
Analysing Adversarial Threats to Rule-Based
Local-Planning Algorithms for Autonomous Driving

Andrew Roberts
FinEst Centre for Smart Cities

Tallinn University of Technology
Andrew.Roberts@taltech.ee

Mohsen Malayjerdi
Department of Mechanical and Industrial Engineering

Tallinn University of Technology
Mohsen.Malayjerdi@taltech.ee

Mauro Bellone
FinEst Centre for Smart Cities

Tallinn University of Technology
mauro.bellone@taltech.ee

Olaf Maennel
School of Computer and Mathematical Sciences

The University of Adelaide
olaf.maennel@adelaide.edu.au

Ehsan Malayjerdi
Department of Mechanical and Industrial Engineering

Tallinn University of Technology
ehsan.malayjerdi@taltech.ee

Abstract—The safety and security of navigation and planning
algorithms are essential for the adoption of autonomous driving
in real-world operational environments. Adversarial threats to
local-planning algorithms are a developing field. Attacks have
primarily been targeted at trajectory prediction algorithms which
are used by the autonomous vehicle to predict the motion of
ego vehicles and other environmental objects to calculate a safe
planning route. This work extends the attack surface to focus
on a rule-based local-planning algorithm, specifically focusing on
the planning cost-based function, which is used to estimate the
safest and most efficient route. Targeting this algorithm, which is
used in a real-world, operational autonomous vehicle program,
we devise two attacks; 1) deviation to the lateral and longitudinal
pose values, and 2) time-delay of the sensed-data input messages
to the local-planning nodes. Using a low-fidelity simulation testing
environment, we conduct a sensitivity analysis using multiple
deviation range values and time-delay duration. We find that
the impact of adversarial attack cases is visible in the rate of
failure to complete the mission and in the occurrence of safety
violations. The cost-function is sensitive to deviations in lateral
and longitudinal pose and higher duration of message delay.
The result of the sensitivity analysis suggests minor deviations
of the pose (lateral, longitudinal) values as an optimal range for
the attackers search space. Options for mitigating such attacks
are that the AV should run a concurrent process executing a
concurrent planning instance for redundancy.

I. INTRODUCTION

Navigation and planning algorithms are essential for au-
tonomous driving (AD). For the self-driving vehicle to navi-
gate the road environment, the navigation and path-planning
algorithm must calculate a route that ensures safety for the
passenger and external environmental actors (pedestrians, other
vehicles and road users, etc.) and achievement of the journey
(mission). Initial studies of navigation and path planning algo-
rithms for AD have shown them to be vulnerable to adversarial
attacks that introduce uncertainties into the route calculation,

which causes downstream effects on the safe behavioural
control of the AV [2], [17], [3]. To improve the reliability
of navigation and planning algorithms, they need to be further
tested for uncertainties, and these methods are incorporated
into the architecture of autonomous driving.

There are a few studies that focus on adversarial attacks
on local-planning. These studies target machine learning algo-
rithms for local-planning modules such as trajectory prediction
(Trajectron++, Agentformer and GRIP++) [2], [17], [3]. The
predominant threat model adopted, focuses on developing
methods and tools of adversarial learning to understand the
trajectory prediction model of the target AV and then either
crafting malicious sensor data input or training other ego
AVs in the driving environment to interfere with the target
AVs predicted trajectory [15], [2], [17], [3]. The required
result of a successful adversarial attack is to cause the target
AV to generate a trajectory that is unsafe, inefficient, or
uncomfortable for passengers. In this work, we expand on the
target of attacks to a rule-based algorithm for local-planning,
and focus on the trajectory generation and estimation of an
AV. Our justification for focusing on rule-based algorithms
is that, whilst AI approximate reasoning algorithms seem to
be highly promising for the near future, an impediment to
current adoption is the lack of feedback in real-world driving
scenarios [5]. Rule-based algorithms for path-planning in robot
navigation and AD are well-established, and more ubiquitous
in real-world deployments.

A rule-based local-planning algorithm uses a cost function
to estimate the least-cost path. The cost function takes input
from immediately sensed-data; current pose, velocity etc.. The
cost estimation is based on a calculation of factors such as;
lateral collision, longitudinal collision, lane transition, central
deviation etc., and weighting is given to these factors based on
criteria such as safety and efficiency. By interpreting the cost-
function, used for trajectory generation and estimation, as part
of local-planning, an adversarial attack can be crafted which
affects the downstream behavioural control whose decisions
impact the safe driving state of the AV.

The main idea of this paper is that the white-box knowledge
of the cost estimation function of the rule-based local planning
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algorithm can be used to craft adversarial attacks by manipu-
lating factors inherent to the cost function. Evaluating white-
box generated attacks enable an understanding of the level
of stealth of the adversarial threat, and whether adversarial
manipulation by the cyber attack can be distinguished from
noise. Furthermore, these attacks will enable evaluation and
assessment of the optimisation of the algorithm to uncertainties
and the quality of decision-making.

The key questions this study engages are the following:

1) What is the sensitivity of the cost function to adver-
sarial data manipulation of key driving parameters?

2) How can an adversarial attack hide in the cost func-
tion from detection?

3) What optimisations of the rule-based algorithm can
be considered to mitigate against adversarial data
manipulation?

The problem area of this research, is centred on a local-
planning algorithm, open-planner 2.5, which is used in an AV
shuttle program that operates in real-world road conditions
in Europe [7]. As with the open-source software community,
development of vulnerability research and testing methods
proliferate across the ecosystem and are utilised and innovated
for diverse platforms. The aim of this study is to focus on
the vulnerability of the local-planning function of autonomous
driving and provide direction and guidance to the autonomous
driving security community to develop vulnerability testing
on diverse planners and algorithms. In a broader sense, this
research aims to understand how AD algorithms used in
real-world AD programs can be tested for adversarial threats
and validated to improve assurance for real-world operational
driving.

II. RULE-BASED LOCAL-PLANNING ALGORITHM

A. Open Planner 2.5 Local-Planner Overview

For the AV to plan a mission, firstly, a global planner
generates a global reference path using a vector (road network)
map. The function of the global planner is to stipulate the
starting position and goal position of the mission on the road
map. How to achieve this mission, for the AV to navigate
from the starting position to the mission goal, through a
smooth, obstacle free trajectory is the function of the local-
planner. The local-planner consists of several modules (see
Figure 1); trajectory generation, trajectory evaluation, intention
and trajectory estimator, object-tracker and behavior selection
(decision making) [7]. The trajectory generation module gen-
erates alternative tracks parallel to the main path defined by the
global planner. These tracks are named rollouts. The trajectory
evaluation module assesses all possible rollouts and the data
input from sensed-data of the AV and makes a cost estimation.
The behaviour selector will lead the AV to motion on a rollout
based on the least-cost.

Table I displays the input and outputs of each of the local-
planning modules (Note. intention and trajectory estimator and
object-tracker are not visible as they are not within the scope
of this study).

Fig. 1: OpenPlanner 2.5 Architecture [7]

TABLE I: Local-Planning Module
Node Input Output

Trajectory Generator Initial Pose Local Trajectories

Current Pose

Current Velocity

Lane Waypoints Array

Trajectory Evaluator Current Velocity Local Trajectory Cost

Current Pose

Local Trajectories

Lane Waypoints Array

Predicted Objects

Current Global Local IDS

Behavioural Selector Current Velocity Current Behaviour

Current Pose

Local Trajectory Cost

Local Weighted Trajectories

B. Local Planning Cost Function

The local motion planning algorithm generates a trajectory
(or a set of control commands for the AV) by minimizing a
cost function, within a workspace, that includes a set of design
parameters. The cost function constitutes the rules for motion-
planning which inform the decision-making for autonomous
driving.

The cost function is built on five factors and calculated in
the following Eq. 1:

C =


wcent

wtrans

wlongColl

wlatColl

wvis

 ·


Ccent

Ctrans

ClongColl

ClatColl

Cvis


T

(1)

where, Ccent is the cost associated to the central trajectory and
is designed to keep the vehicle in the central trajectory; Ctrans

is the transition cost that prevents the vehicle from jumping
between rollouts; ClongColl and ClatColl are the cost of the
longitudinal and lateral collision respectively, and finally Cvis

is the weight associated to the visibility [12]. Each of these
costs are weighted by their respective weighting factors wi [6].
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III. THREAT MODEL

The attack targets the local planning cost function, with the
aim of inducing the trajectory evaluation to choose a motion-
planning route that is not optimal for safety, functionality of
the driving mission and comfort of the passengers. To achieve
this, the most direct mechanism to impact the cost function
is to manipulate, with adversarial data, the sensed-data input
that is inherent to local-planning. The Current Pose data is
the optimal target for this as it is the primary sensed-data for
localisation of the vehicle, containing the longitudinal, lateral
positioning and orientation of the AV. Whilst altering the pose
data of the vehicle has previously been conducted in other
studies [2], [17], [3], [15], in our attack we aim to explore
the sensitivity of our cost function to data manipulations and
conducting the attack during specific time-intervals.

For the threat model used in our study, we assume that
the attacker has access to the internal network of the AV
and is able to listen to control message communications and
collect data. This could be achieved through supply-chain
compromise of a library in the control software, insider threat
actor, or many of the vulnerabilities in existing communica-
tion frameworks for autonomous systems such as the robotic
operating system (ROS) [8]. Given the attacker has access
to the internal network, the question arises, why not change
the Lane ID or a driving parameter which would be more
simplistic and direct? We view these attacks as overt in nature
and likely to be detected, the compelling nature of adversarial
data manipulation is that the attack is difficult for AV safety
engineers to interpret between noise and an explicit cyber
threat. Another consideration are the external interfaces of the
vehicle localisation sensing, which generates the pose data.
It is a possibility that the pose data can be manipulated
by an external attack in the form of GPS spoofing or an
adversarial LiDAR, dependent on the sensor configuration used
for the localisation of the vehicle. The study focused on the
vulnerability of the planner and its search space, considering
localisation. We considered internal attacks to be important
due to the increase in attacks through software and hardware
supply-chains, and therefore the scope of the attacks within
the study highlighted this area.

A. Attack Case 1: Position Offset Attack

The attacker creates a spoofed ROS topic which is able to
deliver malicious input data of the Current Pose (longitude,
latitude, and velocity) to all the nodes of the local planning
module. The data manipulation is injected online/dynamically
during the critical overtaking manoeuvre involving the AV and
NPC (Non-playable character). Figure 2 displays the critical
driving scenario and the time frames in which the manipulated
Current Pose data is injected into the local planning pipeline
cost estimation. The red dashed lines in Figure 2 represent
the roll-outs, and the green highlighted, denoting the selected
motion-path.

For the manipulation of the Current Pose data, we intro-
duce a deviation to lateral and longitudinal pose.

For the lateral pose data, the sensitivity deviation intro-
duced was structured as follows:

• Attack Case 1a: 0.16%

Fig. 2: Threat Model

• Attack Case 1b: 0.33%

• Attack Case 1c: 0.5%

In designing the range of deviation, we considered state-
of-the-art attacks such as AdvDO attack [2], which noted two
requirements for developing adversarial threats to planning
algorithms:

1) Malicious data input needs to be feasible to the real,
physical constraints of the vehicle [2].

2) Malicious data input of the local-planning algorithm
should be close to the nominal trajectory [2].

Therefore, we chose a range from a slight perturbation of
pose to a 1m deviation.

The longitudinal pose data sensitivity deviation range was
structured as follows:

• Attack Case 1d: 0.33%

• Attack Case 1e: 0.66%

• Attack Case 1f: 1.00%

This range is the same as the longitudinal deviation.
The difference in percentage comes from the difference in
coordinate values of lateral and longitude. The lateral value
is almost double those of the longitudinal, and therefore the
percentage is doubled.

B. Attack Case 2: Message Time-Delay

For the second attack case, we inserted a time-delay into
the messages of the Current Pose topic communicating to the
nodes of the local planning module.

We introduced a message delay when the AV passes 2m
in front of the NPC (from the centre) in the lateral direction.
We introduce 3 different time delays in the message:

• Attack Case 2a: 0.3 seconds

• Attack Case 2b: 0.6 seconds

• Attack Case 2c: 1.0 seconds

The message frequency is approximately 50hz, so this is a
message every 20 milliseconds. We chose the above range of
deviation of time-delay as it enabled a spectrum of a message
from the delay from approximately 15, to 50 messages.
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IV. EXPERIMENTAL SETUP

A. Test Environment and Configuration

In terms of conducting such experiments, simulation is the
best method among all testing methods for AVs. To accelerate
the testing, we bypassed the sensing and detection nodes of
the algorithm and focused on the planning part by utilizing
the low-fidelity simulation feature provided by Autoware.ai
and Openplanner. The low-fidelity simulation uses the open-
planner 2.5 control algorithm. It provides simulated localiza-
tion and detection data for the planning nodes and receives
the actuation commands to simulate the AV kinematics. This
process runs faster due to the low-detail environment required
for the simulation and the lack of the process to simulate the
sensors. Figure 3 displays the different frames of an overtaking
simulation in the simulator.

Fig. 3: Example of an overtaking simulation in the low-fidelity
simulator, a) starting point of the overtaking b) middle of the
mission, AV is on the opposite lane reaching the NPC c) AV
cuts in

Fig. 4: Target scenario, Dx and SNPC , define the initial
relative distance to the NPC and the constant NPC speed in
the scenario

1) Target Mission: Overtaking is one of the most chal-
lenging maneuvers for Avs [10]. In this research, we selected
this operation as the target scenario for studying the planning
algorithm under the cyber-attack. The scenario parameters in
Figure 4 are listed in Table II.

TABLE II: Target scenarios definition
Actor Speed (m/s) Dx(m) Goal

AV [0:6] 0 overtake the NPC safely
NPC 3 25 keep moving

2) Safety Evaluation Test: To assess the safety and reliabil-
ity of the planning algorithm in normal conditions (no attack),
we ran the scenario simulation 300 times to reach a meaningful
statistical population. Then, the planning algorithm behavior in
each case was evaluated with the local-planner performance
evaluation criteria (explained in the next section).

3) Attack Test Cases: Finally, the platform was used to
simulate the proposed adversarial data manipulations and time-
delay messaging, during the overtaking mission and monitor
the algorithm’s behavior. For each attack case, we ran the
simulation (with attack) 100 times. Overall, 900 simulations
were conducted for all attack cases.

B. Evaluation Criteria

For the evaluation, we used previously established safety
criterion [11] with evaluation criteria recommended by
SafeBench, a benchmarking framework for safety evaluation
of AD algorithms for critical driving scenarios [16]. Figure III
displays the metrics used for the performance evaluation.

TABLE III: Local-Planner Performance Evaluation Criteria
Condition Data

Label
Description Metric

Safety Violation V

Succeed Suce AV Successful complete
the mission

Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Break on
Passing Lane

BrP AV initiates emergency break
on passing lane

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Functionality

Avg. time spent
to complete route

TS The average time taken
to complete the mission

seconds

Comfort

Avg.
Acceleration

ACC Average acceleration of the AV m/s

Avg.
Steering Angle

YV Steering angle of the AV degrees

Freq. of
Lane Invasion

LI The number of times the AV
transitions to another rollout

numeric

V. RESULTS

After running 1200 simulations, all recorded data including
the AV and the NPC position and orientation were processed to
assess the simulations based on the evaluation criteria. We also
visualized the recorded data to study the violation and their
cause in each simulation as shown in Figure 5. Figure 5.a rep-
resents a safety run completed successfully. Next, (b) and (c)
display lateral and longitudinal attack cases which experienced
brake and collision safety violations respectively. Finally, (d)
shows a message time delay attack which is finished by a
collision. The asterisk signs in the AV trajectory show the point
where the Openplanner changes the rollout. Overall, all the
safety violation results for the whole experiment are presented
in Figure 6.
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Fig. 5: 2D representation of the simulation of each test group.
a) a successful safety test, b) a lateral attack case that led to a
brake violation, c) a longitudinal attack case that experienced a
collision, and d) a message time delay that causes a collision.
for the attack cases a vertical line shows the start and stop
point of the attack

Fig. 6: All simulation result based on the proposed safety
criteria

For each of the attack test cases, we saw an increase in
safety violations of the AV compared to the normal safety test
case experiment. As the value of the deviation for lateral and
longitudinal values increased the number of successful mission
completions decreased. Although marginal, the greater number
of safety violations for the attacks on the Current Pose data
were observed in the lateral deviations. Given the importance
of lateral positioning to the overtaking manoeuvre, this can
be understood as any deviation increases the complexity of
executing the overtaking manoeuvre. In the 1f attack test case,
the highest value longitudinal change (approximately 1 meter)
led to a crash with curbside and not able to continue the
mission. This event was reported as a braking safety violation.

The time-delay messaging attack test case saw the only
result for mission not finished metric. Furthermore, the greater

the delay of the Current Pose data reaching the local-planning
nodes, the increased likelihood that a safety violation will
occur, and in the case of our experiments, the greater the
likelihood of a the most serious safety violation, collision.

Table IV demonstrates the results of the safety test ac-
cording to the performance evaluation criteria. The level of
safety violations are reflective of an algorithm which is in
development and being optimised for critical driving scenarios
such as overtaking.

TABLE IV: Summary of the Safety Simulation
Num. VCol VDTC VBrP VBrD VNotF VSuce

300 4.6% 8.6% 19% 6% 0% 51.6%

TS ACC Y V LI

mean 29.1 0.4 3.8 7.1

STD 6.7 0.2 2.2 4.6

min 21.9 0.2 1.8 2

max 42.3 1.3 21.7 25

Table V shows that for each deviation there is a high
number of safety violations in comparison to the safety test
case results. In regards to the sensitivity analysis, a smaller
deviation of around 20 to 25 cm can achieve the result that
the local-planning algorithm is only successful in generating
a trajectory that completes the mission in 24% of the total
test set. Furthermore, a small deviation in the lateral pose, can
achieve a higher number of collisions with an ego vehicle.
It may also be seen from the lane invasion and steering
angle results that small deviations to lateral pose result in a
fluctuation of the cost of different rollouts which cause greater
lane transitions as the cost function causes the AV to choose a
route based on minimum cost. The higher deviation results in
a higher occurrence of breaking activity and hitting the curb.
Furthermore, the higher deviation results in the AV being stuck
in the passing lane, this is due the dramatic change in lateral
pose. The 1 meter deviation attack case results in 0% success
of finishing the mission.

Table VI results of the longitudinal deviations also display
a high number of safety violations in comparison to the
safety test case results. Collision safety violation is highest
for the longitudinal deviation attack. This can be reasoned as
the longitudinal deviation does not experience the same high
volume of breaking passing lane safety violations, where the
vehicle gets stuck, as seen with the lateral pose deviation.
The higher deviation of longitudinal pose, results in increased
acceleration and this causes sharp breaking. This is indicated
with the 1f result, the 1 meter deviation attack case, which
displays a higher instance of breaking safety violation. The 1
meter deviation attack case results in 0% success of finishing
the mission.

Table VII demonstrates the shorter delay of local pose
data has minimal impact on the success of the mission and
safety violations. As the time duration of the message delay
is increased the impact to the reliability of the local-planning
algorithm is higher. Test 2c, which is the delay of Current Pose
data of 1.0 second, shows considerable increases in collisions
and decreases in the likelihood of the success of the mission.
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TABLE V: Summary of the Attack Case 1: Position Offset
Attack Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

1a 100 24% 11% 34% 7% 0% 24%

1b 100 5% 11% 81% 1% 0% 2%

1c 100 13% 11% 74% 2% 0% 0%

1a TS ACC Y V LI

mean 35.3 0.4 9 7.5

STD 7.4 0.2 7.5 5.4

min 21.9 0.2 1.9 1

max 42.4 1 23 23

1b TS ACC Y V LI

mean 41.4 0.4 9.5 4.8

STD 3.5 0.1 4.4 3

min 22.1 0.2 3.1 1

max 42.4 1.2 23.7 21

1c TS ACC Y V LI

mean 41.7 0.4 7.8 4.7

STD 1.7 0.1 1.2 2.7

min 32 0.3 4.3 1

max 42.3 1 9.8 15

TABLE VI: Summary of the Attack Case 1: Position Offset
Longitudinal Deviation Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

1d 100 23% 16% 30% 7% 0% 24%

1e 100 58% 9% 25% 3% 0% 5%

1f 100 34% 14% 51% 1% 0% 0%

1d TS ACC Y V LI

mean 33.8 0.5 5.7 9.1

STD 7.6 0.3 4.9 5.4

min 18.1 0.2 1.7 2

max 43.2 1.4 23 27

1e TS ACC Y V LI

mean 32.2 0.6 6.7 10.5

STD 9.5 0.2 3.2 5

min 17.8 0.2 1.9 2

max 43.2 1.1 20.5 25

1f TS ACC Y V LI

mean 32.2 0.7 5.9 11.3

STD 7.9 0.2 2.5 4.7

min 18 0.3 2.7 2

max 43.2 1.4 22.1 26

The time-delay of the pose data to the local-planning nodes
results in a loss of localisation and the greater delay the greater
impact on the cost calculation which in turn causes uncertainty
for the behaviour selector/decision-making.

TABLE VII: Summary of the Attack Case 2: White-Box Delay
Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

2a 100 20% 9% 16% 4% 0% 51%

2b 100 21% 8% 17% 7% 0% 47%

2c 100 41% 10% 14% 2% 4% 29%

2a TS ACC Y V LI

mean 29.3 0.4 4.2 7.6

STD 8.1 0.2 2.2 5.4

min 18.1 0.2 1.8 2

max 53 1.1 16.7 24

2b TS ACC Y V LI

mean 30.6 0.4 4.8 7.8

STD 8.6 0.3 3.7 4.8

min 22.9 0.2 1.8 2

max 58 1.1 23.8 21

2c TS ACC Y V LI

mean 32.9 0.4 7 8.3

STD 9.6 0.3 5.2 5

min 13 0.2 1.1 0

max 58.2 1.3 22.9 23

VI. DISCUSSION

The results of the test simulations demonstrated that the
cost function is sensitive to minor deviations of both the lateral
and longitudinal pose. The success rate of the mission is visibly
diminished when adding adversarial data manipulations to the
sensed-data input. The higher the deviation, the higher the
likelihood of mission failure. The minor deviation attacks,
where the deviation is a range of 20 to 25cm offer a good
starting point to mutate adversarial data for further attacks
based on this range. Whilst the higher range attacks conducted
in our experiments showed a higher rate of mission failure,
a deviation of 1 meter can be seen a noisy enough to be
observable. We also noticed such behaviour in a real-world AV
shuttle [14] and a manual emergency break had to be enacted
to prevent an emergency.

The time-delay attack demonstrated that minor delays
cause minimal impact on the success of the mission and the
occurrence of safety violations. Delays in sensed-data input
flowing to the local-planning modules of greater than 1 second
increase the rate of mission failure and safety violations. Given
that 1 message is broadcast every 20 milliseconds, 1 second
represents around 50 messages, and a delay of this magnitude
is also likely to be more observable.

For the attack to hide in the cost function, investigating
mutations for minor deviations of lateral and longitudinal
values in the range of 20 to 30 cm, offer an optimal target
range.

Mitigation of the adversarial deviation and time-delay
attack could include the implementation of a redundant driver.
This means that the AV should run a concurrent process
executing a concurrent planning instance. If the redundant
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driver and the actual driving algorithm give different results,
then this could indicate that an attack might be happening.
In such a case, the AV could either stop safely awaiting
for human intervention or switch to the redundant driver to
complete its mission. The development of the architecture for
a redundant driving integrity checking function also needs to
consider isolation from the primary driving function so that an
attacker cannot also compromise both.

VII. RELATED WORK

As safety validation of AD algorithms is a critical field for
the adoption of AD in real-world environments, there is a focus
on testing the reliability of trajectory prediction and generation
to adversarial driving actors in the road environment. Wang et
al. [15], Abeysirigoonawardena, Dudek & Shkurti [1], Chen
et al. [4], Klischat et al. [9], and O’Kelly et al. [13] use
simulation environments to develop adversarial trained NPCs
whose driving actions cause safety violations of the trajectory
prediction of the targeted AV. These simulations are focused on
safety validation and are not focused on the exploitation of the
algorithm by adversarial threat actors, however, their methods
in generating adversarial examples and target parameters and
data values are of great use in developing adversarial cyber
threats.

On a practical level, involving the real-world operation
of AVs, there are few research studies into the robustness
of planning and navigation algorithms to adversarial threats.
Prominent among them are Zhang et al. [17], Cao et al. [3]
and Cao et al. [2]. These studies focus on the robustness of the
trajectory prediction, the ability of the AV to predict the trajec-
tory of another ego vehicle or environmental object (pedestrian,
animals etc.) and make driving decisions accordingly. The
attacks in these studies are targeted at deep-neural networks
(DNNs), and therefore focus on adversarial learning to develop
robust adversarial trajectories. In relation to our work, the
observations on ranges for deviation of lateral and longitudinal
values and the considerations for crafting adversarial data were
useful in developing our attack cases.

VIII. CONCLUSION

In this work, we conducted a sensitivity analysis of the
openplanner 2.5 rule-based planning algorithm to adversarial
data manipulation of lateral and longitude values and delayed
sensed-input messages to local-planning nodes. We evaluated
these attacks in a low-fidelity simulation test environment
using an overtaking manoeuvre critical driving scenario. The
results showed that the planning cost-function is sensitive to
adversarial data manipulation that introduces deviations to the
lateral and longitudinal values. These adversarial deviations
cause higher rates of failure to complete missions and cause
safety violations. For the message delay attack, limited delays
in the range up to approximately 0.6 seconds have a limited
impact on the trajectory calculation. Message delays for 1
second or greater cause a visible difference in the safety
violation rate and mission success. We opine that limited
deviations are an optimal area to explore further attacks and
in more diverse critical driving scenarios.

Through this work we proposed a class of stealthy attacks
on the local-planning function of AD. An area of future

research is the development of monitoring systems developed
around such basis of attacks. The results show the feasibility of
monitoring real-time properties of the messages propagations
and therefore post-mortem forensics might be able to deter-
mine the presence of an attacker causing safety violations of
AVs.
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