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Abstract—Dynamic taint analysis (DTA) has been widely
used in security applications, including exploit detection, data
provenance, fuzzing improvement, and information flow control.
Meanwhile, the usability of DTA is argued on its high runtime
overhead, causing a slowdown of more than one magnitude on
large binaries. Various approaches have used preliminary static
analysis and introduced parallelization or higher-granularity
abstractions to raise the scalability of DTA. In this paper, we
present a dynamic taint analysis framework podft that defines
and enforces different fast paths to improve the efficiency of
DBI-based dynamic taint analysis. podft uses a value-set analysis
(VSA) to differentiate the instructions that must not be tainted
from those potentially tainted. Combining the VSA-based analysis
results with proper library function abstractions, we develop
taint tracking policies for fast and slow paths and implement
the tracking policy enforcement as a Pin-based taint tracker. The
experimental results show that podft is more efficient than the
state-of-the-art fast path-based DTA approach and competitive
with the static binary rewriting approach. podft has a high
potential to integrate basic block-level deep neural networks to
simplify fast path enforcement and raise tracking efficiency.

I. INTRODUCTION

Dynamic taint analysis (DTA), also known as dynamic
data-flow tracking (DDFT) or dynamic information-flow track-
ing (DIFT), is a program analysis technique that tracks se-
lected data at runtime and checks specific tainted data for
reaching sinks. Dynamic taint analysis can track system-wide
or application-level taints. The system-wide DTA approaches
are general but heavy-weighted tainting solutions that usually
depend on virtual machine monitors [23], whole-system or
hardware emulators [12], [20], [41], [49]–[51], or FPGA [19],
[28], [52]. Compared with the complicated hardware exten-
sions and the system-level monitors or emulators, application-
level DTA is more flexible and pervasively used to investigate
the vulnerabilities of an independent program. In this scenario,
the tracking code can be instrumented during compilation
[10], [14], [33], [36], [45] when source code is available, or
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instrumented on bytecode [21] or binaries [16], [18], [27], [29],
[40], [42], [54].

Dynamic binary instrumentation (DBI) is promising in
tracking the runtime taint propagation across a process’s
memory space. Such approaches hold the tainting status of
suspicious data within tagging memory and virtual registers
and check at particular program execution points to decide if
specific runtime policies are enforced or violated. TaintCheck
[40] uses Valgrind [39], and TaintTrace [16] uses DynamoRIO
[13] to rewrite binaries for detecting various attacks. LIFT
[42] instruments binary with StarDBT [11] on Windows. It
first proposes to reduce the runtime overhead by the fast
paths and merged checks to simplify the instrumented taint
operations. libdft [5], [29] and its descendant reimplementation
[8] are popular DBI-based taint tracking tools with a moderate
slowdown to the native execution. On generalizing the DBI-
based taint tracking, efforts are made to model the implicit
flows [18], [27], the flows among distributed processes [31],
or the taint propagations for different target ISAs [17].

Performance overhead is the prominent obstacle in using
dynamic taint analysis. At the software level, the potential
improvements come from two mostly orthogonal aspects.
First, the parallelization-based overhead mitigation offloads the
taint-tracking operations from the original program execution,
introducing parallelization over different CPU cores [24],
[37], [38], [44] or hosts [43]. Second, hybrid analyses may
use static analysis to abstract the inlined taint propagation
operations from per instruction to a higher granularity [10],
[22], [25], [26], [42], [47], [53]. The function-level summaries
[26], [53] can abstract the taint computations and reduce
the overhead of instruction-level taint tracking. The library
function abstractions [26] can be derived automatically with
reachability analysis on the LLVM-PDG [7], [34] of the target
library and integrated into libdft. Jee et al. [25] use per-
basic-block analysis to express the tainting behavior with
an algebra. The optimized operations are aggregated into
maximized instrumentation units to minimize interference with
the target program. Fast path [10], [22], [42], [47] generally
instruments check-and-switch mechanisms at specific program
locations to ensure a switch to an efficient sub-trace execution
whose live variables are untainted. The original fast paths
[42] are the code segments whose live-in and live-out states
are determined safe at their entry point. Saxena et al. [47]
analyze the untainted local variables and registers using a
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modular stack analysis. Their fast path requires no tainting
for registers and only a write to clear the memory taint for
memory stores. Only memory loads are checked for a potential
switch to the slow path when the tainted data are loaded. Iodine
[10] profiles representative executions to develop an efficient
predicated static taint analysis for the frequently-executed fast
path, but it will introduce high recovery cost at invariant
failures. Compared with the static fast paths, Taint Rabbit [22]
generates the fast paths just-in-time even when the taints are
presented at in- and out-states of basic blocks. The efficiency
of their approach assumes the executions of a basic block are
frequently over the same taint state.

Value-set analysis (VSA) [9] is a general-purpose static
analysis that over-approximates the values for each variable
at different program locations. Saxena et al. [47] first men-
tioned using value-set analysis to optimize dynamic data-
flow tracking. However, they use a modular stack analysis
on a simple abstract domain instead of the high-cost VSA
on global and heap memory. TaintPipe [38] only uses VSA
to resolve the memory access scope specified by the path
predicate of straight-line code. SELECTIVETAINT [15] uses
value-set analysis to ensure a must-not-tainted instruction set
and taints only the instructions outside this set with static
binary rewriting. Although SELECTIVETAINT is very effective
in eliding uninvolved instructions, their static binary rewriting
technique may bloat the attack surface of binaries and confront
more scalability issues than DBI.

This paper presents podft, a dynamic taint analysis frame-
work that combines the VSA-based must-not-tainted (MNT
for short) instructions identification with a flexible fast-path-
guided dynamic binary instrumentation approach for efficient
taint tracking. The runtime fast paths of podft are either on
the basic block level or the function level. These fast paths
can be divided into three categories. The function fast path
summarizes the tainting behavior of frequently-used library
functions. The naive fast path is on the basic blocks holding
only MNT instructions. The complex fast path is directed by
a runtime tag memory checking at the entry of the hot and
potentially-tainted basic blocks. In contrast to these fast paths,
the rest basic blocks are decided on slow paths by podft.

For high efficiency, podft uses static analysis to build the
tracking policies used by the fast paths. We first derive the
function-level policy by modeling the taint computation of
library functions with taint rules [26]. Then, for the user-
code basic blocks, we use the value-set analysis [15] to divide
the instructions into MNT- or potentially-tainted instructions.
We derive the policy for naive fast paths on the basic blocks
of only MNT instructions. Considering the potentially-tainted
basic block as the one containing some potentially-tainted
instructions, the policy of complex fast path is enforced on the
hot potentially-tainted basic block when the tainted memory at
the block’s entry has no intersection with the static analyzed
memory locations used by the basic block. Such memory
locations are obtained by a static analysis similar to the Merged
Check of [42]. The runtime of podft takes these policies
to instrument only a limited number of potentially-tainted
instructions to track taints. Even if a slow path instead of a
complex fast path is taken for a potentially-tainted basic block,
the instruction-level VSA results can still ignore tracking
specific MNT instructions in that basic block for efficiency.
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Fig. 1. Framework of podft (dashed block = usage of existing tools)

The contributions of this paper are summarized as follows:

1) We propose an efficient dynamic taint analysis framework
podft. We design a novel approach using the instruction-
level VSA results to build basic block-level tracking
policies for our framework’s naive and complex fast paths.

2) By enforcing the function- and basic block-level track-
ing policies with a Pin-based taint tracker and a prior
static data-dependency analysis, our implementation out-
performs the state-of-the-art DTA approach based on
fast paths [22] and is competitive with the static binary
rewriting approach [15].

II. DESIGN OF PODFT

This section depicts the framework of podft, including
the interprocedural control-flow graph construction, the static
analyses for the tracking policy construction and fast-slow path
differentiation, and the dynamic Pin-based taint tracking.

A. System Overview

podft is a hybrid taint tracking framework, as presented in
Fig. 1. Its static analysis uses the results of several existing
analyses to build the tracking policies for the later runtime
taint tracking. With the tracking policies, the Pin-based tracker
takes fast paths on demand to track the taints’ propagation at
runtime efficiently.

First, podft uses BPA [32] to derive the indirect call targets
for the binary-level interprocedural control-flow graph (ICFG).
The ICFG is delivered to a value-set analysis [15] to derive
the must-not-tainted instruction set Iu. In this procedure, the
instruction operands’ value set is compared with the must-
not-tainted (MNT) value set. If some of the operand’s value
is potentially tainted, the unknown value propagates, and the
destination operand’s value set is removed from the MNT value
set. If all the operands’ value sets are MNT value sets, the
instruction is labeled as must-not-tainted instructions, and the
MNT value set gets enlarged if the destination is concrete.

Then, podft’s tracking policy construction module traverses
the basic blocks of the ICFG to build the tracking policies for
the runtime Pin-based taint tracker (Section II-B). We build the
basic block-level fast path policy for the naive and complex fast
paths and hold the instruction-level policy for the instructions
on slow paths. Besides, we use the offline phase of [26] to
generate the taint rules from the C standard library functions’
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TABLE I. TRACKING POLICIES AND RELATED PREDICATES FOR INSTRUMENTATION

Policy Type Policy applicable on

naive fast path Bn = {bbl | bbl ∈ B − Bl ∧ ∀ins ∈ bbl.ins ∈ Iu}
complex fast path {bbl | (bbl ∈ Bc ∪ Blo) ∧ (TaintedMem(entry(bbl)) ∩ MergedDep(bbl) = ∅)},

s.t. Bc = {bbl | bbl ∈ B − Bl ∧ (It ∩ bbl ̸= ∅) ∧ Hot(bbl)} and Blo = {bbl | bbl ∈ Bl − {libc.so}}
slow path Is = {bbl | bbl ∈ B − Bl ∧ (It ∩ bbl ̸= ∅) ∧ ¬Hot(bbl)} − Iu;

or instructions in {bbl | (bbl ∈ Bc ∪ Blo) ∧ (TaintedMem(entry(bbl)) ∩ MergedDep(bbl) ̸= ∅)} − Iu

void toy test ( int fd , char *buf, int size ){
int read len = read(fd , buf , size ); // taint source
if ( read len > 0){

printf ("read data: %s\n", buf);
for ( int i = 0; i<2; i++){

buf[ i ] = i ;
write (fd , buf[ i ], 1); // taint sink

}
}

}
int main(int argc , char *argv[]){

char buffer [64] = {0};
int fd = open(argv [1], O RDWR);
toy test (fd , buffer , 64);
return 0;

}

Fig. 2. Motivating Example

program dependency graph (PDG). The taint rules serve as
the function-level policies that abstract the taint computation
of popular library functions.

Third, the Pin-based tracker of podft conducts the DBI-
based dynamic taint analysis. We develop podft’s dynamic
analysis by extending the DTA tool libdft [5], [29], a Pintool
developed on top of the Intel DBI framework Pin [35]. podft’s
tracker instruments the binary program with proper analysis
routines based on the tracking policies (Section II-C). The
function-level policy guides the tracker to flip to a function-
level taint computation during the execution of library func-
tions. The basic block-level policies are enabled on the traces
of user code to take the naive fast path on MNT basic blocks
and the complex fast path when the hot potentially-tainted
basic blocks are decided untainted by a check on the tag
memory state at the block entry. For the basic blocks decided
tainted at runtime or potentially tainted but not frequently used,
the addresses of taint-involved instructions are used to guide
the tag operations along the slow paths.

B. VSA-based Tracking Policy Construction

The strategy of policy construction is based on the VSA-
based instruction-level identification of the must-not-tainted
and potentially-tainted instructions, i.e., Iu and It in [15],
respectively. Let B be the basic blocks of the program’s loaded
code and Bl be the basic blocks of the library functions.
Because our function-level tracking policy only applies to the
C standard library, we distinguish the basic blocks of libc.so
from the basic blocks of other libraries (Blo).

The basic block-level tracking policies for fast paths and
instruction-level tracking policies for slow paths are presented
in Table I. The tracking policies of naive fast paths are on
basic blocks Bn. If a basic block is identified as in Bn, we
ignore instrumenting tag operations on all its instructions. The

Fig. 3. Binary ICFG of the program in Fig. 2

tracking policies of complex fast paths are on Bc ∪ Blo. Bc
stands for the user-code basic blocks hot in execution and
have some potentially-tainted instructions. To generate Bc, in
our implementation, we determine a basic block as being hot
if executed more than once and all its instructions are in It.
The library’s basic blocks in Blo fall in the complex fast path
policy because the VSA-based analysis [15] cannot work on
the libraries. We can only assume the instructions in these
library basic blocks are potentially tainted. The applicability
of complex fast-path policy is also decided by a runtime
condition. Specifically, for a basic block bbl, we use static
analysis to identify the entry-state memory and registers of bbl
that are data-depended by the memory or registers of bbl, i.e.,
MergedDep(bbl). Such entry-state memory and registers should
not intersect with the runtime tainted memory and registers at
bbl’s entry state, i.e., TaintedMem(entry(bbl)). If this runtime
condition is satisfied, we also ignore instrumenting the tag
operations for this basic block. Otherwise, the basic blocks in
Bc ∪ Blo are enforced with the slow path tracking policy that
instruments the instructions not in Iu. Besides, the slow path
policy applies to the potentially-tainted instructions in basic
blocks of (B − Bl ∪ Bn ∪ Bc), i.e., Is.
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Input: loaded imanges
1: for all image∈ loaded images do
2: if image is libc.so then
3: libc scope ← record scope(image);
4: for all func ∈image do
5: Instrumentfunc(entry(func), exit(func));
6: end for
7: else if image is other library then
8: libs scope←record scope(image);
9: end if

10: end for
11: flaglibc ← 0;
12: for all trace@runtime do
13: flaglibc ← (trace ∈ libc scope)?1 : 0;
14: for all bbl ∈trace do
15: if flaglibc ∨ bbl ∈ Bn then
16: skipTagOps(bbl);
17: else if bbl ∈libs scope ∨bbl ∈ Bc then
18: if TaintedMem(entry(bbl))∩ MergedDep(bbl)=

∅ then
19: skipTagOps(bbl);
20: else
21: for all ins ∈ bbl − Iu do
22: Instrumentlibdft(ins);
23: end for
24: end if
25: else {∀ins ∈ Is}
26: for all ins ∈ bbl − Iu do
27: Instrumentlibdft(ins);
28: end for
29: end if
30: end for
31: end for
Fig. 4. Algorithm for Tracker’s Dynamic Binary Instrumentation

Taking the program in Fig. 2 for example, read is a
taint source that reads file fd’s input as taints to buf. The
function toy_test prints buf, modifies the tainted buf[0]
and buf[1] with constants in the for-loop, and delivers the
untainted buf[0..1] to the taint sink write to modify
the file. Thus, the data delivered to the sink are irrelevant to
the tainted data from the source. This secure program helps
illustrate the complex fast path decision. The binary ICFG of
the program is presented in Fig. 3. The red code locations
in Fig. 3 stand for the potentially-tainted instructions, and
the rest are the MNT instructions identified by the VSA-
based analysis. The PLT instructions (e.g., at 0x80483a0 for
printf) are not tainted. The basic blocks with no potentially-
tainted instruction, e.g., the one at 0x804857f, are in Bn for
the naive fast paths. The basic block at 0x8048541 is executed
twice and is in Bc to indicate a tentative complex fast path.
Whether the basic block at 0x8048541 can take a complex
fast path or a slow one is decided by the runtime checking on
TaintedMem(0x8048541) ∩ MergedDep(bbl0x8048541). Besides,
the potentially-tainted instructions in the basic blocks like
0x80484fd are in Is to take the slow-path policy.

C. Pin-based Taint Tracking

The Pin-based tracker of podft is developed by extending
libdft to skip instrumenting specific traces, basic blocks, or
instructions according to the tracking policies in Table I. The

DBI algorithm is presented in Fig. 4. For all the loaded images
of the program, we record and differentiate the virtual address
scopes of libc.so, other libraries, and user code. For the glibc
functions, podft instruments tag memory operations at the
function’s entry and exit points based on the taint rules of [26]
(Instrumentfunc in Line 5). If the current trace is in libc.so
or the current basic block is in Bn, we skip instrumenting
all instructions of this basic block. Otherwise, if the current
basic block is in other libraries or Bc, we decide if the basic
block is on a complex fast path or a slow one. Suppose the
registers and memory locations used in the basic block do not
depend on the tainted memory and registers at the entry state
of this basic block. In that case, we confirm the complex fast
path and skip instrumenting all its instructions. Otherwise, we
instrument all the potentially-tainted instructions with libdft’s
instruction-level instrumentation (Instrumentlibdft in Lines 22
and 27).

For the example in Fig. 3, the C standard library function
printf is instrumented at the function level. The basic
blocks of printf need no instrumentation at the instruc-
tion level. open, read, and write are system calls mod-
eled by the I/O interface of libdft. The memory involved
in the basic block 0x8048541, i.e., buf[0] and buf[1]
pointed by *[ebp+0xc], are sanitized with the constant of i
held in [ebp-0x10]. Therefore MergedDep(bbl0x8048541) =
∅ at the entry of basic block 0x8048541. We have
MergedDep(bbl0x8048541) ∩ TaintedMem(0x8048541) = ∅ at
runtime when reaching 0x8048541. The memory locations
used in this basic block have no data dependence with the
tainted memory buf at the entry state of this basic block.
Thus, the basic block 0x8048541 is decided to be a complex
fast path, and all its instructions are not instrumented.

III. IMPLEMENTATION AND EVALUATION

This section presents several important issues in our imple-
mentation and evaluates podft’s efficiency and effectiveness.

A. Implementation Issues

Finding the hot potentially-tainted basic blocks is critical
to the decision of Bc and Is. In our implementation, a basic
block is hot when executed more than once under the standard
inputs, and all its instructions are potentially tainted. Therefore,
we use another DBI execution over the standard inputs to
identify the basic blocks executed more than once. After
all, specifying a hot basic block is configurable and stand-
alone prior to the DTA procedure. This instrumented execution
also helps us to profile the related inputs and outputs of the
hot basic blocks used in training the neural hot basic block
model, as depicted in Section IV. podft holds a hashmap to
facilitate efficient inclusion decisions in Fig. 4. The hashmap is
generated using the results of VSA-based analysis identifying
MNT- and potentially-tainted instructions. Each key of the
hashmap is the address of a potentially-tainted basic block.
Each value of the hashmap points to an instruction-address
array of potentially-tainted instructions in the basic block.
Queries on this structure can efficiently decide Bc, Is, and Bn
for tracking policy enforcement.

Another issue is deciding the complex fast path using static
analysis to find the data dependencies between the memo-
ry/registers used by the basic block and the memory/register
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TABLE II. BENCHMARK PROGRAMS

Dataset ID Description

S1 10 SPEC CPU 2k6 benchmarks
S2 3 server programs, i.e., Nginx (1.22.0), Apache httpd (2.4.7),

and MySQL (5.5.62)
S3 9 CVE programs, as presented in Table V

at the block’s entry. By reimplementing the Merged Check
of [42], we scan the traces of instructions and build the data
dependencies for each memory reference. We use a fix-depth
backward data-dependency graph traversal from the in-block
memory references to find all the data dependencies to the
basic block’s entry memory locations. Then at runtime, a basic
block entry check can decide if such entry memory locations
have been tainted in the tag memory of podft.

B. Dataset and Experimental Settings

Our experiments are conducted on a Desktop with a
2.8GHz×4 Intel Core(TM) i7-7700HQ CPU, 8GB RAM,
and Linux 3.16.0 kernel (Ubuntu 14.04 32-bit). The DBI
framework is Pin v2.14, and libdft we used is [5]. Because
the VSA-based MNT instructions identification [15] can only
work on 32-bit binaries, we adapt the function-level taint
rule generation [26], developed on libdft64 [8] for 64-bit
binaries, to the 32-bit libdft [5]. The main adaption work is
to reimplement the tag operations used by each taint rule.

The benchmarks we use to evaluate podft are presented
in Table II. We compile the binaries of these benchmarks on
their default compiler optimization level. For the performance
evaluation, we use the standard working task in the DBI
execution of each benchmark program of dataset S1 and S2.
Specifically, for the SPEC2k6 benchmarks of dataset S1, we
use the standard SPEC2k6 workload test in the instrumented
execution. For httpd and Nginx in dataset S2, we use the
benchmarking tool ab [1] to randomly select and deliver
10,000 and 100,000 requests to the servers. For MySQL, we
use the load emulation tool mysqlslap [2] to connect the
MyISAM [4] and InnoDB [3] storage engines of MySQL,
automatically generate a complicated table, and issue 1,000
related SQL queries with 10 parallel clients. The dataset S3
is mostly collected from the related work [15]. We ensure
that the vulnerabilities of these CVEs are reproduced in our
experimental environment.

C. Efficiency of podft

We first compare podft’s efficiency with other dynamic
taint analysis approaches, including Taint Rabbit [22], Dytan
[6], [18], Triton [46], and Taintgrind [30]. Taint Rabbit is
developed on DynamoRIO [13], and Taintgrind is on Valgrind
[39]. Dytan and Triton use Pin as used by podft. For deploying
the related tools, we deploy Taint Rabbit with the taint policy
TaintRabbit-ID (TR-ID) and TaintRabbit-BV (TR-BV). For a
fair comparison, we set the same taint sources and sinks for
each tool.

The results are presented in Table III. Besides the execution
time of the instrumented benchmark programs tracked by dif-
ferent tools, the slowdown metric of each tool (SD in Table III)
measures the magnification of each tool’s instrumentation cost
compared with the original execution. For the dataset S1 and

S2, podft achieves slowdowns of 1.6x to 27.9x with an average
slowdown of 10.6x. In contrast, the state-of-the-art fast-path-
based tool, i.e., Taint Rabbit, has a 30x average slowdown for
its TR-ID policy configuration and a 120x average slowdown
for the TR-BV policy configuration. We can see that on each
benchmark in Table III, podft outperforms other DTA tools.
According to the average slowdowns, podft is more efficient
than the other DTA tools. More specifically, TaintRabbit-BV
reaches a timeout when tracking 429.mcf. Dytan cannot finish
the instrumented execution of 458.sjeng properly. Triton is
relatively inefficient, reaching timeouts on dataset S1 and four
benchmarks of S2.

Then, because podft uses the VSA-based static analysis of
SELECTIVETAINT [15], we compare the efficiency of podft
with this static binary rewriting approach. To deploy the
tools provided by SELECTIVETAINT, we deploy both the
STATICTAINTALL and the SELECTIVETAINT system. STAT-
ICTAINTALL system instruments all the instructions with static
taint analysis. First, we confront difficulties using SELEC-
TIVETAINT’s static rewriting on the server binaries of dataset
S2. Therefore we only use the benchmarks in S1 for this
evaluation. On dataset S1, podft has an average slowdown of
12.5x, while STATICTAINTALL and SELECTIVETAINT report
average slowdowns of 39.1x and 27.1x, respectively. SELEC-
TIVETAINT reduces the slowdowns of STATICTAINTALL in all
the S1 benchmarks. Although podft is generally more efficient
than SELECTIVETAINT on S1, we observe that in several
cases, e.g., 400.perlbench and 429.mcf, SELECTIVETAINT can
outperform podft.

We also compare the basic block-level instrumentation
coverage of podft’s DBI and SELECTIVETAINT’s static bi-
nary rewriting on dataset S1 and the standard workload. We
observed that podft has an average instrumentation coverage
of 40.38%, while SELECTIVETAINT’s average instrumentation
coverage is 53.73%. SELECTIVETAINT statically instruments
many basic blocks that are unreachable by the benchmark
executions. We cannot compare the runtime reachable basic
blocks of SELECTIVETAINT-rewritten binaries with the podft-
instrumented basic blocks because the static rewriting has
introduced additional code structures into the binary.

D. Effectiveness of podft’s Dynamic Taint Analysis

We validate the effectiveness of podft by tracking the real-
world vulnerabilities of CVEs triggered by public exploits. The
CVEs and the tracking time of podft are presented in Table V.
podft’s taint tracking can successfully detect the sensitive-
flow-related exploits of all these CVEs. For each CVE, we
develop a specific Pintool over podft to track the vulnerability.
To retrieve the taint sources, we identify the target binary’s
specific syscalls, functions, or program arguments. We also
treat the user input as taint sources in the cases where the taint
source is unspecified by the CVE. We identify the taint sink
by manually analyzing the assembly code and investigating the
vulnerable functions reported by the CVEs. We analyze the
suspicious variables and the instructions that operate on these
variables in these functions. Consequently, the instrumented
check decides if such a variable holds a taint tag at these in-
structions’ locations. We observed that the tracking procedure
of podft tainted all the vulnerable sinks.
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TABLE III. PERFORMANCE IMPROVEMENT OF PODFT COMPARED WITH OTHER DTA APPROACHES ON DATASET S1 AND S2. SLOWDOWN
SDTOOL =TTOOL/TORIG , S.T. TOOL=PODFT, TAINTRABBIT-ID, TAINTRABBIT-BV, TAINTGRIND, DYTAN, TRITON

Torig podft TaintRabbit-ID TaintRabbit-BV Taintgrind Dytan Triton
Benchmark (s) Tpodft(s) SDpodft TID(s) SDID TBV(s) SDBV TTaintgrind(s) SDTaintgrind TDytan(s) SDDytan TTriton(s) SDTriton

400.perlbench 4.3 120.1 27.9 126.6 29.4 204.9 47.7 346.7 80.6 3,208.6 746.2 Timeout N/A
401.bzip2 5.4 46.4 8.6 85.7 15.9 91.3 16.9 1,634.9 302.8 20,812.6 3,854.2 Timeout N/A
429.mcf 2.5 5.2 2.1 34.2 13.7 Timeout N/A 193.6 77.4 2,845.4 1,138.2 Timeout N/A

445.gobmk 15.3 128.2 8.4 219.2 14.3 204.7 13.4 6,039.4 394.7 45,147.5 2,950.8 Timeout N/A
456.hmmer 2.2 55.6 25.3 74.8 34.0 78.5 35.7 998.6 453.9 11,531.6 5,241.6 Timeout N/A
458.sjeng 4.6 28.3 6.2 34.9 7.6 39.2 8.5 1,355.8 294.7 Failed N/A Timeout N/A

462.libquantum 0.5 3.6 7.2 6.8 13.6 8.2 16.4 22.9 45.8 333.2 666.4 Timeout N/A
464.h264ref 12.6 191.8 15.2 762.3 60.5 2,588.7 205.5 5,057.7 401.4 81,798.6 6,492.0 Timeout N/A
471.omnetpp 0.4 9.1 22.8 54.6 136.5 54.1 135.3 259.6 649.0 1,401.5 3,503.8 Timeout N/A

473.astar 9.1 14.5 1.6 129.6 14.2 129.2 14.2 1,467.4 161.3 19,525.1 2,145.6 Timeout N/A
mysqlslap myisam 0.6 4.5 7.5 27.5 45.8 404.2 673.7 77.5 129.2 951.9 1,586.5 Timeout N/A
mysqlslap innodb 0.7 4.9 7.0 28.8 41.1 392.3 560.4 73.8 105.4 999.1 1,427.3 Timeout N/A

httpd req 10k 0.6 5.3 8.8 11.7 19.5 15.9 26.5 26.7 44.5 227.6 379.3 40,509.2 67,515.3
httpd req 100k 4.9 27.4 5.6 39.8 8.1 74.4 15.2 219.3 44.8 2,386.9 487.1 Timeout N/A
Nginx req 10k 0.5 5.5 11.0 9.8 19.6 11.7 23.4 23.9 47.8 201.1 402.2 33,671.6 67,343.2
Nginx req 100k 4.2 20.1 4.8 24.7 5.9 32.8 7.8 196.4 46.8 2,062.3 491.0 Timeout N/A
Avg. slowdown – 10.6 – 30.0 – 120.0 – 205.0 – 2,100.8 – 67,429.3

TABLE IV. PERFORMANCE COMPARISON OF PODFT WITH
SELECTIVETAINT

podft STATICTAINTALL SELECTIVETAINT

Benchmark SDpodft TAll(s) SDAll TSelect(s) SDSelect

400.perlbench 27.9 26.8 6.2 24.2 5.6
401.bzip2 8.6 263.1 48.7 174.1 32.2
429.mcf 2.1 39.1 15.6 3.8 1.5

445.gobmk 8.4 543.4 35.5 538.5 35.2
456.hmmer 25.3 161.4 73.4 129.2 58.7
458.sjeng 6.2 126.8 27.6 94.8 20.6

462.libquantum 7.2 6.3 12.6 4.5 9.0
464.h264ref 15.2 1,255.9 99.7 801.2 63.6
471.omnetpp 22.8 16.4 41.0 14.9 37.3

473.astar 1.6 277.4 30.5 61.7 6.8
Avg. slowdown 12.5 – 39.1 – 27.1

TABLE V. EFFECT OF PODFT ON TRACKING VULNERABILITIES OF
CVES (S-OF=STACK OVERFLOW, H-OF=HEAP OVERFLOW)

ID Program Type Tpodft(s)
CVE-2021-41253 Zydis v3.2.0 H-OF 1.4
CVE-2019-8354 SoX v14.4.2 H-OF 2.8
CVE-2018-19655 dcraw v9.28 S-OF 1.7
CVE-2018-11575 ngiflib v0.4 S-OF 1.4
CVE-2018-6612 jhead v3.00 H-OF 1.2

CVE-2017-1000437 Gravity v0.3.5 S-OF 9.8
CVE-2017-14411 MP3Gain v1.5.2 S-OF 2.2
CVE-2013-2028 Nginx v1.4.0 S-OF 1.1

IV. WORK-IN-PROGRESS

podft is a dynamic taint analysis framework that enforces
multiple fast-path tracking policies for efficient taint tracking.
podft uses a VSA-based analysis and function-level tainting
abstraction to generate these tracking policies. We use a basic
block-level static data-dependency analysis to decide whether a
hot potentially-tainted basic block takes a complex fast path or
a slow path. Such analyses benefit the taint tracking efficiency
but still have several limitations:

1) The VSA-based analysis [15] cannot work on library
code. The function-level summaries [26] work only
for popular library functions. Thus, we must over-
approximate most library basic blocks as all-instruction-
tainted slow paths to enforce instruction-level slow-path
tracking policy.

2) In several cases, the data-dependency analysis may need
to be more precise in identifying the block-used memory
references. In such cases, the hot basic blocks must be
overly approximated as slow paths.

The above limitations motivate us to develop a more
scalable complex fast path policy enforcement approach. Our
solution is to use deep neural networks to track taints at the
basic-block level. Since we can identify the hot potentially-
tainted basic blocks, these basic blocks are more frequently
executed and have more inputs and outputs. We can use the
fuzzing technique to profile the runtime tag memory relations
between the inputs and outputs. Because these hot basic blocks
only use a limited number of memory and registers, such
relations can be properly abstracted and are not expected over
complicated.

Taking the principle of Neutaint [48], we are trying to train
neural hot basic block embeddings using these tag memory
relations. Unlike Neutaint, which uses only dynamic program
embedding, our neural hot basic block embedding will also
consider several instruction-level static features to merge the
taint-tracking prediction of different hot basic blocks into one
deep model for each binary program. Integrating our design
into podft can avoid differentiating complex fast paths from
slow paths on hot basic blocks, thus avoiding the static data-
dependency analysis. Moreover, compared with Neutaint’s
program-level embeddings, our basic block-level embeddings
are more flexible to be used in traditional DTA infrastructures.
We also plan to develop more dynamic neural library-function
embeddings to optimize the tainting abstraction of [26] and the
function-level policy enforcement of podft. Another subsistent
issue we need to resolve is that several static code features are
used in our neural basic block embeddings, making our deep
model correlate more with the compiler options of the binary
than Nuetaint’s model.
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