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Abstract—Satellites perform critical functions of our modern
digital infrastructure, such as providing communications, nav-
igation, and earth observation services. Maintaining a satellite
requires remote access, so securing that access is an essential
aspect of developing and operating a satellite. While satellites have
traditionally not been subjected to regular attacks, this might
not hold in the future. Hence, securing satellite firmware—the
software that controls the space segment of satellite missions—
becomes increasingly relevant.

In this work, we perform a case study of applying recent
embedded firmware analysis techniques to satellite payload data
handling systems. We explore whether FUZZWARE, a state-of-the-
art firmware fuzz testing system, can be used to these firmware
images. During this case study, we also describe and apply the
process of manually optimizing FUZZWARE configurations for
firmware targets, and measure the impact of different optimiza-
tions. Finally, we identify challenging aspects of fuzz testing
satellite firmware and directions for future work to optimize fuzz
testing performance in a fully automated manner. As part of our
case study, we identified and responsibly disclosed 6 bugs in 3
satellite firmware images.

I. INTRODUCTION

Satellites are at the foundation of our modern digital
society. They provide critical space-born capabilities, such as
telecommunication, navigation, and earth observation services.
Due to their safety- and security-critical functions, keeping
satellites operational and under control is essential to satel-
lite missions. In addition to reliable hardware, a successful
satellite mission also requires reliable firmware, which is the
software that controls the space segment operations using a
microcontroller aboard the satellite. Traditionally, malicious
external actors have not been much of a practical concern
to the space community [13]. Communicating with a satellite
requires specialized equipment, and the intellectual property
surrounding satellites has mostly remained proprietary [9],
both regarding hardware and software. This made it hard for an
outside party to interact with satellites, let alone attack them.

Now, the environment which used to make attacks on
satellites highly improbable is changing [19]: Ground stations
may now be rented [1], [10] or custom-built affordably [16].
This allows parties with limited funding to communicate with
satellites. Similarly, satellites progressively rely on Commer-
cial off-the-shelf (COTS) components [9] and open-source

software libraries. In combination with a growing community,
satellite systems become more accessible, and information
about satellite systems becomes available. As a result, previ-
ously unrealistic attacker models become increasingly likely.
With these ongoing changes, efforts to ensure a secure and
protected access to satellites grow, as attackers may attempt to
exploit vulnerabilities in satellite firmware [3].

These developments motivated us to test whether recent
advances in the security analysis of embedded systems can
be applied to the field of satellite firmware. More specifically,
we attempt to apply the state-of-the-art firmware fuzzer FUZ-
ZWARE [14] to three different Payload Data Handling System
(PDHS) firmware images. In our case, the PDHS controls
the satellite’s scientific payload equipment. In addition, we
explore how involving human expertise and utilizing manual
configuration options of FUZZWARE can improve the fuzzing
process. We analyzed the fuzzing results and identified a total
of 6 bugs, which we responsibly disclosed. Finally, we identify
challenging aspects of fuzzing satellite firmware. We also
discuss directions for future research that may improve fuzzing
of satellite firmware in a fully automated setting.

In summary, we make the following contributions:

1) We apply FUZZWARE to fuzz testing of three different
satellite PDHS firmware images.

2) We perform a case study of manually optimizing
fuzzing configurations and measure their impact on
different performance metrics.

3) From our experimental results we derive challeng-
ing areas of current solutions for fuzzing satellite
firmware. We identify areas of possible future work
to optimize the results of fully automated fuzzing of
satellite firmware images.

II. REHOSTING-BASED FIRMWARE FUZZING

Embedded firmware is the software that implements the
tasks that an embedded system fulfills. Embedded firmware is
often purpose-built and closely tied to the embedded chip that
it runs on. Firmware code communicates with its surrounding
peripherals via a set of low-level communication methods, in-
cluding memory-mapped input and output (MMIO), interrupts,
and direct memory access (DMA).

Fuzz testing (fuzzing), a well-established program security
testing technique, identifies flaws in a target program by
feeding it large amounts of different inputs and observing its
behavior. However, running firmware on its embedded device
directly commonly does not provide the execution throughput
required to apply fuzzing to firmware effectively. A recent line
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of research [4], [14], [20] eliminates the throughput constraint
by executing firmware outside their original hardware envi-
ronment in a process known as rehosting. This is achieved
by modeling the original hardware behavior and providing the
resulting models to an emulator. As the resulting emulator is
then able to achieve high firmware execution speeds, these
works enable efficient fuzzing of embedded firmware.

III. FUZZING SETUP AND OPTIMIZATION

To evaluate whether current rehosting-based embedded
firmware fuzzing approaches apply to satellite firmware, we
tested FUZZWARE on three CubeSat firmware images: SAT-A,
SAT-B, and SAT-C1. The corresponding satellites are in orbit at
the time of writing, with SAT-B being inactive. The firmware
images are built for variants of STM32F4 chips implementing
the ARM Cortex-M architecture. The three firmware images
are built on RODOS [11], an embedded real-time operating
system. To prepare fuzzing, we aim to create a basic config-
uration that allows us to test our targets in FUZZWARE, and
then increase fuzzing performance incrementally by applying
custom, target-specific configurations. This results in multiple
configuration iterations for each firmware target. An overview
of the resulting configuration iterations is shown in Table I.

a) Configuration Iteration 1: To prepare the firmware
images for testing in FUZZWARE, we first set up a basic
configuration that includes memory mappings and interrupt
triggers. To support fuzzing of SAT-A, we added target-specific
base configurations. We increased execution limits to account
for its computation-heavy boot process, configured a custom
MMIO model which provides a correct value for the board’s
flash size, and schedule an additional timer interrupt to allow
the firmware to finish waiting during the early boot stages. For
SAT-B and SAT-C, no additional configurations were required.

b) Configuration Iteration 2: For the second config-
uration iteration, we manually applied a set of best-practice
configuration optimizations, as suggested in FUZZWARE’s
project documentation [18]. First, we configure exit points in
functions that indicate an unrecoverable error. We also direct
the emulator to immediately return from certain functions that
either output log data, or significantly delay the execution, such
as busy loops. These adjustments allow the emulation to skip
parts of the firmware execution that either do not contribute
to or even hinder fuzzing progress. Second, we aim to further
increase FUZZWARE’s test case throughput by reducing the
early boot stage code which the emulator has to execute for
each input. We achieve this by inserting custom models for
MMIO accesses which avoid consuming fuzzing input early.

c) Configuration Iteration 3: While not mentioned in
the original paper, FUZZWARE provides a custom boot con-
figuration option. This option allows FUZZWARE to snapshot
firmware execution after the boot process. This avoids booting
the firmware again for each newly tested input. With this
option, the user may specify the locations in the firmware that
need to be visited (and to be avoided) for firmware execution
to constitute a valid boot sequence. Based on this description,
FUZZWARE initially monitors the fuzzing output for inputs that
trigger a valid boot sequence. Once found, it uses this input to

1The satellite firmware is under NDA and hence we do not disclosure the
affected satellite.

TABLE I. OVERVIEW OF FIRMWARE FUZZING CONFIGURATION
ITERATIONS. The table shows the number of manually assigned models

(#M), interrupt triggers (#IT), whether custom execution limits have been
assigned (Lim), number of exit hooks (#Ex), number of functions to skip
during emulation (#Sk), and the facts whether a custom boot configuration

(BC) was used, and comparison coverage was enabled (CC).

Configuration #M #IT Lim #Ex #Sk BC CC

SAT-A-1 1 2 X 0 0
SAT-B-1 0 1 0 0
SAT-C-1 0 1 0 0

SAT-A-2 7 2 X 1 7
SAT-B-2 2 2 1 7
SAT-C-2 2 2 1 7

SAT-A-3 7 2 X 1 7 X
SAT-B-3 2 2 1 7 X
SAT-C-3 2 2 1 7 X

SAT-A-4 7 2 X 1 7 X X
SAT-B-4 2 2 1 7 X X
SAT-C-4 2 2 1 7 X X

create a snapshot of the fully booted firmware, and continues
fuzzing from this snapshot. This allows the emulator to skip
executing the remaining parts of the boot process for each
input. Note that while requiring more insight into the firmware
target, the boot configuration essentially supersedes parts of
the second configuration iteration where manual MMIO access
models are used to reduce the amount of early boot stage code
execution. For this configuration iteration, we set the boot
target location to the idle tasks of the respective firmware
images. The idle task first being executed indicates that the
firmware is fully booted and ready to process external input.

d) Configuration Iteration 4: For the final configuration
iteration, we take a different approach to adapting the fuzzing
process. Instead of utilizing configuration options, we extend
FUZZWARE’s emulator functionality to include a previously
unsupported fuzzing feature. To this end, we added patches
to FUZZWARE’s Unicorn Engine fork that implement the
comparison coverage (compcov) feature from AFL++ [2], [5].
Comparison coverage alleviates a common fuzzing roadblock
where a fuzzer fails to guess magic values. While 8-bit values
(256 options) are reasonable for random mutations to guess,
this is not the case for specific 32-bit values (four billion
options). Compcov thus splits comparisons into a set of smaller
8-bit ones, which the fuzzer may discover incrementally.

IV. EXPERIMENTAL RESULTS

After creating different configuration iterations, we per-
formed fuzzing experiments based on these configurations. For
each configuration iteration of each firmware image, we ran
FUZZWARE for 24 hours on Intel Xeon Gold 5320 CPUs @
2.20GHz. For each run, we assign four CPU cores. We repeat
the experiment five times to account for the non-deterministic
nature of fuzz testing, as recommended by Klees et al. [8].

A. Test Coverage

From the results, we collected coverage metrics and the
fuzzer’s test case throughput for every configuration. The
results are shown in Table II. For reference, the total number of
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TABLE II. FUZZING EXPERIMENT COVERAGE RESULTS

Configuration
#Covered Basic Blocks Executions

min median max total per second

SAT-A-1 3899 4143 4392 4450 15
SAT-A-2 4225 4225 4362 4447 20
SAT-A-3 4326 4636 4636 4680 50
SAT-A-4 4295 4295 5140 5194 40

SAT-B-1 1237 1237 1237 1237 8
SAT-B-2 3959 4096 4096 4193 165
SAT-B-3 4097 4210 4300 4343 226
SAT-B-4 4190 4303 4365 4443 284

SAT-C-1 1438 1438 1438 1438 60
SAT-C-2 3430 3682 3982 4310 88
SAT-C-3 3527 3957 4384 5320 238
SAT-C-4 3609 3793 3994 4889 245

basic blocks contained within the firmware samples are 14,647
for SAT-A, 12,971 for SAT-B, and 12,561 for SAT-C.2

As shown in Table II, assigning an additional set of manual
configurations increases the test case throughput. Depending
on the target, the throughput is increased by up to 20 times
(SAT-B-2). Assigning a boot configuration further increases
the test case throughput between 37% and 270%. The impact
of using compcov varies by the target.

Regarding code coverage, it should be noted that skipping
the execution of functions (configuration iterations 1 vs. 2)
naturally decreases the possible code coverage. Despite this,
the code coverage of configuration iteration 2 either stays
competitive (SAT-A) or greatly exceeds the code coverage
of the basic configuration (SAT-B and SAT-C). A closer
inspection of the coverage increase for SAT-B and SAT-C
shows that in the two cases, output logging constituted a
significant roadblock for fuzzing in the base configuration.
As these functions (and, therefore, these roadblocks) have
been removed in configuration iteration 2, the code coverage
has increased. Introducing a boot configuration (configuration
iteration 3) consistently increases the total code coverage
achieved. For compcov, fuzzing also sees improvements in the
overall code coverage for two targets (SAT-A and SAT-B), but
this seems to be a rather target-specific effect. For example,
the median code coverage of SAT-A drops from 4,636 to 4,295
for the compcov emulator build (configuration iteration 4).
While compcov provides additional feedback to the fuzzer,
it may also divert its attention. If the low-level driver logic of
a particular firmware makes heavy use of comparisons while
not contributing to meaningful code exploration, compcov may
result in a net loss of fuzzing progress.

B. Bug Case Studies

During our analysis of the fuzzing results, we identified 6
bugs and responsibly disclosed these issues to their respective
maintainers. Two of these bugs occurred in the open-source
operating system RODOS [11]. Identifying implementation
issues in an operating system is interesting as multiple satellite

2These numbers may include code that is not actually reachable within
the respective firmware images. Therefore, the numbers should be taken as a
rough (over-)estimate.

firmware images may share its logic as a common attack
surface. In addition, a space-proven operating system such as
RODOS likely has undergone rigorous testing. This gives us
insight into the type of issue which may evade existing testing
procedures. We describe these two issues in the following.

RODOS implements sbrk, a function that is commonly
used to extend the heap from system memory. To avoid a
collision of heap memory with the stack space, the implemen-
tation performs a bounds check on the remaining available
system memory. For this, the end of the stack is calculated
from the stack base and a stack size constant. The stack size
constant is defined in a hardware-specific linker script. Due to
the way linker scripts work, access to the variable, which is
defined in the linker script, must be performed via the address
of the operator (which is a behavior that the linker manual
mentions to be not intuitive [6]). In the given implementation,
however, the required operator is not present. This results in the
variable’s value mistakenly being evaluated and dereferenced
as a pointer. Generally, the stack size is not a large value,
0x1C00 bytes in this case, leading to a memory read in the
lower address space. The hardware for which the analyzed
firmware images are built uses these low parts of the address
space to alias either flash or RAM. As a result, the accidental
memory access constitutes a valid memory read, and does not
cause a hard fault on the physical hardware. Instead, a wrong,
too small size value is used to perform the stack size check. As
a consequence of using this too small size value, the firmware
logic does not correctly identify situations where heap memory
collides with the stack space. A potential attacker who is
able to cause memory allocations (e. g., by sending telemetry
commands which require the satellite to perform bookkeeping
or maintain state) may be able to first grow the heap into the
stack space. Subsequently, this attacker could control contents
of the system stack, and hijack program control flow on the
satellite firmware. While this issue does not become visible
on physical hardware, we used FUZZWARE to enforce stricter
memory access controls within the emulator. This allowed us
to identify the faulty memory access as a firmware crash, rather
than leaving it unnoticed.

RODOS uses the priority ceiling protocol [15] to lock
access to certain shared resources. This means that inside the
critical section, the scheduling priority of the active thread
is set to the maximum value and no other thread can be
scheduled. One resource using this protocol is a synchronized
FIFO for sending messages from the radio uplink thread to
the telemetry thread. While reading data from the FIFO, the
priority ceiling is activated. If no data is available, the reader
will be suspended and yields back to the scheduler. Before this,
a handle to the reader is saved in the FIFO object. At this time,
the reader has entered a critical section. The logic of the reader
thus assumes that the handle may not be modified by another
thread. However, this assumption is broken as the reader is now
suspended, such that it can no longer be scheduled. Instead,
the writer will be scheduled and be able to access the shared
FIFO object which is supposed to be protected by the ceiling
protocol. Every time the writer puts data into the FIFO, it
wakes up the reader with the handle from the FIFO object.
The writer checks the handle not to be null before using it.
However, as the check which the writer assumes to be guarded
by priority ceiling is actually not guarded, a race condition
occurs on this check. Now, the context switch may occur in
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the writer after checking the handle but before using it. Next,
the reader sets the handle to null because it no longer blocks on
the FIFO. Once the writer gets scheduled again, it will use the
now invalid handle and cause a null pointer to dereference.
While the root cause of this bug is improper usage of the
priority ceiling protocol, it manifests in a race condition.

Triaging these types of bugs is cumbersome and requires
a reproducible environment. This is difficult to achieve with
physical hardware. Controlling the exact timings is hard, even
in an emulator. This shows another advantage of a rehosting-
based testing approach which is not affected by external
timings. Given the same input, the result will always be the
same, even with very tight timing constraints.

V. DISCUSSION

In our experiments, we have seen that rehosting-based
firmware fuzzing applies to satellite firmware, and can uncover
bugs in the firmware of active satellites and in space-proven
operating system code. We have also seen that the overall
results of the fuzzing campaign may be improved significantly
by using additional configurations. To improve fuzzing effec-
tiveness, we manually assigned target-specific configurations.
Based on the target under test, specific configurations proved
more effective than others. At the same time, we have also seen
some configuration options work well for one target while even
reducing the quality of results for another target (e. g., enabling
compcov for SAT-C).

A. Factors Contributing to Implementation Issues

Reflecting on our analysis of the satellite firmware crashes
triggered by FUZZWARE, we identify different contributing
factors to why different bugs existed and why rehosting-based
firmware fuzzing is a good fit for finding such issues.

a) Re-use of legacy libraries and patching: We found
different indications of code growing over a long period of
time and over multiple iterations. Different issues seem to
have occurred as an existing library was used for a new code
base, and adapted to the specific mission. A change which
was meant to fix a synchronization issue in a fully operational
satellite introduced an issue in the boot process. The original
author may have been aware of undocumented assumptions
and possible side effects at the time the code was written,
but this knowledge seemingly did not propagate to the later
mission. As a historical reference, these occurrences seem to
stem from a common broad root cause with the Ariane 5
incident, where issues with the use of a legacy library function
caused a launch failure [7].

b) Run-time introspection and crash detection: On
STM32F4 boards, the region around address zero is mapped.
Accesses to the NULL page do not cause a visible fault when
running on the physical chip [17]. Consequently, testing on
the physical hardware will not uncover issues related the use
of many corrupted or uninitialized pointers. An emulator, on
the other hand, provides more introspection and the ability
to test for faulty firmware states without modifying firmware
source code. Issues pertaining to the identification of firmware
memory corruptions and crashes during on-device testing have
also been previously reported by Muench et al. [12].

c) Control over specific timings: When performing
tests on a physical chip, especially tests involving outside
inputs (which are possibly transmitted over the air), exact
timings are hard to control and likely do not reproduce. This
means that race conditions with a tight timing window become
hard to trigger, and even harder to reproduce reliably. This is
different for recent rehosting solutions, as they are built to
provide the fuzzer with more control over event timings. They
are also built to exactly reproduce firmware execution when
feeding the same input multiple times. This makes it feasible
to trigger, reproduce, and analyze issues involving tight race
conditions, such as the one we have detailed in Section IV-B.

B. Challenges in Fuzzing the Satellite Firmware Target Set

Regarding the process of fuzz testing the satellite firmware
images themselves, we found a set of challenging aspects.

a) Elaborate boot process: We found different satellite
firmware images to perform an elaborate boot process. During
fuzzing, this leads to the repeated execution of large amounts
of boot-related code, and thus overall slow test case through-
put speeds in default configurations. These issues could be
remediated via different types of manual configuration options.
However, a fully automated setup of the current version of
FUZZWARE has hit a road block resulting in low overall
firmware coverage in two out of three cases.

b) Varying effectiveness of specific configuration types:
While particularly effective in one case, certain configuration
options have proven to have less impact or even impede the
fuzzing progress in other cases. Blindly applying certain types
of configurations without reasoning about their effectiveness
for a given target under test may impede testing outcomes,
rather than improving them.

c) Interrupt timing requirements and DMA: While fo-
cusing on MMIO, current rehosting solutions pay much less
attention to automatically analyzing timing requirements of the
target firmware under test. As described in Section III, we
manually added an interrupt configuration for SAT-A to allow
the firmware to boot correctly. In a default configuration, the
boot process may not have been passed as effectively. The
same concept applies for DMA, a hardware communication
mechanism which is currently not automatically handled by
many recent rehosting systems.

C. Potential Future Research Directions

Summarizing our practical experience of this case study,
we see significant value in future work around increasing
the degree of automation of generating a robust and target-
aware fuzzing configuration. Requiring a human expert to
adjust configurations for fuzzing adds an expensive step to
the firmware testing process, and makes it less feasible to
utilize fuzz testing during continuous integration efforts of
firmware development. Improvements around this automation
could include the automated handling of certain hardware fea-
tures (such as DMA). The automation may also include more
efficiently dealing with the firmware boot process (especially
an elaborate boot process as can be found in many satellite
firmware images), or automatically applying specialized con-
figurations and adjusting them based on their merit for a given
firmware target under test.
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VI. CONCLUSION

In this paper, we showed in several case studies that
recent rehosting-based firmware fuzzing techniques apply to
testing satellite firmware. We found that fuzzing results may
be heavily improved via target-specific configurations, but the
effectiveness of a type of configuration still depends on the
target under test. From these results, we identified challenges in
fuzzing satellite firmware and possible future work to improve
fuzzing results in a fully automated setting.
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