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Abstract—Analyzing third-party software such as malware is
a crucial task for security analysts. Although various approaches
for automatic analysis exist and are the subject of ongoing
research, analysts often have to resort to manual static analysis
to get a deep understanding of a given binary sample. Since
the source code of provided samples is rarely available, analysts
regularly employ decompilers for easier and faster comprehension
than analyzing a binary’s disassembly.

In this paper, we introduce our decompilation approach
dewolf. We describe a variety of improvements over the previous
academic state-of-the-art decompiler and some novel algorithms
to enhance readability and comprehension, focusing on manual
analysis. To evaluate our approach and to obtain a better insight
into the analysts’ needs, we conducted three user surveys. The
results indicate that dewolf is suitable for malware comprehension
and that its output quality noticeably exceeds Ghidra and Hex-
Rays in certain aspects. Furthermore, our results imply that
decompilers aiming at manual analysis should be highly config-
urable to respect individual user preferences. Additionally, future
decompilers should not necessarily follow the unwritten rule to
stick to the code-structure dictated by the assembly in order
to produce readable output. In fact, the few cases where dewolf
already cracks this rule leads to its results considerably exceeding
other decompilers. We publish a prototype implementation of
dewolf and all survey results [1], [2].

I. INTRODUCTION

The number of malware-related incidents is steadily in-
creasing, and with it is the workload of security analysts
to analyze provided binary samples [20]. Typically, security
analysts heavily rely on manual static analysis to achieve their
given objective, including a deep understanding of a binary’s
capabilities. Because the comprehension of a source code-like
representation is typically far less complicated than the bi-
nary’s disassembly, a decompiler may significantly accelerate
and ease analysis, rendering it an essential tool for binary
analysis in general. However, due to information loss during
compilation, a decompiler is incapable of entirely reverting
the compilation process and has to make compromises that
fit the developers’ objective. Therefore, most approaches for
decompilation are developed for a specific use-case or with a
particular focus, such as aiming at recompilability for further
automated processing [9], [41]. Although using a decompiler

is an essential part of the static analysis workflow [42], [49],
only a few recent academic publications on decompilation
focus on human analysis [23], [47]. Since the performance of
autonomously analyzing binaries is still far behind the abilities
of reverse engineering experts [15] and the research about
how those experts approach unknown binaries is in its early
stages [30], we still deem that manual analysis is one of the
most important applications for decompilation. Consequently,
we specifically aim at enhancing the output quality in terms of
comprehensibility and readability to speed up manual analysis.

In this paper, we propose a novel approach for decompi-
lation called dewolf. We base our approach on the previous
research state-of-the-art DREAM++ (see Section III-A) and
introduce a wide variety of improvements, such as revising the
restructuring by introducing continue statements for control-
flow interruptions and by refining the for-loop recovery.
Furthermore, we incorporate known algorithms such as the
elimination of subexpressions, dead code, loops, and paths.
We also introduce readability improvements such as utilizing
instruction idiom handling, eliminating redundant casts, and
improving constant representations. Finally, we introduce a
new approach for Out-of-SSA that potentially reduces the
number of variables, and a custom logic engine. We use con-
tinuous reliability and correctness testing (see Section III-F)
to increase the stability for our research decompiler while
exceeding the output quality of prototype implementations for
other research decompilers such as DREAM++. We publish the
prototype of dewolf as a Binary Ninja plugin [2] to allow future
research in the area of decompilation or related fields.

Apart from this technical contribution, we discuss the
results of three user surveys we conducted between the
years 2020 and 2021 (see Section IV). Overall, we re-
ceived 135 complete responses, with each survey having at
least 37 participants, and gathered many valuable results and
insights. During those surveys, we studied various aspects
including user preferences regarding decompiler output, weak-
ness identification of current approaches, and the evaluation
of dewolf regarding comprehension. Each survey significantly
contributed to the identification of problems that we ap-
proached in Section III. Finally, in the third user survey, we
included a comparison with other state-of-the-art decompilers
to assess the significance of our approach. The results indicate
that dewolf’s output for the function of the third survey is
clearly favored by more than four out of five participants.

One key finding of the user surveys suggests that de-
compilation should consider bolder approaches to reconstruct
the control-flow. Currently, most decompilers try to construct

Workshop on Binary Analysis Research (BAR) 2023
3 March 2023, San Diego, CA, USA
ISBN 1-891562-84-3
https://dx.doi.org/10.14722/bar.2023.23001
www.ndss-symposium.org



the control-flow similar to the structure dictated by the given
assembly, e.g., only reconstructing a switch if a jump-table
exists. However, a less conservative reconstruction can enhance
the human readability of the decompiled code tremendously,
even if the results deviate from a structural translation of the
disassembly. Indeed, decompilation approaches like revng-c
and DREAM++ already apply certain reconstructions that do
not necessarily originate from the considered assembly, such
as copying instructions or introducing conditions to avoid goto-
statements (gotos). Nonetheless, our survey results suggest that
decompilation approaches could go much further to improve
readability, leading to a lot of potential for future research
while still retaining semantic equivalence.

To summarize, we make the following three contributions:

1) A new decompilation approach, consisting of multi-
ple individual readability improvements, whose out-
put quality considerably exceeds DREAM++ as well
as Ghidra and Hex-Rays in certain aspects.

2) Open-sourcing a prototype implementation of dewolf
on GitHub [2] to allow future research and accessible
development of new decompilation approaches.

3) Publishing the entire user survey results to allow other
researchers insight into our participants’ perception of
favorable code constructs and output.

II. RELATED WORK

Cifuentes [11] laid the foundation for modern decompilers
by proposing a modular decompiler architecture where the
actual decompilation algorithms are decoupled from those
depending on the input binary architecture or the output
high-level language. Most modern decompilers still follow
this design principle. Additionally, Cifuentes discussed gen-
eral decompilation challenges and introduced algorithmic ap-
proaches to a subset, like a proposal to recover high-level
constructs via interval analysis, which allows mimicking the
nesting order. Here, a set of predefined patterns for known
constructs is used to restructure an interval to a single node.
Sharir [37] introduced an approach called structural analy-
sis extending the interval analysis by producing a program
representation in which structured control-flow patterns are
detected and recovered. Afterwards, Engel et al. [18] extended
structural analysis to handle C-specific control statements
such as break, continue and return to reduce the number of
gotos. This extension is called single entry single successor
(SESS) analysis. Eventually, Schwartz et al. [9] proposed an
alternative for structural analysis focusing on soundness called
iterative refinement which removes control-flow edges that
impede existing algorithms and inserts a goto to allow the
restructuring to continue. This approach is implemented in
the Phoenix decompiler. Emmerik [39] suggested the usage
of the static single assignment form (SSA-form) to facilitate
data-flow analyses, such as expression propagation, needed for
decompilation. While transforming a program into its SSA-
form is straightforward, finding an optimal algorithm for an
Out-of-SSA transformation is not trivial [38].

There are several academic decompilers that each focus
on addressing specific challenges. One central research field
is the recovery of high-level control-flow constructs such as
loops and if-else conditions, also known as control-flow re-
structuring or recovery. The goal is to produce structured code

consisting of proper control-flow constructs and containing as
few gotos as possible to increase output comprehensibility.
The Retargetable Decompiler (RetDec) [27] uses capstone for
disassembling and LLVM IR as an intermediate language to
minimize the overhead of adding support for new architectures.
Overall, many other publications regarding RetDec exist ad-
dressing different aspects such as idiom handling [28]. Another
recent approach is RevEngE [7]. Instead of decompiling the
whole sample, they developed a debug-oriented decompila-
tion approach. More precisely, during debugging, the analyst
can decompile specific code regions making it is possible
to decompile regions more than once with different states
originating from different execution paths.

Yakdan et al. [47] developed pattern-independent control-
flow restructuring to recover C control-flow constructs without
generating any gotos. In contrast to previous approaches, their
algorithm does not rely on predefined patterns for control-
flow constructs. Instead, it utilizes conditions based on the
reachability of nodes in the control-flow graph (cfg) to infer
the corresponding high-level constructs. However, this also
requires loops having a single entry and exit point. Because
not all real-world samples fulfill this requirement, the authors
introduced an algorithm converting abnormal loops into their
single-entry-exit equivalent. Although such transformations
allow a goto-free restructuring, they lead to more complex
cfgs and ultimately longer output. The authors implemented
a prototype called DREAM++ as an IDA Pro 6.5 plugin and
improved it by adding readability enhancements. They also
conducted a user survey to evaluate the approach [44].

The revng-c decompiler [23] is implemented on top of
the revng binary analysis framework and introduces a new,
yet similar, approach to produce goto-free output. According
to the authors, the main obstacle to high-quality human-
readable decompilation comes from complex cfgs containing
many tangled paths. Thus, they comb complicated paths in the
cfg by duplicating particular nodes, which are either single
basic blocks or already restructured and collapsed regions. The
output is indeed goto-free and has a less tangled control-flow
but may contain duplicated code. To reduce duplication, they
perform untangling before combining, which is the duplication
of specific paths leading to the exit of the cfg. Presumably,
there is no universally valid guideline stating whether dupli-
cation should be preferred over a more complex structure as
this depends on the given function and personal preference.

In contrast to research approaches, commercial decom-
pilers strongly focus on providing a stable environment and
usability features. The Hex-Rays decompiler integrated into
IDA Pro can be considered the de-facto industrial standard.
Although a few talks discuss some of Hex-Rays decompilation
techniques [21], [22], the main decompilation approaches
and algorithms remain unpublished. Ghidra, developed by the
NSA, is widely considered the state-of-the-art open-source
decompiler. Instead of advancing the field of decompilation in
general, Ghidra aims to ease decompilation for manual anal-
ysis. Moreover, other less commonly mentioned decompilers
exist, including FoxDec, JEB, angr, radare2’s r2dec, Snowman,
and Binary Ninja’s Pseudo C.

In the past few years, several decompilation approaches
based on (recurrent) neural networks (NN) or neural machine
translation have been proposed [25], [26], [29]. Although
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these approaches are allegedly language-independent, they are
typically limited to short code snippets due to network design
and memory requirement restrictions. Most authors argue that
writing and maintaining conventional decompilers is slow,
costly, unscalable, or requires a high level of expert knowledge.
However, neural approaches often rely on sophisticated pre-
and post-processing to add language domain knowledge to
the model [25], [26] or even use traditional control- and
data-flow recovery to improve the output [29]. The most
critical issue with approaches employing NNs or similar is
that models typically learn the appearance of the code rather
than capturing semantic equivalence. Although there is a loss
of information during compilation, which could justify not
relying on semantics, the resulting binary still contains enough
information to be translated in a semantic preserving way to
the target language by exact and well-researched algorithms.
Finally, the utilization of NNs requires a lot of computational
power to decompile even very simple code snippets. However,
decompilers are particularly essential for complex functions
in which the assembly cannot be understood as easily as
for simple functions. Unfortunately, real-world programs and
especially malware samples are typically rather large which
renders current NN-based approaches unsuitable for reverse
engineering real-world malware.

III. APPROACH

In this section, we introduce dewolf, our improved approach
for decompilation based on the research approach DREAM++.
First, we will discuss our decompiler and intermediate lan-
guage selection criteria in Section III-A. Next, in Sections III-B
to III-E, we will introduce our approach dewolf and describe its
two major improvements over previous approaches as well as
some additional methodical details. Finally, we will conclude
in Section III-F with a short description about our reliability
and correctness testing.

A. Framework Selection Criteria

There are various decompilation approaches that aim at
reducing the number of gotos [18], [46] or even completely dis-
pense them [23], [47]. Some of those studies suggest that gotos
can aggrevate analysts following the control-flow during static
analysis. Besides, there are various approaches that eliminate
gotos from source code to improve code readability and its
control flow structure [19], [33], [43]. We agree that goto-free
code is easier to comprehend and consequently decided to base
dewolf on a goto-free approach. To the best of our knowledge,
DREAM++ and revng-c are the only two recent approaches
producing goto-free output. While both of those approaches
use quite similar techniques for control-flow recovery and
restructuring, revng-c uses code duplication additionally to
structural variables to avoid gotos. However, even though
Gussoni et al. [23] use untangling to reduce the amount of
copied code, they still cannot prevent the duplication of large
code blocks. We ultimately opted to use DREAM++ over revng-
c as code duplication may be unfavorable for the readability of
the output. Besides, DREAM++ achieved noteworthy results in
their conducted surveys while also focusing on human analysis.

Because the implementation of DREAM++ was not well-
maintained and does not work on recent IDA versions, we

re-implemented the algorithms introduced in the original pub-
lications [44], [45]. As part of the adoption, we base our
approach on an intermediate language (IL) of an existing
binary analysis framework to avoid re-implementing well-
known low-level algorithms such as translating a function to
SSA-form. We decided against an integration into an existing
decompiler-framework such as Ghidra because this usually
impairs their workflow and requires extensive implementation
efforts independent of the approach itself.

There are multiple ILs and related lifters that can lift
a given binary [16], [22]. For our research, we decided on
the following selection criteria: (i) An accessible and com-
prehensive API to allow fast prototyping, (ii) an included
SSA-form for the IL to assist data-flow analysis, (iii) typed
variables instead of registers, the elimination of stack-usages,
and generally resolving compiler-specifics to further backup
the platform-independence of our approach, (iv) function call
parameters linked to each function call, and (v) a well-
maintained framework. Given these criteria, we decided to use
the Medium Level IL (MLIL) from Binary Ninja in SSA-form
since it fulfills all of our five requirements. The impact of this
choice and Binary Ninja on our results is limited to basic and
well-known algorithms as described. A complete description
of the MLIL is available in the official documentation [40].

B. Methodology Overview

In the remainder of this section, we only describe differ-
ences or improvements we made over the existing DREAM++
approach. All details not explicitly mentioned in this sec-
tion are equal or, at least, very similar to the publications
related to DREAM++ [45], [47]. For instance, the control-
flow restructuring has been kept identical except for some
minor adjustments described below and some improvements
for recovering switch constructs. Similarly to the universal
decompiling machine [11], dewolf is structured into the four
phases frontend, preprocessing, pipeline stages, and backend.
While frontend and backend are congruent with the design
by Cifuentes, we utilize a preprocessing phase to normalize
the frontend’s output, produced by Binary Ninja, in our pro-
totypical implementation. The majority of our improvements
over DREAM++ are implemented as pipeline stages and are
platform-independent.

Our approach incorporates different kinds of improve-
ments: First, Sections III-C and III-D introduce two novel algo-
rithms, an approach for Out-of-SSA using graph coloring and
a custom logic engine. Next, Section III-E describes improve-
ments for algorithms already integrated into DREAM++, such
as stability improvements for for-loop recovery, and commonly
known or already published algorithms not yet implemented
by DREAM++, e.g., using continue statements in loops [18].
Figure 1 shows a function that we decompiled with our re-
implementation of DREAM++ and a recent version of dewolf
which shows the significant impact of our improvements on
the readability and output structure, at least for this particular
function. The Out-of-SSA algorithm led to the reduced number
of variables. Furthermore, we are now able to detect the
array-access of the input arg1 and the for-loop including the
renaming of the loop-variable.
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1 void xor(char* s1, size_t slen, char* key, size_t keylen){
2 printf("%lu\n", slen);
3 for(int i=0; i<slen; ++i){
4 s1[i] = s1[i] ˆ key[i%keylen]; } }

(a) Source code of an example function.

1 int64_t xor(int64_t arg1, int64_t arg2, int64_t arg3,
int64_t arg4){↪→

2 printf("%lu",arg2); int32_t var_c = 0x0L;
3 while(true){
4 int64_t rax_14 = var_c;
5 if ((arg2 <= var_c)){ break; }
6 char* rax_4 = (arg1 + var_c); uint64_t rsi_1 = *rax_4;
7 int64_t rax_6 = var_c; int64_t rdx_1 = 0x0L;
8 char* rax_9 = (arg3 + ((rdx_1:rax_6) % arg4));
9 uint64_t rcx = *rax_9;

10 int64_t rax_12 = (arg1 + var_c);
11 uint64_t rdx_4 = (rsi_1.esi ˆ rcx.ecx);
12 *rax_12 = rdx_4.dl; int32_t var_c = (var_c + 0x1L); }
13 return rax_14; }

(b) dewolf’s output of initial re-implementation of DREAM++.

1 long xor(void * arg1, long arg2, long arg3, long arg4) {
2 int i, var_0;
3 printf(/* format */ "%lu\n", arg2);
4 for (i = 0; arg2 > i; i++) {
5 arg1[i] = arg1[i] ˆ *(arg3 + (i+(0L<<0x40)) % arg4);}
6 var_0 = i; return var_0;}

(c) dewolf’s output which is more concise and readable.

Fig. 1: Comparison between the output of our DREAM++ re-
implementation and dewolf.

C. Custom Logic Engine

Logic expressions in binary executables are often strongly
optimized to the target architecture and therefore are not
always an intuitive translation of the original expressions.
Consequently, decompilers often employ a logic engine to
simplify such expressions [44] and also identify unreachable
code during control-flow restructuring. However, the amount of
logic engines featuring full support for logic on bit-vectors is
quite limited. While the DREAM++ approach uses SymPy and
z3 for condition simplification, it turned out that SymPy is too
slow even when simplifying moderately long conditions. The
z3 Theorem Prover is an open-source logic engine supporting
satisfiability modulo theories (SMT) and bit-vector logic. Con-
sidering the vast number of forks on github [32] and citations
of their initial publication [14], z3 can be considered the most
relevant theorem prover and state-of-the-art. Unfortunately,
although it is the state-of-the-art SMT solver, z3 is not optimal
for our purpose. Even though it is a full-fledged theorem prover
and offers full support for bit-vectors, some design choices
of z3 are unsuited to model popular processor architectures
such as i386. For example, z3 favors signed operations over
unsigned operations. While this seems like a reasonable choice,
it may lead to unexpected simplification results when used for
decompilation. For example, version 4.8.10 may simplify an
unsigned operation into a conjunction of two operations, e.g.,
with all operands represented by 32-bit vectors:

a≤u25 |= a[5 : 31] = 0 ∧ a[0 : 4] ≤ 25.

This simplification does not alter the logic, but it considerably
raises the complexity and length of the output. This lack of
simplification is particularly relevant since unsigned operations
are predominant when handling pointers on any architecture.

Without a doubt, the complexity of logic statements and
branching conditions has a direct impact on the readability
of the decompiled code. Because we noticed several simpli-
fication problems and had significant obstacles with signed
operations, we eventually opted to develop a graph-based logic
engine fitting our requirements. Although it only provides a
small subset of the functionality offered by z3, we designed
it for the particular use case of modeling logic expressions
generated from assembly language.

The custom engine utilizes graphs to model logic formulas
and defines simplification methods for various common com-
binations of different operations. We store each formula as part
of a graph representing all conditions for a given context which
can contain multiple terms and clauses. Each operation and bit-
vector (representing a variable or constant) is represented by
a node. We represent the relation between the operations and
bit-vectors via directed edges, either definition edges linking
a variable to its definition or operand edges connecting an
operation with its operands. Using our graph representation,
we can define a lightweight form of equality based on graph
coloring algorithms, also used for graph similarity. Besides,
it offers many practical advantages, e.g., we do not need
sophisticated methods to deal with the ordering of operands.
Finally, we can traverse edges to view relations easily, e.g.,
between subexpressions. We open-sourced the logic engine
alongside dewolf on GitHub [3].

D. Improved Out-of-SSA

Using the SSA-form for analysis during decompilation
ultimately requires an Out-of-SSA transformation to obtain
valid C output. Unfortunately, removing the φ-functions intro-
duced by the SSA-form is not trivial due to the lost-copy and
swap-problem [6], [38]. We developed a graph-based algorithm
whose correctness follows directly by design and runs linearly
in the program size. In contrast to existing approaches [38],
we do not rely on complicated case distinctions and use well-
known algorithms. Our approach works similarly to one of
Boissinot et al. [6] where the authors insert copies for all
variables used in φ-functions, which allows them to give var-
iables of the same φ-function the same name. In contrast, we
only duplicate a subset of variables defined by φ-functions
to remove circular dependencies and to allow a successive
execution of the φ-functions. Afterward, it is possible to lift
the φ-functions to the predecessor blocks. Finally, we rename
the variables. In the following, we will describe each step in
more detail. Figure 2 shows an overview of the approach.

1) Remove circular dependency: To find the variables for
which we have to insert copies, we construct a dependency
graph as shown in Figure 2b with one vertex for each variable
defined by a φ-function and an edge (u, v) between variables
u, v if v is used in the φ-function defining u. The edge (u, v)
indicates that we have to execute the φ-function defining u
before the one for v to use the correct value of v for the
computation of u. Hence, in Figure 2b we add the edge
(z2, y2) due to the φ-function z2 = φ(z1, y2). Now, the φ-
functions φ1, φ2, . . . , φl depend circularly on each other if
they are all contained in the same basic block and if the
variable, defined via φi (for 1 ≤ i ≤ l), is used in φi+1

(with φl+1 = φ1). Thus, a cycle in the dependency graph is
equivalent to a circular dependency of φ-functions. To resolve
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z3 = bar() B1

y2 = φ(y1:B1,z2:B3)
z2 = φ(z1:B1,y2:B3)
u2 = φ(1:B1,u1:B3)
if(u2 ≤ 14)

B2

return y1 B4 u1 = u2 + 1 B3

(a) Initial cfg

y2z2 u2

before duplication

y′2z2 u2

after duplication

(b) φ dependency graph, y2 directed fvs.

z3 = bar() B1

y′2 = φ(y1:B1,z2:B3)
z2 = φ(z1:B1,y2:B3)
u2 = φ(1:B1,u1:B3)
y2 = y′2
if(u2 ≤ 14)

B2

return y2 B4 u1 = u2 + 1 B3

(c) Removed circular dependencies.

z3 = bar(); y′2 = y1; z2 = z1; u2 = 1

y2 = y′2
if(u2 ≤ 14)

return y2 u1 = u2 + 1; y′2 = z2
z2 = y2; u2 = u1

(d) Lifted φ-functions

y2

z2u2

y′2 y1

z1u1

(e) Colored interference graph.

z = bar(); u = 1

y = y′

if(u ≤ 14)

return y u = u + 1
y′ = z; z = y

(f) Resulting cfg.

Fig. 2: Illustration of each step from our Out-of-SSA algorithm applied to an example cfg.

such circular dependencies, we compute a directed feedback
vertex set (directed fvs) in the dependency graph; a directed
fvs is a vertex set X whose removal results in an acyclic
graph. Although computing a directed fvs is NP-hard [24],
we can find an approximation for such a set in constant time
since we only have a constant number of vertices in each
basic block and since we do this computation for each basic
block independently. Now, for every φ-function x = φ(. . .)
defining a variable x contained in the directed fvs X , we
replace the φ-function by x′ = φ(. . .). Furthermore, we add
the instruction x = x′ after the last φ-function because variable
x must have the value of x′ after all, as shown in Figure 2c.
Afterward, the dependency graph is acyclic since it does not
contain any vertex of the set X . In Figure 2b, we have a cycle,
and removing node y2 would result in an acyclic graph. By
replacing y2 with y′2 in the definition of the φ-function, we
obtain an acyclic dependency graph (Figure 2b). Finally, we
arrange the φ-function according to a topological order of the
dependency graph so that we can execute them in this order.

2) Lift φ-functions: Given resolved circular dependencies
and a valid execution order for the φ-functions, we can
”lift” the instructions represented by each φ-function to the
predecessors of the basic block. More precisely, for each φ-
function x0 = φ(x1, x2, . . . , xl), we have a mapping from each
predecessor block to the variable or constant assigned to x0

when entering from this basic block. We add the assignment
x0 = xi at the end of the basic block BBi corresponding to xi

when the block does not end with a branch. Otherwise, we add
a new basic block between the current block and BBi and add
the assignment in the new basic block. After this, we remove
all φ-functions by moving the definitions to the predecessor
blocks as shown in Figure 2d. The lifted assignments have the
same order as the corresponding φ-functions.

3) Rename Variables: A trivial renaming strategy would
be to assign each variable its name in SSA-form. However,
this leads to numerous variables and copy assignments. Alter-
natively, we can group all non-interfering variables and give

them the same name. One possible way to achieve this is to
use a valid coloring of the interference graph like in Figure 2e
and then group all variables of the same color. We create the
interference graph by using the liveness-algorithm of Brander
et al. [8, Algorithm 4] and adding edges between variables
with intersecting live-ranges. Although vertex-coloring with a
minimum number of colors is NP-hard [24], we can use a
modified lexicographical BFS to find an approximation and
the order in which we color the vertices to minimize copies.

E. Other Improvements

In this section, we describe relatively small improvements
and utilized adaptions of already published approaches in-
cluded in dewolf. Despite being seemingly minor modifica-
tions, they lead to considerable enhancements in the output
quality for human analysts, according to our evaluation.

1) Constant Representation: Constant values are often dis-
played as hex-numbers in the decompiler output. However, as
constant values can represent integers, characters, addresses,
or else, a hex-number might not always be the most suitable
representation. Consequently, we approximate the most likely
representation depending on the constant’s type and value to
enhance the comprehension of the decompiler output.

2) Elimination of Redundant Casts: Binary programs pro-
duced by modern compilers are usually heavily optimized
to make efficient use of the available registers. Since many
assembly languages allow accessing only parts of a given
register, various cast operations can be introduced when lifting
the assembly code to a more high-level IL. After propagating
expressions, we may end up with many nested casts, some
being semantically irrelevant. To declutter the output and
considerably increase its readability, we introduce a set of rules
for when a cast operation can be omitted due to irrelevance.

3) For-loop Recovery: While DREAM++ already included
transformation rules from while-loops into for-loops, the in-
troduced requirements to transform a given loop are actually
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rather strict. Because these strict rules result in only very few
for-loop transformations in real-world samples, we developed
a more stable for-loop recovery with relaxed for-loop require-
ments. For example, in contrast to DREAM++, we allow that
the incrementation of the loop counter can be another than the
loop body’s last instruction as long as the defined and used
variables remain unchanged before the next loop-iteration.

4) Continue in loops: The DREAM++ approach uses the
loop control statement break to indicate that the loop ter-
minates, but not the opposite continue-statement, forcing the
next loop iteration. We use both statements to decrease the
nesting depth when possible [18]. More specifically, during
the restructuring proposed by DREAM++, we do not exclusively
add break-nodes on edges used to exit the loop, we also add
continue-nodes on every edge where the loop-head is the sink.

5) Switch Variable Detection: To enhance the compre-
hension of complicated control-flows, programmers frequently
use switch statements instead of nested if-statements. How-
ever, in assembly generated by modern compilers, switch
control-flows are often implemented using indirect jumps and
jump-tables. Approaches like Ghidra, angr, and RADARE2
use different methods to obtain the switch-expression from
an indirect jump [34]. An indirect jump in Binary Ninja’s
MLIL consists of two instructions: A calculation of the jump-
location, using the jump-table and a jump-offset, followed by
jump(address). To find the switch expression, we trace
back the expression used to calculate the jump-offsets to its
definition and use it to replace the target of the indirect jump.

6) Array Access Detection: In assembly and most ILs,
there is no concept for arrays. Instead, an array element access
is represented as a dereference operation to a variable plus
an offset, i.e., *(base+offset). We find such candidates
and mark them as potential array element access. Then, we
compute the base and the index depending on the offset
and array size. Finally, we discard candidates not fulfilling
particular requirements, such as a consistent array size. The
decompiler output displays marked operations as base[i].

7) Subexpression Elimination: After propagating expres-
sions, they may still occur multiple times. Unfortunately,
depending on the complexity of such expressions, compre-
hending them multiple times is quite time-consuming for the
analyst. During subexpression elimination, we identify already
defined expression used in other instructions, as well as expres-
sions that occur multiple times [4], [12]. Using the dominator
tree, we find the closest possible position to its usages for
insertion to avoid unnecessary interference between variables.
Eventually, we insert a definition for the subexpression at the
identified location and replace all its occurrences.

8) Instruction Idiom Handling: Unresolved instruction id-
ioms generated by modern compilers can be very challenging
for the comprehension of a given function as they typically
translate to complicated arithmetic calculations rather than
the intended high-level expression. While DREAM++ did not
handle instruction idioms, we decided to include a recently
published approach [17] using automatically generated assem-
bly patterns to annotate and revert the most common idioms.

9) Elimination of Dead Paths and Loops: After propagat-
ing expressions, some branch conditions may be rendered un-
fulfillable (or the opposite) and therefore introduce impossible

1 int test_case(int argc) {
2 short s1 = (argc >= 3) ? argc : -769;
3 unsigned short us2 = (unsigned short) s1;
4 return us2; }

(a) Original source-code, adapted from the LLVM test suite, resulting
in test_case(69794316) == 64012 (2 bytes).

1 unsigned long test_case(int arg1) {
2 short var_0;
3 if (arg1 > 2) var_0 = (short)arg1;
4 else var_0 = -769;
5 return (unsigned int)var_0; } // should be ushort

(b) Recompiled output from dewolf decompiler, resulting in
test_case(69794316) == 4294965772 (4 bytes).

Fig. 3: A casting bug found using differential fuzzing. Both
values are equal to -1524 in their respective signed variants,
but leads to confusion when used as-is by a solver.

paths ultimately leading to unreachable code. Certainly, ana-
lyzing dead code is usually not part of the analyst’s objective
and may significantly decrease efficiency. We identify such
conditions and then eliminate dead or unreachable paths [4].
Similarly, we can also remove dead loops occurring when the
loop condition is always unsatisfied during the first loop entry.
Overall, both algorithms remove unreachable basic blocks and
can significantly reduce the analysis workload.

F. Reliability and Correctness Testing

While developing the above improvements, we made signif-
icant changes to the decompilation process, each typically
based on a small number of test functions. However, it is
impossible to consider the entire universe of binary functions
when developing any new algorithm, resulting in bugs and
crashes when decompiling other functions. In addition to
handwritten test cases, we used coreutils 8.32 and a subset of
the LLVM test suite to find regressions and fix decompilation
bugs. We integrated tests for the coreutils dataset into our con-
tinuous integration pipeline to proactively identify problematic
functions for analyses. Furthermore, we fuzzed dewolf with
functions generated by Csmith [48] to find bugs that did not
occur in the above set. While this was most useful during early
development, it did not help to identify subtler semantic issues.

Finally, we used differential fuzzing to test the semantic
correctness of our lifter and transformations. We limited our
attempts for re-compilation of decompiled code to the simplest
possible functions from the LLVM test suite and generated by
Csmith, which do not contain calls to other functions, global
variables, structures, or unions. As those constructs oftentimes
cause issues during recompilation, their exclusion allowed us
to focus on the semantic transformations described above.
The functions utilized and generated by Csmith with stated
limitations have a median of 61 lines of code. We tested the
originally compiled binaries against their decompiled and re-
compiled counterparts. To perform the tests, we generated har-
nesses for use with the Nezha framework [35]. The differential
fuzzing tests helped us to fix integer promotion casting bugs as
well as type recovery bugs which we would not have identified
otherwise. Figure 3 shows an example of an identified bug. Our
testing experience showed that fuzzing and differential testing
are readily applicable to decompilers. While we were only
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Responses Time (in minutes)
# Execution Total Full 25% 50% 75%

1 2020-10 84 37 41 75 126
2 2021-04 98 44 17 35 57
3 2021-10 85 54 24 38 57

TABLE I: Metadata of the conducted surveys including the
average resp. median time per full response.

able to re-compile and differentially fuzz a small subset of
randomly-generated functions, it has increased our confidence
in the accuracy and correctness of dewolf.

IV. EVALUATION

We conducted three user surveys (see Table I) to evaluate
the following three aspects: First, identifying the limitations
of DREAM++, finding constructs preferred by analysts, as well
as relevant research questions. Second, we evaluated whether
the improved output of dewolf is sufficient to comprehend
a realistic malware sample. Finally, we compared dewolf to
the open-source and commercial state-of-the-art decompilers
Ghidra and Hex-Rays. In general, each conducted user survey
included a self-assessment and feedback for the survey itself,
which helped us to improve them in each iteration.

1) Survey Participants: Gathering participants for user sur-
veys on a highly specific topic like decompilation or reverse
engineering is not particularly easy. Of course, the first choice
for participants are professional reverse engineers or people
who are professionally active in malware analysis. Unfortu-
nately, there are neither plenty professionals in these areas
nor are they available to take part in time-consuming stud-
ies resulting in fewer participants compared to less-technical
surveys, being confirmed by surveys with related topics all
having similar participation numbers [30], [45], [49].

However, it is arguable that people with a solid under-
standing of the C programming language can also participate
in our survey. First, most decompiler outputs are syntactically
very similar to C code, i.e., comprehensible by programmers.
Second, comprehension and preference for the format of C-like
source code does not require reversing skills. Finally, the ulti-
mate goal is to generate output also non-experts can compre-
hend because learning reversing and assembly is very difficult
and time-consuming [30]. Consequently, we did not limit our
survey to participants with experience in reverse engineering
and were pleasantly surprised by the extensive participation.
Figure 4 shows that most participants have experience with
C according to their self-assessment (see Section IV-D). In
the second and third survey roughly 60% of the participants
stated they had C-experience. As expected, the number of
participants with reversing skills is comparatively low. In the
final survey, we gathered more than 40% of participants with
allegedly substantial reversing skills . Our participants mainly
consisted of program or malware analysis students, colleagues
with malware analysis experience, and professional reversers.

2) Survey Platform: We opted to use an online platform to
conduct our surveys to not be limited to geographically close
participants, to avoid time constraints, and to ensure anonymi-
ty. At the beginning of each survey, we sent a link to a privately
hosted instance of LimeSurvey to potential participants.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
rev
C

rev
C

rev
C

3

2

1

None A few hours Several days More than a year On a regular basis

Fig. 4: The participants’ reversing and C experience across all
user surveys. For the first survey (ranking from 1 to 10), we
merged 1+2 to None, 3+4 to A few hours, and so on.

1 int A(int m, int n) {
2 if (!m) return n + 1;
3 if (!n) return A(m - 1, 1);
4 return A(m-1,A(m,n-1)); }

Fig. 5: Source code snippet for the first user survey. The
function A(...) implements the Ackermann function.

A. Survey 1: Limitations of Dream

One main goal of the first user survey was to evaluate
how our re-implementation of DREAM++ performs against
the commercial and open-source state-of-the-art. We decided
to use the Ackermann function (Figure 5) compiled with
GCC 10.0.1 since it is a non-trivial arithmetic function featur-
ing non-primitive recursion. We decompiled the function with
dewolf (DREAM++ re-implementation without the improve-
ments from Section III), Ghidra 9.1.2., and Hex-Rays 7.5. SP2,
and randomly assigned each participant one output. To avoid
participants recognizing particular decompilers, we normalized
all decompiler outputs. For example, we introduced a common
naming scheme for variables and function names. Overall, we
collected data about the comprehension and subjective trends
regarding the presentation of the three different outputs.

To verify the participants’ understanding of the given
function and to validate the self-assessment, we asked which
values the function returns for two different sets of parameters
and which parameter combinations result in the most recursive
calls. Figure 6 shows the comprehension results divided by the
decompiler that generated the output for the respective partici-
pant. Additionally, we asked questions about the output quality.
Since we identified no grave differences between dewolf and
the other decompilers in comprehension and quality, we felt
confident that dewolf produces competitive results.

In the final part of the survey, we presented participants
with small side-by-side comparisons to gain insights into user
preferences. While there are many code constructs where par-
ticipants have a clear consensus, such as to prevent high nesting
depths, there are many cases where seemingly no clear pref-
erence exists, such as the usage of gotos. The topics we asked
participants include preferences regarding program structure
like switch versus if-else, value and expression propagation,
and the use of gotos. It turned out that many participants were
particularly dissatisfied with seemingly small details that may
still require elaborated approaches, e.g., the representation of
constants or (for-)loop restructuring. Moreover, the fact that
modern decompilers do not handle all instruction idioms turned
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Fig. 6: Comprehension results of the Ackermann function. The
questions are included in Appendix 2.

out to be a substantial issue. Consequently, we decided to
tackle issues criticized by participants regarding our output.
Additionally, we approached two more complex and particu-
larly substantial issues namely the complexity of expressions
and conditions and the number of variables. To address these
problems, we developed a custom logic engine and focused on
Out-of-SSA as well as on handling variable copies.

Another aspect frequently mentioned by participants was
the lack of configurability. Indeed, users may have contrast-
ing preferences and can benefit from diverse configuration
options. Besides, preferences often diverge depending on the
given sample or function. Hence, it is no surprise that most
participants are disappointed with the extent to which some
algorithms of state-of-the-art decompilers are configurable.
More specifically, they would appreciate tweaking decompiler
settings to fit their individual preferences or the characteristics
of a given function. Consequently, many algorithms in dewolf
are highly configurable by the user (see Appendix 1).

B. Survey 2: Comprehension

The purpose of the second survey was to evaluate the
comprehensiveness of dewolf’s output (including the improve-
ments from Section III). More precisely, we validated whether
participants can use dewolf to comprehend a realistic malware
function to assess its applicability. We decided that an adequate
malware component to be analyzed in our survey would be
a domain generation algorithm (DGA). DGAs implement a
kind of domain flux designed to improve the resilience of
network communication utilized by modern malware to avoid a
single-point-of-failure during network communication by not
using hardcoded addresses for the network infrastructure of
the malware [36]. Thus, during malware analysis, analysts are
often interested in the detailed implementation of DGAs to
obtain domains of interest, in contrast to, e.g., crypto algo-
rithms where no complete understanding may be required once
identified. We opted to use a synthetic DGA since real-world
malware samples are exponentially increasing in size and
complexity [10]. Besides, DGAs are regularly implemented
across multiple functions and may have dependencies that are
hard to represent properly in a survey. To make the DGA as
realistic as possible, we studied numerous real-world DGAs
using DGArchive [36] and programmed a very similar yet
slightly less complex DGA in a single function (see Figure 7)
generating realistic domains as a real-world DGA would.

Each participant received dewolf’s output of the DGA
from Figure 14, compiled with VS2015. We then asked about
the functions purpose to assess whether the participants de-
termine its functionality, i.e., that it is a DGA. In total, more

1 char* dga() {
2 unsigned char* domain; char seed;
3 domain = malloc(sizeof(SYSTEMTIME));
4 seed = (char)GetTickCount();
5 GetSystemTime((LPSYSTEMTIME)domain);
6 for(char i = 0; i < DOMAIN_LENGTH; i++) {
7 domain[i]=((unsigned char)(domain[i]ˆseed)%24)+97;}
8 int* end = domain + DOMAIN_LENGTH;
9 end[0] = "\x2e\x63\x6f\x6d"; end[1] = 0;

10 switch(seed % 8){
11 case 7: case 5: end[0] ˆ= "\x00\x11\x1a\x6d"; break;
12 case 1: case 6: end[0] ˆ= "\x00\x17\x00\x6d"; break;
13 case 2: end[0] ˆ= "\x00\x0d\x0a\x19"; break;
14 default: break; }
15 return domain; }

Fig. 7: Artificial DGA of survey 2 which produces domains
with 8 random chars except z with four different TLDs.
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Fig. 8: DGA Comprehension results of the second survey for
all participants and split by C-skill level.

than 60% were able to identify the purpose of the function
correctly. Noticeably, the majority of participants that gave
an incorrect answer had either no C- respectively reversing
skills or rushed through the survey in less than 15 minutes.
Since we continued with more in-detail questions involving the
structure and form of the generated domains, we explained the
function’s purpose after the first question. More specifically,
we asked about the domain length, character set, and top-level
domains, allowing us to establish which parts of the algorithm
were understandable. Most participants identified the used top
level domains (TLDs) and correctly classified .com as the most
used. Finally, we showed the participants five domains and
asked whether the given algorithm could potentially generate
them. The comprehension results are summarized in Figure 8
whereas all questions are contained in Appendix 3. Overall,
slightly more than 70% of all participants answered at least half
of the questions correctly. Since most of the questions were
not trivial, we are delighted by these results. Further, Figure 8
shows that C skills seem to have an impact on the answer
score. This impact is not surprising and strengthens the result
even more because most incorrect answers were seemingly not
caused by dewolf’s output but by the lack of expertise.

Finally, the participants compared dewolf’s output of the
DGA with a few other decompilers. The goal was to collect
valuable feedback, user opinions about the different decompiler
outputs, and possible improvements. The results indicate that,
for the given sample, Hex-Rays, Ghidra, and dewolf produce
an eminently better output than the others. Consequently, we
only consider these three decompilers in the final survey.
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1 int convert_binary_to_hex() {
2 long long binary; char hex[65] = ""; int remainder;
3 printf("Enter any binary number: ");
4 scanf("%lld", &binary);
5 while(binary > 0) {
6 remainder = binary % 10000;
7 switch(remainder) {
8 case 0: strcat(hex, "0"); break;
9 case 1: strcat(hex, "1"); break; /* ... */

23 case 1111: strcat(hex, "F"); break; }
24 binary /= 10000; }
25 printf("Binary number: %lld\n", binary);
26 printf("Hexadecimal number: %s", hex);
27 return 0; }

Fig. 9: Code Snippet for the third user survey to generate the
hex representation of a given binary number.

C. Survey 3: Comparison

The primary goal of the final user survey was to com-
pare dewolf to other decompilers. Due to the instability of
the DREAM++ implementation, we only compared dewolf to
Ghidra 10.0.3. and Hex-Rays 7.61. SP1. Besides, we already
compared our initial re-implementation of DREAM++ to both
Hex-Rays and Ghidra in the first user survey. We opted against
comparing our approach with more approaches due to the
survey limitations discussed in Section IV-D. Additionally,
when conducting the third survey, neither Pseudo-C from
Binary Ninja nor revng-c were publicly released.

For the comparison, we constructed a semantically mean-
ingful function (see Figure 9) that includes various challenges
for decompilers while retaining a manageable size. These
aspects include the utilization of different datatypes including
an array, various constant integer values and strings, nested
control-flow structures, i.e. a loop containing a switch with
non-consecutive cases, and an instruction idiom. We compiled
the function with GCC 10.3.1 and decompiled the resulting
sample with Hex-Rays, Ghidra, and dewolf (Figure 15). In
contrast to the first survey, each participant was presented
with all three samples in random order and marked with
pseudonyms. Then, each participant ranked them from most
to least favorable (Figure 10). The results indicate that dewolf
was the most favored for the considered function, with Hex-
Rays still being significantly ahead of Ghidra. This clearly
underlines the positive impact of all introduced improvements,
although each individually being relatively simple, at least
on the participants’ perception. Aspects of dewolf’s output
that were frequently praised by participants include the recon-
structed switch compared to a higher nesting depth produced
by the other decompilers, and the lack of unnecessary casts.
In contrast, participants disliked that dewolf was incapable of
correctly detecting the array, whereas Hex-Rays was. Although
dewolf was ranked first in this sample, we do not claim
that dewolf is superior in general. Still, dewolf is capable of
applying restructuring techniques not supported by the other
decompilers and exceeds their output in certain properties.

In the second part of this survey, we asked the participants
some questions regarding their preferences for the decompiler
output to verify the generally taken assumption that reverse
engineers want highly accurate decompilation output, i.e., an
output similar to the assembly structure. Unsurprisingly, most
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Fig. 10: Ranking of the decompilers for the function in Fig-
ure 9. A total of 53 participants ranked dewolf best.

decompilation approaches and commercial decompilers aim
to achieve this goal [9], [41], although some approaches like
DREAM++ already slightly violate it. We decided to scratch
the surface of this unwritten rule by including some questions
to verify whether participants accept substantial differences to
the assembly structure in favor of increasing the readability.
For instance, they had to choose between three semantically
equivalent reconstruction options. The function was restruc-
tured by either having a more complicated structure, containing
various levels of duplication, or an alternative version by
extracting a section into a new artificial function. In total,
we considered three different scenarios to obtain an overall
impression, such as shown in Figure 16. As expected, some
participants complained that one should not alter the struc-
ture of the considered program imposed by the disassembly.
However, depending on the scenario, the majority preferred
the alternative version even though being clearly different
from the assembly structure. Furthermore, some participants
specifically praised the better readability translating to less
required analysis time and possibly better analysis results.

D. Discussion

Typically, code quality is evaluated using quantitative mea-
surements, i.e., code metrics. However, a significant downside
of using such metrics is that each metric favors a particular
behavior [5] and may not necessarily lead to a better read-
ability during manual static analysis. For example, the revng-c
approach [23] uses the McCabe Cyclomatic Complexity [31]
which favors their way of duplication without measuring its
disadvantages: When copying a node with ≥ 2 predecessors
and one successor such that each duplication has one prede-
cessor, the code size may considerably increase whereas the
cyclomatic complexity does not change. When duplicating ar-
bitrarily big basic blocks without any successor, the cyclomatic
complexity may even decrease, although such duplicating ob-
viously harms the code’s readability and decreases its quality.
Even combinations of metrics such as McCabe Cyclomatic
Complexity and Lines of Code are insufficient to assess the
readability as reducing the lines of code does not always help
a human analyst. Consequently, we decided to exclusively use
user surveys to evaluate the improvements of our approach
and to study analysts’ preferences regarding code constructs
or output formats. The first user study even confirmed that it
is nearly impossible to define formal criteria for code quality
because readability is purely subjective, and no sound default
configuration for decompiler outputs can please all analysts.

Although the individual and incremental evaluation of all
improvements from Section III would allow assessing the
individual impact of each improvement, this would result in an
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Fig. 11: Boxplots showing the runtime (in seconds) when de-
compiling coreutils samples with dewolf and Binary Ninja.

unmanageable number of combinations that goes far beyond
what we can evaluate. Additionally, we presume that the
impact of each individual contribution is rather small and may
not result in measurable improvements. Hence, we opted for
an evaluation of our decompiler approach containing all intro-
duced improvements. We further decided against using more
complex real-world malware samples or comparing against
more than two other approaches to address the very limited
number of participants, i.e., people, especially professionals,
willing and able to participate in a user survey related to revers-
ing [30], [47]. Recent research also indicates that even popular
paid services, claiming to provide qualified survey participants,
should not be used to overcome this limitation [13].

Finally, we decided to only include a self-assessment in
the second and third survey since we did not observe any
significant divergences between the self-assessment and an
assessment based on questions about the Ackermann Function
during the first survey. This decision saved valuable partic-
ipants’ time and allowed us to include additional content.
Consequently, results split by the participant’s skills are solely
built on the provided self-assessment and should be tempered
with caution. Regardless, our results indicate that reversing
skills are far less relevant compared to the capability of
understanding code which is very helpful for comprehension.

E. Runtime Evaluation

We heavily focus on readability improvements and con-
sequently neither optimized our approach nor prototype im-
plementation with respect to speed. While we want to leave a
precise runtime evaluation of the presented approaches’ subject
for future work, we understand that a reasonable runtime is an
essential aspect of decompilation approaches. To demonstrate
that our Python prototype is sufficiently fast on real-world bi-
naries, even without speed optimizations or being implemented
in native code, we decompiled all binaries in coreutils on an i7-
10850H with 12GBs of RAM and measured the decompilation
times. With a timeout of 5 minutes, the dewolf prototype can
decompile 94% of all binaries and 75% of them in less than 8
seconds. Figure 11 shows the measured decompilation times
for dewolf and Binary Ninja. As presumed, the decompilation
times of Binary Ninja are significantly faster. Because all of
its analyses run at the start of dewolf to obtain the MLIL, they
can be considered a lower bound for dewolf’s runtime.

V. CONCLUSION AND OUTLOOK

In this paper, we made three main contributions: First, we
conducted and discussed three user surveys providing valuable
information for research in the area of reverse engineering and
decompilation. We publish the survey results allowing other
researchers to use them in three ways: (i) as a guideline of
user preferences for decompiler output or code in general, (ii)
insights into the limitations of current approaches from a user

perspective, and (iii) as starting points for new research. A
key finding of our surveys is that a majority of participants do
not necessarily favor decompilers producing output as close as
possible to the structure implied by the assembly as long as
it improves the readability. Instead, to help human analysts,
it can be highly beneficial to allow a more flexible output
generation while maintaining semantic equivalence. Even sub-
stantial structural differences to the disassembly should be
considered in favor of significant readability improvements.
Since existing approaches rarely oppose the disassembly and
avoid substantial changes to the program structure, we have to
overthink and actively re-consider them. Ultimately, our results
establish multiple possibilities for decompilation and can have
a broad impact on future research, even opening entirely new
options for output formats.

The results of our surveys also imply that many partici-
pants deeply desire configurability. Furthermore, the evaluation
indicates that small details, such as the representation of
constants, can already have a positive impact in some cases.
Because readability seems to be highly subjective, analysts can
benefit from individual high-level representations influenced
by decompiler parameters. Besides, as the characteristics of
functions vastly differ between samples, configuration options
could be very useful to tune the decompiler for each given use-
case. Consequently, future decompilation approaches should
allow user configuration for such details when possible. This
also raises the question whether the existing metrics for de-
compiler evaluation even apply to human analysis considering
the wide variety of user preferences. Finally, we expect that the
survey results can be helpful to other researchers in the field of
decompilation, reverse engineering, or even topics dealing with
comprehending source code. In particular, it is possible to use
some of the results as a baseline for further research. We pub-
lish the complete questionnaires and participants’ responses to
allow further analyses and conclusions from others [1].

Based on the survey results, we introduced a new decompi-
lation approach named dewolf with significant improvements
over the previous research state-of-the-art. In addition to count-
less small-scale improvements, we developed a custom logic
engine and a novel, well-described Out-of-SSA algorithm. The
evaluation indicates that dewolf is not only a considerable
improvement over the previous state-of-the-art but is also
suitable to comprehend and analyze malware. Moreover, the
output quality of dewolf noticeably exceeds the commercial
and open-source state-of-the-art decompilers for several sam-
ples, according to survey participants. Lastly, we open-source
our decompiler prototype dewolf to provide other researchers
with a suitable base for their work. Due to its stability and
its modular design, dewolf is exceptionally well suited to
integrate and evaluate new approaches. Further, we hope that
dewolf motivates and assists more research focusing on manual
analysis to cope with the increasing security analysis load.
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APPENDIX

1) Configurability: One particular strength of dewolf is
its extensive configurability. The survey results indicate that
decompiler configurability can significantly improve analysis,
according to the participants. In dewolf, most stages and
algorithms have extensive configuration options. Additionally,
the user can configure which pipeline stages should run and
in which order, with the only restriction that the Out-of-SSA
stage has to be run after all data-flow algorithms and before
the control-flow algorithms. The order of the data-flow and
control-flow algorithms can be chosen arbitrarily. It is also
possible to run stages multiple times. In the following, we will
describe the configuration options for three exemplary stages.

The stage instruction length handler ensures that individ-
ual instructions are not too long. To address different user
preferences regarding maximum length, we allow the user
to set the maximum number of operations per instruction.
Our algorithm for common subexpression elimination finds
redundant expressions and introduces new variables for such.
It offers multiple options such as a lower bound for the occur-
rences of an expression to be extracted. In the code generator,
users can, for example, decide whether compound operations
(+ =) or integer incrementation suffices (i++) should be used.
Additionally, the user can configure how to represent constants
and the aggressiveness of the array detection, i.e., how often
to represent *(a+i*4) as a[i].

2) User Survey I: Figure 13 shows the decompiler outputs
we generated with dewolf, at that time essentially being a
re-implementation of DREAM++, Hex-Rays, and Ghidra. To
reduce the space consumption of the outputs, we deleted
some linebreaks and inline selected conditions. We showed
each participant one of those random decompiler outputs. The
participants then had to answer questions about its comprehen-
siveness and their judgment of the output quality on a Likert
scale. Figure 12 shows the overall results for each question
for all three considered decompilers indicating only small
divergences in most categories. Four questions expose diver-
gence between them and their control questions. Interestingly,
they contain all questions of two categories: variables and
restructuring. Apparently, participants do not have a general
preference regarding the number of variables, their typing, and
restructuring.

3) User Survey II: To verify the comprehensibility of
dewolf’s output, we decompiled the DGA of Figure 7 with
dewolf. The output is shown in Figure 14. On the positive
side, dewolf correctly restructures the switch statement and the
array-access for the domains (var_0). Additionally, dewolf is
capable of reversing the instruction idioms in lines 8 & 13, e.g.,
the modulo 24 computation. Nevertheless, there is still room
for improvement. For example, dewolf does not detect the
array access for the TLDs (var_4). Moreover, dewolf is very
conservative with propagation pointers leading to unnecessary
copies of variables, e.g., in line 7. But, we already attacked
this problem. The current version of dewolf propagates the
instruction in line 7 into line 8. We asked each participant the
following comprehension questions:

• What does this function return?
◦ No Idea
◦ Manipulates the system time
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The used control-flow
structures are appropriate.

The control-flow is
strangely restructured.

It was easy to un-
derstand the code.

It took much effort to
understand the code.

It seems that there are
no unused instructions.

There are too much
unused instructions.

I think the code is
correctly decompiled.

The decompiled code
seems to be incorrect.

The conditions
are too complex.

The code contains too
many intermediate results.

The line length is too long

Many variables
have useless copies.

There are no useless
copies of variables.

The variable types
seem to be reasonable.

Some variable types
seem to be wrong.

There are no variables that
only store unnecessary
intermediate constants.

There are too many
variables that just store
intermediate constants.

dewolf
Hex-Rays

Ghidra

Fig. 12: Boxplots visualizing the Likert scale values evaluated
in the first user survey for the outputs from Figure 13.

◦ Allows Virtual Machine Detection
◦ Generates random domains
◦ Encrypts memory regions

• Please type all utilized top-level-domains (TLDs).

• Which Top-Level domain will be utilized the most?

• Which of these second-level domains can potentially
be generated by the function? (Yes/No answer option)

◦ simpmpfp
◦ xfbcbcic
◦ facebook

◦ squzuzfz
◦ rlpmpmgmjdh

The correct answer to the first question is Generates random
domains. To identify all utilized top-level domains, one has
to look at the strings assigned to the array end resp. the
pointer var_4. This leads to the following four TLDs:
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unsigned long A(int arg1, int arg2) {
unsigned long var_0;
if (arg1 == 0) { var_0 = arg2; }
else {
var_0 = arg2;
while(true) {
arg2 = (arg1 + -0x1) &

0xffffffff;↪→
if ((unsigned int)var_0 == 0) {

if (arg2 == 0) { var_0 = 0x1;
break; }↪→

arg1 = arg2; var_0 = 0x1;
continue; }↪→
var_0=A(arg1,((unsigned

int)var_0)+0xffffffff);↪→
if (arg2 == 0) { break; }
arg1 = arg2; } }

return ((unsigned int) var_0) + 0x1;
}↪→

(a) Output:re-implementation of DREAM++.

__int64 __fastcall A(__int64 arg_1,
int arg_2){↪→

unsigned int var_0;
if ( (_DWORD)arg_1 ) {
do{

while ( 1 ) {
var_0 = arg_1 - 1;
if ( !arg_2 ) { break; }
arg_2 = A(arg_1, (unsigned

int)(arg_2 - 1));↪→
arg_1 = var_0;
if (!var_0) {return (unsigned

int)(arg_2+1);}}↪→
arg_2 = 1; arg_1 = var_0;

}while ( var_0 ); }
return (unsigned int)(arg_2 + 1); }

(b) Output: Hex-Rays, IDA 7.5.200728 (SP2).

ulong A(ulong arg_1,ulong arg_2){
int var_0; uint var_1; arg_2 = arg_2

& 0xffffffff;↪→
var_0 = (int)arg_2; var_1 =

(uint)arg_1;↪→
while (var_1 != 0) {
while( true ) {
var_1 = (int)arg_1 - 1;
if ((int)arg_2 != 0) { break; }
arg_2 = 1; var_0 = 1; arg_1 =

(ulong)var_1;↪→
if (var_1 == 0) { goto Label_1;

} }↪→
arg_2 = A(arg_1,(ulong)((int)arg_2
- 1));↪→
var_0 = (int)arg_2; arg_1 =
(ulong)var_1; }↪→

Label_1: return (ulong)(var_0 + 1);
}↪→

(c) Output: Ghidra 9.1.2.

Fig. 13: Decompiler outputs for the function from Figure 5 used for the first user survey.

1 int sub_401000() {
2 char i; char * var_0; char var_1; char var_3; int var_4;
3 var_0 = malloc(16);
4 var_1 = GetTickCount();
5 GetSystemTime(lpSystemTime: var_0);
6 for (i = 0; i < 8; i++) {
7 var_3 = var_0[i];
8 var_0[i] = ((unsigned int)(var_3ˆvar_1)%24 &0xff)+'a';
9 }

10 var_4 = var_0 + 8;
11 *var_4 = 0x6d6f632e;
12 *(var_4 + 4) = 0x0;
13 switch((((int) var_1) % 0x8) - 0x1) {
14 case 0:
15 case 5:
16 *var_4 = *var_4 ˆ 0x6d001700;
17 break;
18 case 1:
19 *var_4 = *var_4 ˆ 0x190a0d00;
20 break;
21 case 4:
22 case 6:
23 *var_4 = *var_4 ˆ 0x6d1a1100;
24 break;
25 }
26 return var_0;
27 }

Fig. 14: The output of dewolf given the DGA of Figure 7.

• .com ("\x2e\x63\x6f\x6d")

• .ru ("\x00\x11\x1a\x6d")

• .tu ("\x00\x17\x00\x6d")

• .net ("\x00\x0d\x0a\x19").

The most utilized TLD is .com because we have eight differ-
ent cases and .com is used for three, whereas the others are
only chosen for up to two cases. Finally, the only second-level
domains not potentially generated by the domain generation
algorithm are squzuzfz and rlpmpmgmjdh because the character
z is excluded in the loop and the length of each domain is eight.

4) User Survey III: During the first part of the third
survey, each participant was given and asked to rank all three
decompiler outputs from Figure 15. The ranking results are

illustrated in Figure 10 and shortly discussed in Section IV.
Figure 15c shows that Hex-Rays restructured the loop-body
very closely to the structure of the assembly code by utilizing
an if/else structure. Similarly, Ghidra also produced an if/else
structure, but with a significantly higher nesting depth by
utilizing cascading if statements (Figure 15a). In contrast to
both, dewolf restructured this part into a switch statement by
identifying a candidate variable for a switch construct (Fig-
ure 15b). Although this does not strictly reflect the assembly
due to the missing jump table, we argue it is easier and
faster to comprehend. Further differences between the outputs
mentioned by the participants include but are not limited to:

• The loop-type used for restructuring, i.e., Ghidra and
dewolf output a for-loop and Hex-Rays a while-loop.

• The mixed constant representation of dewolf.

• The usage of casts, i.e., Ghidra used nearly twice as
many casts than IDA and that dewolf used no casts.

• Hex-Rays superior type and array reconstruction.

In the second part, we questioned the general assumption
that the structure of the decompiled output should always be
similar to the assembly structure. Therefore, we restructured
a sample in three different ways, once by copying a sequence
of code (Figure 16a), one by using an additional variable to
reconstruct the flow (Figure 16b), and once by extracting part
of the code into a function (Figure 16c). Additionally to the
comparison in Figure 16, we also asked the same question
when the marked region consists of one, five, or 15 lines of
code. As expected, copying one line of code was alright when
it simplifies the structure. However, the more complicated and
longer the structure gets, the participants do not like that it
is copied. The idea of extracting complicated structures into a
function was picked up very positively by most participants.

Because the full questionnaires and results from all three
surveys are extraordinarily extensive, we opted to publish
them on GitHub [1]. The repository also contains a PDF with
the name summary_surveys.pdf rendering the question-
naires and results of all three surveys.
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1 undefined8 FUN_00401c3d(void){
2 size_t sVar1; undefined8 local_68;

12 long local_18; int local_10;
13 uint local_c; local_68 = 0;

24 printf("Enter any binary number: ");
25 __isoc99_scanf(&DAT_00403259,

&local_18);↪→
26 local_c = (uint)local_18;
27 for (; 0 < local_18; local_18 =

local_18 / 10000) {↪→
28 local_10 = (int)local_18 +

(int)(local_18 / 10000) *-10000;↪→
29 if (local_10 == 0x457) {
30 sVar1 = strlen((char *)&local_68);
31 *(undefined2 *)((long)&local_68 +

sVar1) = 0x46; }↪→
32 else { if (local_10 < 0x458) {
33 if (local_10 == 0x456) {
34 sVar1 = strlen((char

*)&local_68);↪→
35 *(undefined2 *)((long)&local_68

+ sVar1) = 0x45; }↪→
36 else { if (local_10 < 0x457) {
37 if (local_10 == 0x44d) {
38 sVar1 = strlen((char

*)&local_68);↪→
39 *(undefined2 *)((long)

&local_68 + sVar1) = 0x44; }↪→
40 else { if (local_10 < 0x44e) {
41 if (local_10 == 0x44c) {

105 printf("Binary number:
%lld\\n",(ulong)local_c);↪→

106 printf("Hexadecimal number:
%s",&local_68);↪→

107 return 0; }

(a) Output generated with the decompiler in-
tegrated into Ghidra 10.0.3.

1 long sub_401c3d() {
2 size_t var_5; long i;
3 long var_0; long var_2; long var_4;
4 long * var_3;
5 printf(/* format */ "Enter any

binary number: ");↪→
6 var_3 = &var_0;
7 __isoc99_scanf(/* format */ "%lld",

var_3);↪→
8 var_2 = 0L;
9 for(i = var_0; i > 0L; i /= 0x2710){

10 var_4 = i % 0x2710;
11 switch(var_4) {
12 case 0:
13 var_3 = &var_2;
14 var_5 = strlen(var_3);
15 *(&var_2 + var_5) = 0x30; break;
16 case 1:
17 var_3 = &var_2;
18 var_5 = strlen(var_3);
19 *(&var_2 + var_5) = 0x31; break;
20 case 10:
21 var_3 = &var_2;
22 var_5 = strlen(var_3);
23 *(&var_2 + var_5) = 0x32; break;
24 case 11:
25 var_3 = &var_2;
26 var_5 = strlen(var_3);
27 *(&var_2 + var_5) = 0x33; break;

76 printf(/* format */ "Binary number:
%lld\\n", var_0 & 0xffffffff);↪→

77 var_3 = &var_2;
78 printf(/* format */ "Hexadecimal

number: %s", var_3);↪→
79 return 0L;

(b) Output generated with dewolf integrating
all improvements from Section III.

1 _int64 sub_401C3D(){
2 char s[8]; // [rsp+0h] [rbp-60h]

BYREF↪→
3 __int64 v2; // [rsp+8h] [rbp-58h]

9 __int64 v8; // [rsp+38h] [rbp-28h]
10 char v9; // [rsp+40h] [rbp-20h]
11 __int64 v10; // [rsp+50h] [rbp-10h]

BYREF↪→
12 int v11; // [rsp+58h] [rbp-8h]
13 unsigned int v12; // [rsp+5Ch]

[rbp-4h]↪→
14 *(_QWORD *)s = 0LL;
15 v2 = 0LL;

23 v9 = 0;
24 printf("Enter any binary number: ");
25 __isoc99_scanf("%lld", &v10); v12 =

v10;↪→
26 while ( v10 > 0 ) {
27 v11 = v10 % 10000;
28 if ( v11 == 1111 ) {
29 *(_WORD *)&s[strlen(s)] = 70; }
30 else if ( v11 <= 1111 ) {
31 if ( v11 == 1110 ) {
32 *(_WORD *)&s[strlen(s)] = 69; }
33 else if ( v11 == 1101 ) {
34 *(_WORD *)&s[strlen(s)] = 68; }
35 else if ( v11 <= 1101 ) {
36 if ( v11 == 1100 ) {
37 *(_WORD *)&s[strlen(s)] = 67;

}↪→

68 v10 /= 10000LL; }
69 printf("Binary number: %lld\\n",

v12);↪→
70 printf("Hexadecimal number: %s", s);
71 return 0LL;}

(c) Output generated with Hex-Rays and IDA
7.61 (SP1).

Fig. 15: Decompiler output excerpts for the function from Figure 9 used for the third user survey.

1 /* Block #0 */
2 if(var_0 > 10){
3 while(var_1 > 0){
4 if(var_2 == 2){ /* Block #4 */
5 if(var_4 == 4){ /* Block #8 */
6 continue;}
7 /* Block #9 */
8 }else{/* Block #5 */}
9 while(var > 1){

10 printf("Enter a number \\n");
11 scanf("%d", &numb1);
12 if(var % numb == 0){var/=numb;}
13 else{var -= numb;}
14 printf("The new number is %d,

\\n", var);}↪→
15 return var;}}
16 /* Block #3 */
17 if(var_3 > 3){/* Block #6 */}
18 else{/* Block #7 */}
19 /* Block #11 */
20 while(var > 1){
21 printf("Enter a number \\n");
22 scanf("%d", &numb1);
23 if(var % numb == 0){var /= numb;}
24 else{var -= numb;}
25 printf("The new number is %d, \\n",

var);}↪→
26 return var;

(a) Copying the marked region.

1 /* Block #0 */
2 if(var_0 > 10){
3 while(true){
4 if(var_1 > 0){
5 exit_1 = 0;
6 break;}
7 if(var_2 == 2){ /* Block #4 */
8 if(var_4 == 4){ /* Block #8 */
9 continue;}

10 /* Block #9 */
11 }else{/* Block #5 */}
12 exit = 1;
13 break;}}
14 if(var_0 <= 10 || exit_1 == 0){
15 if(var_3 > 3){/* Block #6 */}
16 else{/* Block #7 */}
17 /* Block #11 */}
18 while(var > 1){
19 printf("Enter a number \\n");
20 scanf("%d", &numb1);
21 if(var % numb == 0){var /= numb;}
22 else{ var -= numb; }
23 printf("The new number is %d, \\n",

var); }↪→
24 return var;

(b) Adding an additional variable exit_1.

1 /* Block #0 */
2 if(var_0 > 10){
3 while(var_1 > 0){
4 if(var_2 == 2){ /* Block #4 */
5 if(var_4 == 4){ /* Block #8 */
6 continue;}
7 /* Block #9 */
8 }else{/* Block #5 */}
9 return call_sub(var);}}

10 /* Block #3 */
11 if(var_3 > 3){/* Block #6 */}
12 else{/* Block #7 */}
13 /* Block #11 */
14 return call_sub(var);
15

16 int call_sub(int var){
17 while(var > 1){
18 printf("Enter a number \\n");
19 scanf("%d", &numb1);
20 if(var % numb == 0){var /= numb;}
21 else{var -= numb;}
22 printf("The new number is %d,

\\n", var);}↪→
23 return var;}

(c) Extracting part of the code into a function.

Fig. 16: The comparison of different restructuring options to avoid gotos for loops with multiple exits.
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