
Formally Verified Software Update Management
System in Automotive

Jaewan Seo
Korea University
bace@korea.ac.kr

Jiwon Kwak
Korea University

jwkwak4031@korea.ac.kr

Seungjoo Kim*
Korea University

skim71@korea.ac.kr

Abstract—Through wireless networks, the number of cyber-
attacks on automotive systems is increasing. To respond to cy-
berattacks on automotive systems, the United Nations Economic
Commission for Europe (UNECE) has enacted the UN Regulation
series. Among them, UN R156 specifies the requirements that
are necessary for the design and implementation of a software
update management system (SUMS). However, the requirements
of UN R156 are too abstract to develop the overall systems of
SUMS. Therefore, we conducted threat modeling to obtain more
specific security requirements than those specified in the UN
R156. Based on the threat modeling, we proposed a secure SUMS
architecture that meets specific security requirements. Finally, we
formally verified whether our SUMS architecture logically meets
the security requirements by Event-B.

I. INTRODUCTION

To provide convenience, original equipment manufacturers
(OEMs) apply many wireless communication technologies
to vehicles. Based on the technology, vehicles are provid-
ing various services such as over-the-air updates as well as
entertainment [1,2]. Many OEMs actively provide over-the-
air services to their clients. For example, Hyundai, a repre-
sentative OEM in the automotive industry, provides various
services to its clients in concert with Amazon [3]. However,
as more software and hardware are built into or connected
to vehicles, cases of vehicle hacking are also steadily being
reported. In 2015, Miller and Valasek announced at Black
Hat that vehicle hacking could endanger the life of the driver
[4]. In 2017, researchers at Keen Security Lab announced
that they could take control of the entire automotive system
by forging Tesla firmware [5]. Recently, at the CanSecWest
2021 conference, a research team announced that hackers
can arbitrarily manipulate confidential data in an automotive
system using the wireless communication vulnerability of the
vehicle [6]. In 2021, UNECE issued regulations to ensure
the cybersecurity of vehicles. Among them, UN Regulation
No. 156 (UN R156) [7] specifies security requirements for a
SUMS. However, the security requirements in UN R156 are
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abstract, and thus it is difficult for OEMs to develop a SUMS.
Therefore, in this study, we analyzed the SUMS architecture
using a threat modeling technique [8]. Based on the results,
we proposed security requirements that make SUMS secure
and designed secure SUMS using those security requirements.
Finally, we used Event-B, one of the formal methods, to
prove that our design satisfies the security requirements. The
remainder of this study is structured as follows. In Section
II, we describe other research results that have topics that
are similar to our research. In section III, we describe our
research methodology. In Section IV, we describe the results of
threat modeling, including a list of security requirements and a
secure SUMS architecture. In Section V, we describe how our
architecture mathematically meets the security requirements
using Event-B. Finally, in Section VI, we summarize the
results of our research.

II. RELATED WORKS

In 2018, Lee analyzed the factors that caused risks in the
software OTA update system. In addition, they proposed orga-
nizational and technical requirements to be required to handle
the risks [9]. In 2020, Placho et al. proposed an automotive
update process. To achieve this, they proposed organizational
and technical requirements for securing the update process
[10]. Hamad et al. analyzed threats related to vehicles. And
they proposed security and privacy requirements to mitigate
them [11]. Yu et al. proposed the security requirements for
communication systems in vehicles such as Controller Area
Networks(CAN) and Automotive Ethernet(AE) [12]. In 2021,
Mukherjee et al. defined a threat model for automotive OTA
systems and proposed security-enhanced OTA systems to
mitigate the threats [13]. Ponsard et al. announced several
cyberattacks which could be exploited on vehicles by hackers.
And they analyzed the effectiveness of the existing update
framework against cyberattacks from a security perspective
and proposed the Upkit protocol, which can partially mitigate
these cyberattacks [14]. Wu et al. identified threats to OTA
technology and suggested countermeasures [15]. In 2022,
Ghosal et al. proposed a threat model for systems providing
OTA services when using cloud servers. They also suggested
security requirements for securely updating their software
through cloud servers [16]. Kirk et al. surveyed specific attack
methods that can be used to exploit OTA systems [17].
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Fig. 1. Overview of our research

Among the nine studies, four proposed security require-
ments for systems which is related to software updates in
the automotive industry. And only one study, conducted by
Ghosal et al., verified their proposal by simulation. There-
fore, we concluded that the aforementioned studies have two
limitations. First, they did not meet the UN R156 regulation
completely. When conducting their studies, they only analyzed
parts of the vehicle that they were interested in. It prevented
their solution from meeting UN R156 regulation completely
because UN R156 regulation covered whole parts of software
update systems in the vehicles. Second, they verified their so-
lutions by a simulation-based testing method instead of formal
methods. The simulation-based testing method can evaluate
whether a solution can be valid depending on the number
of test cases and scenarios. This prevents the method from
guaranteeing the solution’s validity because the number of test
cases and scenarios to consider is limited. To overcome the
aforementioned two shortcomings, we conducted our study by
using two detailed techniques. First, we used a threat modeling
technique to derive specific security requirements. During
threat modeling, we checked whether our result completely
meet UN R156 regulation. After threat modeling, we proposed
security requirements and designed SUMS architecture that
meets our requirements. Finally, we verified that our SUMS
architecture accurately reflects the security requirements us-
ing formal methods. All results of threat modeling and for-
mal specification for SUMS can be found at the following
URL (https://github.com/HackProof/Secure-Software-Update-
Management-System-SUMS).

III. OVERVIEW OF OUR RESEARCH

In this section, we describe the overall process of our
research. Our research process is categorized into two parts.
The first step is to derive security requirements for SUMS,
and the second step is to design the SUMS based on the
requirements. Figure 1 shows the process of our research.

A. Deriving security requirements for SUMS

Security vulnerabilities and threats can be easily found in
poorly developed software, and these can lead to exploitation
by attackers. Inappropriate or insufficient security require-
ments are one of the reasons that downgrades the security
or quality of software [53]. This problem can be solved by
taking security concerns into account from the early phases of
the software development process. In the automotive industry,
the ISO 21434 standard which covers the cybersecurity of
vehicles recommends the usage of systematic methodology
such as threat modeling when deriving requirements [54].
One of the methodologies for doing this is threat modeling.
Threat modeling is a specific technique to identify not zero-
day but known threats, attacks, and vulnerabilities and propose
countermeasures that could make systems secure [55-58]. A
typical case of threat modeling is Windows VISTA. Microsoft
used threat modeling while developing Windows VISTA and
SQL servers. As a result, a lot of vulnerabilities and threats are
reduced [59-61]. Due to its effectiveness, threat modeling has
been used in many fields, including the automotive industry.
In ISO 21434, there are some recommendations to derive
requirements by using threat modeling techniques such as
EVITA, TVRA, PASTA, and STRIDE. As a result, many auto-
motive manufacturers use these techniques. A typical example
is the HEAVENS security model. This model identifies threats
based on Microsoft’s STRIDE and evaluates the risk level by
calculating TL (Threat Level) and IL (Impact Level) for each
threat. When identifying a threat to a vehicle, this HEAVENS
Security Model not only considers the inside of the vehicle,
but also considers surrounding factors such as OEM, vehicle,
and driver. In addition, the GENIVI Alliance, which consists
of various vehicle manufacturers/suppliers around the world,
such as BMW, DAIMLER, HONDA, and Hyundai, is also
using STRIDE to identify attack routes and evaluate the risk
for vehicles. So we also used the STRIDE threat modeling
technique to derive security requirements because it is widely
used in the automotive industry. The specific threat modeling
process is as follows:
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Fig. 2. Level 1 DFD model of SUMS architecture

• Step 1. Draw data flow diagram (DFD): To identify
system behavior and vulnerability, we drew a DFD based
on documents published by automotive organizations.

• Step 2. Constructing an attack library: To identify
known vulnerabilities and attack techniques that can be
used in a general SUMS, we collected them through
a national vulnerability database, technical papers, and
other sources.

• Step 3. Analyzing threats in STRIDE: To identify
threats in general SUMS, we analyzed the DFD using
the STRIDE method. Based on the analysis results, we
derived the threats.

• Step 4. Generating an attack tree: We created an attack
tree to obtain an attack scenario using the potential threats
and vulnerabilities that were identified.

• Step 5. Deriving security requirements: Security re-
quirements are derived by detailing items that can mit-
igate vulnerabilities associated with the lowest nodes of
the attack tree.

B. Designing SUMS architecture based on requirements

A complex system, including automotive has numerous
requirements that are challenging to fully implement in a
single design. Furthermore, when designing the system via
natural language, which means informal, misunderstanding
can occur among developers. So ISO 26262 recommends using
the (semi-) formal method while designing automotive [62].
So we designed our SUMS architecture in two stages. First,
we design our architecture via UML. Then, corresponding
natural language-based requirements are reflected on the UML
component diagram. After completing the UML-based design,

we refined the design using Event-b. In this stage, the design
increases in detail and becomes closer to the implementation.

IV. PROPOSAL FOR SECURE SUMS ARCHITECTURE

In this section, we describe the threat modeling process on
SUMS and propose a secure SUMS architecture. To conduct a
threat modeling process, first of all, we should model the target
system. In the case of us, the target system is SUMS. However,
there are few SUMS implementation models available to the
public. This made it difficult to conduct threat modeling,
because there were no specific targets for the analysis. Thus,
we identified the specific components and functions of the
SUMS architecture by analyzing documents of automotive
organizations and project results before modeling the SUMS.
Based on these documents, we conducted threat modeling.

A. Conducting threat modeling

1) Drawing Data Flow Diagram(DFD): DFD is an abstract
model of the system to be analyzed in terms of data flow. It
shows the flow of data through 5 components: entity, process,
data store, data flow, and trust boundaries. When drawing a
DFD, soundness, which is the property in which the DFD
should be applied equally to the actual system, is important.
Therefore, the DFD should be expressed in as much detail as
possible such that there are no differences between the target
source code and the drawn DFD model. The DFD model is
divided into four levels. The first is the contextual model called
the context diagram. This expresses the entire system based
on roles such as the OEM, client, and auto repair shop. The
second is the Level 0 DFD model, which decomposes its role
based on the objective of its components, such as development,
updates, file self-diagnostics, and customer management. The
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third is the Level 1 DFD model, which decomposes its
components based on their functionalities such as encryption,
signing, and so on. The fourth is the Level 2 DFD model,
which decomposes its functionalities based on further criteria
[18- 20]. However, because Level 2 DFD is expressed in
great detail, such as the functional level based on the source
code, we were limited in drawing Level 2 DFD. Therefore, we
created DFDs up to Level 1 by identifying essential modules
based on documents. Figure 2 shows the DFD Level 1 model
for the SUMS architecture.

2) Constructing attack library: After modeling the system,
we collected all known vulnerabilities and security threats
which is related to the SUMS architecture. These collected
vulnerabilities and security threats are called attack library.
This attack library includes common vulnerabilities and expo-
sures (CVE), common weakness enumeration (CWE), papers,
technical documents, and so on. In our case, the attack library
includes a total of 70 pieces of vulnerabilities and security
threats. Specifically, it is divided into 35 CVE cases, 6 CWE
cases, 27 papers, 1 standard case, and 1 technical report related
to the SUMS; their contents are briefly shown in Table I.

TABLE I
ATTACK LIBRARY FOR SUMS

No. Category Name Ref.
AL-V-1 CVE CVE-2010-2959 [21]
AL-V-2 CVE CVE-2010-3874
... ... ... [22]-[47]
AL-P-28 Standard ITU-T X.1373 [48]
AL-P-29 Technical Report Automotive Industry

Guidelines for Secure
Over-the-Air Updates

[49]

3) Analyzing threats by STRIDE: Threat analysis is the
process of identifying all potential threats that may exist in
each DFD component. The STRIDE technique used in this
study categorizes security threats into six types: spoofing,
tampering, repudiation, information disclosure, denial of ser-
vice, and elevation of privilege. All threats can occur for
each component in DFD. Using STRIDE, we identified 1007
security threats. Table II lists all of the threats that can be
derived from DFD by using the STRIDE technique.

TABLE II
THREAT FOR SUMS

Type ID Name Threat Attack
Library

No.

Entity E1 Software Developer S AL-V-19 T1
S AL-V-40 T2
S AL-P-1 T3

... ... ... ... ... ...
Data Flow DF55 Vehicle Data I AL-P-4 T1004

I AL-P-13 T1005
I AL-P-18 T1006
D AL-P-19 T1007

4) Generating attack tree: Attack tree is a technique that
creates an actual attack scenario for the system based on the
threat derived from the previous step [50]. The root node
represents the final goal of the attacker, and the leaf node is the

specific attack method or attack point to reach the root node.
The lower node can achieve the attack target of the upper node
through AND and OR conditions. Under the AND condition,
all lower nodes bounded by the AND condition must be
achieved to attack the upper node. Under the OR condition,
one of the lower nodes bounded by the OR condition must
achieve the target of attacking the upper node. Examples of
attack trees proposed in this paper are presented in Figure 3.

Fig. 3. Attack Tree for SUMS

5) Deriving security requirements: Security requirements
are used to mitigate specific attacks on attack tree. It is impor-
tant to note that when deriving the security requirements, we
carefully determined that those requirements can mitigate the
specific attacks included in attack tree. We eventually proposed
38 security requirements. Some of them are listed in Table
III. As explained in Section I, security requirements in the
UN R156 specify only abstract information. So, we proposed
security requirements in detail. Security requirements of this
paper identified all threats that could occur in SUMS through
threat modeling. And attack scenarios that could occur through
the identified threats, and derived security requirements that
could mitigate the specific attack method in the attack sce-
narios. Therefore, applying the security requirements of this
paper to the SUMS architecture can respond to all threats that
may occur in SUMS.

TABLE III
SECURITY REQUIREMENT FOR SUMS

No (SR) Security Requirement
1 (SR10) When authentication of the OEM server is attempted, the

authentication process must be terminated if the authen-
tication fails more than a certain number of times (e.g.,
5 times) to prevent attacks such as a full investigation.

2 (SR11) Before performing an action on the OEM server, the
OEM server must verify that each object is authorized
to perform the action based on each object’s identifier
(e.g., ID/PW).

3 (SR12) Before accessing the OEM server, the appropriate device
and person must be identified based on each object’s
identifier (e.g., ID).

As explained in Section I, security requirements in the
UN R156 specify only abstract information. So, we proposed
security requirements in detail. Security requirements of this
paper identified all threats that could occur in SUMS through
threat modeling. And attack scenarios that could occur through
the identified threats, and derived security requirements that
could neutralize the attack scenarios. Therefore, the security
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requirements of this paper can respond to all threats that may
occur in SUMS. These security requirements are mapped to
the requirements of UN R156 which are related to security as
shown in Table IV.

TABLE IV
RELATIONSHIP BETWEEN OUR PROPOSALS AND UN R156

UN R156 Security requirement
The process they will use to ensure
that software updates will be pro-
tected to reasonably prevent manip-
ulation before the update process is
initiated.

SR1, SR2, SR3, SR4, SR5, SR6,
SR7, SR8, SR9, SR10, SR11, SR12,
SR13, SR14, SR15, SR16, SR17,
SR18, SR19, SR20, SR21, SR22,
SR23, SR24, SR25, SR26, SR27,
SR28, SR29, SR30, SR32, SR33,
SR34, SR35, SR36, SR37, SR38

The update processes used are pro-
tected to reasonably prevent them
being compromised, including de-
velopment of the update delivery
system.

SR1, SR2, SR3, SR4, SR5, SR6,
SR7, SR8, SR9, SR10, SR11, SR12,
SR13, SR14, SR15, SR16, SR17,
SR18, SR19, SR20, SR21, SR22,
SR23, SR24, SR25, SR26, SR27,
SR28, SR29, SR30, SR32, SR33,
SR34, SR35, SR36, SR37, SR38

... ...
The vehicle shall ensure that pre-
conditions have to be met before
the software update is executed.

SR1, SR2, SR3, SR4, SR5, SR6,
SR7, SR8, SR9, SR10, SR11, SR12,
SR13, SR14, SR15, SR16, SR17,
SR18, SR19, SR20, SR21, SR22,
SR23, SR24, SR25, SR26, SR27,
SR28, SR29, SR30, SR31, SR32,
SR33, SR34, SR35, SR36, SR37,
SR38

B. Designing Secure SUMS Architecture
In this section, a secure SUMS architecture is proposed.

Its design is based on the security requirements derived from
threat modeling. The architecture for SUMS was designed
using a deployment diagram and a component diagram among
the UML diagrams. A deployment diagram was created to
express the relationship between the hardware resources upon
which the software under development was mounted. Based
on the deployment diagram, we propose a relationship among
four OEM servers, one vehicle, and one terminal in the repair
shop, which are components of the SUMS architecture. This
is similar to general SUMS architecture. This is because
it only reflects the abstract requirements specified in the
existing documents. After writing the deployment diagram, we
constructed a component diagram of the SUMS. A component
diagram is used to show the interactions between the software
and its functions loaded into the system. Based on the derived
deployment diagram and its security requirements, security
functions are reflected on the component diagram of secure
SUMS architecture. Based on the component diagram, the
secure SUMS architecture operates as follows.
On the OEM side, the patch files are ready to be deployed, as
shown in Figure 4.

• When the OEM developer finishes the development of
the patch file, it is then uploaded to the development
server. Currently, developers should authenticate their
identities using the ID/password they registered earlier.
If the authentication process is successful, the patch files
are transmitted to the diagnostic server.

• In this server, various tests for patch files are conducted.
The most representative example for testing on this server
is whether patch files are developed in compliance with
secure coding guidelines. If the patch files pass all of the
tests, they are transmitted to the update server.

On the client side, patch files are installed as shown in
Figure 5:

• The client can request patch files from the CRM server
of the OEM directly or through engineers in the repair
shop. Currently, the OEM CRM server authenticates the
identity of the automotive system by checking the vehicle
identification number (VIN) and its ECU version. If the
authentication process succeeds, the server checks the
version of files that are installed in automotive systems
and up-to-date patch files stored in the OEM update
server. This is possible because the CRM server stores
information such as the client’s personnel information,
the VIN of their vehicle, patch histories, and so on.

• If the version of files installed in an automotive system
is lower than the files in the update server of the OEM,
the update server transmits the related files to the auto-
motive system. Otherwise, they inform the client that the
software embedded in automotive systems is up-to-date.

V. EVALUATION

We prove the security requirements derived from Section
IV. There are many methods to prove a relationship between
requirements and design. Among them, we choose a formal
method to prove it.

A. Event-B

Event-B is one of the most frequently used formal methods.
It expresses the state of a system using set theory and predicate
logic [51]. The key features of this language are the use
of refinement to model the system at different levels and
the use of mathematical proof to verify consistency between
models. The Event-B model consists of context and machine
[52]. Context represents the static properties of the model.
By contrast, the machine represents the dynamic properties
of the model. By combining the context and machine, the
state of the system can be completely expressed. An engineer
can specify some constants and variables within a context
or machine. The constants are restricted by axioms in this
context. Variables are connected by invariants, and axioms
and invariants are expressed by the set theory expression in
the machine. In addition, Event-B specifies many events in
a machine. An event comprises guards and actions. Guards
represent the enabling condition of the event, and actions
represent how the state is modified by the event.

B. Formal specification of security requirements

In this section, we showed that our security requirements,
which are written in the informal form are converted to formal
form by Event-B. Among the informal requirements, three
security requirements in Table III are related to the login
function for users. SUMS attempts to verify the user’s identity
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Fig. 4. Component diagram of OEM in secure SUMS architecture

Fig. 5. Component diagram of automotive in secure SUMS architecture
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via ID and password by using this function. In figure 6, the
formal version of the log-in function is shown. The employee
can access the OEM development server using the ID and
password. After login Succeed, the employee is authorized
according to their role. In the case of the development
team leader, upload/fix/transfer/download/approve permission
is granted. However, there is a restriction in the login trial.
If the authentication process fails more than five times, the
authentication of the ID is forbidden.

Fig. 6. Formal specification of IP and Port

C. Formal verification of security requirements

After the formal specifications, we conducted formal ver-
ification. Formal verification is conducted to verify that the
requirements specified above are operating correctly and that
there is no contradiction between the requirements in the
secure SUMS architecture. As a result of formal verification,
the proof obligation is discharged by the automatic verifier
provided by Rodin and the external verifier named Atelier
B. Figure 7 shows the proof of our formal model of the
development server.

Fig. 7. Formal verification of SUMS

VI. CONCLUSION

Unlike in the past, vehicles are connected to many other
devices to update their systems automatically through SUMS.

However, it renders vehicles vulnerable because extra soft-
ware and hardware, which are necessary for providing the
functionality, become new attack surfaces. In this study, we
conducted threat modeling for SUMS. Through the threat
modeling process, we systematically identified all threats and
attacks that may occur in SUMS as well as those specified in
UN R156 regulations. To mitigate these threats and attacks,
we proposed security requirements and designed a secure
SUMS architecture. Finally, we formally verified that our
secure SUMS architecture reflects the security requirements
derived from threat modeling using Event-B.
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