detection under attacks. We
then show that our safe controller ensures that the CARLA
vehicle avoids obstacles using the proposed control strategy.

A. Augmented LiDAR FDII

We first introduce the simulation settings. We initialize
two vehicles, denoted as Agents A and B, at locations
(−54.34, 137.05) and (−34.34, 137.05), respectively. We eval-
uate our Augmented LiDAR FDII by simulating four scenarios:
attack-free, attack NEO, PRA2 and PRA3.

We simulate the attack-free scenario as a reference group.
As shown in Fig. 5a, a pedestrian spawns at (−42.34, 137.05),
12 meters in front of Agent A.

In Attack NEO, the attacker injects false data to create a
non-existing obstacle. As shown in Fig. 4a, the false data is
injected into Agent A’s LiDAR observation to falsify a cylinder
8 meters in front of agent A with radius 1 meter.

The PRA attacker spoofs LiDAR detection modules to
hide obstacles in relay attacked area by injecting false data
between victim agent and obstacles. We simulate this attack
by replacing true measurement with Gaussian noise. In attack
PRA2, we use the same basic setting as the aforementioned
attack-free case. In addition, we let the attacker inject false
data into Agent A’s LiDAR observation to hide the pedestrian
in the relay attacked area as shown in Fig. 5b. The injected
false data, located 8 meters ahead of Agent A, is Gaussian
noise distributed in a cylinder area with 1.3 meters radius.

In the previous PRA2 case, the cylinder area can be
partially seen by Agent B. We further validate our approach
on a scenario where the cylinder area is blocked by pedestrian.
In Attack PRA3 case, we set the cylinder area with 0.4 meter
radius, shown in Fig. 5c.

Finally, we present the simulation results and analyze them
by comparing with the reference attack-free scenario. We list
the corresponding point cloud of joint perception of two agents
and the intersection of the occupied area in the second and
third row of Fig. 5, respectively.

In the attack-free case, agents exchange point cloud data
of the intersected area. Both agents can detect the obstacle
and generate bounding boxes to contain those points. Agents
identify occupied area and generate non-empty sets UA and
UB with the contained points. The proposed FDII module
takes these information and detects that there is no attack.
By overlapping UA and UB according to agents’ location,
FDII further identifies the intersection shown in Fig. 5g as
the candidate unsafe region.

In the attack NEO case, a fake obstacle is detected by
Agent A annotated in Fig. 4b, which create an erroneous unsafe
region. Due to the aforementioned limitation of relay attack,
this fake obstacle can only be seen by Agent A. Therefore with
the observation provided by Agent B, there is no occupied
area identified with the points contained, i.e., UB = ∅. The
proposed FDII module detects attack NEO and the obstacle is
non-existing. Hence, the unnecessary unsafe region is removed,
shown in Fig. 4c.

(a) Attack NEO: An obstacle falsified by
spoofer is set in front of Agent A.

(b) Fake obstacle can be detected only by
Agent A with UA ̸= ∅ and UB = ∅.

(c) The FDII module detects NEO attack.
The intersection of the occupied area UA∩
UB = ∅, denoting there is no unsafe region.

Fig. 4: FDII simulation settings and results of attack-NEO case

In attack PRA2 case, both attack signal and the pedestrian
can be captured by Agent A and B respectively. With point
cloud from Agent B, Agent A can observe both obstacles
annotated in Fig. 5e and generate their corresponding occupied
area with UA ̸= ∅ and UB ̸= ∅. Since some areas affected by
injected false data can be observed by Agent B, we have the
P(Ob

k(xA, SA)) ⊈ UB and P(Ob
k(xA, SA)) ∩ UB ̸= ∅. The

proposed FDII algorithm detects attack PRA2. By overlapping
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UA and UB according to agents’ location, FDII further identi-
fies the intersection shown in Fig. 5h as the candidate unsafe
region.

In attack PRA3 case, the false data affected area is rel-
atively small as shown in Fig. 5f, and hence the area is
fully blocked by the pedestrian from Agent B’s perspec-
tive. In this case, we have the P(Ob

k(xA, SA)) ⊆ UB and
P(Ob

k(xA, SA)) ∩ UB ̸= ∅. The proposed FDII algorithm
detects attack PRA3. By overlapping UA and UB according to
agents’ location, FDII further identifies the intersection shown
in Fig. 5i as the candidate unsafe region.

B. Safe Control

In this case study, we show that our MPC controller ensures
the vehicle to be safe. We consider CARLA vehicle Model-
3 as our control object and use (2) as the simplified vehicle
model with l = 4 and dt = 0.03. We further take standard
feedback linearization approach to acquire linear model as xyvx

vy


k+1

=

 1 0 0.03 0
0 1 0 0.03
0 0 1 0
0 0 0 1


 xyvx
vy


k

(4)

+

 0.0045 0
0 0.0045
1 0
0 1

[
∆vx
∆vy

]
k

, (5)

in which vx, vy are velocity component of x-axis and y-axis,
respectively, control input u = [∆vx,∆vy]

T representing the
corresponding changes.

We define an MPC controller according to (3) with F , Q,
and R set to be identical matrices. We realize our controller
with an open-source Python library do-mpc [11], which calls
CasADi [1] and IPOPT [23] for nonlinear programming.

We next present the setting of the case. The vehi-
cle is asked to perform reach-and-avoid task starting from
location (−14.34, 137.05) to (−5.00, 135.25) without en-
tering the unsafe region. We set the initial state to be
[−14.34, 137.05, 0, 0]T and initial guess to be [1, 0]T . Given
the unsafe region detected by FDII module, controller restores
the constraints on position s = [x, y]T as

h(s)1 = [−0.35, 0.94]s− 132.74

h(s)2 = [−0.17,−0.99]s+ 132.5

. . .

h(s)14 = [0.12,−0.99]s− 134.62.

Finally, we present the trajectory of the CARLA vehicle
controlled by MPC in an urban street. As shown in Fig.
6, the vehicle drives from the location (−14.34, 137.05) to
(−5.00, 135.25) without entering the unsafe region.

VI. CONCLUSION

This paper presented an approach for leveraging sensor data
from neighboring vehicles to detect LiDAR spoofing attacks
on autonomous vehicles. In our approach, vehicles exchange
LiDAR scan data and identify spoofing attacks by checking
for disparities between the detected obstacles under each scan.

We further develop a decision tree to differentiate between
non-existing obstacle, physical removal, and adversarial object
attacks. We then construct an estimate of the unsafe region
based on the joint scan data, and propose a control policy that
avoids the unsafe region. We validated our framework using
the CARLA simulation platform and showed that it can detect
and identify LiDAR attacks as well as guarantee safe driving.
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