Understanding MPU Usage in
Microcontroller-based Systems in the
Wild

Wei Zhou, Zhouqi Jiang, Le Guan

UNIVERSITY OF

Il GEORGIA

%X A £
& S — A
% PV, A

Agenda

® Introduction to Memory Protection Unit (MPU)

® MPU adoption in the wild

® Common pitfalls and limitations in using MPU

® Mitigation suggestions

® Summary and disclosure

MMU on PC > MPU on MCU (EIETE T BY 1

MMU

Peri. Memory Cache |[<—> K—| CPU
TLB

T f 0 7

System bus

® The Memory Management Unit (MMU), a standard feature on traditional
computing platforms, enforces page-based permission control (R/W/X).

® MMU is absent in resource-restricted microcontroller units (MCUSs) .

® As a stripped-down version of MMU, the Memory Protection Unit (MPU)
provides basic security functions for MCUSs, e.g., Arm Cortex-M series MCUs.

What is Memory Protection Unit (MPU) E#r Ay

® How MPU works?

® For a limited number of
configurable memory regions, —
MPU assigns access _
permissions (R/W/X) based on Peripheral | |
the current execution privilege ROM)

P MEMORIES
| MPU (RAM

level

¢ A fault happens when a memory CPU
access violates the access
permission

® MPU can only be configured by
privileged code

How to Program MPUs (PMSAv7)? O FrHBLE

® MPU Control Register (MPU_CTRL)
®* Enable bit: enable the MPU
® The PRIVDEFENA bit: enable the default memory map for privileged access
® MPU Region Base Address Register (MPU_RBAR)
® Set the base address and the identifier of a memory region
® MPU Region Attribute/Size Register (RASR)
® AP and XN bit: Set permissions (RWX) of a memory region in privileged and unprivileged level
® TEX, C and B bits: Set the Attributes (e.g., cacheability and shareability) of a memory region

® Size : Set the size of a memory region

® Constrains on MPU memory region
(1) At least 32 bytes (2) Power of two
(3) Must be aligned with 32 bytes (4) Limited region numbers (M0+/3/4 up to 8 and M7 up to 16)

What’s new in MPUS (PMSAvS8)?

® More MPU regions (up to 16 regions for both normal and secure world in M23
and M33)

® Use Start and Limit (end) address via separated MPU registers to define any
size of memory regions, but still must be 32-byte aligned

Ox3BCO0 0x80400
PMSAv7 kB | 6kB 256kB kB
PMSAvS SINGLE 274kB REGION

® PMSAVS also introduces a new memory attribute indirection register

(MPU_MAIR), making it easier for multiple regions to share the same
attribute, while at the same time maintaining their own access permissions.

Agenda

® Introduction to Memory Protection Unit (MPU)

® MPU adoption in the wild

® Common pitfalls and limitations in using MPU

® Mitigation suggestions

® Summary and disclosure

4 K2 A,
(CIETEF B
"%,w“\

MPU-enabled common security functions

® Code Integrity Protection (CIP): Code regions can be set as non-writable to
prevent code injection and manipulation.

® Data Execution Prevention (DEP): Data regions like stack or heap can be set
non-executable

® Stack Guard (SG): A redzone can be placed at the task stack boundary to detect
stack overflows.

® Kernel Memory Isolation (KMI): User mode (unprivileged) code cannot access
any memory belonging to the kernel space without invoking system calls

® User Task Memory Isolation (TMI): User mode (unprivileged) tasks can only
access its own memory except explicitly shared memory regions that belong to
other tasks or kernel.

® Peripherals Isolation (Pl): Peripheral access is restricted to tasks having the
privilege to access it.

MPU adoption in the wild

Software > IT Management > |oT Operating Systems

Best loT Operating Systems of 2023

. L N
Find and compare the best loT Operating Systems in 2023 sor: @ Sponsored v L/ ™ M I c rl p m
Zephyr

Embedded Software

@ 1/.|0 Operating Systems X \i ‘ , Reset Filters
T: . F
G g Sy ¥

Use the comparison tool below to compare the top loT Operating Systems on the market. You can filter results by user reviews, pricing, features, platform,
region, support options, integrations, and more.

VXWOI’KS See Software @ & I 0 T
Vind River | $18,500 / seat

VxWorks®, a leading real-time operating platform in the industry, provides all the performance, reliability, safety and security o

capabilities you need for the most critical infrastructure’s embedded computing systems. VxWorks is a preemptive, deterministic M I C Ro E J @ l | Iy

RTOS that prioritizes real-time embedded applications. It has low latency and minimaljitter. VxWorks has many security features... e qg R ’ os °N°7 //
\ g

We did first e et i ARMmbed Contiki
e did first comprehensive study |
on MPU usage of top 30 loT myneWt NUCLEUS

operating systems according to . &% \\indows IoT
market ratin Elhf)dfOId
> N> @ MONGOOSE 0S SNappy

Observation

LR TS

TABLE 1. SUMMARY OF MPU USAGE AND ADOPTION ON MCU OSs
MPU Usage

(0N MPU Support | CIP DEP KMI T™I SG PI

Contiki [11] None - - - - - -

LiteOS None - - - - - -

RT-Thread None - - - - - -

OpenWrt None - - - - - -

TinyOS None - - - - - -

Mongoose OS [17] None - - - - - -
Open-source | peeRTOS (8] None - - : - . -

FreeRTOS-MPU (7] Mandatory Mandatory =~ Mandatory =~ Mandatory =~ Mandatory - -

RIoT [21] Optional Default-off - - - Default-off -

Apache Mynewt Optional Default-on Default-on - - - -

Zephyr Optional Default-on Default-on Default-off ~ Default-off Default-off Default-off

MbedOS Optional Default-on Default-on - - - -

TizenRT Optional Default-off Default-off Default-off Default-off Default-off -

CMSIS-Keil RTX Optional Default-off Default-off - Default-off - Default-off

Azure RTOS ThreadX

Proprietary

embOS [14]

Micrium OS
Device OS
VxWorks [26
embOS-MPU
NXP MQX RTOS [18]
Nucleus RTOS
SafeRTOS [23]

None

None - - - - - -
None - - - - - -
None - - - - - -
Mandatory Mandatory - Mandatory ~ Mandatory - -
Optional Default-on - Default-on Default-on - -
Optional - - Default-on Default-on - -
Mandatory Mandatory =~ Mandatory =~ Mandato

® Only a few MCU OSs use MPU, especiall

® Even if MPU is supported, only a few securi

Research Question

® Why haven't MPUs been widely used in loT operating systems?

® Why do only a few OSs enable full-blown MPU-enable protection by
default?

® How do the OSs implement MPU-enable protections in detail?

® Are MPU-enable protections effective?

Case Study: MPU-enabled RloT

® RloT runs all the code under privileged level, thus it can only
provide some basic protections such as DEP, and stack guard
(SG) with MPU

® Data Execution Prevention (DEP): RiloT
enables the MPU region number 0 to cover the
whole RAM region as non-executable

® Stack Guard (SG): RloT sets last 32 bytes (the L
smallest MPU region) on the main stack as I
read-only via the MPU region number 1. pTr?v?.L‘gEdl
Similarly, when switching to another task, RIoT [Srbsalis
configures the last 32 bytes of the target task - 3

stack as read-only.

Peripheral N

MEMORY

Stack for

task A
i)
Stack for
task B
)
stack for

OS kernel&IRQ handler

code for

. OS kernel I
code for

Tasks

Case Study : FreeRTOS-MPU

MEMORY
i vi)
Region Range Usage Privilege Permission eriphera
No. Mode Peri
o
0 flash_segement_start Non-writable Code Seement Privileged r—x _ #3
-flash_segemnt_end W & Unprivileged | r-x
1 pnYll.eged_functlgns_start Kernel APIs Isolation an11.eged r—x
-privileged_functions_end Unprivileged | © -
privileged_data_start : Privileged rw-— Stack for L #A4
2 -privileged_data_end Kernel Data Isolation Unprivileged | <& task A |
3 0x40000000-0x SEFEFE Non-executable Peripherals | ©rvieged | rw= Stack for I
Unprivileged | rw- task B = #H4
4 User Task Stack User Task Stack Isolation an1l.eged e .
OS kernel i
code for __
g
. L} [[] [[] :
Background region in grey is enabled for privileged access only
system calls
= #O
code for
Tasks .

Case Study : FreeRTOS-MPU

® Code Integrity Protection (CIP): All
code regions including tasks, system
calls and kernel cannot be written.

® Data Execution Prevention (DEP):
All data regions including tasks, kernel,
and peripheral regions are non-
executable

Cortex-M

Task A

unprivileged

Task B
unprivileged

OS kernel
(privileged)

MEMORY

Peripheral N

Peripheral C

Peripheral B

Peripheral A

Stack for
task A

Stack for
task B

data for
OS kernel

code for
OS kernel

code for
system calls

code for
Tasks

Case Study : FreeRTOS-MPU

MEMORY

® User Task Memory Isolation (TMI):
Unprivileged tasks can only access their own
stack and up to three user definable memory
regions (three per task)

Peripheral N

Peripheral C

Peripheral B

Peripheral A

® Kernel Memory Isolation (KMI): The Stack for
FreeRTOS kernel API and data are located ::ckk;
in a region of Flash that can only be sk A task B
accessed while the microcontroller is in P
privileged mode (calling a system call 05 Kornc R vileazé OS kernel
causes a temporary switch to privileged ‘p'9d> Sode for
mode)

code for

system calls

code for
Tasks

Case Study : Zephyr

SRR P
s

® Peripheral Isolation (Pl): By default, a peripheral driver instance is
considered as a kernel object. Therefore, its range is pre-configured to

be inaccessible by user tasks. To access peripherals, a user task
must invoke system calls.

k_oops()
Lookup
User Y Marshal args, Valid marshaller in
[AL mode Trigger SW IRQ Call ID dispatch table

N
Implementation

4

Return to 1 Marshal Return, | Impblementation P
Caller | Value,exit IRQ P
J N F

(return error]
Zephyr System Call Procedure L code

Case Study: Keil RTX CMSIS-Zone

SRR P
s

® TMI: Based to user configuration, CMSIS- Task A
Zone assigns the access permission (RWX) (=] Code A, Data A,
to a bundle of memory regions and Peripheral A

peripherals as an isolated execution zone.

Task B

(Code B, Data B,
Peripheral B)

® However, Keil RTX does not offer isolation
between normal user tasks and the kernel
(i.e., KMl is unsupported), so code and data

of the kernel cannot be entirely hidden to o Task C
user tasks. (Code C, Data C,

Peripheral C)

Shared Code

Each box is a protected execution zone

Agenda

® Introduction to Memory Protection Unit (MPU)

® MPU adoption in the wild

® Common pitfalls and limitations in using MPU

® Mitigation suggestions

® Summary and disclosure

X

Common pitfalls in using MPU E#r Ay

® Weak protection

® Case study: Bypassing MPU protection in RloT-MPU
® Case study: Privileged escalation in FreeRTOS-MPU

® Incomplete protection

® Prohibitive overhead

® Conflict with existing system designs
® Fragmented programming Interface

Bypassing MPU in MPU-enabled RloT

® Bug: MPU can be disabled by control flow
hijacking attack (e.g., ROP)

® Cause: MPU control registers (e.qg.,
MPU CTRL) are located in the system

Peripheral N

peripheral region, which can be accessed Stack o
by any privileged code. RloT also provides | il &l
an easy-to-use driver APIs for MPU | @aioci S:aa\:: 1;)r
configurations (e.g., mpu_enable and _)
mpu_disable driver APISs). % stack for
int mpu_disable(void) { Task B OS kernel&IRQ handler
#if _ MPU_PRESENT 05 kernol R
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk; (privileged) &
return 0; 3 . code for
#else OS kernel
return -1; code for
#endif | Tasks

¥

System call in FreeRTOS-MPU FEHBEKE

® For compatibility, FreeRTOS MPU does not provide new
kernel APIs for system calls, but wraps the original
kernel APIs with the xPortRaisePrivilege and
vPortResetPrivilege to raise/drop privileges

]Base'f’ype_t xPortRaisePrivilege (void) {
BaseType t xRunningPrivileged; Stack for
xRunningPrivileged = portIS PRIVILEGED() ; -~
/*1f the CPU is not privileged, raise privilege.*/ Cortex M taSk A
if (xRunningPrivileged == pdFALSE) {

} portRAISE PRIVILEGE () ; Task A Stack for
return xRunningPrivileged; ! IPaulldded™ task B
}

#define portRAISE PRIVILEGE() @ asm volatile ("svc %0 \n" ::"i" (portSVC RAISE PRIVI I d f

[void prvSVCHandler (uint32 t* pulParam) { Task B ata for
s unprivilegéed OS kernel
case portSVC RAISE PRIVILEGE: OS kernel

\ if ((ulPC >= syscalls flash start) && (ulPC <= syscalls flash end)){ A d

] __asm { (privilege) code for

/*Obtain control value.*/ . OS kernel
mrs ulReg, control T % ea

/*Set privilege bit.*/
bic ulReg, #] code for

/*Write back control value*/ #O l SyStem calls

msr control, ulReg

} code for
break; Tasks

Privilege escalation in FreeRTOS-MPU

® Bug1 (v10.4.5 and before): An unprivileged task can raise its
privilege by calling the internal function
xPortRaisePrivilege

® Cause: Privilege escalation function (xPortRaisePrivilege)
Is a kernel function which can be called directly

® Patch (v10.4.6): Change it to macro ARM —
Implementation Cortex-M task A

Is problem Privilage
solved? I

#define xPortRaisePrivilege(XRUrim.... 1 __cdecl MPU_vTaskDelay(TickTyp M@} kernelinpr“"leged
{

/* Check whether the processor is already privileged. */

XRunningPrivileged = portIS_PRIVILEGED();

i BaseType_t v5; // [sp+8h] [bp-186
TickType_t v6; // [sp+4h] [bp-Ch

v6 = xTicksToDelay;

/* If the processor is not already privileged, raise privilege. */ g5 = xIsPrivileged(); COde for
if(xRunningPrivileged == pdFALSE) if (1vs) SyStem calls
{ __asm { SVC 2}
portRAISE_PRIVILEGE(); vTaskDelay(v6);
if (15)

}
} }

vResetPrivilege();

Privilege escalation in FreeRTOS-MPU

® Bug2 (v10.4.6 and before): Privilege escalation by branching
directly inside system calls (MPU wrapper APIs) with a
manually crafted stack frame

® Causes: Privilege escalation operation (SVC interrupt)
Is separated with kernel APl and uses stack to store

the original privilege level AL

void __cdecl MPU_vTaskDelay(TickType_t xTicksToDelay) CorteX'M_

{ !Privileged:
BaseType_t v5; // [sp+@éh] [bp-16h] task
TickType t v6; // [sp+4h] [bp-Ch] A

unprivileged

v6 = xTicksToDelay; task
v5 = xIsPrivileged();@ OS kernel |, B
if ('vs) (privileged)

__asm { SVC 21 — >
vTaskDelay(véE);
if ((tvs)@

vResetPrivilege(); (5)

} (6) <

—

Stack for
task A

code for
OS kernel

code for
system calls

code for
Tasks

Exploitation Steps

0X2000XXX+N Ox2000XXX+N
Buffer
Overflow
Stack | Address to SVC 2
LR(Return Address)
growth
vars | Stack Frame Padding
Buffer (A function in Buffer
- unprivileged tas Cunprivileged)
Ox2000XXX Cunprivileged) Sboooxxx
Privilege Level
. . . Manipulation
void __cdecl MPU_vTaskDelay(TickType_t xTicksToDelay)
{
BaseType_t v5; // [sp+6h] [bp-10h] O0x2000XXX+N
TickType_t v6; // [sp+4h] [bp-Ch]
Vs X;i;kéT?gelaﬁé) @ p Privileged Level
Vo = X1s¥Frilvllege 3 #
if (1vs) Address to SVC 2

__asm { SVC 21 @ — .
vTaskDelay(v6); (33— Padding

if (1v5)@
vResetPrivilegh(); (5 B.uffer
} (6) @ Cunprivileged)

EFr kY

EXPORT MPU_vTaskDelay

MPU_vTaskDelay

PUSH {R7,LR}

Stack Frgme

Stack Frame

(MPU wrappef-seefiea

v
loc_8008170

SuB SP, SP, #8
STR RO, [SP,#4]
BL xIsPrivileged
STR RG, [SP]
LDR RO, [SP]
CBNZ RO, loc_800815
B loc_800815A
SVC 2
B Toc_800815E

»| LDR RO, [SP,#4]
LDR RO, [SP]
CBNZ RO, loc_800817
B loc_800816A
BL vResetPrivileg
B loc_8008170
ADD SP, SP, #8
POP {R7,PC}

askDelay

unprivileged task)

= (A function ing or function mpu_ vt

Patch EARIETOY

® Decide the original privilege level at the beginning using control register

® Introduced the portMEMORY_BARRIER macro to prevent instruction re-
ordering when GCC link time optimization is used

void MPU vTaskDelay(TickType t xTicksToDelay) /* FREERTOS SYSTEM CALL */ {
BaseType t xRunningPrivileged;
if (portIS PRIVILEGED() == pdFALSE) {
portRAISE PRIVILEGE() ;
portMEMORY BARRIER() ;

xPortRaisePrivilege(xRunningPrivileged) ;
vTaskDelay(xTicksToDelay) ;
vPortResetPrivilege(xRunningPrivileged) ;

portMEMORY BARRIER() ;

portRESET PRIVILEGE() ;
portMEMORY BARRIER() ;

}

else

{
vTaskDelay(xTicksToDelay) ;

}

Common pitfalls in using MPU

® \Weak protection

® Case study: Bypassing MPU protection in RloT-MPU
® Case study: Privileged escalation in FreeRTOS-MPU

® Incomplete protection

® Prohibitive overhead

® Conflict with existing system designs
® Fragmented Programming Interface

X

S RrareE

2

4 K2 A,
(CIETEF B
"%,w“\

Incomplete protection

® Unsafe interrupt handlers

® Exception vector reads from the Vector Address Table always use
the default system address map and are not subject to an MPU check

® Interrupt handlers (handle mode) run in the privileged mode, which
can access any resources

® Incomplete protection for peripherals

® Any load, store or instruction fetch transactions to the PPB, within the

range OXEOOO0O0000-OXEOOFFFFF (system peripherals), are not
subject to an MPU check.

® Due to the programming constrains (e.g., 32B granules and
alignment requirement), MPU is not suitable for protecting peripherals
with small regions

Incomplete protection EIETIETEY
® Incomplete permissions assignment

® No execute-only (XO) permission

® Privileged permission = Unprivileged permissions

® Arm MPU does not restrict peripherals as master, allowing them
to access all memory (e.g., via DMA)

Prohibitive overhead (&) ¥ HABLY

® To leverage MPU to realize kernel/task isolation, invocation to
kernel APls has to go through context switch twice

® Our experiment shows that one thousand privilege switches in a
FreeRTOS-MPU system takes 3.5ms on average on the MPS2+
FPGA prototyping system broad (Cortex-M4 AN386) with 25MHZ

CPU clock frequency.

® MPU regions need to be re-configured for different tasks and
applications.

® FreeRTOS has to reset MPU regions #5-7 during an application
switch

® Tizen has to reset MPU regions #3-7 during an app (including
multiple tasks) switch and #6 and #7 during a task switch

Conflict with exiting system design O FrHBLE

® Limited MPU regions for real world applications
® Very few available user-defined regions for peripheral isolation
* No OS provides peripheral isolation by default.

®* Very few available regions shared between two tasks

* No OS provides shared memory protection by default.

® It is impossible to enable too many security features at same times

« E.g., activating all MPU features in Tizen exhausts all MPU regions

® Porting software leveraging MPU may cause compatibility issues

® Only 30% manufacturers implement MCU hardware security features in
current designs

Q) =) N
G s>

Fragmented Programming Interface

® Chip vendors may design customized MPUs, which provide better
security guarantees, but impose a steep learning curve for developers

® This may discourage them from adopting MPUs or even lead to
programming errors

® Case study: NXP's Kinetis series MCUs discard ARM MPU and integrate
NXP’s proprietary system MPU (i.e., sysMPU)

® [t can restrict the permission of peripherals as masters
® \When enabled, by default, peripherals cannot access RAM

® To use it, developers have to properly configure sysMPU. Otherwise,
many official demos cannot execute

Agenda

® Introduction to Memory Protection Unit (MPU)

® MPU adoption in the wild

® Common pitfalls and limitations in using MPU

® Mitigation suggestions

® Summary and disclosure

Minimizing pitfalls

s

® Be careful about permission overlap

® Observation: all open-source OSs but the latest FreeRTOSv10.5
use lower-number MPU regions for kernel protections ().

® Risk: Developer could configure those higher numbered user-defined
MPU regions to override kernel protections.

® Recommendation: System and general protection (e.g., KMI,
DEP,CIP) should use higher-number MPU regions.

4 K2 A,
(CIETEF B
"%,w“\

Minimizing pitfalls

® Be careful about privilege switch during system calls

® Observation: OSs wrap the kernel APIs by temperately raising and
dropping privilege (e.g., FreeRTOSv10.5.0 before).

® Risk: Privilege escalation with control flow hijacking or a manipulable
stack.

® Recommendation: MCU OSs should provide a system call interface
with software interrupts, similar to traditional OSs. Alternatively, they can
enforce additional caller checks before system call invocations, and the
kernel should make sure that the privilege is dropped after system calls.

Minimizing pitfalls

® Avoid over-privileged execution

® Observation: OSs which only provide protections like Stack Guard, DEP and CIP,
always run the whole system at the privileged level like RIoT.

® Risk: Disabling the desired protections by reconfiguring MPUs with
control flow hijacking attack.

® Recommendation: System drop privilege whenever possible.

Region usage optimization

® |everage the default MPU region on ARMv7-M

¢ Default memory access permissions/attributes of memory regions is enforced by
ARM without MPU

® E.g., non-executable for standard and system peripheral regions

® |_everage sub-regions

® Save memory usage.

12KB memory used —

Running Task B
— 8KB MPU region -

Running Task A

—4KB MPU region |

Without Sub-region

Task B Stack
5KB

Task A Stack
3KB

With Sub-region

-, Task B Stack
5KB

Task A Stack
3KB

8KB memory used
with one region
Running Task B
SRD =11111000

Running Task A
SRD = 00000111

Region Usage Optimization

® | everage sub-regions
® Save memory usage

¢ Save MPU regions
Without Sub-region With Sub-region

SRD

Peripheral H Peripheral H 1 7
Peripheral G 0
Peripheral F 1
At least three separated - r
MPU Region needed Peripheral E I [0 - Only one
Peripheral D Peripheral D 1 MPU Region
. Unprivilegg Peripheral C Peripheral C 1
. Privileged Peripheral B Peripheral B 1
0

I Peripheral A

Region Usage Optimization (EIETETTY
® Automatically find optimized region allocation strategies

®* MINION (NDSS 2018)
®* ACES (USENIX Security 2018)

New Hardware Security Features

® ARMv8-M architecture extends the TrustZone technology to
Cortex-M series. The secure regions can be used as additional
regions and be assigned with higher privileged level beyond
privileged level in normal world.

® Trustlite proposed execution-aware MPU which the not only
validates data accesses (read/write/execute) but additionally
considers the currently active instruction pointer as the subject
performing the access.

Agenda

® Introduction to Memory Protection Unit (MPU)

® MPU adoption in the wild

® Common pitfalls and limitations in using MPU

® Mitigation suggestions

® Summary and disclosure

Summary

® To our surprise, we found that MPU as a ready-to-use

security feature for protecting microcontroller is rarely used
in real-world products

® \We studied the source code of multiple MCU OSs to find

explanations for this situation and eventually identified some
common pitfalls.

® Some of the flaws are fundamental and not remedial in a
short term

® \We give recommendations for better use of MPU

Disclosure

® All bugs we demonstrated has been patched in latest
FreeRTOS kernel

® Security update Reference:

® RloT developer team has acknowledged our finding, but the
benefit of disabling access to the MPU or the mpu_disable()
function without a userspace / kernelspace split is quite limited,
only mildly increases the attack surface in the context of the
attack model RIOT assumes.

https://www.freertos.org/security/security_updates.html

AL AR A
(O F L EF PS4
'///%‘//“5@

¥ 4L 2

= #ra#Xx¥ Il GEGRGIA

