
VICEROY: 
GDPR-/CCPA-compliant 
Verifiable Accountless
Consumer Requests
Scott Jordan¹, Yoshimichi Nakatsuka¹,
Ercan Ozturk¹, Andrew Paverd², Gene Tsudik¹

¹ University of California, Irvine
² Microsoft

Viceroy butterfly
https://unsplash.com/@jcotten



Data Protection Regulations

● GDPR (General Data Protection Regulation)
○ data subjects in the EU/EEA

● CCPA (California Consumer Privacy Act)
○ consumers who are California residents

● …

● Grant consumers legal rights over their data:
○ Access
○ Correct
○ Delete

2



Verifiable Consumer Request (VCR)

3

● Request from a consumer to a service provider (e.g., website) to 
access/modify/delete personal data

● Website must verify authenticity of request
○ Otherwise, there are privacy consequences

● Verification is straightforward when consumer has an account
○ Ask the consumer to log in etc.

● But what about consumers without accounts?
○ Data protection regulations still apply



How are “Accountless” consumers currently verified?

Government-
issued ID

Signed 
statement

Credit card 
number Phone interview

Ad-hoc, Insecure, Privacy-invasive
4



Introducing VICEROY

A framework enabling accountless consumers to request their data in a secure 
and privacy preserving manner.

Specifically, VICEROY…

● allows consumers to generate VCRs without relying on symmetric tokens,
● allows website operators to efficiently and securely verify VCRs,
● can be integrated into existing websites with minimal changes.

5



Overview of VICEROY

Trusted Client Device Client Device Server

6



1. Setup phase

Device Public Key

Master Private Key

7



2. Visiting a website

Fresh Public Key

Fresh Public Key

Cookie wrapper (              ,             )

8



3. Proving data ownership

Private Key

Request, 

Proof

,             , 

Request, Proof 

9



Implementation

Trusted Consumer Device
(Solokey)

Consumer Device
(Native Application)

10



Trusted Consumer Device: Solokey

● FIDO2 security key

● Open source firmware & bootloader
○ Hardware schematics too :)

● Specs
○ Arm Cortex-M4 MCU (80 MHz)
○ 64 kB RAM
○ 256 kB flash memory
○ Random Number Generator
○ Physical button
○ Multiple interfaces (USB-A, USB-C, NFC)

● Solokey Hacker: Unlocked bootloader

https://solokeys.com/
https://github.com/solokeys/solo1/
https://solokeys.com/products/solo-hacker


Using Solokey: Challenges

● Documentation
○ Very detailed, but distributed across different websites (Github docs, Readme, Official docs)
○ Some missing details

■ What to do if Solokey becomes unresponsive?
■ What if the official serial monitor doesn’t work?

● Limited resources
○ 64 kB RAM, 256 kB ROM
○ Can we add custom code/data?

● Low CPU frequency
○ 80 MHz
○ What would the eval numbers be like?

https://github.com/solokeys/solo1/tree/master/docs
https://github.com/solokeys/solo1
https://docs.solokeys.dev/


Using Solokey: Solutions

● Documentation: Details in one README.
○ How do I…

■ build my code for Solokey? → Follow our detailed steps
■ add my code? → Follow our examples
■ write code to communicate with Solokey? → See our sample code
■ revive an unresponsive Solokey? → Follow these instructions
■ debug Solokey without using default serial monitor? → Use minicom

● Limited resources
○ New code may need to go on a diet
○ Use existing code (e.g., master key pair generation, storage)

● Low CPU frequency

https://github.com/sprout-uci/VICEROY/tree/master/viceroy-solo
https://github.com/sprout-uci/VICEROY/tree/master/viceroy-solo
https://github.com/sprout-uci/VICEROY/tree/master/viceroy-solo
https://github.com/sprout-uci/VICEROY/blob/master/viceroy-solo/targets/stm32l432/viceroy-script/viceroy.py
https://github.com/sprout-uci/VICEROY/tree/master/viceroy-solo
https://github.com/sprout-uci/VICEROY/tree/master/viceroy-solo


Evaluation: Setup

Device Public Key: 724 ms

Master Private Key:
332 ms

14



Evaluation: Visiting a website

Fresh Public Key

Fresh Public Key: 24.6 ms

Cookie wrapper (              ,             )

15

Wrapper generation: 0.4 ms

Storage (annual): 22.61 MB1 1 163 web page visits per day * 0.38 kB per visit
(Crichton et al. How Do Home Computer Users Browse the Web? 
https://dl.acm.org/doi/abs/10.1145/3473343)

Measuring storage: 
Generated HAR (HTTP Archive) 
file in browser

https://dl.acm.org/doi/abs/10.1145/3473343


Evaluation: Proving data ownership

Private Key

Request, 

Proof: 1357.4 ms

,             , 

Request, Proof 

16

Verification: 
1.5 ms



Code availability

● Official VICEROY Github repo
○ Chrome extension (Consumer device UI)
○ Native application (Consumer device)
○ Server (VICEROY APIs)
○ Solokey firmware (Trusted Consumer device)
○ VICEROY protocol specification via Tamarin Prover

● Contact:
○ Yoshimichi Nakatsuka (nakatsuy[at]uci.edu)

https://github.com/sprout-uci/VICEROY
https://tamarin-prover.github.io/

