
Learning automated defense strategies using
graph-based cyber attack simulations

Jakob Nyberg
KTH Royal Institute of Technology

Stockholm, Sweden
jaknyb (at) kth.se

Pontus Johnson
KTH Royal Institute of Technology

Stockholm, Sweden
pontusj (at) kth.se

Abstract—We implemented and evaluated an automated cyber
defense agent. The agent takes security alerts as input and uses
reinforcement learning to learn a policy for executing predefined
defensive measures. The defender policies were trained in
an environment intended to simulate a cyber attack. In the
simulation, an attacking agent attempts to capture targets in the
environment, while the defender attempts to protect them by
enabling defenses. The environment was modeled using attack
graphs based on the Meta Attack Language language. We assumed
that defensive measures have downtime costs, meaning that the
defender agent was penalized for using them. We also assumed
that the environment was equipped with an imperfect intrusion
detection system that occasionally produces erroneous alerts based
on the environment state. To evaluate the setup, we trained the
defensive agent with different volumes of intrusion detection system
noise. We also trained agents with different attacker strategies
and graph sizes. In experiments, the defensive agent using policies
trained with reinforcement learning outperformed agents using
heuristic policies. Experiments also demonstrated that the policies
could generalize across different attacker strategies. However,
the performance of the learned policies decreased as the attack
graphs increased in size.

Keywords—cyber security, machine learning, reinforcement
learning, attack graphs, attack modeling, cyber-physical systems,
cyber-defense

I . I N T R O D U C T I O N

Cybersecurity is an important concern in our increasingly
digital society. Consequences of cyber crime can be severe,
both on an individual and societal level. Apart from managing
personal finances and information, digital systems are also used
in maintaining infrastructure such as power grids, water supply,
and public transportation. The intricacies of these systems
provide a large attack surface for malicious actors to exploit.
To cover this attack surface, we believe that a combination of
automation and human expertise is needed. Using automated
systems to handle rote tasks of the decision-making process
can allow human operators to focus on higher-level tasks that
are yet difficult for a computer to perform.

An autonomic system is a system that can manage itself, and
adapt to changes in its environment [1]. A common reference

model for autonomic systems is the MAPE-K loop [1]. The
MAPE-K loop consists of four steps: monitor, analyze, plan,
and execute. An autonomic agent monitors its environment
through sensors provided by the system, and executes actions
through actuators.

In our implementation of the MAPE-K loop, the sensors
are intrusion detection system (IDS) modules for providing
alert signals, and the actuators a set of predefined defensive
operations, such that can be defined in an software defined
network (SDN) controller or host-based IDS system like
Wazuh [2].

To analyze the state and plan actions, we use a policy
function optimized using reinforcement learning (RL) that uses
the IDS signals as input and selects a predefined defensive
measure to execute. An issue with RL, especially when
proceeded with the prefix “deep”, is the need for large amounts
of online data collection. Policies are learned by continually
observing and interacting with the environment. If running the
system is expensive or slow, this can be costly since training
an agent can require thousands of episodes of experience.
One approach to solve this issue is to train in a simulated
environment. The simulator attempts to imitate the inputs,
outputs and dynamics of the real system. The learned policy
function can then be transferred to a real system with little or
no additional training. This is sometimes referred to as sim-
to-real transfer [3]. This work investigates the first half of the
sim-to-real process, the simulation and training. To simulate
a cyberattack, we employ approaches from the field of threat
modeling, which focuses on identifying and analyzing threats
to a system. Specifically, we use attack graphs produced using
the Meta Attack Language (MAL) [4] to model the cyberattack
process.

Although this work focuses on intrusion response, a major
challenge in network defense is the detection of misuse or
compromise. We eschew this issue by assuming that an IDS
capable of detecting the ongoing attack is in place in the system
we wish to apply our agent in, the output of which is used
as input to the decision policy. In practice, the IDS can be a
signature-based system, or on based on machine learning. We
lighten our assumption by allowing the IDS to be imperfect,
failing to register some events and falsely reporting on others. A
question of interest to us was how well the defender agent could
perform with, or in spite of, the imperfect information from the
IDS. We investigated this by training the agent with different
volumes of IDS errors, and comparing the performance of the
agent against heuristic baselines. We were also interested in

Workshop on Security Operation Center Operations and Construction (WOSOC) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-90-8
https://dx.doi.org/10.14722/wosoc.2023.23006
www.ndss-symposium.org

the ability of the RL policies to generalize to different attacker
strategies. This was investigated by training policies using RL
on a number of different attacker strategies, and evaluating the
performance of the agent on previously unseen ones. Lastly,
we investigated the effect of the size of the attack graph on the
performance of the RL policies.

I I . R E L AT E D W O R K

Cyber intrusion detection and response are broad research
fields whose scope extends far beyond that of this work. For
the purpose of brevity, we focus this section on other works
that employ reinforcement learning for intrusion response.

There have been several works that implement different
varieties of automated defender agents based on RL [5]–[11].
Huang, Huang, and Zhu [11] list several applications where
RL can or may be used to develop a cyber-resilient system.
Gabirondo-López, Egaña, Miguel-Alonso, et al. [6] trains a
variant of AlphaZero using self-play with an attacker and
defender agent. Hammar and Stadler [8] presents and tries
to solve the defense problem as an optimal stopping problem.
Hu, Zhu, and Liu [10] formulates the cyber environment as a
partially observable Markov decision process (POMDP) and
uses Q-learning to find a solution policy. Several of these works
also implement their own cyber attack simulators in order to
learn defender policies. Named simulator include CybOrg [12],
CyberBattleSim [9] and Yawning Titan [13].

The work of Andrew, Spillard, Collyer, et al. [13] bears
close resemblance this one. They, too, present a graph-based
cyberattack simulator and train a defender agent using the
output of the simulator. Unlike this work, however, the authors
use causal Bayesian optimization to train a policy function,
rather than reinforcement learning. This has the advantage of
producing a causal model of the defender’s behavior. The
causal model can then be used to interpret the defender’s
decisions, which can be difficult with methods based on neural
networks. However, as noted by the authors, using causal
optimization methods requires the manual construction of a
causal system model. This is a potentially difficult and time-
consuming process that may not be feasible for large or complex
systems with many variables that influence decision-making.
The same attack simulator is also used by Collyer, Andrew,
and Hodges [14], but with an agent based on RL instead of a
causal models. The authors use a graph embedding method to
represent the graph, and use a graph convolutional network to
process the graph. This allows the agent to generalize to graphs
other than the one it was trained on. They note that for large
graphs, the embedding method leads to improved performance
in environments not seen by the agent during training.

The work of Wolk, Applebaum, Dennler, et al. [15] also
share several aspects of this project. They employ a variety
of methods based on RL and Proximal Policy Optimization
(PPO) to train an automated defender agent on the CAGE Chal-
lenge [16], which is built on top of the CybORG simulator [12]
cyber environment simulator. They find that an approach using
an ensemble of PPO agents performed better than other variants,
such as hierarchical PPO. They also evaluate their agents in
unseen environments, such as to test how well they may perform
in a Real environment, and find that the performance of drops
significantly.

Related to the topic of automated defense agents is the
concept of automated penetration testing, that instead aims to
automate the process of finding and exploiting vulnerabilities
in a system [17]–[21]. Automated attacker agent can also serve
as opponents for automated defense agents, using adversarial
machine learning or game-theoretic solution methods. For this
work, we use heuristic policies for the attacker agent, but we
believe that the use of RL for the attacker agent is a promising
direction for future work.

I I I . R E I N F O R C E M E N T L E A R N I N G

Reinforcement learning is a field of machine learning
focused on the interaction between an agent and an environ-
ment [22, Ch. 1]. The environment is usually modeled as a
Markov decision process (MDP), and the agent should learn a
policy for performing actions that maximizes a reward signal.
Unlike MDP solver methods such as dynamic programming,
reinforcement learning does not necessarily require a model
of the environment. Instead, the agent interacts with the
environment and learns a policy from observations and rewards
produced by said environment. There are a number of different
algorithms for reinforcement learning, including Q-learning [22,
Ch. 6] and policy gradient methods [22, Ch. 13]. Policy
gradient methods are focused on directly finding a policy
function through gradient descent. The policy function maps a
given state s to an action a via the parameters θ, and is denoted
as πθ(a|s). PPO is a policy gradient method that applies a clip
function on the policy loss to limit the amount of change in the
policy parameters in a single iteration [23]. This is intended
to improve the stability of the learning process. The clipped
policy loss is defined as

LCLIP
t (θ) = (1)

Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(2)

where rt(θ) =
πθ(a|s)
πθt (a|s)

is the ratio of the new policy to the
old policy, ϵ a hyperparameter that controls the clip limits and
Ât is an advantage function.

I V. S Y S T E M D E S C R I P T I O N

The basis of the system simulation is an attack graph. An
attack graph is a model to predict and analyze possible events
and outcomes of a cyberattack. The attack graphs used are based
on those produced using the Meta Attack Language (MAL) [4],
which can be used to create digital twins of cyber-physical
systems and networks [24]. The graphs defined here share the
logic and features of MAL attack graphs. Their construction,
however, differs due to not being generated using a list of
defined object classes and relations, but rather are constructed
manually.

We define an attack graph as a directed graph G = (V,E),
where V is the set of nodes, and E is the set of edges between
nodes. The nodes are divided into two sets: attack steps, A,
and defense steps, D. Each attack step features a probability
distribution specifying the time they require to be compromised,
the time-to-compromise (TTC). Defense steps, on the other
hand, are enabled. When a defense step is enabled, it will

2

prevent any attack steps that has the defense step as a parent
node from being compromised. A defense step can represent
a file not being encrypted, or a firewall rule not existing.
Activating the defense, e.g. making the file encrypted, makes
the file no longer readable.

When an attack step is compromised, it may give access
to other steps in the graph. For example, one attack step may
represent the action of performing a password dictionary attack.
If the attack is successful, the attack step is compromised, and
the attacker may proceed to a next step in the graph.

In accordance to MAL, attack steps can be of one of two
types: AND and OR. AND-steps require all parent steps to be
compromised in order to be compromised themselves, whereas
OR-steps require only one parent step to be compromised.
AND-steps can be used to represent preconditions such as
an account requiring a password to be compromised. OR-
steps, on the other hand, can be used to represent alternative
paths, such as a user account being compromised by either a
password dictionary attack or a phishing campaign. Figures 1b
and 1a show visualizations of handcrafted attack graphs used for
experimentation. AND-steps are indicated by dashed incoming
edges.

We define the attack surface as a set of attack steps, Aas ⊂
A, that fulfill the following conditions:

1) There is an edge from a compromised attack step to
the step.

2) One parent step is compromised, if the step is an
OR-step, or all parent steps are compromised, if the
step is an AND-step.

3) A defense step that is a parent node to the attack step
is not enabled.

A. Episode Structure

In order to train a defender agent, we model an attack-
defend capture-the-flag games as an MDP. The goal of the
attacker is to capture as many targets, flags, as possible. The
defender attempts to stop the attacker, and is penalized for each
flag compromised.

The game is played with an attack graph acting as the basis
of actions that can be taken by the attacker and defender. A
subset of attack steps in the graph are assigned as flags, F ∈ A.
Episodes are initiated with a single attack step in the attack
graph being compromised, the entry point for the attacker.

The game is played in discrete time-steps, with the attacker
and defender both acting within the same time-step. Every
time-step, the attacker can select any attack step from the attack
surface to work on. For every time-step the attacker works on
an attack step, the TTC value is reduced by 1. When the TTC
reaches 0, the attack step is compromised. As the defender’s
set of actions, it can select any defense step from the set of
defense steps that are not enabled. When a defense step is
enabled, all child steps are removed from the attack surface and
can no longer be compromised by the attacker. Steps that have
been compromised by the attacker are no longer considered
compromised if defended. The defender can also choose to
do nothing for a time-step. An episode ends when the attack
surface is empty, meaning that there are no attack steps that
can be reached by the attacker.

B. State Description

The state of the environment is expressed by two vectors,
A⃗ = (a0, . . . , a|A|) ∈ {0, 1}|A| and D⃗ = (d0, . . . , d|D|) ∈
{0, 1}|D|. A⃗ describes the state of all attack steps, and D⃗ the
state of all defense steps. For A⃗, 1 represents that the step is
compromised, and 0 that it is not. For D⃗, 1 represents that the
defense is enabled, and 0 that it is disabled.

We assume that the network that is being defended has
an IDS capable of tracking the state of every attack step
in the attack graph. We also assume that this process may
be faulty, and that the IDS may sometimes fail to report an
attack step as compromised, or report a step as compromised
when it is actually not. Thus, we define another vector,
O⃗ = (o0 . . . , o|A|) ∈ {0, 1}|A|, to describe the observation
of the attack steps produced by the IDS. As the state changes
over time, the subscript t is used to denote the state at time-step
t, e.g. A⃗t is the state of all attack steps at time-step t.

We define the accuracy of the IDS by a false positive
rate (FPR) and false negative rate (FNR). Every time-step,
depending on the FPR and FNR, the state of the system can
be incorrectly reported by the IDS. The FPR and FNR can be
expressed as the conditional probabilities

FPR = P (oti = 1|ati = 0) i ∈ {0, . . . , |A|} (3)
FNR = P (oti = 0|ati = 1) i ∈ {0, . . . , |A|} (4)

C. Attacker

The attacker agent uses a policy function to select actions
defined by the attack graph, deciding which attack step to work
on at a given time-step. The attacker agent can only select
attack steps that are in the attack surface. Four different search
policies were used in experiments for the attacker agent.

a) Random: A search policy that selects a random attack
step from the attack surface to work on each time-step.

b) Breadth-first: A search policy that compromises all
steps on the current depth of the attack surface before moving
on to the next depth. The policy is randomized by shuffling the
order that attack steps are traversed when multiple are available
at the same depth.

c) Depth-first: A search policy that compromises each
branch of the attack surface until it reaches an attack step
with no children, and then backtracks to the start of another
branch. The policy is randomized by shuffling the order in
which branches are traversed when multiple are available.

d) Pathfinder: A policy that incorporates full informa-
tion of the attack graph. It calculates the shortest path to each
flag, and then targets flags in order of increasing TTC cost for
the path. If blocked by a defense step en route, the policy will
recalculate the shortest path to the targeted flag. If no path is
available, it will target the next flag in the list.

D. Defender

The defender agent takes alert signals from the IDS as
input, and makes a decision on which defense to enable. It
can also choose to do nothing for a time-step. Decisions are
made using a policy function, with A⃗ concatenated with D⃗ as

3

input. The action space consists of all defense steps in D that
are not enabled, plus a do-nothing action. In experiments, we
evaluated three choices of defender policy function:

a) Random: A policy that selects an available defense
step at random each time-step.

b) Tripwire: A conditional policy, that emulates the
behavior of “if-this-then-that” rules present in IDS frameworks
such as Wazuh [2]. An example rule may be to automatically
block traffic from a certain host if a port scan is detected.
Within the attack graph environment, this is translated to
activating a defense step when one of its child step is reported
as compromised.

c) Reinforcement Learning: A policy trained using RL.
The policy function was parametrized by a fully-connected
neural network and optimized using the PPO algorithm. The
neural network had an input layer of size |A| + |D|, a set
number of hidden layers, and an output layer of size |D|+ 1.
The number of hidden layers and their sizes were treated as
hyperparameters. tanh was used as the activation function for
the hidden layers.

E. Reward

The defender agent has two goals in the game: to minimize
the number of compromised flags, and to minimize the opera-
tional cost of the defense. The operational cost is an abstraction
that could, for example, represent the cost of downtime resulting
from disabling a service or network for security purposes. A
defender with the singular goal of defending the flags could
easily maximize its reward by shutting off access to the entire
system immediately and be done, as the attacker will have
nothing to do at that point. However, this would prevent normal
users from accessing the system, which we consider undesirable.
Defensive measures are thus assumed to have a set cost cd.
With F⃗t = {f0, . . . f|F |} ∈ {0, 1}|F | denoting flag states, the
reward for the defender agent at a given time-step t is defined
as

rd(t) = −
|D|∑
i=0

dicd −
|F |∑
i=0

ficf di, fi ∈ [0, 1], c ∈ R (5)

where cd is the cost of activating a defense step d ∈ D, cf is
the cost of taking a flag f ∈ F . Note that fi = 1 only if the
flag was taken at time-step t, meaning that the penalty is only
incurred once for each flag taken. The defense penalty, on the
other hand, is incurred on every time-step for every defense
step enabled, i.e. di = 1. There are no positive terms in the
reward function, making the maximum possible reward 0. The
minimum reward would be incurred if the defender enables all
defenses from the first time-step, and the attacker still takes
all flags during the episode. As the defender agent can only
disable one defense per time-step, the minimum cumulative
reward for an episode of length l is

−cd

|D|−1∑
i=1

i+ |D|(l − (|D| − 1))

− cf |F | (6)

V. E X P E R I M E N T S

Three experiments were performed to evaluate the simulator
and defender agent: A comparison between the RL policy

and heuristic policies at different levels of IDS accuracy, a
comparison between RL policies trained with different attackers
and an analysis of how the policy training is affected as the
graph size increases.

RL policy training and evaluation was performed on a
Google Cloud virtual machine equipped with an Nvidia V100
GPU, 12 CPU cores, and 30 GB of RAM. The implementation
used the Python library Ray RLLib [25] for implementations of
the reinforcement learning algorithms. All policies trained with
RL were run for 500 PPO policy iterations. All policies were
evaluated by running 500 episodes. Each policy took roughly
20 minutes to train and evaluate.

Experiments were performed three times with different seeds
for the random number generator. The neural networks used
two hidden layers with 128 nodes.

All TTC values except those explicitly set to 0 were
initialized at the start of each episode by sampling from the
exponential distribution f(x;β) = 1

β e
− 1

β x, where β is the
mean TTC value assigned to each attack step.

The costs were set as cf = 1.5 ·
∑

a∈A TTC(a) and cd = 1
for all flags and defense steps respectively, where TTC(a)
denotes the TTC value for attack step a. The choice of cf was
made such that the cost of losing a flag would be greater than
disabling a defense step on the first time-step.

A. Sensor Fault Resistance

A desired property of a good defender agent is the ability
to operate in spite of imperfect information. Therefore, an
experiment was performed to study the effects of false alerts
and missed alerts on the defender. The rate of errors in the
observations is defined using two values, the FPR and the
FNR. Five values for the FPR and FNR were selected: 0%,
12.5%, 25%, 72.5% and 100%. A partial grid search was
performed over combinations the error rates, for a total of 15
points. Points where FNR > 1− TNR were excluded since
they are equivalent to those where FNR < 1 − TNR, but
with reverse definitions of the true and false labels.

Three defender agents, one using policies trained with PPO,
one using the tripwire policy and one using the random policy
were compared. Figure 1a depicts the attack graph used as the
environment, with depth-first search as the attacker policy. For
the RL agents, one policy was trained and evaluated for each
combination of FPR and FNR values.

B. Attacker Comparison

A second experiment was performed to study the general-
ization capabilities of the defender agent trained using RL. As
such, only the PPO policy was used for this experiment. The
agent was trained with one attacker policy, and then evaluated
against all attacker policies listed in Section IV-C. A mixture
of the attacker policies was used as an additional variant, where
the attacker policy was chosen at random at the beginning of
each episode. Figure 1b depicts the attack graph used. The
FPR and FNR were set to 10%.

4

1

1 182

1

1

1

1

1

6

1

1

1 1

(a) Attack graph used for FPR/FNR sweep
experiment. Each of the four flags can be
defended using a defense step.

1

1

1 1

0

0

1

0

1

0

11

1

(b) Attack graph used for attacker policy
comparison experiment.

Fig. 1: Attack graphs constructed manually for experiments.
Defense steps are colored purple, flags green and attacker entry
points red. AND-steps have dashed incoming edged. Average
TTC values are drawn as numbers in nodes.

C. Graph Size

Real-life attack graphs can be huge due to the complexity
of real-life systems [4]. Thus, an experiment was performed
to study the effects of graph size on policy learning.

Four graphs of sizes 20, 40, 60 and 80 steps were generated
using a semi-random attachment procedure. Each graph has
|A|
20 flags. Each flag step had a defense step attached to it,

ensuring that each flag was defensible. A policy was trained
for each graph size using PPO and evaluated together with the
tripwire policy. The same hyperparameter values were used
for training on all graph sizes. The FPR and FNR were set to
10%.

V I . R E S U LT S

Sections VI-A, VI-B and VI-C present the results of the
experiments described in Section V. Results for all experiments
are averaged over three runs with different seeds for the random
number generator (RNG). The RNG affects the TTC values
sampled at that episode initialization, attacker behavior, and
neural network parameter initialization.

A. Sensor Fault Resistance

Figure 2 presents performance metrics for the three defender
agents as surface plots. There are two figures for each policy,
one showing the average percentage of flags captured by the
attacking agent, and one showing the average reward for the
500 episodes of evaluation. Episodes were, in average, 13
time-steps long for agents using PPO and tripwire policies, and
15 time-steps for the agent using a random policy. The agent
using the random policy has a consistent performance across
the different combinations, as it does not use observations to
begin with. The amount of flags captured was higher than for
the other policies, and the reward was thus lower.

For all but two combinations of error rates, the learned
policies produce a higher average reward than the tripwire
policy. For the two combinations where the FPR ≥ 0.5 and the
FNR = 0, the difference in reward was no longer statistically
significant (p < 0.05).

The performance of both learned polices and the tripwire
policy decrease as the FPR increases. The PPO policies
performs better when the FNR increases compared to the
tripwire policy, the performance of which rapidly decreases
with an increased FNR.

Averaged across all combinations, the PPO policies have
an average cumulative reward of −50, compared with −73 for
the tripwire policy and −72 for the random policy.

B. Attacker Comparison

Figure 3 shows bar plots of the rewards and percentage of
flags compromised. Episodes were, in average, 9 time-steps
long. The longest recorded episode was 19 time-steps, and the
shortest 6 time-steps.

There is a significant difference between the rewards
produced by the agents when faced with different attacker
policies than those they were trained on. The policy trained
against the depth-first attacker produces the lowest reward
compared to the others when faced with the depth-first attacker.
However, it performs much better on average when faced with
other strategies. Inversely, the policy trained against the breadth-
first attacker has the best overall performance compared to
the other policies when faced with only one attacker, but is
significantly worse when faced with others. When averaged
over all attackers, the difference in reward between policies not
trained against the breadth-first attacker were not statistically
significant (p < 0.05).

C. Graph Size

The performance of the policies learned by PPO decrease
as the graph size increases. For all graph sizes greater than 20,
the RL policies produced worse results than the tripwire policy.

5

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Co
m

pr
om

ise
d

Fl
ag

s

0.0
0.2
0.4
0.6
0.8
1.0

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Re
wa

rd

60
55
50
45
40
35
30

(a) Surface plots showing performance metrics for defender agent
using RL policies. The percentage of flags taken by the attacker
remains low for all values of the FPR and FNR.

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Co
m

pr
om

ise
d

Fl
ag

s

0.0
0.2
0.4
0.6
0.8
1.0

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Re
wa

rd

60
55
50
45
40
35
30

(b) Surface plots showing performance metrics for defender using
the tripwire policy. As the FNR increases, performance decreases
significantly.

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Co
m

pr
om

ise
d

Fl
ag

s

0.0
0.2
0.4
0.6
0.8
1.0

False Positiv
e

0.00
0.25

0.50
0.75

1.00

False Negative

0.00
0.25

0.50
0.75

1.00

Re
wa

rd

60
55
50
45
40
35
30

(c) Surface plots showing performance metrics for defender taking
random actions. The reward is consistently low compared to other
methods, and the amount of flags lost to the attacker is higher.

Fig. 2: Surface plots showing metrics for different defender
policies. Results are averages over three runs with different
RNG seeds.

The tripwire policy also decreases in performance as the graph
size increases, but the decrease is less than for the RL policies.

V I I . D I S C U S S I O N

A. Other Baselines

We compared the RL policy against two heuristic policies,
neither of which were optimal. Comparing against the optimal
policy would be beneficial to judge the effectiveness of the
learned policies. In order to find the optimal policy for
a particular configuration, one could apply POMDP solver
methods. These may become difficult to apply, however, for
larger graphs as the number of possible states is 2n, two to the
power of attack steps. The state space thus grows exponentially.
This also makes it difficult to compare the neural network

mixed depth-first pathplanner random breadth-first

8

6

4

2

0

M
ea

n
Re

wa
rd

Mean reward when defending against all attackers.

pathplanner mixed depth-first random breadth-first
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Pe

rc
en

ta
ge

 o
f C

om
pr

om
ise

d
Fl

ag
s

Mean percentage of compromised flags when defending against all attackers.

breadth-first pathplanner random mixed depth-first
Attacker Trained Against

5

4

3

2

1

0

M
ea

n
Re

wa
rd

Mean reward when defending against same attacker.

Fig. 3: Three plots showing PPO policy performance against
different attacker policies during evaluation. The top and middle
plots show the average reward and flags captured when faced
with attacker policies not encountered during training. The
bottom plot shows the reward when evaluated against the
attacker policy used during training. The metrics are averaged
over three runs with different RNG seeds.

policy to a tabular RL policy, like Q-learning that store a value
for each state-action pair.

B. Scaling

A large drawback of the RL method was the time it took
to train the neural network policy function. The training
time only grew larger as graphs sizes increased and, inversely,
the performance of the policies decreased. The decrease in
performance with increased graph sizes comes from a number of
factors. One of these was optimization robustness. As the graph
size increases, the size of the neural network grows linearly.
Despite the size of neural network and reward signals changing,
the same set of hyperparameters was used for all graph sizes.
A procedure to find appropriate hyperparameters for each graph
size would likely be necessary to make training more robust.

6

One could also take an orthogonal approach and apply same
neural network to all graph sizes. This would require a different
approach to how the graph state was represented, as the current
approach is not invariant to changes in the graph structure or
size. Graph convolutional networks are a possible solution to
this problem, as demonstrated in previous work [14].

Another complicating factor was the rules of the attack-
defense game. When the graph size increases, so does the
episode length. The episode ended only when the attacker no
longer can perform any actions. Even if the defender enables
all defenses, the attacker can still traverse the remaining nodes,
thus extending the episode length. Adjusting the episode end
conditions could help alleviate this issue, such as imposing
a time limit for the attacker. Another issue that comes from
long episodes is that the PPO policies are stochastic. This
means that the longer the episode, and the more actions are
available, the more likely it is that the defender will eventually
take a low-probability action. As there is no way to undo
actions, the defender can eventually enable every defense even
if the attacker does nothing. This could be addressed by adding
a probability threshold for enabling a defense, or by always
selecting the most likely one.

C. Generalization

Generalization is a desirable property for the defender agent,
as it would allow the agent to be used in different environments
without having to retrain the policy. This was also one of the
main motivations for using deep RL, as we would like to be
able to learn policies in environments that are easily simulated,
in order to be able to test them in more realistic environments
down the line. Figure 3 demonstrates that the policy can
generalize across different attacker policies. However, so can
the tripwire policy, as it is invariant to the behavior of the
attacker. A more interesting task is to generalize to different
graph environments. In the current implementation, a learned
policy function is only applicable to a single graph. The graph
topology has to be static, and no attack steps can be added
or removed. Additionally, the agent was only presented with
the node states, and not the topology of the graph. Both of
these problems may be addressed by using a model that can
incorporate the graph topology, like a graph neural network.
Another task to test generalization is to evaluate trained policies
against different volumes of IDS noise, to determine which
level is best to train the policy on.

D. The Sim-to-Real Gap

The defender agent is trained in a simulated environment,
with the intention of being used in a real environment. Within
the field of robotics, it has been shown that the transfer of
learned policy functions from simulation to real world can
deteriorate performance of the policy [3]. This is a consequence
of differences between the real world and the simulation model,
leading to worse policy performance. For this work, the target
environment is a computer network, and we should expect that
the performance of the learned policy function will change
when applied to real alert patterns. Measuring the magnitude
of this change will be a key focus for future work. One
issue related to the field of cybersecurity in particular is the
construction of realistic attack scenarios. Even if the network

itself is modeled accurately, the attacks and adversaries the
defender trains against may be unrealistic.

V I I I . C O N C L U S I O N

An automated cyber defense agent using policies trained
with RL was implemented and evaluated. The agent was trained
and tested in a simulated environment based on MAL attack
graphs. The RL policy was compared against heuristic policies
when faced with different volumes of IDS noise. We observed
that the agents implemented using RL could learn policies that
were better than the heuristic policies, and that they were more
resilient to missed alerts. From our second experiment, we
also observed that the neural network-based policy had the
ability to generalize to different adversarial attackers, and that
some adversaries were better training opponents than others.
Unfortunately, the performance of the learned policies decreased
as the graphs increased in size. Future work will focus on
the ability for the defender agent to generalize across graphs,
and crossing the gap between simulation and the real world,
transferring a defender agent trained in simulation to an actual
computer network.

R E F E R E N C E S

[1] J. Kephart and D. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, Jan.
2003, Conference Name: Computer, I S S N: 0018-9162.
D O I: 10.1109/mc.2003.1160055.

[2] Wazuh. “Wazuh the open source security platform.”
(2023), [Online]. Available: https://wazuh.com/ (visited
on 01/04/2023).

[3] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real
transfer in deep reinforcement learning for robotics: A
survey,” in 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), IEEE, Dec. 2020, pp. 737–
744. D O I: 10.1109/ssci47803.2020.9308468.

[4] P. Johnson, R. Lagerström, and M. Ekstedt, “A meta
language for threat modeling and attack simulations,”
in Proceedings of the 13th International Conference on
Availability, Reliability and Security, ACM, Aug. 2018,
pp. 1–8. D O I: 10.1145/3230833.3232799.

[5] T. T. Nguyen and V. J. Reddi, “Deep reinforcement
learning for cyber security,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–17, 2021. D O I:
10.1109/TNNLS.2021.3121870.

[6] J. Gabirondo-López, J. Egaña, J. Miguel-Alonso, and
R. Orduna Urrutia, “Towards autonomous defense of
sdn networks using muzero based intelligent agents,”
IEEE Access, vol. 9, pp. 107 184–107 199, 2021. D O I:
10.1109/ACCESS.2021.3100706.

[7] Y. Han, D. Hubczenko, P. Montague, et al., “Adversarial
reinforcement learning under partial observability in
autonomous computer network defence,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), L.
Bushnell, R. Poovendran, and T. Başar, Eds., ser. Lecture
Notes in Computer Science, Cham: IEEE, Jul. 2018,
pp. 145–165, I S B N: 978-3-030-01554-1. D O I: 10.1109/
ijcnn48605.2020.9206634.

7

https://doi.org/10.1109/mc.2003.1160055
https://wazuh.com/
https://doi.org/10.1109/ssci47803.2020.9308468
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1109/TNNLS.2021.3121870
https://doi.org/10.1109/ACCESS.2021.3100706
https://doi.org/10.1109/ijcnn48605.2020.9206634
https://doi.org/10.1109/ijcnn48605.2020.9206634

[8] K. Hammar and R. Stadler, “Learning intrusion pre-
vention policies through optimal stopping,” in 2021
17th International Conference on Network and Service
Management (CNSM), IEEE, Oct. 2021, pp. 509–517.
D O I: 10.23919/cnsm52442.2021.9615542.

[9] C. Seifert, J. Bono, J. Parikh, and W. Blum. “Gamifying
machine learning for stronger security and AI models.”
(2020), [Online]. Available: https : / /www.microsoft .
com/security /blog /2021 /04 /08 /gamifying- machine -
learning-for-stronger-security-and-ai-models/ (visited
on 07/27/2021).

[10] Z. Hu, M. Zhu, and P. Liu, “Adaptive cyber de-
fense against multi-stage attacks using learning-based
POMDP,” ACM Transactions on Privacy and Security,
vol. 24, no. 1, pp. 1–25, Nov. 2020, I S S N: 2471-2566,
2471-2574. D O I: 10.1145/3418897.

[11] Y. Huang, L. Huang, and Q. Zhu, “Reinforcement
learning for feedback-enabled cyber resilience,” Annual
Reviews in Control, vol. 53, pp. 273–295, Jan. 1, 2022,
I S S N: 1367-5788. D O I: 10.1016/j.arcontrol.2022.01.
001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1367578822000013.

[12] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim,
and D. Marriott, “Cyborg: A gym for the development of
autonomous cyber agents,” in IJCAI-21 1st International
Workshop on Adaptive Cyber Defense., arXiv, 2021.

[13] A. Andrew, S. Spillard, J. Collyer, and N. Dhir, “Devel-
oping optimal causal cyber-defence agents via cyber
security simulation,” in International Conference on
Machine Learning 2022, Workshop on Machine Learning
for Cybersecurity, Workshop on Machine Learning for
Cybersecurity, vol. abs/2207.12355, 2022. D O I: 10 .
48550/arXiv.2207.12355. arXiv: 2207.12355.

[14] J. Collyer, A. Andrew, and D. Hodges, “ACD-G: En-
hancing autonomous cyber defense agent generalization
through graph embedded network representation,” en,
in International Conference on Machine Learning 2022,
Workshop on Machine Learning for Cybersecurity, Jul.
2022. [Online]. Available: https://dspace.lib.cranfield.ac.
uk/handle/1826/18288.

[15] M. Wolk, A. Applebaum, C. Dennler, et al., “Beyond
cage: Investigating generalization of learned autonomous
network defense policies,” in NeurIPS 2022, Reinforce-
ment Learning for Real Life (RL4RealLife) Workshop,
Nov. 28, 2022. D O I: 10.48550/ARXIV.2211.15557.
arXiv: 2211.15557 [cs.LG].

[16] Cyber autonomy gym for experimentation challenge 2,
https : / / github. com / cage - challenge / cage - challenge -
2, Created by Maxwell Standen, David Bowman, Son
Hoang, Toby Richer, Martin Lucas, Richard Van Tassel,
Phillip Vu, Mitchell Kiely, 2022.

[17] H. Holm, “Lore a red team emulation tool,” IEEE
Transactions on Dependable and Secure Computing,
pp. 1–1, 2022, I S S N: 1545-5971, 1941-0018, 2160-
9209. D O I: 10.1109/tdsc.2022.3160792.

[18] R. Gangupantulu, T. Cody, P. Park, et al., “Using cyber
terrain in reinforcement learning for penetration testing,”
in 2022 IEEE International Conference on Omni-layer
Intelligent Systems (COINS), IEEE, Aug. 2022, pp. 1–8.
D O I: 10.1109/coins54846.2022.9855011.

[19] M. C. Ghanem and T. M. Chen, “Reinforcement learning
for efficient network penetration testing,” Information,

vol. 11, no. 1, 2020, I S S N: 2078-2489. D O I: 10.3390/
info11010006. [Online]. Available: https://www.mdpi.
com/2078-2489/11/1/6.

[20] T. Cody, “A layered reference model for penetration
testing with reinforcement learning and attack graphs,” in
2022 IEEE 29th Annual Software Technology Conference
(STC), 2022, pp. 41–50. D O I: 10.1109/STC55697.2022.
00015.

[21] Z. Hu, R. Beuran, and Y. Tan, “Automated penetration
testing using deep reinforcement learning,” in 2020
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), 2020, pp. 2–10. D O I: 10.1109/
EuroSPW51379.2020.00010.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learn-
ing. Springer US, 2018, I S B N: 9781461366089,
9781461536185. D O I: 10.1007/978-1-4615-3618-5.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. arXiv: 1707.06347.

[24] M. Masi, G. P. Sellitto, H. Aranha, and T. Pavleska,
“Securing critical infrastructures with a cybersecurity
digital twin,” Software and Systems Modeling, Jan. 2,
2023, I S S N: 1619-1366, 1619-1374. D O I: 10.1007/
s10270-022-01075-0.

[25] E. Liang, R. Liaw, R. Nishihara, et al., “RLlib: Abstrac-
tions for distributed reinforcement learning,” in Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, J. G. Dy and A. Krause, Eds.,
ser. Proceedings of Machine Learning Research, vol. 80,
PMLR, 2018, pp. 3059–3068. [Online]. Available: http:
//proceedings.mlr.press/v80/liang18b.html.

8

https://doi.org/10.23919/cnsm52442.2021.9615542
https://www.microsoft.com/security/blog/2021/04/08/gamifying-machine-learning-for-stronger-security-and-ai-models/
https://www.microsoft.com/security/blog/2021/04/08/gamifying-machine-learning-for-stronger-security-and-ai-models/
https://www.microsoft.com/security/blog/2021/04/08/gamifying-machine-learning-for-stronger-security-and-ai-models/
https://doi.org/10.1145/3418897
https://doi.org/10.1016/j.arcontrol.2022.01.001
https://doi.org/10.1016/j.arcontrol.2022.01.001
https://www.sciencedirect.com/science/article/pii/S1367578822000013
https://www.sciencedirect.com/science/article/pii/S1367578822000013
https://doi.org/10.48550/arXiv.2207.12355
https://doi.org/10.48550/arXiv.2207.12355
https://arxiv.org/abs/2207.12355
https://dspace.lib.cranfield.ac.uk/handle/1826/18288
https://dspace.lib.cranfield.ac.uk/handle/1826/18288
https://doi.org/10.48550/ARXIV.2211.15557
https://arxiv.org/abs/2211.15557
https://github.com/cage-challenge/cage-challenge-2
https://github.com/cage-challenge/cage-challenge-2
https://doi.org/10.1109/tdsc.2022.3160792
https://doi.org/10.1109/coins54846.2022.9855011
https://doi.org/10.3390/info11010006
https://doi.org/10.3390/info11010006
https://www.mdpi.com/2078-2489/11/1/6
https://www.mdpi.com/2078-2489/11/1/6
https://doi.org/10.1109/STC55697.2022.00015
https://doi.org/10.1109/STC55697.2022.00015
https://doi.org/10.1109/EuroSPW51379.2020.00010
https://doi.org/10.1109/EuroSPW51379.2020.00010
https://doi.org/10.1007/978-1-4615-3618-5
https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/s10270-022-01075-0
https://doi.org/10.1007/s10270-022-01075-0
http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v80/liang18b.html

	Introduction
	Related Work
	Reinforcement Learning
	System Description
	Episode Structure
	State Description
	Attacker
	Defender
	Reward

	Experiments
	Sensor Fault Resistance
	Attacker Comparison
	Graph Size

	Results
	Sensor Fault Resistance
	Attacker Comparison
	Graph Size

	Discussion
	Other Baselines
	Scaling
	Generalization
	The Sim-to-Real Gap

	Conclusion

