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Abstract—Malware classification facilitates static analysis,
which is manually intensive but necessary work to understand
the inner workings of unknown malware. Machine learning based
approaches have been actively studied and have great potential.
However, their drawback is that their models are considered black
boxes and are challenging to explain their classification results
and thus cannot provide patterns specific to malware. To address
this problem, we propose FCGAT, the first malware classification
method that provides interpretable classification reasons based on
program functions. FCGAT applies natural language processing
techniques to create function features and updates them to
reflect the calling relationships between functions. Then, it applies
attention mechanism to create malware feature by emphasizing
the functions that are important for classification with attention
weights. FCGAT provides an importance ranking of functions
based on attention weights as an explanation. We evaluate the
performance of FCGAT on two datasets. The results show that
the F1-Scores are 98.15% and 98.18%, which are competitive
with the cutting-edge methods. Furthermore, we examine how
much the functions emphasized by FCGAT contribute to the
classification. Surprisingly, our result show that only top 6
(average per sample) highly-weighted functions yield as much
as 70% accuracy. We also show that these functions reflect
the characteristics of malware by analyzing them. FCGAT can
provide analysts with reliable explanations using a small number
of functions. These explanations could bring various benefits, such
as improved efficiency in malware analysis and comprehensive
malware trend analysis.

I. INTRODUCTION

Malware classification, which identifies malware families
or categories, is helpful for efficient malware analysis. Static
analysis, which requires the interpretation of binary code, is
highly technical and time-consuming. In particular, detailed
analysis of unknown malware requires considerable effort. In
such cases, identifying malware species allows analysts to infer
their behavior. Attackers create numerous malware variants
that are sophisticatedly designed to evade traditional signature-
based detection. Signature-based methods cannot keep up with
creating pattern files and are limited in real-time response to
variants and new malware species.

Machine learning-based classification methods have been
actively studied to counter the threat of unknown malware.

Despite their great potential, their models lack interpretability
and have difficulty in explaining the reasons behind malware
classification. Thus, analysts often struggle to identify the
code that characterizes malware. Generally, there is a trade-
off between model interpretability and classification perfor-
mance [3]. Complex models such as deep learning can improve
performance due to their high representation capacity. How-
ever, these models are treated as black boxes, and it is diffi-
cult to obtain explanations for their predictions. Nevertheless,
the explanations for incorrect predictions cannot be trusted.
Therefore, it is necessary to achieve both high performance
and interpretability.

Attention mechanism [2] has recently brought various
breakthroughs in the field of machine learning [24]. It com-
putes the weighted average of input features using the learn-
ing parameters, attention weights. Throughout this paper, we
use the term ”important feature/function” to denote a fea-
ture/function that is assigned a higher attention weight. It
means a feature/function that the model considers important for
classification. By focusing on important features for prediction,
high-performance prediction is achieved. Furthermore, it is
expected to obtain explanations for the predictions by extract-
ing the important features. Our method incorporates attention
mechanism and tries to achieve both high-performance classi-
fication and interpretable explanations. In other words, we try
to extract reliable explanations for malware classifications and
provide features that characterize the classification classes.

When applying machine learning, it is necessary to deter-
mine a feature set to be used. Several granular features can be
designed to represent malware, including bytes, basic blocks,
and functions. The explanations for classification results are
extracted in feature units. If the granularity of the feature is
small, such as a byte or basic block, people have difficulty
understanding the explanations. Meanwhile, function is rela-
tively superior in interpretability. When analyzing malware,
analysts often focus on its function and relevance. Therefore,
if the importance of each function is presented, they will easily
interpret and utilize it for the analysis. In addition, malware
developers rarely create programs from scratch, and some
functions are often used interchangeably. Therefore, we adopt
functions as features in this study.

Graph Neural Network (GNN) was first proposed by
Scarselli et al. [17] and has attracted attention in various
fields, such as molecular and human relationships. It has also
been applied in malware classification in the past few years
and achieved high classification performance [30], [27]. GNN
classifies graphs using the graph structures that represent the
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relationships between objects. Function Call Graph (FCG),
which represents the calling relationship between functions,
can be used to represent a program as a graph structure. Wu
et al. [27] proposed GEMAL, a malware classifier using FCG
structure. They showed that GEMAL can classify malware
with high performance by evaluation experiments. In this
study, we use GNN to classify FCG in order to achieve high-
performance classification.

Considering these backgrounds, we propose an inter-
pretable malware classification method named FCGAT. It
classifies malware by focusing on important functions for clas-
sification and presents these functions as explanations. FCGAT
updates function features reflecting the calling relationships
between functions using FCG. Then, by incorporating attention
mechanism, FCGAT achieves both high-performance classifi-
cation and interpretability.

The contributions of this study are as follows:

• We propose FCGAT, a novel malware classification
method that can explain the classification result on a
per-function basis. FCGAT provides analysts with an
importance ranking of function, which is expected to
be effective in reducing the burden of following in-
depth analysis. To the best of our knowledge, this is
the first study to explain malware classification on a
per-function basis.

• We evaluate the performance of FCGAT on two
datasets and compare it to existing methods. The
results show FCGAT succeeded in classification with
F1-Score 98.15% and 98.45%, which is comparable
to the cutting-edge methods. These results support the
effectiveness of malware classification using function
features.

• We examine how much the important functions con-
tribute to the classification. Surprisingly, only top 6
(average per sample) important functions yield as
much as 70% accuracy. This result suggests malware
can be analyzed by focusing on fewer features.

• We analyze the explanations provided by FCGAT
and obtain insight into the functions that characterize
malware. As an example, we analyzed ransomware
samples and identified AES encryption and decryption
functions. The insights from these explanations could
be helpful for malware analysis and comprehensive
malware trend analysis.

This paper is organized as follows. Section II surveys the
works related to machine learning-based malware classifica-
tion. Section III describes the prior knowledge required for this
paper. In Section IV, our method is proposed. Our experimental
results are given in Section V. Section VI discusses our
approach. In Section VII, conclusions are provided.

II. RELATED WORK

Malware analysis methods can be broadly classified into
static analysis and dynamic analysis. Our method is classified
as a static analysis that does not run malware. Among them,
this study is related to the malware classification method.
In addition, we target malware in Portable Execution (PE)

format, which is an executable file format for Windows. Ma et
al. [8] have demonstrated nine existing studies on the family
classification of PE malware using four different datasets. In
this study, we compare our experimental results with those of
Ma et al. There are three main types of existing approaches:
image-based, binary-based, and disassembly-based, and our
proposed method is classified as a disassembly-based method.
The following subsections mainly focus on the methods used
for comparison in this study.

A. Image-based methods

Image-based methods convert binary malware files into
grayscale or color images and then adopt image classification
models for malware classification. This method was first pro-
posed by Nataraj et al. [12]. Ma et al. used four different image
classification models in their comparison experiments (ResNet-
50 [5], VGG-16 [19], Inception-V3 [22] and IMCFN [23]).
Image-based methods can use existing image classification
models and are compatible with machine learning. However,
since we aim to explain the classification reasons, explanations
by image pixels that are difficult to interpret are not appropri-
ate.

B. Binary-based methods

Binary-based methods input the malware binaries and
process them as time-series data. Raff et al. [15] proposed
MalConv, the first end-to-end malware detection model to take
the entire malware executable file as input. Qiao et al. [14]
proposed a method combining Word2Vec [11] and Multi-Layer
Perceptron (MLP). This method first preprocesses to remove
meaningless bytes, and then the 256-byte embedding vectors
obtained by Word2Vec are input to the MLP classifier. The
binary-based approach has the advantage of low preprocessing
costs because it uses byte sequences in the executable file.
However, the problem is that adjacent bytes are not always
contextually meaningful since jump and function call instruc-
tions hop to a distanced address. Therefore, our method uses
FCG to provide a contextually meaningful representation.

C. Disassembly-based methods

In disassembly-based methods, features are created from
assembly code obtained by disassembling an executable file.
Our proposed method is classified as this approach. MAGIC by
Yan et al. [30] uses DGCNN [32], a type of GNN, to classify
Control Flow Graph (CFG) with the basic blocks as nodes.
MAGIC uses manually designed features of basic blocks.
Awad et al. [1] treat an opcode sequence as a document and
apply Word2vec to obtain a vector representation of malware.
The k-Nearest Neighbor method is used for classification. In
MCSC by Ni et al. [13], opcode sequences are converted to
vectors based on SimHash [9], and the imaged vectors are
classified using a convolutional neural network. Disassembly-
based methods have lower performance than the other methods
in the Ma et al. experimental results. In MalwareBazaar
dataset, the average F1-Score for image-based methods is
96.65%, and binary-based is 97.1%, whereas disassembly-
based is 91.98%, which is inferior to the other methods.
We aim to build a high-performance malware classifier using
function features, even with disassembly-based methods.
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Recently, Wu et al. [27] proposed GEMAL, a malware
classification method based on FCG. GEMAL uses Word2vec
to convert instructions into vectors and then adds the instruc-
tion vectors in a function to generate an embedded vector of
the function. For graph vectorization, GEMAL uses a graph
embedding network based on an attention mechanism, inspired
by Massarelli et al. [10]. GEMAL successfully classified
malware families with 99.81% accuracy on Microsoft Malware
Classification Challenge dataset BIG-2015 [16]. This result
is a high performance compared to other existing studies.
Inspired by GEMAL we propose a new interpretable malware
classification method using FCG. In Wu et al. work, the
interpretability of GEMAL is not discussed. Since the source
code of GEMAL is not publicly available, we implemented
GEMAL based on the original paper [27] and the source code 1

by Massarelli et al. [10] from which GEMAL was derived. We
then conduct a replication experiment and compare the results
with our method.

D. Explanation techniques in malware classification

Yakura et al. [29] proposed a method to extract malware
family-specific regions by using an image classification model
with an attention mechanism. The input data are images scaled
to 64 x 64 resolution, and the outputs are attention maps
indicating important regions for classification. The attention
maps are expected to be useful for malware analysis because it
extracts byte sequences that characterize malware families. Ac-
cording to evaluation experiments, the performance of malware
family classification has an error rate of 50.97%, and it is stated
in the paper that there is room for improvement in classification
accuracy. Therefore, we aim to create an interpretable model
with higher classification performance.

In the latest study, Herath et al. [6] proposed CFGEx-
plainer, an explanatory method in GNN-based malware classi-
fication models. CFGExplainer obtains the node importance
in CFG subgraph by pruning nodes that do not contribute
to classification and identifying the subgraphs that contribute
the most to classification. Since CFGExplainer uses CFG, it
does not apply to our target FCG-based method. Herath et al.
analyzed malware behavior from a subgraph that is 20% of
the total CFG, but it is a daunting task to analyze a subgraph
with probably more than several thousand basic blocks. We
aim to make analysis more efficient by using FCG, which has
fewer nodes than CFG, to identify functions that are typical
of malware.

III. PRELIMINARY

This section describes the prior knowledge required for this
paper.

A. Graph neural network (GNN)

GNN [17] have recently attracted attention in machine
learning and are expected to be applied to a wide range of areas
represented by graph structures, including networks, human
relationships, and molecules [28]. GNN can perform several
tasks, such as node classification, graph classification, and link
prediction. In this study, we perform graph classification of

1https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-
Binary-Similarity
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Fig. 1. Overview of graph classification process in GNN. This figure shows
the process of updating the features of the node v1.

FCGs in which program functions are nodes and functions in
a calling relationship are connected by edges.

1) Graph definitions: A directed graph G = (V,E) is
represented by a set of nodes V = {v1, ..., vn} and a set of
edges E = {e1, ..., en}. Each e = (u, v) ∈ E is an edge from
a node u to v. For each node v, N (v) = {u | (u, v) ∈ E}
represents the set of adjacent nodes. Consider giving features
to nodes in this graph. Each node v has an initial feature vector
xv ∈ Rd, where d is a dimension of feature space. The total
number of nodes in the graph is n, and the feature matrix is
X ∈ Rn×d. Denote the latent feature vector of a node by hv

and that of the entire graph by hG.

2) Graph Classification in GNN: The process of graph
classification in GNN is divided into three major steps.

1) AGGREGATE: Aggregate the features of neighbor
nodes.

2) COMBINE: Update the features of the node using
the features of the aggregated neighbor nodes.

3) READOUT: Obtain a representation of the entire
graph from the nodes in the graph.

The kth update formula for the node is represented as

hk
v ← COM

(
hk−1
v ,AGG

({
hk−1
u ,∀u ∈ N (v)

}))
,

where COM represents COMBINE function and AGG repre-
sents AGGREGARE function. The following explains the ex-
ample in Fig. 1. The set of neighbor nodes of v1 is {v2, v3, v4}.
Input their latent feature vectors {hk−1

v2 ,hk−1
v3 ,hk−1

v4 } into the
AGGREGATE function. The output and the current feature
vector hk−1

v1 are input to the COMBINE function, and the
output is updated as a new feature vector hk

v1 . This process is
repeated for other nodes. Finally, READOUT summarizes the
vectors of all nodes to obtain a single vector hG that represents
the entire graph. This process allows obtaining hG even if
the number of nodes varies from sample to sample. Various
methods have been proposed for READOUT processing, in-
cluding sum, average, and maximum. Our proposed method
uses Set2Set [26] in this process and emphasizes the weighting
of important functions with the attention weight.

IV. PROPOSED METHOD

An overview of the proposed method FCGAT is shown in
Fig. 2. FCGAT consists of three parts: FCG creation, function
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feature creation, and malware classification. FCGAT takes a
binary file as input. A FCG is created from a binary file,
and feature vectors of functions extracted using Word2vec are
assigned as the node features in the graph. Finally, FCGAT
classifies malware class by GNN using the FCG as input.

A. Creation of Function Call Graph

FCG is a directed graph where nodes represent functions
and edges represent function calls. Although a general FCG
connects edges from the calling function to the direction of
called function, FCGAT reverses this arrow. In programs, the
called function can be nested within the calling function.
Therefore, the features of the called function should be ag-
gregated in the calling function, thus reverse FCG is used. In
a general FCG, the ends of the arrows usually represent API
functions (often API wrappers). That is, FCGAT aggregate the
features of API functions into the calling functions.

B. Function feature creation

This module converts assembly functions into function
vectors that can be handled by machine learning. These func-
tion vectors need to reflect the semantics of the functions in
order to classify malware with high performance. FCGAT uses
CBOW model of Word2vec [11] to obtain instruction vectors
corresponding to assembly instructions. This method is based
on natural language processing techniques, where instructions
correspond to words and functions correspond to sentences.
CBOW model obtains instruction vectors by predicting the
current instruction from surrounding instructions. Word2vec
uses unsupervised learning and does not require any prior
knowledge. This method is well suited for learning features
of malware functions that are difficult to label, unlike open-
source programs.

Since assembly instructions contain numerical values such
as memory addresses and offset values, the vocabulary be-
comes excessively large if used as is. Therefore, the assembly
instructions are filtered as follows:

1) Remove ”,” and comments after ”;”.
2) Replace the number with ”N”.
3) Connect operand and opcode with ” ”.

This filtering makes use of the analysis results of analysis tool.
In our implementation, we use IDA Pro as the analysis tool.
IDA Pro converts well-known functions, such as API functions,
from addresses to function names so that instruction vectors
can reflect the characteristics of well-known function names.

After creating the instruction vectors in the CBOW model,
FCGAT averages the instruction vectors in the function to
obtain a function vector. This vector is assigned as the feature
of a node in a FCG.

C. Malware classification model

The structure of the classification model is shown in
Fig. 2. The inputs are FCGs with function feature vectors as
node features. The FCGs are convolved with Graph Attention

Network (GAT) [25]. The features of the nodes are updated by
the following:

ui = LeakyReLU(W1xvi

+ LeakyReLU(∥Kk=1

∑
xj∈N(vi)

αk
ijW

kxj)),

where xvi is the initial function vector at a node to be updated,
xj ∈ N(vi) is the neighbor of the node, W1 and Wk

are the learning parameters. Multi-head Attention is used to
concatenate the results from K-independent Attention mecha-
nisms. The αij represents the importance between nodes. αij
is learned by the following:

αij = softmaxj
(
LeakyReLU

(
a⊤

[
W2xvi∥W2xvj

]))
.

The GAT layer’s attention mechanism is not used for interpre-
tation. This is because αij given for each edge depends on the
number of neighbors, making it hard to reflect the importance
of a node. For example, if there is only one neighbor, αij will
be the maximum possible value of 1, even if the node is not
important. In this layer, Multi-head Attention has the effect of
expanding representation, which improves performance.

FCGAT does not convolve the features of the updating
node but only aggregates the features of the neighbors. The
features of the updating node are converted to the hidden
layer dimension at the fully connected layer (corresponding
to W1xvi ) and added to the output of GAT.

Next, the readout process uses Set2Set [26], which is the
key to interpretability, to obtain the feature vector of the entire
graph as follows:

qt = LSTM(q∗
t−1)

α′
i,t = softmax(ui · qt)

rt =

N∑
i=1

α′
i,tui

q∗
t = qt∥rt.

Set2Set is an extension of the seq2seq [21] approach to support
unordered sets. That is, permuting ui and ui′ has no effect on
the read vector rt. The ordering of the nodes in FCG depends
on the starting address of the function, but this ordering is
usually meaningless. Thus FCG is considered suitable to be
processed by Set2Set. Fig. 3 shows an overview of Set2Set
process and how it explains the classification results. FCGAT
can apply the attention mechanism to the variable number
of nodes by using LSTM, and we expect that the features
of nodes that are important for classification are given high
attention. In other words, we can obtain the important functions
by analyzing the value of α′

i,t. Based on attention weights in
the final step of Set2Set, function name and importance α′

i,t
are provided as an importance ranking. In order to reflect the
importance for classification to the attention weight, simple
network structures are adopted for the other parts. For example,
only one convolution in GAT is used to avoid excessively
diluting the original function’s features.

Finally, classification is performed in a Fully Connected
layer. This layer takes a graph vector hG as input and outputs
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Fig. 2. Overview of our proposed method FCGAT.

Fig. 3. An overview of Set2Set process and how it explains the classification
results.

a vector representing the classification probabilities of the
classes as follows:

p = softmax(W3hG),

where W3 is a learninig parameter. The index with the highest
value among the p elements indicates the predicted class.

We adopt Dropout [20] to prevent overfitting and stabilize
learning. Dropout randomly drops layer outputs to 0 during
training to enable correct recognition even if some data are lost.
It helps avoid overfitting some local features and improves the
robustness of the model. In Fig. 2, Dropout 0.5 means dropping
the node’s output to 0 with 0.5 probability. In addition, cross-
entropy is used as the error function, and AdamW [7] is used
as the optimization algorithm.

V. EVALUATION

We evaluated FCGAT in terms of classification perfor-
mance (in Section V-B) and classification interpretability (in
Section V-C). Before delving into them, we describe the
experimental setup common to both. Our research artifacts are
available on Github 2.

2https://github.com/som3ya/FCGAT

TABLE I. CLASSIFICATION MODEL PARAMETERS

Layer (In, Out) Activation Remark
GAT (100, 192) LeakyReLU K = 3
FC (100, 192) LeakyReLU

Set2Set (192, 384) steps = 4
FC (384, Number of classes) Softmax

A. Experimental setup

We implemented FCGAT using Python, PyTorch 1.11.0,
and PyTorch Geometric 2.0.2, a library for GNN. FCGAT
uses a reverse engineering tool IDA Pro for preprocessing.
IDA Python is used to automate operations in CUI, and
ida gdl.gen simple call chart function is used to create FCG.

For function feature creation, Gensim library is used to
create the CBOW model. When evaluating performance, only
train data is used to create CBOW training models, which are
then used for the evaluation of test data. We choose parameters
embedding size 100, windowsize 2, epochs 100 for the CBOW
model. Where, embedding size is the dimension of the feature
vector of the function, and window size is the number of
surrounding words to be considered. In other words, instruction
vectors are learned from the two instructions before and after.

For training the classification model, we choose learning
rate 0.001, mini-batch size 256, and epochs 700. The model
parameters are shown in TABLE I.

B. Classification performance evaluation

In this experiment, we evaluate the performance of FCGAT
on two datasets and compare it with the demonstration results
of existing research by Ma et al. [8]. We also compare with
GEMAL by Wu et al. [27]. We implemented and performed a
replication experiment with GEMAL to compare on the same
dataset.

1) Datasets: We used two datasets that Ma et al. used in
their experiments on existing studies. We created FCGs and
the function vectors for each dataset using FCGAT. Then, the
function vectors were assigned to the nodes of the FCG, and
datasets with graph format were created. We used the following
datasets.

a) MalwareBazaar dataset: MalwareBazaar dataset
was published by Ma et al. [8]. MalwareBazaar 3 is a website
that provides malware for research purposes. Ma et al. created
the dataset using the following procedure. First, they selected

3https://bazaar.abuse.ch
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TABLE II. MALWAREBAZAAR

Family Counts
Gozi 767

GuLoader 589
Heodo 214
IcedID 578
njrat 939

Trickbot 881
Total 3,968

TABLE III. BIG-2015

Family Counts
Ramnit 1,533
Lollipop 2,475

Kelihos ver3 2,938
Vundo 453
Simda 42
Tracur 751

Kelihos ver1 387
Obfuscator.ACY 1,217

Gatak 1,012
Total 10,808

the top six malware families from the malware released in 2020
on MalwareBazaar and downloaded 1000 malware samples
from each family. Next, they filtered out samples that were
not in PE format and used Joe Security 4 and AVClass [18] to
check the label of each sample and to determine whether the
label removed inconsistent samples. As a result, they obtained
3,971 samples from 6 families. Ma et al. published a list of
hash values and family names of the samples on their GitHub 5.
We downloaded 3,971 malware samples using this list and
MalwareBazaar’s API. We used 3,968 samples (TABLE II) that
were successfully preprocessed for the evaluation experiments.

b) BIG-2015: The second dataset is BIG-2015 [16],
provided by Microsoft, which consists of 10,868 samples
from 9 families. Each sample consists of .byte files, a binary
representation of a hexadecimal number, and .asm files, the
disassembly outputs of IDA Pro. In this experiment, we created
FCGs from .asm files and extracted function binaries. 10,810
samples (TABLE III) that were successfully preprocessed were
used in the evaluation experiment.

2) Evaluation metrics: We use the same evaluation metrics
as in the experiment of the comparator Ma et al. Four eval-
uation metrics are used: Accuracy, Precision (Pmacro ), Recall
(Rmacro ), and F1-Score (F1macro ). Each formula is expressed
as following:

Accuracy = (
∑N

n=1

∑M
m=1 TPmn)/S

Pmacro =
(∑N

n=1 Pn

)
/N

Rmacro =
(∑N

n=1 Rn

)
/N

F1macro =
(∑N

n=1 F1n

)
/N

where

Pn =
(∑M

m=1 TPmn

)
/
(∑M

m=1 (TPmn + FPmn)
)

Rn =
(∑M

m=1 TPmn

)
/
(∑M

m=1 (TPmn + FNmn)
)

F1n = (2 ∗ Pn ∗Rn) / (Pn +Rn)

N is the number of all classes, S is the number of all
samples, and M is the number of cross-validation splits.
TPmn, FPmn and FNmn represent the true positive, false
positive, and false negative of malware family n in the m-
fold.

4https://www.joesecurity.org
5https://github.com/MHunt-er/Benchmarking-Malware-Family-

Classification

3) Experimental results: TABLE IV shows the results of
the evaluation metrics computed and compared with the exist-
ing studies. For GEMAL, we adopt the results of replication
experiments to evaluate performance instead of the paper
values because we cannot compare them with MalwareBazaar
dataset based on the paper values.

In MalwareBazaar dataset, FCGAT successfully classifies
with an F1-Score of 98.15% and outperforms all other methods
on all metrics. In BIG-2015, the F1-Score of FCGAT is
98.18%, which is about equivalent to 98.37% in the GEMAL
replication experiment.

As noted in Section II-C, the disassembly-based methods
perform poorly in the Ma et al. experiments, especially in
MalwareBazaar dataset. The reason is considered that these
methods do not use the PE header feature of executables. It
has been noted that models that take the entire executable file
as input, such as MalConv [15], tend to mainly pay attention to
the PE header in malware classification [4]. However, classi-
fying malware by focusing on PE headers is risky because
PE headers contain information that can be spoofed (e.g.,
timestamps). FCGAT outperforms the methods that use the
entire files, even though it only uses code segment features.
We think that FCGAT is able to represent malware features
more accurately by extracting features on a function basis.

C. Classification interpretability

In this experiment, we perform malware category clas-
sification by FCGAT and extract the importance ranking of
the functions as explanations, and verify the effectiveness
of these explanations. Malware category indicates malware
features such as Downloader, Ransomware, and Trojan. We
expect FCGAT to focus on malware features by classifying
them into malware categories rather than families. That is, we
predict that the important function will be network communi-
cation functions for Downloader and encryption functions for
Ransomware.

1) Datasets: We used a dataset named BODMAS-8cat,
modified from BODMAS [31]. BOSMAS was published by
Yang et al. and contains 57,293 executables labeled by 581
families and 14 categories. In this experiment, we excluded
as many packed files as possible to focus on the malware
features. We excluded from BODMAS those samples that have
been pack-detected by PEiD 6. Then, the category with more
than 90 samples in each malware category was selected among
the successfully preprocessed samples. As a result, BODMAS-
8cat was created, containing 23,369 samples in 8 categories,
as shown in TABLE V.

2) Contributions of important functions: In this section,
we examine how much the important functions contribute
to the classification. Before that, we evaluate FCGAT using
BODMAS-8cat with 8:2 hold-out validation. The classifica-
tion performance of the test data was accuracy of 95.04%.
Malware category classification is a more difficult than family
classification due to labeling difficulties. However, FCGAT is
able to classify with sufficiently high performance, and the
explanations for classification are considered reliable.

6https://www.aldeid.com/wiki/PEiD
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TABLE IV. COMPARISON OF EXPERIMENTAL RESULTS WITH THOSE IN EXISTING STUDIES.

Category Model MalwareBazaar dataset BIG-2015
Accuracy Pmacro Rmacro F1macro Accuracy Pmacro Rmacro F1macro

Image

ResNet-50 [5] * 96.68 96.91 96.75 96.83 98.42 96.57 95.68 96.08
VGG-16 [19] * 96.35 96.58 96.54 96.56 93.94 90.32 81.89 87.27

Inception-V3 [22] * 95.83 95.67 95.79 95.73 96.99 93.67 94.46 94.03
IMCFN [23] * 97.38 97.53 97.41 97.47 97.77 95.93 94.81 95.13

Binary CBOW+MLP [14] * 97.81 97.92 98.08 98.00 98.41 97.63 96.67 97.12
MalConv [15] * 95.92 96.04 96.43 96.20 97.02 94.34 92.62 93.33

Disassembly

MAGIC [30] * 92.82 88.03 87.36 87.45 98.05 96.75 94.03 95.14
Word2vec+KNN [1] * 95.64 93.34 94.29 93.79 98.07 96.41 96.51 96.45

MCSC [13] * 96.80 94.97 94.51 94.70 97.94 95.97 96.17 96.06
FCGAT(proposed method) 98.11 98.03 98.27 98.15 99.27 97.93 98.45 98.18
GEMAL(replication) [27] 97.71 97.65 98.00 97.82 99.37 98.26 98.48 98.37

GEMAL(paper) [27] † - - - - 99.81 - - 99.81

* and † mean the experimental results by Ma et al. [8] and Wu et al. [27], respectively. The top two in each evaluation metric are shown in bold.
In MalwareBazaar dataset, FCGAT outperformed all other methods on all metrics. In BIG-2015, the F1-Score of FCGAT is 98.18%, which is about
equivalent to 98.37% in the replication experiment of GEMAL.

TABLE V. DETAILS OF BODMAS-8CAT.

Category Family Counts Sample Counts
backdoor 31 598

downloader 19 967
dropper 17 397

informationstealer 19 347
ransomware 18 169

trojan 282 15,674
virus 8 93
worm 87 5,124
total 481 23,369

To verify that the attention weights reflect the contributing
functions for the classification, we evaluate classification per-
formance using only important functions with higher attention
weights. This evaluation method is based on the method of
Herath et al. [6]. We create subgraph datasets consisting of
functions with high attention weights by varying the number
of nodes, and evaluate their performance. If FCGAT focuses
on functions that highly contribute to the classification, the
performance of the subgraph should be close to that of the
original graph (100%subgraph).

As mentioned in Section IV-C, we can obtain the important
functions by analyzing attention weights in Set2Set. The
specific procedures are as follows. First, we create a trained
model using all BODMAS-8cat samples. Next, we perform
category classification of BODMAS-8cat samples with the
trained model and calculate the attention weights correspond-
ing to each function in each sample. We use attention weight
α′
i,4 of the fourth step in Set2Set. Finally, we create subgraphs

consisting of nodes from 1 to 100% of the original graph,
ordered by attention weight, and calculate the accuracy of the
malware categories as predicted by the trained model.

Fig. 4 shows the classification accuracy against Graph Size
for the subgraphs, and TABLE VI shows the average number
of nodes and classification accuracy for the subgraphs. While
the accuracy in the original graph is 95.06%, the 1% subgraph
with only 6 nodes on average achieves 69.67%, higher than our
intuition. This result supports the claim that FCGAT focuses
on functions that highly contribute to classification and implies
that only about 6 functions can characterize malware.

In the experiment by Herath et al. [6], the 10% subgraph
created by CFGExplainer showed 52.39% accuracy. In con-
trast, the 10% subgraph created by FCGAT achieves 71.73%
accuracy. Note that CFGExplainer uses CFG, which has a

Fig. 4. The classification accuracy of subgraphs. Graph size means the ratio
of the number of nodes in the subgraph to those in the original graph. Between
1 and 40% of the graph size, performance does not decrease as the number
of nodes is reduced, and even a graph size as small as 1% shows about 70%
accuracy.

TABLE VI. AVERAGE NUMBER OF NODES AND CLASSIFICATION
ACCURACY OF SUBGRAPHS.

Graph Size (%) Average Number of Nodes Accuracy
1 6.2 69.67
5 28.8 70.53
10 56.9 71.73
20 113.4 72.48
30 170.1 68.57
40 226.5 68.99
50 283.0 78.20
60 339.6 83.06
70 396.2 82.40
80 452.7 85.96
90 509.3 88.92

100 565.4 95.06

Even though the average number of nodes in the 1% subgraph
is only about 6, it achieves 69.67% accuracy. This means that
only about 6 functions can characterize malware.

different graph structure from our FCG. The nodes in CFG are
basic blocks, which are less granular than functions, making
it difficult to characterize malware with fewer basic blocks.
We believe that FCGAT can reduce the analysis workload by
providing the analysts with reliable explanations with fewer
functions.

3) Trend analysis of malware categories: In this section,
we analyze the important functions and show that it is possible
to analyze trends in the malware category by identifying
typical functions for each category.
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We extracted the most important functions for each sample
by analyzing the attention weights as follows:

1) Create a trained model of FCGAT using all samples
in BODMAS-8cat.

2) Perform inference on all samples with the trained
model and calculate the attention weight α′

i,4 of the
fourth step in Set2Set.

3) Functions with the max α′
i,4 are aggregated for each

category. In this process, function names generated
by IDA Pro are used to determine the function
identities. IDA Pro uses the symbol name of the
function if symbol data is available. Otherwise, the
function name is generated based on the address
reference. For sub [start address] and start, which
are considered to have no correspondence between
function name and code, the md5 hash of the function
vector is calculated and the function name is changed
to sub [hash value] and start [hash value] before
aggregation.

In this way, each sample’s functions with the max attention
weight are summarized for each category, and the top eight are
shown in TABLE VII.

The results provide insight into the functions that are typi-
cal for each category. Especially in the case of API functions,
it is easy to infer behavior from the function name. We will
focus on some characteristic functions.

Backdoor is placed on the victim machine by attackers, en-
abling it to be controlled remotely. Thus, GetCommandLineA
reflects the feature of reading command line parameters. This
function is found in common with the malware families gbot
and zegost. The user-defined function sub 4f847a1 performs
XOR operations, which Malware often uses XOR operations
to obfuscate malicious data or code.

In downloader, we can see that FCGAT focused on Inter-
netOpenW which is used when downloading another malware
from the Internet. This result highly reflects the characteristics
of downloader.

Dropper is a program that creates and drops files containing
malicious code from itself. CheckSumMappedFile calculates a
new checksum for the file and returns it with the CheckSum
parameter. Malware sometimes copies a binary executable
to a file in a temporary path, maps the file to memory,
and then calls CheckSumMappedFile to verify the checksum.

imp VirtualProtect and ShellExecuteA are used to execute
shell code.

Informationstealer includes the blocker, zbot, and other
families.GetFocus, typical of this class, gets a handle to the
window that has keyboard focus. This function is found in
common with blocker.

In trojan, the samples in which sub a9f1051 is the most
important function are packed. We used PEiD to exclude
as many packed samples as possible but could not exclude
packers that did not match the PEiD signatures. However,
FCGAT captures the characteristics of packers and tends to
classify the same packers into the same class. Dealing with
packed samples is future work.

We have seen important functions for malware classifica-
tion. FCGAT seems to identify particularly similar samples
within classes and focuses on functions common to them. As
a result, we have found many API functions that were often
common to multiple samples. By utilizing this method, it will
be possible to comprehensively analyze the characteristics of
malware categories.

4) Case study: Ransomware/ GandCrab: GandCrab is ran-
somware that appeared in 2018. Here we will discuss two
samples of GandCrab, GandCrab#1 and GandCrab#2, and
examine which functions FCGAT focuses on.

The importance ranking of the functions and their attention
weights are shown in TABLE VIII. The functions aes encrypt
and aes decrypt are at the top of the ranking for both samples.
As the name implies, aes encrypt and aes decrypt functions
perform encryption and decryption of AES ciphers, and well
represent features of ransomware. These functions were named
by IDA Pro’s Lumina server, which stores metadata for well-
known functions.

GandCrab#1 is a DLL file, and GandCrab#2 is an EXE
file. Their program structures are quite different. However, they
were correctly classified by focusing on the common functions,
aes encrypt and aes decrypt. FCGAT seems to be able to
capture the characteristics of programs that are semantically
similar but structurally and syntactically different. In this case,
the function names were named by the Lumina server, so it is
easy to guess the behavior from the function names. However,
even if it were difficult to guess from the function names (e.g.,
sub 420000), FCGAT can focus on the characteristic functions
because it uses features of assembly code. We consider that
these explanations can be useful for malware analysis.

VI. DISCUSSION

A. Effectiveness of our method

We will discuss the effectiveness of our proposed method
by comparing it with existing studies. In the same way as
GEMAL [27], FCGAT uses FCG for malware classification,
and both have succeeded in high-performance classification in
evaluation experiments (Section V-B3). They differ mainly in
the readout process. GEMAL uses a fully connected layer to
learn the attention weight and thus requires a constant number
of nodes in the input graph. That is, the number of functions
must be constant for all samples. GEMAL truncates nodes
greater than 200 and zero-padded for fewer. However, the
maximum number of nodes in the MalwareBazaar Dataset
is 10,789 and in BIG-2015 it is 14,716. For samples with
many functions, functions that characterize malware may be
truncated. On the other hand, FCGAT adopts Set2Set for
the readout process and uses LSTM to achieve an attention
mechanism for a variable number of nodes. Therefore, we
believe that FCGAT is superior to GEMAL in terms of model
interpretability.

As described in Section II-D, Yakura et al.’s method [29]
and CFGExplainer [6] have different feature units from our
method. Yakura et al. state that the byte sequence of the
original executable can be identified by extracting the pixel
regions of the image. However, the classified images are
compressed to 64 × 64 resolution, and it is suspicious whether
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TABLE VII. AGGREGATE RESULTS FOR FUNCTIONS WITH MAX ATTENTION WEIGHTS.

backdoor downloader dropper informationstealer
CreateFileA 119 InternetOpenW 260 sub 460d8c2 278 GetFocus 202

fclose 105 MessageBoxA 130 GetWindowThreadProcessId 48 mciSendStringA 47
sub 4f847a1 83 mciSendStringA 77 CheckSumMappedFile 17 dllonexit 11

SetWindowLongA 74 sub f9da9b9 61 IIDFromString 14 free 10
GetCommandLineA 47 sub 1236153e 48 IsProcessorFeaturePresent 4 CreateFileA 9

sub a9f1051 29 DispatchMessageA 34 sub 62922e7 3 sub d0f95e9 8
sub cf1fee5 18 UpdateWindow 29 imp VirtualProtect 2 lstrcatA 7

fdopen 17 CoUninitialize 27 ShellExecuteA 2 GdipCreateFromHDC 7
ransomware trojan virus worm

CoRegisterMallocSpy 34 sub a9f1051 1,316 GetActiveWindow 38 abnormal termination 1,314
CoReleaseMarshalData 22 vbaUI1I4 1,036 strcpy 31 EnterCriticalSection 892

InternetReadFile 19 CloseHandle 709 start 80bc47b 15 sub f7f9a83 407
ReadFile 12 InternetOpenW 633 ?ProcessWndProcException 2 ZNSt6locale5 ImplC2Ej 255
SetPropA 11 GetSystemDirectoryA 512 nullsub 3 2 ZNSt6locale5 ImplC1Ej 205

SwitchDesktop 11 sub acc2cf0 510 CoUninitialize 1 sub d0f95e9 188
IsProcessorFeaturePresent 10 OleSetMenuDescriptor 472 GetFileVersionInfoSizeW 1 ZNSt6locale6globalERKS 182
CreateOleAdviseHolder 7 rtcLowerCaseVar 388 EnableMenuItem 1 SetWindowsHookExA 158

This table shows the most important functions and their counts, aggregated by category. The results provide insights into the functions typical of the
malware category.

TABLE VIII. IMPORTANCE RANKING OF FUNCTION.

GandCrab#1 GandCrab#2
function α′

i,4 function α′
i,4

aes encrypt 0.5984 aes encrypt 0.0331
aes decrypt 0.4015 aes decrypt 0.0084

sub 10007BB0 2.002e-06 SetHandleInformation 0.0080
sub 10003F70 4.166e-07 GetTickCount 0.0080
sub 10004C20 7.423e-10 InitializeCriticalSection 0.0080

These samples are common to the top two important functions,
aes encrypt and aes decrypt, which are characteristic of ran-
somware.

the corresponding byte sequence can be identified from the
pixel area. In addition, this method had a classification error
of 50.97% for malware families, and low classification perfor-
mance was mentioned as a problem. On the other hand, our
method successfully classified malware with high performance,
with an F1-Score of over 98%, and both high-performance and
interpretable malware classification were achieved.

CFGExplainer obtains explanations for classification in
units of basic blocks. As seen in Section V-C2, the classifi-
cation performance of CFGExplainer is significantly degraded
for subgraphs with a small number of nodes because basic
blocks are less granular than functions. Therefore, to iden-
tify subgraphs that highly contribute to classification, it is
necessary to increase the number of nodes in the subgraph,
which increases the effort of manual analysis. In this regard,
FCGAT can identify subgraphs with fewer nodes and higher
contribution to classification, with an average of 6 nodes still
performing 69.67% of accuracy.

These existing studies provide analysis cases for individual
samples, but they do not analyze to characterize the class of the
entire dataset. That is, some samples can provide interpretable
explanations for classification, but others may not be well
explained. We have confirmed that the important functions
reflect the trend of malware categories in Section V-C3. FC-
GAT extracts the explanations on a per-function basis, which
enables aggregating the characteristic functions for each class
and identifying trends.

B. Limitations

Similar to existing static analysis methods, our proposed
method is challenging to perform malware classification for the

malware obfuscated by packers. The packed program contains
a decompression processing code for each type of packer.
Therefore, it is likely to be able to capture the characteristics
of packers and thus be applicable to packer estimation task.

VII. CONCLUSION

We have presented FCGAT, a malware classification
method that can explain classifications by functions. Evalua-
tion experiments showed that FCGAT classifies malware with
sufficiently high performance compared to the latest methods.
We then analyzed the explanations for the classification results
based on the attention weight of the classification model. The
results show that these explanations provide functions that re-
flect the malware features. In addition, we performed malware
classification on the subgraphs with top important functions.
Surprisingly, our result shows that only top 6 (average per
sample) of important functions contribute to the classification
result with almost 70% of accuracy. Malware families can
be characterized by considerably fewer functions than our
intuition. FCGAT is expected to improve the efficiency of
malware analysis and comprehensive malware trend analysis.
For example, it can be combined with existing tools, such as
IDA Pro, to highlight functions specific to the malware.

TOOLS

The research artifacts are available at the following URL:
https://github.com/som3ya/FCGAT
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Y. Bengio, “Graph Attention Networks,” 6th International Conference
on Learning Representations, ICLR 2018, 2018.

[26] O. Vinyals, S. Bengio, and M. Kudlur, “Order Matters: Sequence to
sequence for sets,” 2015.

[27] X.-W. Wu, Y. Wang, Y. Fang, and P. Jia, “Embedding vector generation
based on function call graph for effective malware detection and
classification,” Neural Computing and Applications, vol. 34, no. 11,
pp. 8643–8656, Jun. 2022.

[28] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
Comprehensive Survey on Graph Neural Networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
Jan. 2021.

[29] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma,
“Neural Malware Analysis with Attention Mechanism,” Comput. Secur.,
vol. 87, 2019.

[30] J. Yan, G. Yan, and D. Jin, “Classifying Malware Represented as Con-
trol Flow Graphs using Deep Graph Convolutional Neural Network,”
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 52–63, Jun. 2019.

[31] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “BOD-
MAS: An Open Dataset for Learning based Temporal Analysis of PE
Malware,” in IEEE Security and Privacy Workshops, SP Workshops
2021. IEEE, 2021, pp. 78–84.

[32] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in AAAI Conference on
Artificial Intelligence, 2018.

10


