
CANtropy: Time Series Feature Extraction-Based
Intrusion Detection Systems for Controller Area

Networks

Md Hasan Shahriar, Wenjing Lou, and Y. Thomas Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, United States

{hshahriar,wjlou,thou}@vt.edu

Abstract—A controller area network (CAN) connects dozens
of electronic control units (ECUs), ensuring reliable and efficient
data transmission. Because of the lack of security features of CAN
protocol, in-vehicle networks are susceptible to a wide spectrum of
threats, from simple injections at high frequencies to sophisticated
masquerade attacks that target individual sensor values (signals).
Hence, advanced analysis of the multidimensional time-series data
is needed to learn the complex patterns of individual signals and
their mutual dependencies. Although deep learning (DL)-based
intrusion detection systems (IDS) have shown potential in such
domain, they tend to suffer from poor generalization as they need
optimization at every component. To detect such advanced CAN
attacks, we propose CANtropy, a manual feature engineering-
based lightweight CAN IDS. For each signal, CANtropy explores
a comprehensive set of features from both temporal and statistical
domains and selects only the effective subset of features in the
detection pipeline to ensure scalability. Later, CANtropy uses
a lightweight unsupervised anomaly detection model based on
principal component analysis, to learn the mutual dependencies
of the features and detect abnormal patterns in the sequence of
CAN messages. The evaluation results on the advanced SynCAN
dataset show that CANtropy provides a comprehensive defense
against diverse types of cyberattacks with an average AUROC
score of 0.992, and outperforms the existing DL-based baselines.

I. INTRODUCTION

Vehicles are complex cyber-physical systems (CPS), run-
ning over a hundred million lines of code continuously [1],
controlling everything from the power-train to driver assis-
tance and infotainment. Such functionalities are executed
by hundreds of distributed electronic control units (ECUs)
that communicate through different in-vehicle communication
buses. Controller area network (CAN) is a de facto standard
in the in-vehicle network due to its efficiency and reliability.
However, CAN lacks basic security requirements, and any
access to the CAN bus makes the vehicles vulnerable to
cyberattacks [2]. Moreover, as modern vehicles further connect
to the outside world, the risk of being attacked remotely is
rising. Hence, there are a lot of research efforts on building
intrusion detection systems (IDS) to secure such critical in-
vehicular communication.

In recent years, deep learning (DL) has been used on vari-
ous time-series tasks, including forecasting, anomaly detection,
signal processing, etc. Given the optimal environments, DL
models can learn complex data distribution and build efficient
IDS. One of the core benefits of DL is that they do not need
explicit feature representation as input, rather, they learn how
to extract features from the raw time-series data. However,
there are a few challenges in achieving efficient DL-based
IDSs, such as finding the optimal model architecture, pro-
viding representative training data, ensuring effective hyper-
parameters, adequate computing resources, etc. [3]. Optimizing
all of these is a challenging task in most applications, espe-
cially in the vehicular domain. First, there may not be enough
historical data available representing all the possible states of
the vehicles to train a DL model. Additionally, vehicular data
are highly dynamic, with patterns and trends that change over
time and space. Such limitations may lead to ineffective feature
extraction and provide a sub-optimal performance of the DL-
based IDS [4].

Feature engineering is the process of transforming raw data
into meaningful and relevant information that better represents
the patterns in the normal data and helps the IDS to learn
effectively. Whereas in a few domains like computer vision,
pre-defining feature extractor functions is quite challenging, it
is much more straightforward and practical in time-series data.
In critical CPS, such feature engineering is very essential as
it ensures explainability and scalability [5]. There are many
different approaches to feature extraction, and the specific
approach that is most effective depends on the characteristics
of the data. One option is to extract features from statistical
and temporal domains. Statistical features capture statistical
properties of the data, such as the mean, median, standard
deviation, etc, whereas temporal features capture information
about the temporal sequence of the data points, such as entropy,
slope, energy, etc. [6]

Although extracting all the possible features for all the sig-
nals will give the maximum information about the time-series
signal data, such an approach will increase the computational
overhead for both feature extraction and model fitting/testing.
We hypothesize that, for any signal, we need only a subset of
feature functions that are sufficient to represent the property
of that signal. Moreover, as different signals have different
types, natures, and patterns, the effective feature subsets will
be unique for each signal [7]. Hence, to make the whole
detection pipeline efficient and scalable, feature engineering
for individual signals needs to be customized based on the
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signal’s property. Therefore, to address the challenges of
extracting effective features from the raw input data, skip the
unnecessary sets of signal-feature pairs, and build a lightweight
and scalable CAN IDS, we propose CANtropy, a time series
feature extraction-based IDS for CAN bus. We make the
following contributions to this paper:

• CANtropy consists of a comprehensive set of feature func-
tions from both ‘statistical’ and ‘temporal’ domains for time-
series data. To select the most effective subset of features
for individual signals, CANtropy implements a feature ex-
ploration phase that analyzes all the possible signal-feature
pairs and creates a priority mapping based on their variances.

• To ensure scalability and efficiency during the detection
phase, CANtropy extracts only the most effective signal-
feature pairs and uses a lightweight unsupervised detector
based on principal component analysis (PCA) to learn
and analyze the mutual dependencies and correlations of
different signals.

• We implement and evaluate CANtropy’s performance on
advanced signal-level CAN IDS dataset SynCAN [8] show-
ing that CANtropy outperforms the baseline detectors in
detecting all types of attacks. This work can also serve as
a benchmark for future DL-based IDS, providing a lower
bound on their expected performance.

The rest of the paper is organized as follows: We introduce
necessary background information and modeling in §II. The
technical details are shown in §III. We provide an experimental
setup and implementation details in §IV. The evaluation results
are analyzed in §V. The related works are discussed in §VI.
Finally, we conclude the paper in §VII.

II. PRELIMINARIES AND OBJECTIVES

A. Controller Area Network

Robert Bosch GmbH introduced controller area network
(CAN) as an automotive communication bus with the latest
version (2.0) released in 1991 [9]. A CAN data frame can
have up to 11 bits of arbitration ID (or CAN ID) and 64 bits
of binary payloads. In the CAN bus, every ECU broadcasts
its message periodically. If multiple ECUs attempt to transmit
messages at the same time, the ECU with the lowest CAN ID
gets the highest priority, and others wait until the channel is
available again. Hence, as different CAN IDs have different
priorities, they usually appear in the CAN bus at a wide
range of frequencies. To build advanced CAN IDS, the binary
payload needs to be decoded to corresponding real-valued
decimal signal values that provide a time-series representation.
Specific car’s database for CAN (DBC) file contains the
decoding instruction. Although such files are proprietary and
are not publicly available, there are a lot of reverse engineering
efforts, such as CAN-D [10], to generate approximate DBC
files which can achieve reasonable performance in decoding.
Hence, binary payloads can be decoded into a signal-level
dataset using the instructions in the DBC file. However, such
a dataset contains some missing values due to the arbitration
process. Similar to [11], we also assume that the signals remain
unchanged until new updated values are reported, and we fill
the missing values with the last reported values using a forward
filling mechanism.

B. Features Functions

This part summarizes the comprehensive list of feature
functions that CANtropy considers for each of the signals in
the CAN dataset. Table I shows the description and complexity
of individual features both from ‘statistical’ and ‘temporal’
domains. Features 1-16 are from the ‘statistical’ domain, where
5 out of 16 feature functions have log complexity, and the rest
have constant complexity. Similarly, features 17-34 are from
the ‘temporal’ domain, where 4 out of 18 have log complexity,
and the rest are constant. More detail on the feature functions
can be found in [6].

C. Attack Model

We consider the attacker can gain access to the CAN bus
physically (OBD-II port) or remotely, such as through infotain-
ment, ADAS systems, etc. We also consider the attacker can
turn off any targeted ECU [12] and inject malicious messages.
In general, we consider the attacker can launch the following
three types of attacks.

• Fabrication attack is a type of injection attack where
the attacker injects random IDs and payloads to flood the
network. Usually, the CAN IDs are chosen to be very low
to indicate a high priority. Due to the continuous injection
of high-priority messages, legitimate ECUs cannot transmit
their data and eventually end up in denial of service (DoS)
types of attacks.

• Suspension attack is possible due to the limitation of the
CAN protocol itself (error control). An attacker can target an
ECU and force it to disconnect from the CAN bus, stopping
the ECU from sending the corresponding signal values. This
attack is well known as bus-off attack or suppress attack.

• Masquerade attack is the most advanced but difficult-to-
launch attack, where the attacker needs to turn off the tar-
geted ECU first and then spoof it by transmitting malicious
data on its behalf. Based on the type of data transmitted,
the attacker can achieve different levels of malicious goals.

We will evaluate CANtropy considering the well-known CAN
attack dataset, SynCAN [8], which has all the above-mentioned
attacks.

D. Design Objectives

We design CANtropy to achieve the following objectives:

• Detecting advanced attacks. The fundamental goal of
CANtropy is to effectively extract important features from
the time-series data and build a detection model to achieve
high performance, with near-zero false positives, in detect-
ing advanced attacks, particularly those advanced stealthy
attacks, where DL-based methods have shown ineffective.

• Near real-time detection. CANtropy should extract the
features and provide anomaly scores in near real-time.
As the human driver response time ranges from 0.7s to
1.5s [13], the inference time of CANtropy should be lower
than 0.7s.

III. CANTROPY DETAIL DESIGN

This section explains the proposed CANtropy framework
along with the technical details. As is shown in Fig. 1,
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TABLE I: List of Features from Statistical and Temporal Domain.

Index Domain Feature Description Complexity
1 Statistical ECDF Computes the values of ECDF (empirical cumulative distribution function) along the time axis. log
2 Statistical ECDF Percentile Determines the percentile value of the ECDF. log
3 Statistical ECDF Percentile Count Determines the cumulative sum of samples that are less than the percentile. log
4 Statistical Histogram Computes histogram of the signal. log
5 Statistical Interquartile range Computes interquartile range of the signal. constant
6 Statistical Kurtosis Computes kurtosis of the signal. constant
7 Statistical Max Computes the maximum value of the signal. constant
8 Statistical Mean Computes the mean value of the signal. constant
9 Statistical Mean absolute deviation Computes mean absolute deviation of the signal. log
10 Statistical Median Computes median of the signal. constant
11 Statistical Median absolute deviation Computes median absolute deviation of the signal. constant
12 Statistical Min Computes the minimum value of the signal. constant
13 Statistical Root mean square Computes root mean square of the signal. constant
14 Statistical Skewness Computes skewness of the signal. constant
15 Statistical Standard deviation Computes standard deviation of the signal. constant
16 Statistical Variance Computes variance of the signal. constant

17 Temporal Absolute energy Computes the absolute energy of the signal. log
18 Temporal Area under the curve Computes the area under the curve of the signal computed with trapezoid rule. log
19 Temporal Autocorrelation Computes autocorrelation of the signal. constant
20 Temporal Centroid Computes the centroid along the time axis. constant
21 Temporal Entropy Computes the entropy of the signal using the Shannon Entropy. log
22 Temporal Mean absolute diff Computes mean absolute differences of the signal. constant
23 Temporal Mean diff Computes mean of differences of the signal. constant
24 Temporal Median absolute diff Computes median absolute differences of the signal. constant
25 Temporal Median diff Computes median of differences of the signal. constant
26 Temporal Negative turning points Computes number of negative turning points of the signal. constant
27 Temporal Neighbourhood peaks Computes the number of peaks from a defined signal neighborhood. constant
28 Temporal Peak to peak distance Computes the peak to peak distance. constant
29 Temporal Positive turning points Computes number of positive turning points of the signal. constant
30 Temporal Signal distance Computes signal traveled distance. constant
31 Temporal Slope Computes the slope of the signal by fitting a linear equation to the observed data. log
32 Temporal Sum absolute diff Computes the sum of absolute differences of the signal. constant
33 Temporal Total energy Computes the total energy of the signal. constant
34 Temporal Zero crossing rate Computes Zero-crossing rate of the signal. constant

CANtropy has three fundamental phases of implementation: i)
P1: exploration phase, ii) P2: development phase, and iii) P3:
deployment phase. All these phases consist of some sequential
tasks, where some of them are common in different phases,
and some are unique. The tasks are i) T1: data collection
and preprocessing, ii) T2: feature extraction, iii) T3: feature
analysis and configuration, iii) T4: model fitting and threshold
selection, and iv) T5: model testing and attack detection.
The exploration phase consists of tasks T1, T2, and T3, the
development phase consists of tasks T1, T2, and T4, and the
deployment phase runs tasks T1, T2, and T5. Hence, whereas
tasks T1 and T2 are common in all these phases, the last task
differs based on the phase.

Whereas phases P1 and P2 are typically considered to be
accomplished in a relatively powerful computer (local/cloud),
phase P3 can be operated on light-weighted devices/ECUs.
CANtropy uses a time window to collect a sequence of CAN
messages and determine if there is any attack within that time
window. Therefore, CANtropy detects attacks at the window
level rather than at the message level. The following subsec-
tions explain the technical aspects of CANtropy in detail.

A. Exploration Phase (P1)

1) Data Collection and Preprocessing (T1): The first task
of the implementations of CANtropy is to set up the data
collection and preprocessing pipeline. We assume CANtropy is
installed on a computing device, such as a computer, Raspberry
Pi, etc., connected to the CAN bus through the OBD-II
Port or on a dedicated ECU with direct access to the CAN

bus. Through this interface, CANtropy continuously reads and
collects raw CAN messages bus and translates the binary
payloads using the available decoding instructions. The data
collection can be done using either open-sourced software such
as Seeed CAN-BUS Shield and SocketCAN or commercial
CAN data loggers such as CANalyzer, and VehicleSpy, etc.
To translate binary payloads to meaningful multi-dimensional
time-series signals, we assume CANtropy is either preloaded
with the OEM’s DBC file or relies on third-party decoding
software, such as CAN-D [10]. Let us assume that CANtropy
extracts a set of signals S = [s1, s2, · · · , sn], where n is the
total number of decoded signals. Hence, CANtropy stores the
multi-dimensional time-series signals data Xexplr ∈ Rt1×n

from the latest t1 messages, where t1 is the data collection
period (in time steps). Once T1 is complete, the data is stored
in local storage for feature extraction (task T2).

2) Feature Extraction (T2): Feature extraction is the sec-
ond sequential task, regardless of the phase. Before starting
this step, we assume CANtropy collects a sufficient amount of
data (in T1) representing the different states of the vehicle. The
features are extracted using a moving window approach, where
smaller chunks of X of length w are selected to create the
inputs (∈ Rw×n), from which different features are extracted.
Let us consider F = [f1, f2, · · · , fm] as a comprehensive set
of feature functions that CANtropy can apply to the signals.
CANtropy starts T2 will a binary configuration mapping
matrix C ∈ Rn×m indicating which signal-feature pairs will
be considered during the feature extraction step. Hence, for
any signal si ∈ S and feature function fj ∈ F , CANtropy,
the extracted feature is considered as sifj . The feature sifj
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Fig. 1: An overview of CANtropy’s workflow.

is extracted if C[i, j] is equal to 1, otherwise, the feature
is skipped. In phase P1, CANtropy extracts all the possible
features from all the signals; hence, C is initialized as an
all-one matrix where every element is equal to one. Upon
extraction, feature sifj is added to the dataset Dexplr, and
once all the features are extracted, Dexplr ∈ Rk1×l1 is ready
to be used for feature analysis tasks (T3). Here k1 is the total
number of considered windows, and l1 = m×n is the number
of total extracted features. Algorithm 1 summarizes the steps
of feature extraction step from the decoded signal data.

3) Feature Analysis and Configuration (T3): Feature anal-
ysis and configuration is the last step of P1. In T3, CANtropy
calculates the importance of all the extracted features and
determines the subsets of the most useful features for each
signal. One way to understand the effectiveness of the signal-
feature pairs is to observe their variances. A very low (or zero)
variance indicates there is no change in the corresponding
features of the considered signal; hence, extracting such a
feature and considering it in the detection pipeline will be
useless. Therefore, in the feature exploration phase, CANtropy
calculates the variances of all the extracted features. For any
signal si ∈ S and feature fj ∈ F , the variance of extracted
feature sifj is considered as var

fj
si and stored in a variance

mapping matrix V ∈ Rn×m. To minimize the extraction of
unnecessary features with low variances during phases, P2

and P3, the configuration mapping matrix C is updated based
on the minimum variance threshold varth. defined by the
system operator. Algorithm 2 summarizes the steps of feature
analysis and update of a configuration mapping matrix C. The
goal is to exclude those signal-feature pairs from the feature
extraction and detection pipeline to increase the computational
and detection performance. Hence, the the value of C[i, j] is
set to 1 if var

fj
si is greater than varth, otherwise it is set to

0. Once all the signal-feature pairs are checked, the updated
configuration mapping matrix C is stored to be used in the next
phases to generate only the relevant features for the detection
pipeline.

B. Development Phase (P2)

The development phase has similar tasks T1 and T2 as
discussed in §III-A1 and §III-A2 except some changes in the
hyper-parameters.

1) Data Collection and Preprocessing (T1): This part
CANtropy collects data to build the detection model. Data
collected in P1-T1 could be reused in T1 of P2. Besides,
CANtropy can append more data to ensure completeness of
the training data and generate Xtrain ∈ Rt2×n, where t2 is
the total number of messages collected.

2) Feature Extraction (T2): Unlike P1-T2 where all the
features are extracted, P2-T2 considers only the pre-defined
signal-feature pairs as indicated in configuration matrix C
(explain in §III-A2) that have high variance. Similar to P1-
T2, the same moving window w is used to extract the features
and stored in the dataset Dtrain ∈ Rk2×l2 , where k2 is total
windows and l2 (≤ l1) is the total number of selected features.

3) Model Fitting and Threshold Selection (T4): IDS are
used to detect and alert potential malicious activity on any
networked systems. Any model that can learn the normal
pattern and predict the abnormality can serve as the detector.
The detector can be trained in a supervised or unsupervised
manner. The unsupervised methods can detect novel, unknown,
and emerging attacks by learning only from benign data. While
collecting benign vehicular data needs very limited effort,
generating realistic attack traces on the vehicular network is
quite difficult, risky, and needs a lot of expertise. Hence,
due to the limited amount of malicious traces, unsupervised
learning-method-based models are widely used in CAN IDS
research. Therefore, CANtropy also considers an unsupervised
model M as the detector. The unsupervised models mostly
work on the reconstruction of the input data through a lossy
process. The mean absolute value of the reconstruction loss is
considered as the anomaly score. The hypothesis is that the
reconstruction error of malicious data would be statistically
higher than that of benign data.

In this experiment, we utilize principal component analysis
(PCA) as the unsupervised detection model [14]. PCA works
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Algorithm 1 Feature Extraction
Input: List of signals S = [s1, s2, · · · , sn]
List of features, F = [f1, f2, · · · , fm],
Configuration matrix, C ∈ Rn×m, CAN signal dataset, X ∈ Rt×n

Output: Generated dataset, D
1: Initialize empty 2D dataset D = [ , ]
2: for signal si ∈ S do
3: for feature fj ∈ F do
4: if C[i,j] == 1 then
5: Generate feature sifj shifting a of window w over X
6: Add new feature sifj to dataset D
7: end if
8: end for
9: end for

10: Save new dataset D for development or deployment phase

by transforming the original dataset into a new set of variables
called principal components. These principal components are
linear combinations of the original features, which capture
the maximum amount of variance in the data. By reducing
the number of dimensions, PCA can help to simplify the
data and remove noise, which can make it easier to identify
anomalies. Here, the minimum cumulative explained variance
ratio (MCEVR) indicates how much variances will be retained
after the PCA. Hence, after normalizing the Dtrain, CANtropy
fits the model M on it. Once fitted, CANtropy stores the
model and analyzes the anomaly scores on the benign training
data to determine the detection threshold. CANtropy considers
the r-th percentile of the anomaly scores of the training data
ptrain = M(Dtrain) as the threshold of anomaly pth.

C. Deployment Phase (P3)

The final and last phase of the implementation is the
deployment phase. At the beginning of this phase, CANtropy
loads the trained model M and threshold score pth. Whereas
phases P1 and P2 are run only once, the tasks in phase P3

run continuously and sequentially to collect new messages
and check for anomalies. During the data collection and pre-
processing task (P3-T1) of the deployment phase, CANtropy
collects the latest messages and only keeps the data of the last
w messages as dataset Xtest ∈ Rw×n. The feature extraction
process (P3-T2) is exactly as same as as P2-T2 (§III-B2.
As the input data has the length of the window size w, the
extracted features dataset Dtest ∈ R1×l2 , contains just a
single row indicating the most recent features. Model testing
and anomaly detection (P3-T5) is the last task of P3, where
the anomaly score of such a test sample is calculated using
ptest = M(Dtest). If the anomaly scores ptest > pth,
CANtropy considers this as an anomaly and raises the alarm;
otherwise, considers that as a normal condition.

IV. IMPLEMENTATION

This subsection explains the dataset, evaluation setting,
software implementation, evaluation metrics, and baselines for
evaluation of CANtropy.

A. Dataset and Attacks

We implement CANtropy on the SynCAN (Synthetic CAN
Bus Data) dataset [8], which is the widely accepted pub-
licly available signal level CAN attack dataset released by

Algorithm 2 Feature Analysis and Variance Matrix
Input: List of signals S = [s1, s2, · · · , sn]
List of features, F = [f1, f2, · · · , fm],
Variance threshold var th ∈ R
CAN signal dataset, X ∈ Rt×n

Variables: Configuration matrix C ∈ Rn×m ← 0
Output: Variance matrix, V ∈ Rn×m, Configuration matrix, C

1: for signal si ∈ S do
2: for feature fj ∈ F do
3: Generate feature sifj by shifting a of window w over X
4: Calculate variance var

fj
si of sifj , assign it to V[i, j]

5: if V[i, j] > varth then
6: C[i, j] = 1
7: end if
8: end for
9: end for

10: Store configuration matrix C for future feature generation

ETAS. It contains stealthy signal-level CAN attacks along with
comprehensive normal driving traces. The SynCAN dataset is
generated based on the characteristics of real CAN traces, and
it contains hundreds of advanced attack events. The dataset has,
in total, 20 different signals and 10 different CAN IDs. The
SynCAN dataset contains one type of fabrication attack (i.e.,
flooding attack), one type of suspension attack (i.e., suppress
attack), and the types of advanced masquerade attacks (i.e.,
plateau attack, continuous attack, and playback attack). The
flooding attacks is launched by frequently transmitting high-
priority messages over a short period of time to jam the
legitimate ECUs’ transmission. The suppress attacks turns off
the targeted ECU and prevents it from sending messages in the
CAN bus for a while. The masquerade attacks are launched
first by turning off the targeted ECU and sending malicious
messages on its behalf of it. During the plateau attacks, the
targeted ECU/signal start broadcasting a constant value over
the attack periods. However, this attack can cause a fake
jump or freeze the actual value. The attack impact depends
on the jump and duration of the attack events. Similarly,
the continuous attacks and playback attacks are launched
by injecting continuously changing values and pre-recorded
values on behalf of the targeted signals. As the signals start
to deviate slowly from the actual ones, initially, the attack
can resemble the realistic situations but eventually will create
noticeable deviations.

B. Implementation and Evaluation Setup

CANtropy Software Implementation. We use Python
3.9.7 with the python library tsfel-0.1.4 (time series feature
extraction library) [6] to extract the temporal and statistical
features from the time-series data. We use scikit-learn library
to implement principal component analyses (PCA).

Evaluation Settings. To evaluate CANtropy, we consider
w as 500 as this window size ensures that all the signals are
at least reported once and also allows the features to have a
minimum amount of variance. While generating the features,
we consider ‘temporal’, ‘statistical’, and ‘both’ as the type
of domain to analyze the contribution of each domain. To
reduce the number of features, we consider a list of variance
threshold varth as {0.0000, 0.0025, 0.0050, 0.0075, 0.0100} to
find the optimal point of the threshold. Besides, for PCA, we

5



Si
g_

1_
of

_ID
_1

Si
g_

2_
of

_ID
_1

Si
g_

1_
of

_ID
_2

Si
g_

2_
of

_ID
_2

Si
g_

3_
of

_ID
_2

Si
g_

1_
of

_ID
_3

Si
g_

2_
of

_ID
_3

Si
g_

1_
of

_ID
_4

Si
g_

1_
of

_ID
_5

Si
g_

2_
of

_ID
_5

Si
g_

1_
of

_ID
_6

Si
g_

2_
of

_ID
_6

Si
g_

1_
of

_ID
_7

Si
g_

2_
of

_ID
_7

Si
g_

1_
of

_ID
_8

Si
g_

1_
of

_ID
_9

Si
g_

1_
of

_ID
_1

0
Si

g_
2_

of
_ID

_1
0

Si
g_

3_
of

_ID
_1

0
Si

g_
4_

of
_ID

_1
0

Signals

ECDF
ECDF Percentile

ECDF Percentile Count
Histogram

Interquartile range
Kurtosis

Max
Mean

Mean absolute deviation
Median

Median absolute deviation
Min

Root mean square
Skewness

Standard deviation
Variance

Absolute energy
Area under the curve

Autocorrelation
Centroid
Entropy

Mean absolute diff
Mean diff

Median absolute diff
Median diff

Negative turning points
Neighbourhood peaks
Peak to peak distance
Positive turning points

Signal distance
Slope

Sum absolute diff
Total energy

Zero crossing rate

Fe
at

ur
es

Heatmap of the Variances of Signal-Feature Pairs

0.00

0.05

0.10

0.15

0.20

Fig. 2: Heatmap of variance mapping matrix V .

try {99.9, 99.99, 99.999, 99.9999, 99.99999} as the minimum
cumulative explained variance ratio (MCEVR) to study how
much we need to reconstruct to have a better separation
between the benign and malicious samples.

Evaluation Metrics. For any binary classifier, there are
four possible outcomes. True positive (TP) and true negative
(TN) are the outcomes where the model correctly predicts the
positive (attack) and negative (benign) classes, respectively. A
false positive (FP) and false negative (FN) are the outcomes
where the model incorrectly predicts the positive classes, and
negative classes, respectively. Based on these outcomes, we
evaluate CANtropy’s performance using the following metrics:

• True Positive Rate (TPR) is calculated as the ratio between
the number of positive views correctly classified as positive
to the total number of actual positive views ( TP

TP+FN ).
• False Positive Rate (FPR) is the proportion of negative

views incorrectly identified as positives ( FP
FP+TN ). FPR is

the probability that false alerts will be raised.
• ROC Curve, and AUC Scores indicate the classifiers per-

formance with varying discrimination thresholds. The ROC
curve plots TPR and FPR for different thresholds. The area
under the ROC curve is represented as AUROC, which
indicates the robustness of the detectors. AUCROC is the
probability that a random positive view will have a higher
anomaly score than a random benign view. An ideal detector
has an AUROC score of 1.00.

Baseline Models. This part describes the baseline models
that we consider for the performance comparison.

• CANShield [11] uses multiple convolutional neural networks
(CNN)-based AEs to analyze the time-series signal data
with multiple time-scales. The ensemble model combines
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the prediction scores from different AEs and achieves robust
performance.

• CANet [8] utilizes individual LSTM models for individual
CAN IDS and finally merges their output to form a fully
connected AE network. Both CANShield and CANet use
DL-based models and use SynCAN datasets to evaluate
their IDSs. As we are also considering the SynCAN dataset
to evaluate CANtropy, these two models become the most
relevant baselines.

V. RESULTS

We evaluate CANtropy in the following aspects:

Visualization of Variance Mapping Matrix. Fig 2 shows
the variance mapping matrix V for every pair of signals and
features in the SynCAN dataset. As shown in the figure,
three types of features exist; some have high variances for
most of the signals, some do not have variance at all, and
some have high variances for specific sets of signals. Hence,
analyzing which signal-feature pairs have high variances and
only working on those features will make IDS more effective
and scalable than blindly extracting all the signal-features
pairs.

Impact of Feature Selector Variance Threshold. Fig 3
shows how the number of features reduces with the increas-
ing variance threshold during feature selection. At the same
time, Fig. 4 shows the impact of variance threshold on the
AUROC of different types of attacks for different domains.
From the figure, it is evident that although the temporal
and statistical features are a little sensitive to the variance
threshold, combining both types of features increases the
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Fig. 6: Attack-wise performance of different domains

model’s detection performance and is robust against the higher
variance threshold (up to 0.005). However, considering all the
features (threshold as 0.0) from both domains provides the best
detection performance.

Impact of MCEVR of PCA. Fig. 5 shows the impact
of different MCEVR of PCA on AUROC scores for different
domains. It is provident that retaining 99.999% variance during
the PCA provides the best representation of the data and
maximizes the detection performances (AUROC) of different
types of attacks. Although the statistical and temporal domain
performs well, considering both features in a single detector
makes the detection efficient (high AUROC scores) and robust.

Attack-wise Detection Performance. Fig. 6 shows the
attack-wise performance of CANtropy with features from
different domains. Here we consider a variance threshold of
0.00 and MCEVR of 99.999% to show the upper bound of
CANtropy’s performance on the SynCAN dataset. As shown
in the figure, temporal features have better representation and
can detect flooding, plateau, and playback attacks with a very
high AUROC (> 98%). On the other hand, statistical features
are mainly effective against flooding attacks. However, if
CANtropy combines both the temporal and statistical features,
it can detect continuous and suppress attacks with better
AUROC scores.

Baseline Comparison. Fig.7 shows the performance
comparison of CANtropy with the baselines CANet [8] and
CANShield [11]. The figure illustrates that baselines work
well on one or two attacks, but none offer a comprehensive
and steady performance. For example, CANet fails to detect
suppress attacks, and CANShield struggles against the mas-

Flooding Suppress Plateau Continuous Playback Average
Attack Name

0.90

0.95

1.00

AU
RO

C

CANet CANShield CANtropy

Fig. 7: Baseline comparison

querade attacks. On the other hand, CANtropy outperforms the
baseline models with a large margin in four out of five attacks
and provides an average AUROC score of 0.992. However,
the current version of CANtropy considers a step size that
is the same as the length of the window during the feature
extraction process. Hence, we consider a step size of 500 in
these evaluation, whereas CANet and CANShield considered a
step size of 1. Thus, the evaluation result of CANtropy might
differ if a step size of 1 is used.

Scalability and Inference Time. CANtropy only needs to
fit the PCA model with the training data, which is done within
a second, making such a framework scalable, lightweight, and
easily transferable. On a computer with an 8-Core Intel i9
processor with 32 GB of RAM, the complete feature extraction
takes, on average, 80ms per window, and the inference only
takes 0.52 ms. Hence the total upper limit for a single deploy-
ment interference is 80.52ms, which is still under the human
perception time of 0.7s to 1.5s. However, although the model
inference is very fast, the feature extraction of CANtropy takes
longer time compared to the baselines, especially CANShield.
As the standard transmission time interval in CAN bus is
around 2ms, the current version of CANtropy needs to wait for
approximately 40 messages to run the inference again, giving
the attacker a window to launch a successful attack.

VI. RELATED WORKS

There has been a good amount of work on CAN IDS, which
can be divided into the following categories in general.

Physical Characteristics-based IDS. There have been
few research on fingerprinting the ECUs based on their physi-
cal layer data, such as clock skew, voltage profile, signal char-
acteristics, etc., on verifying the source of each message [15]–
[18]. However, such approaches have shown ineffective [19]
as an attacker can manipulate the physical attributes and
impersonate the targeted ECU.

CAN ID-based IDS. Such IDS learns the patterns and
extracts attributes from the sequences of CAN IDs and detects
any abnormal patterns. Different supervised and unsupervised
machine learning-based approaches are used in such pattern
recognition [20], [21]. However, these IDSs can only detect
injection attacks only when they alter the sequence of IDs.
Moreover, they fail to detect any advanced masquerade attacks,
as those only change the payloads, not the IDs.

Payload-based Detection. To detect advanced attacks, these
IDSs analyze the maliciousness within the content of the
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messages by looking at the payloads instead of the IDs. As
the binary payloads are up to 64 bits of binary values, these
IDSs consider the sequence of payloads as a 64-dimensional
boolean dataset and learn how the binary bits change over
time [22]–[24]. However, as the payloads are obfuscated, in
most cases, this representation is ineffective in learning nor-
mal driving patterns, especially against advanced masquerade
attacks, while the attacker can toggle only a single signal and
still cause huge damage to the system.

Signal-level Detection. These IDSs provide the most com-
prehensive defense against a wide range of cyberattacks-
from naive flooding attacks to advanced masquerade attacks.
These IDSs utilized correlation and clustering [25], machine
learning, such as CNN, RNN, LSTM, etc. [8], [11], [26],
[27], etc. However, such DL models lack explainability and
suffer in extracting effective features from multi-dimensional
time-series data, thus cannot provide a comprehensive solution
against a wide range of cyberattacks.

On the contrary, our proposed CANtropy consists of a
comprehensive set of feature extraction functions, where the
list of features for each signal is defined based on the signal
itself. Such optimal selection of effective sets of features
allows a lightweight detector to detect advanced cyberattacks
effectively.

VII. CONCLUSION

With the capability of handling a high-dimensional CAN
data stream, CANtropy extracts the most relevant features and
utilizes a lightweight detection model based on PCA, to detect
advanced cyber attacks. The evaluation results on the SynCAN
dataset show CANtropy provides an average AUROC score of
0.992, outperforms the existing baselines by a large margin,
and advances the state-of-the-art CAN IDS research.
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