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Abstract—Modern automobiles are equipped with a large
number of electronic control units (ECUs) to provide safe, driver
assistance and comfortable service. The controller area network
(CAN) provides real-time data transmission between ECUs with
adequate reliability for in-vehicle communication. However, the
lack of security measures such as authentication and encryption
makes the CAN bus vulnerable to cyberattacks, which affect the
safety of passengers and the surrounding environment. Intrusion
Detection Systems (IDS) based on one-class classification have
been proposed to detect CAN bus intrusions. However, these
IDSs require large amounts of benign data with different driving
activities for training, which is challenging given the variety of
such activities. This paper presents CAN-ODTL, a novel on-
device transfer learning-based technique to retrain the IDS using
streaming CAN data on a resource-constrained Raspberry Pi
device to improve the IDS. Optimized data pre-processing and
model quantization minimize the CPU and RAM usage of the
Raspberry Pi by making CAN-ODTL suitable to deploy in the
CAN bus as an additional ECU to detect in-vehicle cyber attacks.
Float 16 quantization improves the Tensorflow model with 78%
of memory and 83% of detection latency reduction. Evaluation
on a real public dataset over a range of seven attacks, including
more sophisticated masquerade attacks, shows that CAN-ODTL
outperforms the pre-trained and baseline models with over 99%
detection rate for realistic attacks. Experiments on Raspberry
Pi demonstrate that CAN-ODTL can detect a wide variety of
attacks with near real-time detection latency of 125ms.

I. INTRODUCTION

Recent improvements in vehicle autonomy and connectiv-
ity provide a more comfortable, safe and convenient experience
to drivers and passengers. This includes services such as
adaptive cruise control, lane departure warning, automated
parking assistance, and infotainment systems [1]. To pro-
vide these services, automobiles are equipped with numerous
microprocessor-based electronic control units (ECUs), such as
engine and powertrain control units. The exchange of various
information between these ECUs requires a unified network
which supports real-time data transmission with sufficient
bandwidth and adequate reliability [2]. Controller area network
(CAN), meets these requirements and therefore considered as
the most widely used in-vehicle network protocol. Despite the
CAN bus having the required communication capabilities, it
lacks security features such as message encryption and authen-
tication. These security flaws make the CAN bus vulnerable to

cyberattacks. Recent experiments have demonstrated that it is
possible to attack modern automobiles by compromising the
CAN bus [3]. This can be achieved through obtaining access to
OBD-II port [4], over the air (OTA) updates or communication
channels such as Bluetooth, Wi-Fi and cellular networks. These
attacks enable attackers to gain physical control of the vehicle
and activate different vehicle functions such as engaging the
brakes, turning on the windshield wipers, activating the locking
mechanism, and changing the vehicle’s speedometer values.
Therefore, cyberattacks on in-vehicle networks can pose direct
threats to passengers, owners, operators, and the surrounding
environment of the vehicle.

IDSs have been proposed to identify malicious activities
in in-vehicle networks (IVNs). IDSs can be classified into
two categories as signature-based and anomaly-based detec-
tion [5]. Anomaly-based detection overcomes the limitation of
signature-based detection which is less capable of detecting
novel attacks. The structure and semantics of CAN data are
not available to open access and are stored in a database-
like file known as the database CAN (DBC). DBC file is
considered confidential proprietary for vehicle manufactur-
ers [6]. A modern vehicle includes up to 150 ECUs which
leads to transmitting up to 2000 CAN frames per second [7].
This demands an IDS which have real-time or near real-
time detection latency in a computationally constrained en-
vironment. Attackers could change different fields of CAN
data to compromise the in-vehicle network. This creates both
point and contextual anomalies in CAN data. Therefore it
requires considering the context of CAN data to detect some
sophisticated attacks such as masquerade attacks. These factors
make developing an IDS for widespread adoption challenging.
One-class classification-based IDSs have been successfully
used in in-vehicle networks due to their capability to detect
a wide variety of attacks and only require benign data to train
the algorithms [8], [9]. However, one major limitation of this
approach is a requirement of a large good representative sam-
ple of benign data which represents different driving scenarios.
Having a small training dataset prone to higher false positives
or negatives. Collecting a good benign representative sample is
challenging as vehicles have a wide variety of benign driving
behaviours. Collecting such a large dataset and training a deep
learning model is also computationally expensive.

To alleviate this problem and overcome the aforementioned
challenges, this paper proposes an on-device transfer learn-
ing technique (ODTL) to retrain the classification layer of
context-aware shallow neural network-based IDS in a resource-
constrained Raspberry Pi device. The main contribution of this
paper can be summarized as follows:
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1) This paper proposes an on-device transfer learning
technique, named as CAN-ODTL, to retrain a one-
class classification-based CAN IDS in a resource-
constrained environment. The proposed model ad-
dress the need for having a large benign dataset
to train the algorithm by incremental retraining the
classification layer on the IDS with streaming CAN
data.

2) The proposed method uses optimized data pre-
processing algorithm to pre-process the streaming
CAN data. This helps to improve the detection la-
tency while minimizing CPU and RAM usage of
Raspberry Pi.

3) CAN-ODTL uses the quantization technique to re-
duce the model size and detection latency. Optimized
float 16 quantization helps to achieve near-real-time
detection on Raspberry Pi.

The rest of this paper is structured as follows: section
II provides the background. Section III presents the related
work. The proposed method is explained in section IV. In
section V, the experiment results and performance evaluations
are presented. Finally, section VI concludes the paper.

II. BACKGROUND

A. Controller Area Network (CAN Bus)

CAN is a lightweight multi-master, message-based protocol
developed by Bosch. This is used by ECUs as their main in-
vehicle network protocol. CAN bus is divided into three sub-
systems as the drive train, convenience and infotainment based
on the supported data transmission rate. Time-critical ECUs
such as the engine controller and break controller units use
high-speed drive train. Infotainment systems, including radio
navigation and phone interface box use low-speed infotainment
CAN bus whereas, ECUs such as door control and climate
control units use low-speed convenience CAN bus. A CAN
dataframe includes seven fields. These are: start of frame
(SOF), arbitration field (CAN ID), control field (DLC), pay-
load (data), cyclic redundancy code (CRC), acknowledgement
(ACK) and end of frame (EOF). These seven fields are depicted
in Figure 3. CAN payload and ID fields are considered as the
most important fields of a CAN frame. CAN payload field
supports up to 64 bits of data and this includes different values
such as sensor data, category data, constant data or cyclical
counter data [10]. CAN ID is a unique identifier for an ECU.
This is used to prioritize the messages based on the CAN ID
value. Higher values get the lower priority, while lower values
get the higher priority. This is referred to as the arbitration
mechanism and uses to manage concurrent messages. ID-
based arbitration ensures that the higher priority messages get
access to the CAN bus when multiple IDs transmit messages
concurrently.

B. Attacks on the CAN bus

CAN bus is designed considering the requirement of
in-vehicle network communication without considering the
security-related features. Therefore, by design, CAN bus is
vulnerable to cyber attacks. Since the CAN frames are not
encrypted and use broadcast property, an attacker can get
access to all the messages that transmit through the CAN

Fig. 1: CAN bus dataframe with example values for ID, DLC
and Payload fields

bus. This is referred to as sniffing attack. Due to the lack
of authentication, any node could transmit a message and
therefore, an attacker can inject malicious frames into the
CAN bus by compromising an ECU or through a new node.
Additionally, the ID-based priority mechanism also makes the
CAN bus vulnerable as it allows injecting higher-priority IDs
and creating Denial-of-Service (DoS) attacks.

Attacks on the CAN bus can be mainly classified as
injection and masquerade (impersonation) attacks. Injection
attacks insert new frames into the CAN bus. Some common
injection attacks on the CAN bus are DoS, fuzzing, replay and
spoofing. DoS attacks try to make communication services
unavailable by sending a large number of high-priority IDs.
In a fuzzing attack, the attacker sends frames with randomly
generated ID, DLC and payload values. Replay attacks record
the benign frames of the network and inject them at different
times. Spoofing attacks, also referred as targeted ID attacks,
are somewhat similar to fuzzing attacks but target specific IDs
without randomly injecting them. The payload of these frames
changes into malicious values. It is easy to implement injection
attacks. However, it requires the attacker to continuously inject
these frames at a higher rate to override the benign frames and
change the behaviour of the vehicle [11], [12]. In a masquerade
attack, a compromised node impersonates another node, which
requires extremely low-level access to the CAN transceiver
and therefore more difficult to perform than simple injection
attacks [12]. Masquerade attacks require advanced detection
methods as typically these are not changing the ID frequency-
related features like injection attacks.

C. CAN ID Sequences

ECUs in a vehicle typically transmit frames at a fixed
intervel [4], [8], [11]. Since CAN uses an ID-based priority
mechanism, only one frame transmits at a given time. There-
fore, CAN data can be considered as time series data. This
behaviour creates a finite set of CAN ID sequences for a
fixed window size. We used a publicly available real CAN
dataset, the Real ORNL Automotive Dynamometer (ROAD)
CAN Intrusion dataset [12] to analyze this behaviour. This
dataset includes 106 CAN IDs and a benign data sample of 30
minutes drive was selected for this analysis. Figure 2 depicts
the frequency for the top 20 sequences for five consecutive
IDs (window size). According to this, some sequences appear
in high frequency, whereas others appear less in frequency.
During an injection attack, this could create new CAN ID
sequences that cannot be observed during benign driving
periods. This is mainly because new frames appear in an
unusual context. Sophisticated attacks such as masquerade
attacks do not inject IDs into the CAN bus. However, as a
result of time synchronization issues or no messages from
a particular ECU for a brief period of time, this might still
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Fig. 2: The top 20 CAN ID sequences for five consecutive IDs

create new anomalous sequences [8], [13]. Therefore, it is
possible to learn these benign sequences and identify malicious
frames in the CAN bus. Even though ECUs transmit frequent
frames, due to the randomness incurred from jitters, it might
create a large number of benign CAN ID sequences for
the fixed window size [13]. As a result, it requires a large
benign dataset representing different benign driving behaviours
to learn all these benign sequences. Therefore, an on-device
incremental learning approach is more appropriate to handle
this requirement.

III. RELATED WORK

Early experimental attacks [4], [11] and more recent ex-
periments such as [14], [15] motivated researchers toward
implementing countermeasures against cyber attacks on the
CAN bus. Cyber attackers target different fields of CAN data
such as ID field or payload values and therefore, IDSs designed
for different CAN data fields. These can be classified into
ID-based, payload-based and CAN Frame-based IDSs [6].
CAN payload data were used in the IDS proposed in [16].
This used a Gated Recurrent Unit (GRU)-based recurrent
autoencoder to detect anomalies in the CAN bus. In [17],
the authors used a Long Short-Term Memory (LSTM)-based
IDS by introducing a self-attention layer to capture the most
relevant information of input sequences. Both IDSs processed
ID-wise data independently and trained separate models for
each ID. Since modern vehicles could include up to 150 CAN
IDs, these IDSs require training a large number of IDSs using
benign data. Thus, these IDSs are not suitable for deployment
in resource-constrained in-vehicle networks to detect attacks
in near-real time. Generally, CAN payload-based IDSs are
computationally expensive due to the complexity of the multi-
dimensional payload data [6].

On the other hand, CAN ID-based IDSs used CAN ID
sequences or time-related features. In [18], the authors trained
an IDS using a LSTM model. This approach predicted the next
CAN ID and then compared the predicted ID with the actual
ID. This only achieved 60% accuracy. GAN and convolutional
adversarial autoencoder-based model [19] was trained with
unlabeled data to learn the normal patterns. Experimental
results showed that the proposed model outperforms baseline
models for both detection rate and latency. However, this work
was only limited to message injection attack detection. In [9],
the authors developed a context-aware anomaly detector for

monitoring cyber attacks on the CAN bus using sequence mod-
elling. N-gram distributions were used to build the sequence
model. N-gram-based methods are capable of capturing the
context of CAN sequences. However, this often leads to high
computational overhead as N increases. An ensemble model
based on GRU and time-based models was proposed in [8]
to overcome the computational inefficiency of N-gram based
models and to detect a wide variety of attacks. The GRU-based
model predicted the next CAN ID, whereas the time-based
model monitored ID inter-arrival times to detect anomalies.
Despite the advantage of having only benign data to train these
one-class classification based IDSs, the major limitation is the
requirement of having a large dataset to train the model. To
address this issue, this work presents an on-device transfer
learning technique to incrementally retrain the CAN IDS.

IV. METHODOLOGY

This section explains the CAN intrusion detection model
and the proposed CAN IDS on-device transfer learning tech-
nique to overcome the limitation of one-class classification-
based IDS training for the CAN bus.

A. CAN intrusion detection model

By utilising the sequential behaviour of the CAN frames,
CAN intrusion detection can be formulated as the next CAN
ID prediction task. Given a context of n IDs from the left
side (pre-context) of a CAN sequence, it can predict the next
CAN ID with a p probability. This is similar to the next
word prediction task in a language model. If the predicted
next CAN ID’s probability is below a certain threshold, then
it can be identified as an anomalous frame in the given context.
However, due to the randomness incurred from jitters and
ID-based priority, there might be a large number of possible
next CAN-IDs for the given context. This can be reduced by
considering both the left side and right side (post-context) of
a CAN sequence. This is equivalent to the continuous bag-of-
words (CBOW) model architecture proposed in [20] where
it learns the word vectors representing the middle word’s
meaning and the context words. Given the context from both
sides of an ID reduces the number of possible distinct centre
IDs. This helps to achieve a higher accuracy for the predicted
CAN ID [8].

Accordingly, this paper uses the centre ID prediction model
given the pre and post-context to detect the intrusion in the
CAN bus. First, this uses an embedding layer which takes the
input of vectorized benign CAN ID sequences. The objective
here is to learn accurate word vectors that encode semantic
relationships for all the IDs in the CAN bus. Then GRU
layer is used to capture the temporal pattern of the sequential
data. GRU is a variant of LSTM with only two gates: reset
and update. Therefore, GRU is more computationally efficient
with low memory overhead [21]. Self-attention layer is used
with the GRU layer. The usage of the attention layer in
neural networks allows focusing on the relevant parts of the
input sequence and selectively output only the most relevant
information [17]. This attention layer allows capturing the
important information in CAN sequences for long CAN ID
sequences. Finally, the classification layer is used with the
softmax activation function to get the probability for each CAN
ID.
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B. CAN IDS On-device transfer learning (CAN ODTL)

As aforementioned, it requires training one-class
classification-based CAN IDSs with a large dataset
representing different benign driving behaviours. However,
collecting datasets covering all types of benign driving
behaviours is not feasible. The more appropriate way to
handle this issue is to do on-device training in an incremental
way until the model trains up to a long duration of time with
more data. This can be achieved by deploying the algorithm
on the CAN bus and training the algorithm while it is driving.
However, ECUs are not capable of training computationally
expensive deep learning or shallow learning models due to the
limited computation power. Since it is possible to access the
CAN bus data through the OBD II port, the algorithm can be
deployed in a small device like Raspberry Pi and connected
to the CAN bus. Raspberry Pi is a general-purpose embedded
computing device with limited memory and processing power.
Even though it is used for machine learning and deep learning
inferences, model retraining is challenging due to the limited
computational resources [22]. As a solution, we propose a
transfer learning technique to retrain the classification layer
of the deployed model incrementally. Transfer learning is
used to improve a learner from one domain by transferring
information from a related domain. This concept can be
used to improve a pre-trained model in the same domain by
including a new classification layer or only retraining the last
layers of the model with more data. This is also referred as
model fine-tuning. Typically, transfer learning is used when
the training data is expensive or difficult to collect. Therefore,
this work use transfer learning to retrain the classification
layer of the pre-trained model with more data to achieve
a higher intrusion detection rate. This process is depicted
in Figure 3.

The model is divided into two parts as encoder fϕ and
decoder gθ. The encoder includes the first three layers of the
model and the output of the attention layer uses as the input to
the decoder, which is the classification layer. First, we train the
complete model with a sufficiently large benign dataset. This
is trained to minimize the objective function of categorical
cross-entropy. This is given by:

E = −
n∑

i=1

yilog(ŷi) (1)

where yi is the true lable and ŷi is the predicted softmax
probability for the ith class. Weights W1,W2,W3 and W4 are
learned using backpropagation during the model training. After
the pre-training, the encoder model is converted into the more
lightweight TFLite version. During this conversion, we also
apply quantization to reduce the encoder detection latency.
Quantization is an optimization technique that reduces the
precision of the numbers used for model parameters. Typically,
Tensorflow uses 32-bit floating point numbers. Quantization
leads to achieving a better throughput by moving 32-bit
numbers into 16 or 8-bit numbers. However, this might reduce
the model accuracy slightly due to the loss of precision. The
on-device transfer learning procedure is shown in algorithm 1.
During the experiments on Raspberry Pi, CAN data log was
saved on the micro SD card and streamed from there. In a

Fig. 3: Workflow diagram of On-device transfer learning

deployed vehicle, CAN streaming data can be directly used in
the same way.

This algorithm uses the pre-trained encoder, CAN stream-
ing data, buffer to save streaming data, sequence window size
and batch size as the input. First, this pre-processes the data
and extracts the numerical CAN IDs from the streaming CAN
frames. Python double-ended queue (deque) is used during the
data pre-processing as it supports efficient data append and
pop operations from both sides with O(1) time complexity.
Extracted IDs are saved in the buffer as streaming CAN data
speed is faster than the retraining process. However, this can
also be done on the SD card, as it does not require inferencing
during the retraining period. A batch of context IDs from
the buffer is input to the pre-trained encoder. The output of
the encoder along with the batch of centre IDs are used to
retrain the classification layer using transfer learning. This is
initialized from the pre-trained weights W4. Each batch is
trained for one epoch. According to [23], a learning rate decay
schedule is used to improve the incremental training process.
During the retraining, updated W4 weights are kept in the
memory until the retraining cycle is ended. In our experiments,
this is the end of a CAN log. This can be set into a time
period or vehicle start-to-stop in real deployed settings. After
triggering the retraining completion, learned weights are saved
to the SD card for inferencing or future retraining. Once the
model is trained to a satisfactory level such as a few days of
training, the trained decoder is converted into the TFLite with
the quantization for the inferences. We retrained the model for
the available CAN logs. Using the learned weights, this model
can retrain again as and when necessary or based on a pre-
defined schedule. While retraining, we periodically assessed
the progress of the model using a small sample of the benign
dataset that had been saved to the SD card.

CAN ODTL anomaly detection procedure is shown in
algorithm 2. Counting weak anomalies over a window help
to minimize the false positives [8]. Therefore, this approach
considers a small observation window of time T to identify
anomalous or benign status. Similar to the model retraining
procedure, this also preprocesses and extracts the CAN IDs.
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Algorithm 1 CAN IDS ODTL procedure

Input: Pre trained encoder fϕ, Streaming CAN data F , Buffer
size Z, Window size W , Batch size B

Output: Retrained decoder gθ
1: Init: ID list = [ ] ∈ Z
2: while F is not empty do
3: Read l in F ▷ Read line by line in F
4: Pre-process l,
5: Extract id
6: Append id to ID list ▷ Parallel append
7: while len(ID list) ≥W do
8: Init: Empty arrays X,Y
9: while len(X) ≤ B do

10: Append earliest context ids in W to X
11: Append earliest center id in W to Y
12: Remove earliest id from ID list
13: end while
14: z = fϕ(X) ▷ Output of attention layer
15: Ŷ = gθ(z) ▷ Retraining
16: end while
17: Save W4

18: Convert gθ to TFLite format
19: end while

Additionally, the time stamp is extracted to identify the time-
based observation windows. If the predicted softmax probabil-
ity for the centre ID is less than a pre-defined threshold ω, the
frame is declared as a weak anomaly. These anomalous and
benign frames in the observation window are used to detect
the window as anomalous or benign.

Algorithm 2 CAN ODTL anomaly detection

Input: Streaming CAN data F , Anomaly threshold ω, Win-
dow threshold ψ, Time window T

Output: Anomaly status for each window
1: while F is not empty do
2: read x, y, time stamp t, t min
3: while t− t min ≤ T do
4: Init: Benign count Cb = 0 , Anomaly count Ca =

0
5: ŷ = gθ(fϕ(x)) ▷ Quantized TFLite model
6: if ŷ < ω then ▷ for id y
7: Declare x as a weak anomaly
8: Ca = Ca + 1
9: else

10: Declare x as a benign
11: Cb = Cb + 1
12: end if
13: end while
14: if Ca/(Ca + Cb)> ψ then
15: Return Anomaly
16: else
17: Return Benign
18: end if
19: t min← t
20: end while

TABLE I: Description of ROAD dataset attacks

Attack Description
Fuzzing Inject random IDs and payloads to achieve unex-

pected physical behaviours
Max speedometer Change a payload byte to display false speedome-

ter value
Reverse light on and
off

Change a payload bit to change reverse light status

C. Threshold estimation

CAN ODTL used two thresholds. Due to the fact that the
training procedure totally depends on benign data, all thresh-
olds must be chosen based on the benign datasets. Therefore,
a separate benign dataset is used to estimate both thresholds.
For anomaly threshold ω, softmax probabilities were calculated
for all IDs in the benign sample. While the minimum values
of each ID are ideal as the threshold values to minimize the
false positives, there might be a few benign sequences in the
threshold estimation benign dataset, which were not observed
during the training phase. As a result of this, these benign
frames tend to get lower probabilities. Therefore, we consider
the Nth lowest quantile values as the anomaly thresholds.
Window threshold ψ is defined in a way that it produces a
minimum false positive rate for a fixed window size of time
t(s). For example, if benign windows produce an average of
two false positives, then at least three anomalous frames should
be there to consider the window status as anomalous. This
helps to reduce the false positives of the proposed model. For
both threshold estimations, we used the trained TFLite model.

V. EXPERIMENTS

This section discusses the selected datasets and attacks, the
parameters of the algorithm and performance evaluation.

A. Threat model and datasets

In this work, we use a publicly available dataset ROAD [12]
to evaluate the proposed model. ROAD dataset is the most
realistic CAN attack dataset with verified attacks [8]. ROAD
dataset was collected via OBD-II port under fully compro-
mised ECU mode. This includes 12 benign datasets which
cover a wide variety of driving activities such as drive, accel-
erate, decelerate, break, and reverse. ROAD dataset consists
of fabrication and masquerade attacks. A fabrication attack
uses a strongly compromised ECU to inject malicious frames
which alter the ID and payload fields. This includes fuzzing
and targeted ID attacks. In contrast, masquerade attack is the
most sophisticated type of attack which uses a strongly com-
promised ECU to inject malicious messages without changing
the CAN ID sequences. In ROAD dataset, this was created
during the post-processing by removing the legitimate target
ID frames relevant to each injected frame. Masquerade attacks
were created for each type of targeted ID attack. The attacks
shown in Table I along with their masquerade versions are
selected for the performance evaluation.

B. Experimental setup

For the initial model training, different subsets of benign
data are used by merging into one dataset without changing
the temporal behaviour of the CAN data. A separate benign
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dataset is used as the testing set to evaluate the model loss
and accuracy. Similarly, a good representative dataset sample
is used for the threshold estimation. Grid search is used to
find the optimum hyperparameters. The anomaly detection ca-
pability of this model is dependent on the centre ID prediction
accuracy. It is expected to obtain a high softmax probability
for benign centre IDs, whereas a low softmax probability is
expected for anomalous centre IDs. Therefore, accuracy is
calculated considering the true and predicted ID, which ob-
tained the highest softmax probability. This is used to monitor
the model progress. Both model accuracy and the number of
training parameters are considered during the hyperparameter
selection to obtain a lightweight model. Accordingly, 11 is
selected as the window size by giving 5 IDs as the pre and
post-context from each side of the centre ID. The embedding
size is set to 50 and only 16 nodes are used in the GRU Layer.
The classification layer includes 107 classes, in which one
class is allocated for new IDs, which can appear due to some
injection attacks. This model architecture resulted in having
5350, 3264, 26 and 1819 trainable parameters in the embed-
ding, GRU, attention and classification layers, respectively. The
initial model is trained to 100 epochs with 128 batch size.
Early stopping is used to avoid overfitting. Stochastic Gradient
Descent (SGD) is used with a 0.01 learning rate due to its
high generalization capability for model retraining [23]. During
the classification layer retraining, the learning rate is reduced
by 1.1 factor for every 5000 epochs to avoid overfitting. The
retraining batch size is set to 256. All these parameters are
selected based on repeated experiments to achieve optimal
retraining for accuracy and time.

Considering the frame transmission rate of around 2500
frames per second in ROAD dataset, attack datasets split into
100 milliseconds windows to identify attack windows. This
can be considered as a smaller window for near-real-time
prediction. The window threshold is set to 0.04 based on the
lowest false positive rate (average) for the benign dataset. The
Anomaly threshold is calculated for each CAN ID. Allowing
a small margin to unseen benign data, 0.001th quantile values
are considered for the threshold. Tensorflow and Keras libraries
are used with python 3.8 for the implementation, whereas a
custom training loop is used during the retraining. KerasTuner
is used for the grid search. All pre-training experiments run
on a MacBook M1 Pro with 16 GB RAM. Raspberry Pi 4
Model B 8GB version is used with a 16GB micro SD card for
on-device transfer learning. Tensorflow 2.10 and python 2.8
is installed in Raspberry Pi for the model retraining, whereas
TFLite runtime is used for the inference.

C. Results and discussion

1) Importance of pre and post-context: We compare the
effect of using pre and post-context to predict a CAN ID.
Figure 4 shows the results for the top 10 CAN ID sequences.
Figure 4a shows the number of possible distinct CAN IDs
given two pre-context IDs as the context. For example, given
the context as ’69E 125’, there are 100 CAN IDs that can
appear as the next CAN ID. In contrast, as shown in the
Figure 4b, given the pre-context of ’69E 125’ and the post-
context of ’2E1 354’ there are only 40 CAN IDs eligible as
the centre ID. Increasing the context size will further reduce
this number. This makes the centre ID prediction much more

(a) The top 10 distinct next ID count for the given pre-
context

(b) The top 10 distinct centre ID count for the given pre
and post-context

Fig. 4: Top 10 distinct next and centre ID counts for the given
context

Fig. 5: Accuracy and overall F1-Score improvement with
dataset size

reliable for anomaly detection task in CAN ID sequences than
the next ID prediction.

2) Effect of dataset size: We experimented with different
dataset sizes as the initial training dataset to identify the effect
of the dataset size and centre word prediction accuracy to
monitor the model performance. Figure 5 shows the accu-
racy for the evaluation dataset and overall F1 score for the
selected attack datasets. Accuracy for the evaluation dataset is
estimated considering ID, which obtained the highest softmax
probability. Since there are seven attack datasets, including
the masquerade attacks, the overall F1 score is considered to
make a fair comparison. Accordingly, this shows that centre
ID prediction can be used to monitor the model progress and
attack detection capability is improved with the dataset size.

3) All layers retraining and last layer retraining: Model
retraining capability depends on the pre-trained model. There-
fore, to evaluate the effect of the pre-trained model on the
retraining process, we used four pre-trained models trained on
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Fig. 6: Effect of pre-trained model on retraining process

four datasets. Then we retrained the models using an additional
benign dataset (2000000 frames) as full model retraining
and last layer retraining. Results are depicted in Figure 6.
According to these results, a pre-trained model trained on a
sufficiently large dataset is required to achieve good accuracy
through retraining. With this initial dataset size, both full
model training and last layer model retraining converge into
approximately the same level of accuracy. Therefore, transfer
learning can be successfully used to retrain the last layer with
lower computational overhead to achieve the same accuracy
level given a good pre-trained model. A sample of 3000000
CAN frames in ROAD dataset is approximately equivalent to
30 minutes drive dataset. This sample included a three benign
datasets which covered different benign driving activities such
as drive, break, accelerate and decelerate. Therefore, according
to the obtained results, it is possible to improve the pre-trained
model through transfer learning by using 30 minutes to one-
hour drive dataset for the initial model training. However, this
might depend on the number of CAN IDs on the vehicle and
how frequently CAN frames are transmitted on the CAN bus.
Additionally, it is important to include various benign driving
activities in this dataset and ultimately, on-device transfer
learning could improve this with a large set of streaming data.

Based on these results, we train our initial model with
3000000 CAN frames. A streaming dataset of 2000000 frames
is used to retrain the last layer according to the algorithm 1 in
Raspberry Pi. We compare our model (CAN-ODTL) detection
with the baseline method of CAN-CID [8]. This uses a similar
model architecture without having an attention layer. GRU
layer uses 32 nodes and therefor, CAN-CID includes additional
6486 model parameters compared to CAN-ODTL. Addition-
ally, we compare the performance with our pre-trained model
(CAN-PreODTL). Table II shows the detection performance
of CAN-ODTL compared to CAN-PreODTL and CAN-CID.
To evaluate the detection performance, this paper use macro
averaged F1-score (F1), false-positive rate (FP) and false-
negative rate (FN). For the CAN-ODTL evaluation, experi-
ments are run on MacBook M1 Pro by using the Raspberry Pi
retrained model.

According to this, both CAN-CID and CAN-ODTL models
achieved a higher detection rate for all the attacks. CAN-
ODTL marginally outperforms CAN-CID for reverse light
on and reverse light on masquerade attacks. Even though
masquerade attacks do not inject malicious frames, they have
changed CAN sequences due to the time synchronization
mismatch. Therefore, CAN-ODTL is capable of detecting such
sophisticated attacks. On the other hand, as expected CAN-

TABLE II: Comparison of CAN-ODTL, CAN-PreODTL and
baseline model detection performance of ROAD dataset

Attack Model F1 FP FN

Fuzzing
CAN-CID 100% 0% 0%
CAN-PreODTL 79.4% 18.5% 0%
CAN-ODTL 100% 0% 0%

Max speedometer
CAN-CID 100% 0% 0%
CAN-PreODTL 83.1% 21.3% 0%
CAN-ODTL 100% 0% 0%

Max speedometer
masquerade

CAN-CID 100% 0% 0%
CAN-PreODTL 83.1% 21.3% 0%
CAN-ODTL 100% 0% 0%

Reverse light on
CAN-CID 99.4% 0% 0.3%
CAN-PreODTL 95.6% 6.9% 0%
CAN-ODTL 99.8% 0.1% 0%

Reverse light on
masquerade

CAN-CID 99.1% 0% 1.0%
CAN-PreODTL 96.2% 6.6% 0%
CAN-ODTL 99.9% 0% 0%

Reverse light off
CAN-CID 100% 0% 0%
CAN-PreODTL 85.4% 17.0% 0%
CAN-ODTL 100% 0% 0%

Reverse light off
masquerade

CAN-CID 100% 0% 0%
CAN-PreODTL 85.4% 17.0% 0%
CAN-ODTL 100% 0% 0%

PreODTL suffer from high false positives. This is due to the
unseen benign sequences during the model training. On-device
transfer learning helps to reduce false positives as it trains for
large dataset. These results indicate the effectiveness of on-
device transfer learning to retrain the CAN IDS.

4) Overhead analysis: Detection latency and memory are
also critical aspects of a CAN IDS. We compared the mean
inference time of CAN-ODTL and the baseline model CAN-
CID on a MacBook M1 Pro. CAN-CID takes 0.1ms for the
inference, whereas CAN-ODTL takes 0.08ms. This inference
time improvement is due to fewer model parameters than the
CAN-CID. Therefore, CAN-ODTL achieves the same or im-
proved detection level with a lower detection latency than the
baseline model. During the transfer learning on Raspberry Pi,
we monitor resource consumption. On average, it takes 0.16s to
retrain the classification layer for one batch, which consists of
256 sequence windows. Thus, it takes approximately 0.625ms
to retrain one input window. Retraining can process around
1600 CAN frames per second, whereas CAN transmits around
2500 frames per second. This demands having a buffer with
at least 900 CAN frames. Generally, it takes around 75KB of
memory to keep 900 CAN frames. Given the 8GB of memory,
this can be easily handled. During the model retraining, on
average, it utilized 45% CPU and 157MB of RAM. For the
inference, the Tensorflow model is converted into the TFLite
version with three options: non-optimized default quantization,
dynamic range quantization and float 16 quantization.

Model sizes and average inferences times are shown in Ta-
ble III. Tensorflow to TFLite conversion significantly reduces
the model size and inference time on Raspberry Pi. Default
TFLite quantization model and float 16 quantization model
output softmax probabilities are on par with the Tensorflow
model outputs up to the fifth decimal point. Therefore, these
two models achieve the same detection level as the Tensor-
flow model shown in Table II. However. The dynamic range
quantization model shows a little drop in accuracy despite
the smallest model size. By considering the model size and
inference time on Raspberry Pi, the float 16 quantization
model outperforms other variations along with higher intrusion
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TABLE III: CAN ODTL model inference overhead on Rasp-
berry Pi

Model Model size (KB) Inference time (ms)
Tensorflow 233 3
Default TFLite quantization 82 0.7
Dynamic range quantization 29 0.5
Float 16 quantization 49 0.5

detection capability. With compared to the Tensorflow model
this is 78% model size reduction and 83% of inference time
improvement. During the inference time, it utilizes an average
of 38% CPU and 5MB of RAM on Raspberry Pi. It takes
only 0.5ms for the one-frame prediction, including the data
pre-processing. This is approximately similar to the CAN
data transmission rate of the ROAD dataset. For a 100ms
observation window, on average, this takes 125ms to give
the prediction. Generally, average driver response time ranges
from 0.7s to 1.5s [24]. Therefore, the 125ms detection time
is minimal compared to the driver’s response time. These
experimental results on Raspberry Pi show the effectiveness
of the on-device transfer learning process and the inference of
the proposed method to detect intrusions in the CAN bus in
near real-time. Raspberry Pi can be connected to the CAN bus
through the OBD-II port as an additional ECU and monitor
CAN traffic to detect a wide variety of attacks.

VI. CONCLUSION

CAN bus is vulnerable to cyberattacks that directly affect
vehicle passengers’ safety. One-class classification-based CAN
IDSs, while effective, need a large dataset of benign frames to
avoid unseen benign frames.

This paper proposes an on-device transfer learning tech-
nique to address this issue. On-device transfer learning on
Raspberry Pi and quantized TFLite conversion shows the effec-
tiveness of the proposed method to improve the detection capa-
bility incrementally and to achieve near real-time detection. It
requires a pre-trained model trained on a dataset with different
benign driving behaviours. Classification layer retraining on
such a pre-trained model achieves approximately the same
level of accuracy as full model retraining. Experiments on
Raspberry Pi show that the proposed model is suitable for
deploying in a real vehicle and detecting various attacks in
near-real time. For future work, we plan to deploy this in a
real vehicle and test it under real attacks on the proving ground
of our industry partner.
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