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Abstract—Since satellite systems are playing an increasingly
important role in our civilization, their security and privacy
weaknesses are more and more concerned. For example, prior
work demonstrates that the communication channel between
maritime VSAT and ground segment can be eavesdropped on
using consumer-grade equipment. The stream decoder GSExtract
developed in this prior work performs well for most packets but
shows incapacity for corrupted streams. We discovered that such
stream corruption commonly exists in not only Europe and North
Atlantic areas but also Asian areas. In our experiment, using
GSExtract, we are only able to decode 2.1% satellite streams we
eavesdropped on in Asia.

Therefore, in this work, we propose to use a contrastive
learning technique with data augmentation to decode and recover
such highly corrupted streams. Rather than rely on critical
information in corrupted streams to search for headers and
perform decoding, contrastive learning directly learns the fea-
tures of packet headers at different protocol layers and identifies
them in a stream sequence. By filtering them out, we can
extract the innermost data payload for further analysis. Our
evaluation shows that this new approach can successfully recover
71-99% eavesdropped data hundreds of times faster speed than
GSExtract. Besides, the effectiveness of our approach is not
largely damaged when stream corruption becomes more severe.

I. INTRODUCTION

Satellite systems are becoming infrastructures of modern
civilization. It provides a wide range of services including
media broadcasts that cover 100 million customers, Earth
observation which contributes to environmental conservation
efforts, and precise global positioning services. Especially in
recent years, the New Space trend [18] significantly advances
the development of organizations such as SpaceX and OneWeb
that carry space missions like global broadband service. Nowa-
days, there are more than 2,000 operational satellites that orbit
Earth and the market value exceeds $150 billion a year [14].

A satellite system consists of three major components:
ground segment, space segment, and ground-space commu-
nication. While all components are reported vulnerable in
previous works (e.g., [8][15][13][6]), for adversaries, ground-
space communication is the most accessible attack surface.

Unlike firmware in ground-segment and satellite payload the
reverse engineering of which requires physical access, ground-
space communication relies on radio signals and covers a large
area in the size of million square kilometers. As long as there is
an antenna within the area and aligned to the satellite, attackers
can eavesdrop on satellite streams and steal sensitive data.

A prior work [16] demonstrates this threat by eavesdropping
on maritime VSAT communications in the North Atlantic.
The stream decoder GSExtract developed in this work can
extract between 40-60% of the GSE PDUs contained within
the targeted streams. But for corrupted packets, GSEtract
shows incapacity by recovering only 10-25% of them. We
discovered that such stream corruption commonly exists for
satellite communication in not only European areas but also
Asian areas.

In our experiment, using GSEtract, we are only able to
decode 2.1% satellite stream we eavesdropped on in Asia. This
higher corruption is presumably because of surface reflection
which is not an issue for martime VSAT eavesdropping.
However, in addition to surface reflection, we identified three
more factors that universally influence satellite stream quality
and are difficult to be eliminated.

The traditional Finite-State Machine (FSM) based decoding
approach, like the one implemented in GSExtract, fundamen-
tally cannot recover such highly-corrupted satellite streams.
This is because it relies on critical information in networking
packet headers (e.g., length field, CRC-32) to perform decod-
ing layer by layer. When this critical information is corrupted,
the decoding can hardly carry on.

In this work, we propose to use a contrastive learning
technique with data augmentation to recover satellite streams.
Instead of relying on critical information for decoding, con-
trastive learning directly learns the features of packet headers
at different layers and identifies them in a stream sequence.
By filtering them out, we can extract the innermost payload
that can be further analyzed by tools like Wireshark. Our
approach further employs data augmentation to entitle the
trained contrastive learning model with robustness against
unseen corruptions. We implemented our approach and named
it as CLExtract. Our experiment shows that CLExtract
can successfully recover 71-99% eavesdropped data hundreds
of times faster speed than GSExtract. Besides, the effective-
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Fig. 1: Protocol layers of satellite stream and packet formats
of each layer.

ness of CLExtract is not largely damaged when corruption
becomes more severe.

Making eavesdropping more practical, we develop
CLExtract to facilitate investigation in security and privacy
issues in satellite communication. To foster future research,
we will open-source CLExtract once this work is accepted.
In summary, this paper makes the following contributions:

• Analysis into factors that cause satellite stream corruption
and challenges of corrupted stream recovery.

• Proposed contrastive learning technique with data aug-
mentation to recover corrupted satellite streams.

• Open-sourced implementation of the proposed technique
and evaluation of its effectiveness and efficiency using
eavesdropped data in the real world

In the following, we first describe the background in Sec-
tion II, followed by the design overview in Section III. Then,
we elaborate on the technical details in Section IV. The
evaluation results and ethics are in Section V. Finally, we
conclude our work in Section VII.

II. BACKGROUND AND CHALLENGES

In this section, we first introduce the protocol layers of
the satellite stream and packet formats of each layer. Then,
we describe four major factors that can corrupt the integrity
of DVB/GSE packets, especially in the scenario of eaves-
dropping. Finally, we discuss the challenges of recovering
corrupted streams.

DVB/GSE Protocol Format. DVB (Digital Video Broadcast-
ing) and its following DVB-S2 and S2X designed by ETSI
(The European Telecommunications Standards Institute) are
the de facto standard for the communication of most satellites.
Data following this standard is encapsulated into continuous
streams using GSE (Generic Stream Encapsulation) protocol.
As shown in Figure 1, from innermost to outermost, the
encapsulation consists of three protocol layers: IP layer, GSE
layer, and DVB layer.

The IP layer supports common transport layer protocols
(e.g., TCP, ICMP, and MPEG). The IP header has a field
recording which transport layer protocol is used (e.g., 0x06

for TCP and 0x01 for ICMP). All transport layer data along
with the IP header are encapsulated into PDUs (Protocol Data
Units). PDUs are further divided into several slots and stored
as data fields in continuous GSE packets. A GSE packet
starts with a header of variable length. Figure 1 shows its
layout. The fixed header is in two bytes, recording whether
the current GSE packet is the starting packet (i.e., S=1) or
the ending packet (i.e., E=1) for a complete PDU. Besides,
it includes a length field that stores the size of the current
GSE packet. Traditional FSM-based decoding approach relies
on this length field to pinpoint the start position of the next
GSE packet. More information like Fragment ID and Protocol
Type is stored in variable fields. Due to the space limit, we
omit details of this part. Readers can refer to [3] for more
information. In the ending GSE packet of a complete PDU,
there is a CRC-32 tail as the error detection code of the PDU.

With all GSE packets encapsulated, at the outermost DVB
layer, several GSE packets are concatenated to fill in the data
field of a Base Band (BB) Frame. The BB frame starts with a
BB header the size of which are 10 bytes. The first two bytes
of the header are the MATYPE field which describes the input
stream format and the type of Mode Adaptation. The second
two bytes are the UPL field storing user packet length in bits
(up to 65535 bits). The following two bytes are the DFL field
which holds the length of the data field (i.e., concatenated GSE
packets) in bits (up to 58112 bits). Readers can refer to [2]
for details.

Four Factors Causing Stream Corruption. Given a complete
DVB/GSE packet, it is straightforward to decode it using a
traditional FSM-based approach (e.g., GSExtract[16]) which
decodes layer by layer according to information in headers
(e.g., data field length). The innermost PDUs (i.e., IP packets)
extracted in this approach can be further analyzed by tools
like Wireshark. However, the quality of radio communication
between the satellite and the ground segment, especially in
the scenario of eavesdropping, is under the influence of many
factors, which makes the FSM-based approach can hardly
carry on.

The first factor is solar activities which result in per-
turbations of the ionosphere. This perturbation can change
the density structure of the ionosphere by creating areas of
enhanced density. This change reflects, refracts, and absorbs
radio waves, leading to the loss of signal. According to
NASA’s report [1], when communication is interrupted, some
satellites can be tumbled out of control for several hours, and
weather images can be lost. The second factor causing signal
attenuation and absorption are rainstorms, snow, and heavy
winds near the ground, given that the signals from satellites
are transmitted through air [4]. Higher-frequency bands tend
to be more affected by rain because the wavelength itself
is close in size to water molecules. The third factor is the
surface reflection from distant reflectors such as mountains and
large industrial infrastructures and local environmental effects
including shadowing and blockage from objects and vegetation
near the terminal [11]. The last factor is the quality of
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the antenna. Attackers performing eavesdropping can seldom
afford professional antennae and lack experience in antenna
alignment. Therefore, the DVB/GSE packets received through
consumer-grade antenna are more likely to be of low quality
in comparison with the ground station.

Challenges of Recovering Corrupted Stream. Due to the
nature of satellite radio communication, the four factors are
not easy to eliminate. As we will show in the evaluation
(Section V-A), oftentimes, the DVB/GSE packets received
by eavesdroppers are highly corrupted. To make matters
worse, eavesdroppers are passive attackers and cannot ask for
re-transmission if discovering that the received packets are
corrupted. How to decode corrupted DVB/GSE packets and
extract PDUs is the key to the success of eavesdropping. In
the following, we discuss technical challenges in detail.

The first challenge is broken stream. Eavesdropping may
start from the middle of a BB frame or because of bad weather,
packet headers are missed. With such a broken stream, it is
difficult to determine where to start decoding. One brute-force
solution is to treat every byte as a potential header. However,
it is impractical in the real world because such decoding speed
is too low to catch up with the transmission speed: with the
best practice, we are only able to decode 609.71 MB in one
hour, not identifying even one complete header in the highly
corrupted stream we eavesdropped.

The second challenge is corrupted critical fields. One critical
field is the length of packets. Even if we are able to identify
the BB header or GSE header, for decoding, we need to
determine the length of data fields at each layer so as to extract
PDUs. Unfortunately, these length fields are corrupted and
thus untrustworthy. Besides, signal loss can happen. Therefore,
we cannot use the size of inner packets to correct the length
field in outer packets. Without the right length, the decoding
can hardly carry on. Another critical field is the protocol type
in IP packets because once it is corrupted, Wireshark cannot
determine which transport layer protocol is used and fails to
analyze PDUs.

The third challenge is nonfunctional CRC-32. The error
detection code is designed to examine if PDUs are corrupted.
In a clear and high-quality communication channel, CRC-32
helps find corruption. However, our experiment results show
that, in eavesdropping, corruption is so common that CRC-32
itself can also be problematic. Therefore, we cannot rely on it
to correct our decoding results.

III. DESIGN OVERVIEW

To resolve the technical challenges discussed above, in
this work, we propose to employ state-of-the-art contrastive-
learning techniques with data augmentations to decode and
recover corrupted satellite streams. Instead of relying on
critical fields or CRC-32 for decoding, contrastive learning
directly learns the features of packet headers at different layers
and identifies them in a stream sequence. By filtering them out,
we can extract the innermost IP packets. Then we correct the
transport layer protocol field in IP headers so that the extracted
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Fig. 2: The recovering workflow. We first train a classification
model using the eavesdropped data and then apply this model
to identify headers even if they are corrupted and extract PDUs
after correction.

IP packets can be further analyzed by tools like Wireshark.
Figure 2 shows the workflow of our approach.

To start, we first construct a training and testing dataset
that consists of positive data (i.e., successful decoded headers)
and negative data (i.e., non-headers streams). Applying FSM-
based GSExtract on the eavesdropped data, we collect positive
data - BB headers, GSE headers, and IP headers that can
be successfully decoded. Although successful decoding does
not mean these headers are 100% correct because the fields
not used in FSM-based decoding can still be problematic,
we deem these headers not corrupted and use them for
training. This flaw in the training data, as we will describe
in Section IV and show in the evaluation (Section V), won’t
influence the accuracy of our approach with the assistance
of a pre-trained encoder network. Eliminating headers from
successfully decoded streams, we obtain negative data - non-
headers streams. With these two types of streams, we train our
classification model. Given a sequence of bytes, this model can
tell whether it is a header or not.

We trained three instances of this classification model to
identify BB headers, GSE headers, and IP headers, respec-
tively. We first apply the BB header model to divide the whole
eavesdropped streams into BB frames. Within each BB frame,
we apply the GSE header model to identify GSE layer packets.
Then, we apply the IP header model to determine whether a
GSE layer packet includes an IP header. With the extracted
IP packets in hand, we use Hamming distance to correct the
transport layer protocol field in the IP header if it is corrupted.
After correction, the PDUs can be fed to tools like Wireshark
for further analysis.

IV. TECHNICAL DETAILS

In this section, we cover the technical details of our ap-
proach. First, we present the framework of our contrastive
learning based classification model. Then, we take a scrutiny
into the framework, elaborating on how it pre-trains an encoder
network and how the encoder network is used to fine-tune a
classification model.
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network and then uses it to fine-tune a supervised classification
model.

A. Contrastive Learning Based Classification Framework

As a state-of-the-art machine learning paradigm, contrastive
learning has achieved great success in the computer vi-
sion [7][10] and natural language processing domains [19][12].
Figure 3 illustrates the overall framework of our proposed con-
trastive learning based classification model. The first compo-
nent of the framework is a self-supervised contrastive pre-train
which generates an encoder network. This encoder network is
used in the second component to fine-tune a classifier model
which predicts whether the stream input is a header or not.

As the essential part of this framework, the encoder network
learns a fixed dimensional vector representation for a stream
input. Without technical details, Figure 4 illustrates the dif-
ference between representation with and without a pre-trained
encoder network. A pre-trained encoder network can learn the
features of non-corrupted headers in the meanwhile cluster
corrupted headers with non-corrupted headers in the repre-
sentation space. In comparison, an encoder network without
pre-train will disperse corrupted and non-corrupted headers
in the representation space, mixing them with non-header
streams and thus influencing the effectiveness of fine-tuned
classification model. Therefore, the encoder network with pre-
train is robust to corruption noise, not only fixing the flaw of
our training data mentioned in Section III, but also equipping
the classification model with the capacity to identify corrupted
headers.

B. Encoder Network and Contrastive Pre-train

Architecture of Encoder network. The encoder network
maps the stream data to a fixed dimensional vector. Formally,
we denote it by fθ(x) : RT → RD. Here x is the input
stream; T is the maximum length of possible headers; D is
the dimensionality of the representation vector; θ denotes the
learnable parameters in the encoder network. Especially, for
an input stream with a length smaller than T , we first pad it
with 0x0 to make sure that all inputs are with the same length,

One Complete and Two 
Corrupted Streams

Representation 
without Pre-train

Representation 
with Pre-train

Fig. 4: The diagram illustrating the necessity of pre-train for
a robust encoder network.
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Fig. 5: The encoder network that maps the radio stream to a
fixed dimensional vector.

i.e., T . The architecture of the adopted encoder is shown in
Figure 5. It consists of a fully connected layer (input layer),
a 10-layer dilated 1-dimensional convolutional neural network
(1DCNN) module [20], a fully connected layer (output layer),
and a pooling layer. Compared to the vanilla 1DCNN, the
dilated version has a large receptive field to capture long-range
dependencies. Formally, we have

H1 = InputLayer(x)
H2 = 1DCNNs(H1)

H3 = OutputLayer(H2)

z = MeanPooling(H3),

(1)

where H1,H2,H3 are hidden representations, and z ∈ RD

is the representation vector.

Data Augmentation by Simulating Corruption. To make
the encoder network robust to corruption noise, we introduce
data augmentation techniques. More specifically, we simulate
corruption based on successfully decoded headers and add
corrupted headers to pre-train dataset. The communication
corruption is usually modeled as white Gaussian noise. The
noise added to each bit is independent of the others. In general,
there are two types of corruption. One is bit flip and another
is bit loss.

We simulate flip and loss with parameterized ratios γ1, γ2 ∈
[0, 1]. As shown in Algorithm 1, we first randomly sample
an array d of |x| real numbers from (0, 1) in Line 3, each
corresponding to a bit in x. First, we determine if flip happens
by comparing the sampled numbers with ratio γ1. If ri < γ1,
we flip the i-th bit in x (line 4-6). Then, we determine if loss
happens by comparing ri with γ1 and γ2. If γ1 < ri < γ2, we
fill in the lost bit with 0 to simulate receivers (line 7-9). In
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Algorithm 1: Simulate Bit Flip & Bit Loss
1: Input: a stream instance x, flip ratio γ1, loss ratio γ2;
2: output: Simulated corrupted stream instance x′;
3: r ← random sample |x| numbers from Uniform((0, 1));
4: d1 ← r − γ1;
5: s1 ← sign(d1);
6: x′ ← x ∗ s1 + (1− x) ∗ (1− s1) ;
7: d2 ← r − (γ1 + γ2);
8: s2 ← sign(d2);
9: x′′ ← x′ ∗ (1 + s2 − s1) ;

10: return x′′.

other situations, we keep the bit. As such, the total corruption
ratio is γ1 + γ2 with γ1 for flip and γ2 for loss respectively.

Contrastive Pre-train. Drawing inspiration from recent self-
supervised learning algorithms in computer vision and natural
language processing, we adopt, a simple but effective con-
trastive learning framework, SimCLR framework [7] to learn
representation vectors for input streams. SimCLR maximizes
agreement between differently augmented streams of the same
data example by using a contrastive loss in the latent space.
Specifically, it contrasts the augmented streams generated from
the same input (i.e., positive pairs) by pulling them close in
the representation space, while pushing apart the augmented
streams generated from different inputs (i.e., negative pairs).

Technically, for the contrastive pretrain objective, we follow
SimCLR [7] to use the normalized temperature-scaled cross
entropy loss (NT-XEnt) as the contrastive loss. Algorithm 2
summarizes our contrastive pretrain procedure. Specifically,
we utilize the cosine similarity to define the similarity between
two vectors zi and zj . Formally,

s(zi, zj) =
zi · zj

||zi||2 · ||zj ||2
(2)

Given a batch of N stream instances, denote by {xi}Ni=1,
we corrupt each instance twice to get 2N augmented streams.
The ones corrupted from the same x are considered positive
pairs. For a positive pair (zi, zj), we have its contrastive loss

ℓ(i,j) = − log
exp(s(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(s(zi, zk))/τ)
, (3)

where τ is the temperature parameter and 1[k ̸=i] is the
indicator function defined as follows.

1[k ̸=i] =

{
0 if k = i

1 if k ̸= i.
(4)

Intuitively, minimizing ℓ(i,j) encourages the model to identify
the positive partner zj from 2N vectors for a given zi. The
batch loss is then computed by averaging all positive pairs in
a mini-batch. Formally, we have

L =
1

2N

N∑
i=1

[ℓ(2i−1,2i) + ℓ(2i,2i−1)]. (5)
C. Supervised Fine-tune and Classification Model

After pre-train, the encoder network is robust to noise. We
build our classifier on top of that to identify headers in the

Algorithm 2: Contrastive Pre-train
1: Input: a set of stream instances {xi}, batch size N ,

temperature τ ,encoder networks f ;
2: output: Pretrained encoder networks f ;
3: for each minibatch {xi}Ni=1 of stream instances do
4: for each instance xi do
5: x̃i1 ← apply simulated corruptions on xi;
6: x̃i2 ← apply simulated corruptions on xi;
7: z2i−1 ← f(x̃i1);
8: z2i ← f(x̃i2);
9: end for

10: compute batch loss L with Eq. (5);
11: update parameters in f by minimizing L.
12: end for
13: return encoder network f .

Algorithm 3: Supervised Fine-tune
1: Input: a set of labeled stream instances {(xi, yi)}, batch size

N , encoder networks f ;
2: Output: classifier g;
3: Inputlayer, 1DCNNs ← extract from encoder network f ;
4: classifier ← initiate 2 fully connected layers
5: detector g ← stack Inputlayer, 1DCNNS, and classifier
6: for each minibatch {(xi, yi)}Ni=1 do
7: for each instance xi do
8: ŷi ← g(xi)
9: compute classification loss ℓi = CrossEntropy(ŷi, yi));

10: end for
11: compute batch loss Lcls = 1

N

∑N
i=1 ℓi;

12: update parameters in classifier by minimizing Lcls.
13: end for
14: return detector g.

corrupted streams. For efficiency, we extract the Inputlayer
and 1DCNNs from the pre-trained encoder network and stack
them with 2 fully connected layers as the classifier. Then, we
fine-tune the classification model with supervised successfully
decoded headers, labeled with 1, and randomly sampled non-
header streams, labeled with 0. During this step, we kept the
Inputlayer and 1DCNNs frozen and don’t update parameters
in these layers. Since we have two labels, headers and non-
headers, we adopt the binary cross entropy as the loss func-
tion. Finally, we fine-tune the model under supervision using
Algorithm 3.

To recover the corrupted transport layer protocol field in IP
headers, we adopt Hamming distance to calculate the distance
between the potentially corrupted protocol value and the non-
corrupted protocol value in the training dataset. The protocol
value is automatically corrected to the target protocol with the
smallest distance.

V. EVALUATION AND ETHICS

A. Experiment Setup and Ethics

In our experiment, we built a platform to eavesdrop on satel-
lite communication data. This platform consists of a TBS-6903
Professional DVB-S2 Dual Tuner PCIe Card and a profession-
ally customized Ku-band antenna that can automatically align
the dish. The total cost of this platform is around $15k. We
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deployed the platform in a suburban area of a metropolis with
more than 10 million of population in Asia, eavesdropping on
the spectrum range from 11 GHZ to 12.75 GHZ which covers
seven commercial satellites. The eavesdropping was conducted
over 20 days from July to October. Finally, we received 23.6
GB DVB/GSE stream data.

Considering that sensitive information could be included in
the stream, we followed ethical principles proposed by the
prior work [16], not storing any data longer than necessary.
Even for the learning model trained using the eavesdropped
data, we deleted it immediately after completing the evalu-
ation to prevent adversary data generation from the model
(e.g., GAN [9]). In the experiment, we treated data units in
IP packets as normal payloads and didn’t make any attempt
to decrypt them. For the sake of anonymity, we chose not to
reveal the specific names of satellites and service providers
that were eavesdropped on. Though we will open-source our
implementation CLExtract after this work is accepted, we
withhold the publishing of training data. This is our best
effort to bolster future research. Here, we advocate service
providers or authorities to build a NVD-like databse (National
Vulnerability Database) [5] which stores anonymized and
desensitized data. It will significantly advance research on
space security.

From the eavesdropped data, we ran GSExtract to extract
BB frames that can be successfully decoded in an FSM-
based approach. From these BB frames, we filter out BB
headers, GSE headers, and IP headers - successfully decoded
headers. Eliminating these headers, we obtain non-header
streams. The two types of data construct our training and
testing dataset. Using this approach, we collected in total
10471 BB frames (0.5 GB) from all streams (23.6 GB). This
low success decoding rate (2.1%) indicates that corruption is
very common in satellite communication. From such highly
corrupted streams, as we will further show in our evaluation,
tools like GSExtract which are built upon the traditional FSM-
based decoding approach can only recover a very small portion
of data.

With the training and testing data in hand, we evaluate
CLExtract. We divided the whole data set into two parts:
2/3 of successfully decoded headers and non-headers stream
to train our model, and the remaining 1/3 to measure its
effectiveness. During data augmentation in contrastive pre-
train, we set the flip ratio and loss ratio as 10% and 10%
respectively. To compare CLExtract with GSExtract, we
apply both to streams with different corruption degrees and
corruption types. More specifically, we synthesize corruption
using the same algorithm for data augmentation. Starting from
2%, we gradually increase the corruption degree (γ1 + γ2) by
a step of 2%, until 20%. In the meanwhile, we adjust the
relative ratio flip(γ1) : loss(γ2) to 1:3, 1:1, and 3:1 to examine
whether the types of corruption affect the robustness. Since the
model is trained over successfully decoded streams with data
augmentation, there is no label leakage to apply the model
for corrupted streams which can be considered as a distinct
dataset. To evaluate to which extent pre-trained network

with data augmentation improves the robustness, we com-
pare the effectiveness of CLExtract with and without data
augmentation. Finally, we run CLExtract and GSExtract
using a server with an Intel(R) Xeon(R) Gold 6258R CPU
@ 2.70GHz, 1.5TB RAM, and an NVIDIA A100 80GB
PCIe GPU, showing the efficiency of CLExtract. Each
experiment mentioned above is repeated for 10 rounds and
we report the average results.

B. Evaluation Results of CLExtract

Effectiveness. We use four metrics to measure the effective-
ness of CLExtract. The first metric is ACC which stands
for the ratio of the number of correct predictions to the total
number of input samples. In our scenario, it is calculated
as (TP+TN)/(TP+TN+FP+FN). True positive (TP) means the
headers identified by CLExtract are indeed headers, and
true negative (TN) means CLExtract doesn’t mistakenly
identify non-header streams as headers. The second metric is
Precision which is calculated as TP/(TP+FP). The third metric
is Recall which is TP/(TP+TN). The last metric is F1 - the
harmonic mean of Precision (P) and Recall (R). It is calculated
as (2/F1 = 1/P + 1/R). F1 is high if and only if both Precision
and Recall are high.

In Table I, we show the effectiveness of CLExtract when
the relative corruption ratio flip(γ1) : loss(γ2) is 1:1. Overall,
the four metrics for header identification at different layers
are all very high no matter how corrupted the stream is -
all above 0.71.3 while most are over 0.9. This indicates that
CLExtract can accurately identify headers in a corrupted
satellite stream.

From the table, we can further observe that, in compar-
ison with BB headers and IP headers, the effectiveness of
CLExtract in identifying GSE headers is relatively poor.
The reasons are two-fold. On the one hand, unlike BB headers,
the length of GSE headers is variable, ranging from 2 bytes
to 12 bytes. In training, we have to pad the short GSE
headers with 0x0 so that they can be uniformly represented
in the encoder network. However, the padded 0x0s carry no
information and mislead CLExtract in classification if the
non-header stream contains too many 0x0s. On the other hand,
unlike IP headers the length of which is at least 20 bytes,
the length of GSE headers is relatively small. Therefore, the
classification model fails to learn enough features in training.

Enough if the effectiveness of CLExtract in identifying
GSE headers is not as good as identifying BB headers and IP
headers, in comparison with GSExtract, CLExtract is much
better. In Table II, we compare the numbers of identified GSE
headers using CLExtract with the number using GSExtract.
Due to the variable length and the small size nature mentioned
above, the number of identified GSE headers by CLExtract
is slightly lower than GSExtract when the corruption degree
is 0.02. However, when corruption becomes more severe,
regardless of the ratio of corruption types, CLExtract can
successfully identify much more GSE headers than GSExtract
(15707 vs. 516 when γ1 + γ2=20% and γ1 : γ2=3:1 ).
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Corruption 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20Degree (γ1 + γ2)

BB Headers
ACC 0.984 0.981 0.976 0.971 0.964 0.955 0.946 0.935 0.921 0.914

Precision 0.977 0.976 0.974 0.973 0.973 0.969 0.966 0.962 0.959 0.957
Recall 0.992 0.986 0.979 0.969 0.957 0.941 0.927 0.908 0.883 0.870

F1 0.985 0.981 0.977 0.971 0.965 0.955 0.946 0.934 0.920 0.912

GSE Headers
ACC 0.883 0.870 0.854 0.839 0.828 0.813 0.797 0.784 0.769 0.757

Precision 0.851 0.845 0.838 0.831 0.828 0.820 0.812 0.804 0.792 0.788
Recall 0.933 0.910 0.882 0.856 0.833 0.807 0.780 0.758 0.737 0.713

F1 0.890 0.877 0.859 0.843 0.830 0.813 0.796 0.780 0.764 0.748

IP Headers
ACC 0.970 0.971 0.972 0.971 0.972 0.971 0.971 0.971 0.970 0.969

Precision 0.962 0.962 0.962 0.961 0.962 0.960 0.960 0.960 0.957 0.954
Recall 0.980 0.981 0.983 0.982 0.982 0.983 0.984 0.984 0.985 0.985

F1 0.971 0.972 0.972 0.972 0.972 0.971 0.972 0.972 0.971 0.969

TABLE I: Effectiveness and robustness of CLExtract with different corruption
degrees (γ1 + γ2) while the ratio of corruption types is fixed to γ1 : γ2 = 1 : 1.
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Fig. 6: Corresponds to Table I, effectiveness and robustness
of BB header identification with different corruption degrees
(γ1+γ2) and ratios (γ1 : γ2). More corresponding results are
in Figure 9 and 10.
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Fig. 7: Corresponds to Table II, comparison between
CLExtract and GSExtract in BB header identification with
different corruption degrees (γ1+γ2) and fixed ratio (γ1 : γ2).
More corresponding results are in Figure 11 and 12.

As Table I shows the results when the ratio of corruption
types flip(γ1) : loss(γ2) is 1:1, we present the results for
different ratios in Figure 6 for BB headers, Figure 9 for GSE
headers, and Figure 10 for IP Headers (Figure 9 and 10 are
in Appendix A). From the three figures, we can observe the
effectiveness of CLExtract in recovering corrupted streams,
which aligns with the results in Table I and II.

Robustness. We measure the robustness of CLExtract
against different corruption degrees and ratios of corruption
types. Still, from Table I, we can see that the four effectiveness
metrics are not lowered too much when corruption becomes
more severe. Taking BB header as an example, its ACC,

Precision, Recall, and F1 only drop 7%, 2%, 12%, and 7%,
respectively, when the corruption degree increases from 2% to
20%. Similar trends are also presented in Figure 6, 9, and 10
that correspond to Table I.

From Table II, we can see that, in general, CLExtract
performs well when the ratio of corruption types changes.
More specifically, CLExtract identifies 16734 GSE headers
when the corruption degree is 2% and flip(γ1) : loss(γ2) is
1:3. If we fix the corruption degree and switch the ratio to
3:1, the number is 16682 which is only 50 fewer. When the
corruption degree increases to 20%, this gap becomes 1017
which takes over 4.2% of the total number of GSE headers.
In comparison, GSExtract is significantly influenced by the
ratio of corruption types. From Table II, we can observe that
the number of identified GSE headers drops 83.3% (2956 to
516) if the ratio switches from 1:3 to 3:1. It indicates that
GSExtract is more likely to be dis-functioned by bit flip than
bit loss. This is because when a bit loss happens, there is still a
50% chance that the value is correct. However, when a bit flip
happens, the value becomes completely wrong. For GSExtract
which heavily relies on critical information in headers, a wrong
value can ruin the following decoding, leading to the missing
of many headers. While for CLExtract, it learns header
features as a whole and is less influenced by the information
loss of bit flip.

In Figure 7, we present the comparison in BB header
identification with fixed γ1 : γ2. We can observe that when the
corruption degree is 0.2, GSExtract almost malfunctions while
CLExtract can identify around 80% BB headers. Similar
results are shown in BB header and IP header identification
with different ratios (Figure 11 and 12 in Appendix A). As
such, we conservatively conclude that CLExtract shows
strong robustness and can recover satellite streams even if it
is corrupted up to at least 20%.

Data Augmentation. Recall that we employ data augmen-
tation to improve the robustness of CLExtract, here, we
evaluate to which extent data augmentation achieves this goal.
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Corruption 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20Degree (γ1 + γ2)

Flip(γ1) : Loss(γ2) = 1 : 1
GSExtract 17905 13639 9849 7231 5070 3838 2738 1997 1535 1114
CLExtract 16684 16663 16637 16601 16541 16444 16461 16340 16253 16275

Flip(γ1) : Loss(γ2) = 1 : 3
GSExtract 18911 15617 12918 10562 8851 7040 5427 4509 3626 2956
CLExtract 16734 16758 16755 16776 16697 16723 16704 16705 16672 16724

Flip(γ1) : Loss(γ2) = 3 : 1
GSExtract 16942 11087 7214 4598 2826 1981 1411 990 639 516
CLExtract 16682 16615 16511 16448 16336 16170 15995 15998 15697 15707

TABLE II: Comparison with GSExtract in terms of the number of identified GSE headers,
with different corruption degrees (γ1+γ2) and different ratios of corruption types (γ1 : γ2).
The total number of GSE headers is 24287.
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Fig. 8: Effectiveness and robustness of BB header identifica-
tion w/ data augmentation (γ1 + γ2 =20%)

In Figure 8 (and Figure 13 14 in Appendix A), we present
the effectiveness and robustness of identifying BB headers,
GSE headers, and IP headers, with and without data augmen-
tation. We can clearly see that data augmentation significantly
improves the effectiveness and robustness of CLExtract
with the orange line lying over the green line. The only
exception is the Precision metric. Actually, this is within
expectation. Intuitively, data augmentation blurs the boundary
between corrupted headers and non-header streams. Therefore,
the model with data augmentation will mistakenly identify
non-header streams as corrupted headers, increasing FP when
calculating the Precision metric (TP/(TP+FP)). However, it
does not mean that data augmentation makes CLExtract
perform poorer. On the one hand, the difference between
Precision with and without data augmentation is less than
5%. On the other hand, CLExtract aims to balance between
Precision and Recall (i.e., not missing TP and FN at the same
time). Therefore, in terms of F1 which is a comprehension
of Precision and Recall, data augmentation improves the
effectiveness and robustness.

Efficiency. In our evaluation, we compare CLExtract with
GSExtract in terms of efficiency. With all eavesdropped data,

it takes GSExtract 10, 391.52 seconds to process and identify
in total 10,471 BB headers, 24,287 GSE headers, and 10,479
IP headers - our training and testing set. In other words, the
identification rate is 0.1 BB headers, 0.23 GSE headers, and
0.1 IP headers per second.

Using this dataset, it takes near 14.5 hours to train all
models in CLExtract. Applying our models, from the whole
eavesdropped data, CLExtract spends 19,870.47 seconds
processing and identifying in total 498,819 BB headers,
1,156,412 GSE headers, and 497,566 IP headers. That is
to say, CLExtract can identify 25.10 BB headers, 58.20
GSE headers, and 25.04 IP headers per second. Admitted that
the headers pinpointed by CLExtract can be false posi-
tives, from the statistics above, we can roughly estimate that
CLExtract is hundreds of times faster than GSExtract. In
addition to more headers identified by CLExtract, another
reason for the efficiency improvement is that CLExtract
can be paralleled while GSExtract must perform decoding in
a sequential fashion.

VI. LIMITATION AND FUTURE WORK

This work has the following limitations. First, the effective-
ness of GSE header identification is not as good as that of BB
header identification and IP header identification. The reasons,
as discussed in Section V-B, are the variable length and the
small size nature of GSE header. To address this problem,
in the future, we plan to include bounding box regression
and intersection over union techniques [17] to further improve
CLExtract. Second, we evaluate the robustness of GSEx-
tract and CLExtract up to 20% corruption degree. We don’t
measure the performance when the corruption becomes more
severe because 20% is high enough to render the data payload
meaningless. However, as future work, we plan to further
raise the corruption degree to examine how CLExtract
performs in an extreme case. Third, to compare the efficiency
of GSExtract and CLExtract, we count the numbers of
identified headers in one second. These numbers are accurate
for GSExtract but include false positives for CLExtract.
We cannot eliminate false positives because we don’t have the
ground-truth of eavesdropped satellite streams. Though we can
obtain a rough estimation from these numbers, to do compare
more precisely, in the future, we plan to simulate the radio
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communication with the ground-truth. We will continue to
open source our simulation platform to foster future research.

VII. CONCLUSION

In this work, we design CLExtract to decode and re-
cover highly corrupted satellite streams. CLExtract uses
a contrastive learning technique with data augmentation to
learn the features of packet headers at different protocol layers
and identify them in a stream sequence. By filtering them
out, CLExtract extracts the innermost data payload that
can be further analyzed by tools like Wireshark. Compared
with the state-of-the-art GSExtract, CLExtract can success-
fully recover 71-99% more eavesdropped data hundreds of
times faster than GSExtract. Moreover, the effectiveness of
CLExtract is not largely damaged when corruption becomes
more severe.
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Fig. 9: Corresponds to Table I, effectiveness and robustness
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(γ1 + γ2) and ratios (γ1 : γ2).
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APPENDIX

Due to space limit, we move some evaluation results to
Appendix. For effectiveness and robustness evaluated over
testing data, refer to Figure 9 and 10. For comparison between
CLExtract and GSExtract, refer to Figure 11 and 12. For
data augmentation, refer to Figure 13 and 14.
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Fig. 11: Corresponds to Table II, comparison between
CLExtract and GSExtract in BB header identification with
different corruption degrees (γ1 + γ2) and ratios (γ1 : γ2).
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Fig. 12: Corresponds to Table II, comparison between
CLExtract and GSExtract in IP header identification with
different corruption degrees (γ1 + γ2) and ratios (γ1 : γ2).
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Fig. 13: Corresponds to Figure 8, effectiveness and robustness
of GSE header identification w/ data augmentation (γ1 + γ2
=20%)
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Fig. 14: Corresponds to Figure 8, effectiveness and robustness
of IP header identification w/ data augmentation (γ1 + γ2
=20%)
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